Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

High-efficiency catalytic reduction of residual oxygen for purification of carbon dioxide streams from high-pressure oxy-combustion systems

Hong Lu,^a Luke Schideman,^{ab} Qing Ye^a and Yongqi Lu *a

^a Illinois State Geological Survey, University of Illinois at Urbana-Champaign, 615 E. Peabody Drive, Champaign, Illinois, 61801, United States

^b Departmental of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Matthews Avenue, Urbana, Illinois, 61801, United States

* Corresponding Author: E-mail: yongqilu@illinois.edu (Yongqi Lu)

Contents

Table S1 XRD peak shifts for Co₄₀Mn₁ and Co₂₀Mn₁ compared with pure Co₃O₄

Table S2 Crystallite sizes of the catalysts before and after the reaction, as estimated from the XRD analysis

Fig. S1 X-ray diffraction patterns of $Co_{20}Mn_1$ before and after exposure to the catalytic O_2 and CH_4 reaction.

Fig. S2 X-ray diffraction patterns of Cu/Al_2O_3 catalysts before exposure to the catalytic O_2 and CH_4 reaction.

Fig. S3 X-ray diffraction pattern of the gamma-Al₂O₃ used as the Cu-based catalyst support.

Fig. S4 Exemplary in-situ gas analysis showing that no H_2 production was detected by the RGA under various operating temperature conditions.

	Before reaction		After reaction	
Peak of Co ₃ O ₄	$2\theta = 36.8^{\circ}$	$2\theta = 65.2^{\circ}$	$2\theta = 36.8^{\circ}$	$2\theta = 65.2^{\circ}$
Shift for Co ₂₀ Mn ₁	~0.1°	~0.2°	~0.15°	~0.3°
Shift for Co ₄₀ Mn ₁	0°	~0.1°	~0.1°	~0.3°

Table S1 XRD peak shifts for $\mathrm{Co}_{40}\mathrm{Mn}_1$ and $\mathrm{Co}_{20}\mathrm{Mn}_1$ compared with pure $\mathrm{Co}_3\mathrm{O}_4$

Table S2 Crystallite sizes of the catalysts before an	d after the reaction, as estimated from the
XRD analys	sis

Catalyst	Co ₄₀ Mn ₁	Co ₂₀ Mn ₁	Cu20wt%/Al2O3	Cu29wt%/Al ₂ O ₃	Cu58wt%/ZnO-
					Al ₂ O ₃
Crystallite	Co _{3-x} Mn _x O ₄	Co _{3-x} Mn _x O ₄	Cu	Cu	Cu
Crystallite size	16	15	29	29	26
before reaction, nm					
Crystallite size after	27	28	n.a.	36	n.a.
reaction, nm					

Fig. S1 X-ray diffraction patterns of $Co_{20}Mn_1$ before and after exposure to the catalytic O_2 and CH_4 reaction. (Alpha-Al₂O₃ detected in the spent catalyst after exposure to the reaction originated from mixing-contamination with heat-trapping alumina beads below and above the catalyst bed.)

Fig. S2 X-ray diffraction patterns of Cu/Al_2O_3 catalysts before exposure to the catalytic O_2 and CH_4 reaction.

Fig. S3 X-ray diffraction pattern of the gamma-Al $_2O_3$ used as the Cu-based catalyst support.

Fig. S4 Exemplary in-situ gas analysis showing that no H₂ production was detected by the RGA under various operating temperature conditions. The concentration of H₂ detected by the RGA in the initial 30 min without any CH₄ injection represented the background noise of the RGA. (Catalyst: $Co_{40}Mn_1$; Gas feed: 1.5–3.75% O₂, 1.2–2.0% CH₄ and balance CO₂; GHSV: 18,000 h⁻¹; Flow pattern: one-direction flow)