Supporting information

Efficient Ni Based Catalysts for Hydrotreatment of Lignin Dimer Model Compounds to Cycloalkanes/Cycloalkanols Changzhou Chen ^{ac†}, Dichao Wu ^{ac†}, Peng Liu ^{ac}, Haihong Xia ^{ac}, Minghao Zhou

 $^{\rm b*}\!,$ Xinglong Hou $^{\rm ac}\!,$ Jianchun Jiang $^{\rm ac}$

- a. Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. on Forest Chemical Engineering, SFA, Nanjing 210042, China
- b. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- c. Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China

* Corresponding Author: E-mail: zhouminghao@yzu.edu.cn (Minghao Zhou)

†These authors contributed equally: Changzhou Chen and Dichao Wu

Supporting information list

Fig. S1 NMR of three β -O- 4 model compounds

Fig. S2 TEM of fresh and used Ni3La1/CNT catalyst

Table S1 ICP analysis for NiLa/CNT catalysts before and after reaction

Table S2 ICP analysis for Ni3La1/CNT catalysts before and after five runs

Fig. S3 TEM micrographs of different Ni1La3/CNT catalyst and average size of Ni1La3/CNT catalyst

Table S3 Quantity of NiLa/CNT catalysts

Fig. S4 Results with reaction time of longer than 5 h

Table S4 Results with short times and low temperatures

Fig. S1 NMR of three β -O- 4 model compounds

Fig. S2 XRD of fresh and used Ni3La1/CNT catalyst

Catalanta	Metal element compositions			
Catalysis	Ni	La	Ni/La	
Ni3La1/CNT	14.88	5.06	2.94	
Ni2La2/CNT	9.94	9.79	1.01	
Ni1La3/CNT	5.02	14.91	0.33	

Table S1 ICP analysis for NiLa/CNT catalysts before and after reaction

Table S2 ICP analysis for Ni3La1/CNT catalysts before and after five runs

Catalante	Metal element compositions			
Catalysis	Ni	La	Ni/La	
Ni3La1/CNT ^a	14.88	5.06	2.94	
Ni3La1/CNT ^b	13.03	4.21	3.09	

a-fresh catalyst; b-catalyst reused after five runs.

Fig. S3 TEM micrographs of different Ni1La3/CNT catalyst and average size of Ni1La3/CNT catalyst

Table S3 Quantity of NiLa/CN1 catalysts				
Catalyst	Quantity (mmol/g)			
Ni/CNT	4.84342			
Ni3La1/CNT	4.27182			
Ni2La2/CNT	3.46187			
Ni1La3/CNT	2.33541			

Fig. S4 Results with reaction time of longer than 5 h

	$\frac{1}{1}$	iLa/CNT mL <i>i</i> PrOH Mpa H₂	2a'	+ 2a	OH + 3a'	0+ 3a"	OH 3a
Entry	Cat.	Conv.	Yield (%)				
		(%) ^c	2a'	2a	3 a'	3a"	3 a
1 a	Ni3La1/CNT	18	10	6	12	1	4
2 ^b	Ni3La1/CNT	20	11	7	12	0	6

Table S4 Results with short times and low temperatures

^a Reaction conditions: **1a** (500mg), Cat. (50mg), *i*PrOH (40 mL), 2.0 MPa H₂, 1 h, 240 °C; ^b Reaction conditions: **1a** (500mg), Cat. (50mg), *i*PrOH (40 mL), 2.0 MPa H₂, 4 h, 200 °C.