Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Efficient, continuous N-Boc deprotection of amines using solid acid catalysts

Jing Wu,^a Chunming Zheng,^a Bryan Li,^b Joel M. Hawkins,^c and Susannah L. Scott^{a,d*}

^a Department of Chemical Engineering, University of California, Santa Barbara CA 93106 USA

^bPfizer Worldwide Research & Development, Chemical R & D La Jolla Laboratory, San Diego CA, 92121, USA

^c Pfizer Global Research & Development, Groton CT 92121, USA

^d Department of Chemistry & Biochemistry, University of California, Santa Barbara CA 93106 USA

Table of Contents			
Scheme S1	Schematic and photo of continuous flow reactor	S2	
	Residence time calculation	S3	
Table S1	Effect of anisole cosolvent on deBoc reaction	S3	
	Stereochemistry retention during catalytic deprotection	S3	
Figure S1	Chiral HPLC of H	S4	
	Characterization data for deprotected amines	S5	
	Representative NMR spectra	S 8	
	Additional Reference	S21	

Scheme S1. Schematic (top) and photograph (bottom) of continuous flow reactor.

Residence time calculation

The nominal residence time τ was calculated as follows: a precisely weighed amount of H-BEA zeolite (80-100 mesh, 1.0 g) was centrifuged at 4000 rpm for 30 min. Its volume in the centrifuge tube was 1.60 mL, giving the density as 0.62 g mL⁻¹. The framework density of HBEA (15.3 T sites/1000 Å³) corresponds to a bulk density of 1.52 g mL⁻¹. The intercrystalline void volume is therefore $1.60 - (1.52)^{-1} = 0.94$ mL g⁻¹. The nominal residence time is the product of the intercrystalline void volume and the catalyst loading, divided by the flow rate.

a

Designation ^b	Product ^c	Cat. mass	Temp. °C	10% anisole	Flow rate mL min ⁻¹	Res. Time ^d	Yield ^e %	
		g				min		
Н	COOMe	0.300	180	Yes	0.04	7.05	88	
	NH ₂		200	No			75	
\mathbf{J}^{f}	HN N-Bn	0.300	200	Yes	0.05	5.6	86	
			180	No			12 ^g	
K	OH	0.500	200	Yes	0.04	11.75	85	
	NH ₂			No			65 ^h	

Table S1. Effect of anisole cosolvent on continuous flow deBoc reaction^a

Reactions were conducted with 0.050 M substrate in a packed-bed reactor at 500 psi. ^b Letters correspond to Table 4 in the main text. ^c The deprotected amine site is indicated in blue. ^d Nominal residence time = volume of intercrystalline void × catalyst loading/flow rate. ^c NMR yield, using 20 mol% 1,3,5-trimethoxybenzene relative to the starting material as internal standard. ^f Reaction conducted under N₂ protection. ^g 10% 1-benzylpiperazine-2,5-dione (oxidized side-product) was formed according to GC-MS. ^h 20% N-tBu-tryptophanol (tert-butylation side-product) was formed according to GC-MS.

Stereochemistry retention during catalytic deprotection

Due to the low solubility of methyl-(2*S*)-2-amino-3-phenylpropanoate (**H**) in the HPLC solvent (iPrOH), as well as difficulties in achieving baseline separation of the stereoisomers by chiral HPLC, the amine group was protected by an acetyl group to form (*S*)-*N*-acetylphenylalanine, eq 1, following a literature procedure.¹

$$\bigcup_{NH_2}^{COOMe} \xrightarrow{AcCl, Et_3N, 0 \circ C, 2h} \bigcup_{NHAc}^{COOMe}$$
(1)

<u>Characterization of (S)-N-acetylphenylalanine</u>: ¹H NMR (600 MHz, Chloroform-*d*) δ 7.28 (dd, *J* = 7.1, 1.2 Hz, 2H), 7.24 (d, *J* = 7.3 Hz, 1H), 7.12 – 7.07 (m, 2H), 6.19 – 5.98 (m, 1H), 4.88 (d, *J* = 7.8 Hz, 1H), 3.72 (s, 3H), 3.13 (d, *J* = 5.9 Hz, 1H), 3.09 (d, *J* = 5.9 Hz, 1H), 1.97 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.15, 169.64, 135.90, 129.23, 128.56, 127.11, 77.30, 77.09, 76.88, 53.16,

53.15, 37.86, 23.07, 0.00. The ee value of the product (93 %)was determined by HPLC on a Chiralcel IB column, Figure S2.

Figure S1. Chiral HPLC of (*S*)-*N*-acetylphenylalanine from deprotection of **H** (top) and standard racemic mixture (bottom). Conditions: hexane/iPrOH = 95 : 5; flow rate = 1.0 mL/min; UV detection at 220 nm; tR = 27.387 min (minor), 29.142 min (major), ee = 93%.

Characterization data for deprotected amines

NH₂

NH₂

NH₂

NH₂

NH₂

Br A was prepared in a continuous flow reaction conducted using 0.100 mol/L reactant in THF flowing at 0.5 mL/min at 140 °C with 200 mg HBEA catalyst in a packed-bed column at 500 psi. The product was obtained as white solid (95% yield). ¹H NMR (500 MHz, chloroform-*d*) δ 7.23 (d, *J* = 8.7 Hz, 2H), 6.55 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 145.53, 132.07, 116.79, 110.22.

MeOOC **B** was prepared in a continuous flow reaction conducted using 0.100 mol/L reactant in THF flowing at 0.5 mL/min at 140 °C with 200 mg HBEA catalyst in a packed-bed column at 500 psi. The product was obtained as white solid (>95% yield).¹H NMR (500 MHz, methanol- d_4) δ 6.37 (d, J = 8.7 Hz, 2H), 5.27 (d, J = 8.8 Hz, 2H), 3.45 (s, 2H), 2.43 (s, 3H). ¹³C NMR (126 MHz, MeOD) δ 166.44, 151.79, 129.65, 115.75, 111.51.

CI C was prepared in a continuous flow reaction conducted using 0.100 mol/L reactant in THF flowing at 0.5 mL/min at 140 °C with 200 mg HBEA catalyst in a packed-bed column at 500 psi. The product was obtained as yellow solid (>95% yield).¹H NMR (500 MHz, chloroform-*d*) δ 6.59 (dd, J = 8.8, 2.3 Hz, 2H), 3.66 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 145.08, 129.15, 123.12, 116.30.

MeO **D** was prepared in a continuous flow reaction conducted using 0.100 mol/L reactant in THF flowing at 0.5 mL/min at 140 °C with 200 mg HBEA catalyst in a packed-bed column at 500 psi. The product was obtained as white solid (>95% yield). ¹H NMR (500 MHz, methanol- d_4) δ 5.21 (d, J = 1.8 Hz, 4H), 3.31 (s, 2H), 2.19 (d, J = 1.4 Hz, 3H). ¹³C NMR (126 MHz, MeOD) δ 151.57, 138.67, 115.33, 115.33, 53.26.

TBSO E was prepared in a continuous flow reaction conducted using 0.100 mol/L reactant in THF flowing at 0.5 mL/min at 140 °C with 200 mg HBEA catalyst in a packed-bed column at 500 psi. The product was obtained as yellow solid (>95% yield). ¹H NMR (600 MHz, chloroform-*d*) δ 6.69 – 6.65 (m, 2H), 6.59 – 6.55 (m, 2H), 3.36 (s, 3H), 0.99 (s, 10H), 0.17 (s, 6H). ¹³C NMR (151 MHz, cdcl₃) δ 148.23, 140.39, 120.71, 116.37, 116.36, 25.84, 18.26, -4.40.

NH₂

H F was prepared in a continuous flow reaction conducted using 0.100 mol/L reactant in THF flowing at 0.5 mL/min at 140 °C with 200 mg HBEA catalyst in a packed-bed column at 500 psi. The product was obtained as yellow solid (91% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.31 (s, 1H), 7.79 (d, J = 1.7 Hz, 1H), 7.28 (d, J = 1.9 Hz, 1H), 7.25 – 7.23 (m, 1H), 7.18 (t, J = 2.9 Hz, 1H), 6.50 (s, 1H). ¹³C NMR (151 MHz, cdcl₃) δ 134.52, 129.73, 125.53, 124.87, 123.27, 113.06, 112.58, 102.31.

Br G was prepared in a continuous flow reaction conducted using 0.100 mol/L reactant in THF flowing at 0.5 mL/min at 180 °C with 200 mg HBEA catalyst in a packed-bed column at 500 psi. The product was obtained as yellow oil (>95% yield).¹H NMR (500 MHz, chloroform-*d*) δ 7.45 (d, *J* = 8.1 Hz, 2H), 7.20 (d, *J* = 8.1 Hz, 2H), 3.83 (s, 2H), 1.44 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 142.19, 131.55, 128.82, 120.50, 45.85.

COOME H was prepared in a continuous flow reaction conducted using 0.050 mol/L reactant in THF flowing at 0.04 mL/min at 160 °C with 500 mg HBEA catalyst in a packed-bed column at 500 psi. The product was obtained as white solid (>95% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.30 (t, *J* = 7.4 Hz, 2H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.18 (d, *J* = 7.3 Hz, 2H), 3.73 (dd, *J* = 7.9, 5.2 Hz, 1H), 3.71 (s, 3H), 3.08 (dd, *J* = 13.6, 5.2 Hz, 1H), 2.85 (dd, *J* = 13.5, 7.9 Hz, 1H), 1.66 (s, 2H). ¹³C NMR (151 MHz, cdcl₃) δ 175.38, 137.21, 129.26, 128.55, 126.82, 77.31, 77.20, 77.10, 76.88, 55.80, 51.94, 41.08.

I was prepared in a continuous flow reaction conducted using 0.100 mol/L reactant in THF flowing at 0.5 mL/min at 180 °C with 200 mg HBEA catalyst in a packed-bed column at 500 psi. The product was obtained as white solid (>95% yield). ¹H NMR (500 MHz, chloroform-*d*) δ 3.18 (td, J = 5.9, 2.2 Hz, 1H), 2.26 – 2.15 (m, 2H), 1.65 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 172.81, 41.98, 31.36, 22.14, 20.76. ¹H NMR (500 MHz, methanol-*d*₄) δ 5.27 – 5.08 (m, 1H), 3.32 (s, 1H), 2.19 (s, 1H).

^{HN} $^{N-Bn}$ **J** was prepared in a continuous flow reaction conducted using 0.050 mol/L reactant in THF flowing at 0.04 mL/min at 200 °C with 300 mg HBEA catalyst in a packed-bed column at 500 psi. The product was obtained as yellow oil (86% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.33 – 7.27 (m, 5H), 7.25 – 7.21 (m, 1H), 3.47 (s, 2H), 2.86 (t, *J* = 4.9 Hz, 4H), 2.43 – 2.35 (m, 4H). ¹³C NMR (151 MHz, cdcl₃) δ 138.08, 129.17, 128.14, 126.95, 63.69, 54.53, 46.10. NH₂

K was prepared in a continuous flow reaction conducted using 0.050 mol/L reactant in THF flowing at 0.04 mL/min at 200 °C with 500 mg HBEA catalyst in a packed-bed column at 500 psi. The product was obtained as yellow solid (85% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.33 (s, 1H), 7.60 (dd, J = 8.1, 4.3 Hz, 1H), 7.35 (dd, J = 8.3, 4.4 Hz, 1H), 7.23 – 7.16 (m, 1H), 7.12 (t, J = 7.4 Hz, 1H), 6.99 (d, J = 5.6 Hz, 1H), 3.68 (dt, J = 8.7, 4.3 Hz, 1H), 3.49 – 3.37 (m, 1H), 3.25 (tt, J = 8.1, 4.2 Hz, 1H), 2.92 (dt, J = 14.7, 4.6 Hz, 1H), 2.69 (ddd, J = 13.3, 8.6, 4.3 Hz, 1H), 2.04 (s, 2H). ¹³C NMR (151 MHz, cdcl₃) δ 136.42, 127.56, 122.66, 122.06, 119.37, 118.83, 112.47, 111.24, 66.55, 52.96, 30.13.

L was prepared in a continuous flow reaction conducted using 0.050 mol/L reactant in THF flowing at 0.04 mL/min at 200 °C with 500 mg HBEA catalyst in a packed-bed column at 500 psi. The product was obtained as colorless oil (92% yield). ¹H NMR (600 MHz, Chloroformd) δ 3.96 (d, J = 5.4 Hz, 4H), 2.92 (t, J = 5.8 Hz, 4H), 1.66 (t, J = 5.7 Hz, 4H), 1.43 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 107.43, 64.18, 44.58, 36.44.

 $\begin{array}{l} \overset{\bullet}{\text{H}} & \text{M is synthesized follow the method in the reference.} ^{2} ^{1}\text{H NMR (600 MHz,} \\ & \text{Chloroform-}d) \ \delta \ 8.23 \ (\text{s}, 1\text{H}), \ 7.72 \ (\text{d}, J = 8.0 \text{ Hz}, 1\text{H}), \ 7.34 \ (\text{d}, J = 8.0 \text{ Hz}, 1\text{H}), \ 7.18 \ (\text{t}, J = 7.5 \text{ Hz}, 1\text{H}), \ 7.11 \ (\text{t}, J = 7.4 \text{ Hz}, 1\text{H}), \ 7.01 \ (\text{s}, 1\text{H}), \ 4.92 - 4.75 \ (\text{m}, 1\text{H}), \ 3.98 \ (\text{s}, 1\text{H}), \ 3.65 - 3.46 \ (\text{m}, 2\text{H}), \ 3.11 - 2.85 \ (\text{m}, 3\text{H}), \ 1.39 \ (\text{s}, 9\text{H}), \ 0.95 \ (\text{s}, 9\text{H}), \ 0.06 \ (\text{s}, 6\text{H}). \ ^{13}\text{C} \text{NMR (151 MHz, cdcl_3)} \ \delta \ 155.59, \ 136.23, \ 127.94, \ 122.62, \ 121.89, \ 119.28, \ 119.18, \ 112.36, \ 110.98, \ 79.06, \ 63.24, \ 52.23, \ 28.43, \ 26.74, \ 25.99, \ 25.94, \ 18.30, \ -5.35, \ -5.44. \end{array}$

Representative NMR spectra

S15

S20

Additional References

- 1. X. Pan and Z. Liu, *Tetrahedron*, 2014, **70**, 4602-4610.
- 2. A. R. Bogdan, M. Charaschanya, A. W. Dombrowski, Y. Wang and S. W. Djuric, *Org. Lett.*, 2016, **18**, 1732-1735.