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The purpose of the electronic supplementary information (ESI) is to provide readers with the 
data and code necessary to reproduce the examples from the main body of the paper as well as to 
provide a template for conducting invariance testing on a simulated data set that can be modified 
for those interested in conducting invariance testing on their own data. The code in the ESI is 
primarily written for the R statistical computing language, though Mplus code is also included 
for conducting invariance testing. The code in the ESI is also available through GitHub 
(https://github.com/RegisBK/Invariance_CERP) as this provides an easier way to download and 
use the code rather than cutting and pasting from this document. All analyses were conducted 
with R version 3.6.1 (R Core Team, 2019) and Mplus version 8.2.

This document assumes a basic understanding of how to work with R and/or Mplus. Users 
less familiar with these programs are encouraged to consult any of the resources available 
describing the use of these programs (Hirschfeld and Von Brachel, 2014; Komperda, 2017; 
Muthén and Muthén, 2017; Rosseel, 2020). Unless otherwise noted, the code provided here is 
intended to be entered directly into the software and is written in a different font to distinguish it 
from explanatory text. 
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Simulation and Visualization of Data in R
Simulation of Identical Group Data

The data used for the examples in the main article are simulated data created in R to follow 
the structure of the fictional Perceived Relevance of Chemistry Questionnaire (PRCQ). The 
PRCQ is conceptualized as containing three fictitious subconstructs: Importance of Chemistry 
(IC), Connectedness of Chemistry (CC), and Applications of Chemistry (AC). Additionally, the 
fictitious PRCQ is designed to be a 12-item instrument, where there are four items designed to 
measure each of the three subconstructs. To simulate this data in R first requires the installation 
and loading of the package simstandard (Schneider, 2019) which requires other dependent 
packages such as dplyr (Wickham et al., 2019) to be installed as well. 

install.packages("simstandard")
library(simstandard)

Syntax from the lavaan factor analysis package (Rosseel, 2012) is used to specify a three-
factor model with four items associated with each factor. For this model, named PRCQ, items 1–
4 are associated with the IC factor, 5–8 with the CC factor, and 9–12 with the AC factor. All 
items are assigned to have the same strength of association with their respective factors, a 
standardized value of 0.8. This value was chosen as it is relatively strong but not perfect 
association. In addition, each factor was simulated as having a weak association with the other 
factors. IC and CC have an association of 0.3, IC and AC have an association of 0.2 and CC and 
AC have an association of 0.1. 

PRCQ<-'
IC =~ 0.8*I1 + 0.8*I2 + 0.8*I3 + 0.8*I4
CC =~ 0.8*I5 + 0.8*I6 + 0.8*I7 + 0.8*I8
AC =~ 0.8*I9 + 0.8*I10 + 0.8*I11 + 0.8*I12

IC  =~  0.3*CC 
IC  =~  0.2*AC
CC  =~  0.1*AC

'

Now, observed data that follow the relations described by the model can be simulated. The 
set.seed()function is used to ensure reproducibility across uses by simulating the same 
pseudorandom data each time the code is run. Following the example from the main text, data 
are simulated separately for 1000 fictional students in the STEM majors group and for 1000 
students in the non-STEM majors group. A column named group is added to distinguish the 
data from each group and the two datasets are combined to form the new dataset named 
combined. 

set.seed(1234)
STEM <- sim_standardized(PRCQ, n = 1000, observed = T, latent = F, 
errors = F)
nonSTEM <- sim_standardized(PRCQ, n = 1000, observed = T, latent = F, 
errors = F)
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STEM$group<-"STEM"
nonSTEM$group<-"nonSTEM"

combined<-rbind(STEM, nonSTEM)

The data generated with sim_standardized() are standardized meaning they have an 
average value of 0 and standard deviation of 1 as well as a normal distribution. Descriptive 
statistics for the complete dataset and for each group within the dataset can be generated using 
the describe() and describeBy()functions in the psych package (Revelle, 2018) and 
are shown in Figure ESI1 and ESI2. Note that statistics are not generated for the group variable 
as it is a character, not a number. 

library(psych)
describe(combined)
describeBy(combined, group="group")

Figure ESI1. Output from the describe() function using the dataset named combined.



4
ESI – A Primer on Measurement Invariance Testing

Figure ESI2. Output by group from the describeBy() function using the dataset named 
combined.

Additionally, the data are complete with no missing cases. These data may not be 
representative of the type of data obtained in chemistry education research using a non-fictional 
assessment instrument. For the purposes of this example, as in the main body of the text, this 
dataset will continue to be used. Further procedures in the ESI will demonstrate converting the 
data from continuous into categorical, which may better match authentic data. 

Simulation of Data with Unequal Factor Loadings and Unequal Item Means
The previous section described the simulation of data for two groups using the same model in 

each group. To illustrate the effect of invariance at different levels, modifications were made to 
the data. The data are simulated to highlight specific issues that could be encountered (i.e., 
noninvariant loadings, noninvariant intercepts) but are unlikely to be representative of authentic 
data which could have numerous issues simultaneously. The model below is used to simulate 
data with a lower association between AC and I10 for the non-STEM majors group (changed to 
0.3 instead of 0.8), as used to generate Figure 4 in the manuscript. This data is combined with the 
original STEM majors data to create the combined.invar.load dataset. 
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PRCQ.invar.load<-'
IC =~ 0.8*I1 + 0.8*I2 + 0.8*I3 + 0.8*I4
CC =~ 0.8*I5 + 0.8*I6 + 0.8*I7 + 0.8*I8
AC =~ 0.8*I9 + 0.3*I10 + 0.8*I11 + 0.8*I12

IC  =~  0.3*CC 
IC  =~  0.2*AC
CC  =~  0.1*AC

'

nonSTEM.invar.load <- sim_standardized(PRCQ.invar.load, n = 1000, 
observed = T, latent = F, errors = F)

nonSTEM.invar.load$group<-"nonSTEM"

combined.invar.load<-rbind(STEM, nonSTEM.invar.load)

To create data with a higher mean for I3 in the STEM majors group, as used to generate 
Figures 4 and 5 in the manuscript, a new dataset is created from the original STEM majors data 
and constant of 2 is added to all values for I3 in this new data. The STEM majors data is 
combined with the original non-STEM majors data to create a combined.invar.mean 
dataset. The describeBy() function can be used to confirm differences between the groups 
as seen in the descriptive statistics in Figure ESI3. 

STEM.invar.mean<-STEM
STEM.invar.mean$I3<-STEM.invar.mean$I3+2

STEM.invar.mean$group<-"STEM"

combined.invar.mean<-rbind(STEM.invar.mean, nonSTEM)

describeBy(combined.invar.mean, group="group")
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Figure ESI3. Output by group from the describeBy() function using the dataset named 
combined.invar.mean showing different means for I3 across groups. 

Visualization of Data
The R code in this section can be used to generate the data visualizations (correlations and 

distributions) shown in Figures 1–5 of the manuscript. Correlation plots can be made with the 
corrplot package (Wei and Simko, 2017). To use the corrplot() function, the numeric 
variables are selected from the combined dataset and a correlation matrix is generated with the 
cor() function. Additional function arguments are used to specify that colored boxes should be 
plotted (method="color"), the text should be in the diagonal of the matrix in black 
(tl.pos="d", tl.col="black"), only the lower diagonal of the correlation matrix should 
be visualized (type="lower"), and that grey grid lines should appear 
(addgrid.col="grey"). Specifying the size of the margins is done to make room for the plot 
title (mar=c(0,0,1,0)).  
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library(dplyr)
library(corrplot)

combined %>% select(I1:I12) %>%   cor() %>% 
corrplot(., method="color", tl.pos="d", tl.col="black", 
type="lower", addgrid.col="grey", mar=c(0,0,1,0))

Similar plots can be generated for subsets of the data by filtering the combined dataset using the group 
variable (filter(group=="STEM")).    
         

combined %>% filter(group=="STEM") %>% select(I1:I12) %>% cor() %>% 
corrplot(., method="color", tl.pos="d", tl.col="black", 
type="lower", addgrid.col="grey", title="STEM Majors", 
mar=c(0,0,1,0))

           
combined %>% filter(group=="nonSTEM") %>% select(I1:I12) %>% cor() %>% 

corrplot(., method="color", tl.pos="d", tl.col="black", 
type="lower", addgrid.col="grey",title="Non-STEM Majors", 
mar=c(0,0,1,0))   

           
Using the combined.invar.load dataset will produce Figure 3 images from the manuscript. 

combined.invar.load %>% select(I1:I12) %>%   cor() %>% 
 corrplot(., method="color", tl.pos="d", tl.col="black", 
type="lower", addgrid.col="grey",
title="Combined Data Varied\n Strength of Association for I10",

   mar=c(0,0,1,0))
            
combined.invar.load %>% filter(group=="STEM") %>% select(I1:I12) %>% 

cor() %>% corrplot(., method="color", tl.pos="d", tl.col="black", 
type="lower", addgrid.col="grey", title="STEM Majors", 
mar=c(0,0,1,0))

                 
combined.invar.load %>% filter(group=="nonSTEM")%>% select(I1:I12) %>%   

cor() %>% corrplot(., method="color", tl.pos="d", tl.col="black", 
type="lower", addgrid.col="grey",title="Non-STEM Majors", 
mar=c(0,0,1,0))  

The Figure 4 images from the manuscript are produced using the same method with the 
combined.invar.mean dataset.

combined.invar.mean %>% select(I1:I12) %>%   cor() %>% 
   corrplot(., method="color", tl.pos="d", tl.col="black", 

type="lower", addgrid.col = "grey",                     
title="Combined Data\n Varied Mean for I3",mar=c(0,0,1,0))

            
combined.invar.mean %>% filter(group=="STEM") %>% select(I1:I12) %>%   

cor() %>% corrplot(., method="color", tl.pos="d", tl.col="black", 
type="lower", addgrid.col = "grey", title="STEM Majors", 
mar=c(0,0,1,0))
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combined.invar.mean %>% filter(group=="nonSTEM") %>% select(I1:I12)  
%>%  cor() %>% corrplot(., method="color", tl.pos="d", 
tl.col="black", type="lower", addgrid.col = "grey",         
title="Non-STEM Majors", mar=c(0,0,1,0)) 

In order to generate the boxplot Figure 5 of the manuscript the package reshape2 
(Wickham, 2007) is needed to restructure the dataset and the package ggplot2 (Wickham, 
2016) is used to create the plot. First, the STEM and non-STEM groups are given more 
descriptive names since those will appear in the figure legend. The groups are also ordered as 
with STEM Majors first since the default setting would put the groups in alphabetical order.

library(ggplot2)
library(reshape2) 

combined.invar.mean$group<-ifelse(combined.invar.mean$group=="STEM", 
"STEM Majors", "Non-STEM Majors")

combined.invar.mean$group<-ordered(combined.invar.mean$group, 
levels=c("STEM Majors", "Non-STEM Majors"))

Next, the melt() function is used to create a long-format dataset where each group, 
variable (Item), and value occupies a single column. This long format is necessary for plotting 
using the function ggplot() with geom_boxplot(). In this boxplot the x-axis is the group 
and the y-axis is the value for each variable (x=group, y=value, fill=group). Faceting 
by variable (facet_grid(.~variable)) plots each item separately, yet within a single plot. 
The remainder of the code provides graphical parameters.  

melt.mean<-combined.invar.mean %>% 
select(I1:I12, group) %>% melt(id="group")

melt.mean$group<-melt.mean$group %>% as.factor()  

ggplot(melt.mean, aes(x=group, y=value, fill=group))+ 
geom_boxplot() + facet_grid(.~variable) + theme_bw() + 

  theme(axis.title.x=element_blank(), axis.text.x=element_blank(),
       axis.ticks.x=element_blank(), axis.title.y=element_blank(), 

legend.position="bottom") + 
scale_fill_discrete(name="Group")   

Conducting Invariance Testing
This section provides an overview of how to conduct measurement invariance testing using 

two popular software platforms, R and Mplus. Results obtained from both pieces of software will 
be similar, so the selection of software depends on the preferences of the researcher. In addition 
to R and Mplus there are other tools available for conducting measurement invariance testing, 
including SAS, LISREL, EQS, or the AMOS add-in for SPSS. A helpful comparison of software 
for structural equation modeling with multiple groups can be found in Narayana (2012) and 
Byrne (2004) provides a guide to AMOS.
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Before introducing the specific steps to take within R and Mplus, it is worthwhile to note the 
default settings of both software packages. Within R, the package lavaan is generally used for 
factor analyses and in this package the default way to provide scale to the factor is to fix the 
value of the first item loading to one. In Mplus, the factor is given scale by setting its variance to 
one. Both methods are acceptable ways of identifying the model and will give equivalent results. 
However, each of these methods has different implications in the context of measurement 
invariance testing with multiple groups. 

The method of setting the factor variance to one (as in Mplus) in both groups is generally not 
recommended for multigroup measurement invariance testing as it implies that the latent variable 
has the same variance in both groups. This is described as homogeneity of variance for the latent 
variables. Though conceptually similar to the test for homogeneity of variance used in t-tests and 
ANOVAs, in a latent framework this is an untestable assumption (Hancock et al., 2009, 168). 

In the first method, used within lavaan, setting an item loading to one, the default is to use 
the first item on the scale. When the first item on the scale is set to be one for both groups the 
rest of the series of structural equations will be solved assuming this item has the same loading 
value in both groups. Yet, there is no way to know for certain if that assumption is true or if there 
are other scale items that would have been better to set equivalent. This seemingly 
inconsequential decision can have major implications for interpretation of results and researchers 
are advised to think carefully about which item may be best to set equal across groups based on 
either theoretical or observable grounds (Bontempo and Hofer, 2007; Hancock et al., 2009). 

Invariance Testing with R – Continuous Data
Within the R software, the package lavaan, previously used to generate the simulated data, 

can be used to test confirmatory factor (CFA) models as well as structural equation models 
(SEM). The function for performing CFA, cfa() contains built-in arguments to set various 
model parameters equal for invariance testing (Hirschfeld and Von Brachel, 2014), making 
invariance testing a relatively simple process. In this section, the steps for measurement 
invariance testing will follow those in the main article using the combined.invar.load 
dataset to generate the fit index data from Table 1 in the manuscript. The general process for 
invariance testing within R is that of building up from the least constrained model (i.e., 
configural invariance) to the most constrained model (i.e., conservative invariance). Identical 
steps can be followed for the other datasets and fit indices resulting from these tests are provided 
later sections.  

 
Step 0: Establishing Baseline Model

Following the steps outlined in the manuscript, the baseline model is tested for each group 
separately. The model is specified in the same manner as was used to generate the simulated data 
with the main difference being that values for the loadings and associations between factors are 
not assigned but will be estimated by the software from the data. This model is named 
model.test to distinguish it from the model used to simulate the data. 



10
ESI – A Primer on Measurement Invariance Testing

library(lavaan)

model.test<-'
IC =~ I1 + I2 + I3 + I4
CC =~ I5 + I6 + I7 + I8
AC =~ I9 + I10 + I11 + I12
'

The function cfa() is now used to examine how well the data fit the proposed model. The 
maximum likelihood (ML) estimator is used as the data are continuous and normally distributed 
and are therefore appropriate for the ML estimator. Additionally, this follows the steps in the 
main article and aligns with the estimator used to determine the suggested fit index cut off values 
(Hu and Bentler, 1999). In situations where the data are known to be nonnormally distributed the 
robust maximum likelihood estimator (MLR) is more appropriate and can be specified with the 
command estimator=”MLR”. The results from ML and MLR are equivalent if the data are 
normal, and interested readers can confirm this for themselves since lavaan prints the output of 
both ML and MLR simultaneously when MLR is used. Later sections of this ESI will describe 
how to modify the code to accommodate categorical data. Finally, specify that the mean structure 
(intercepts) should be explicitly shown. 

STEM.step0<-cfa(data=combined.invar.mean %>% filter(group=="STEM 
Majors"), model=model.test, estimator="ML", 

meanstructure=TRUE)

The summary() function provides a convenient way to view the fit statistics and model parameters 
from the model that was just fit to the STEM majors data. 

summary(STEM.step0, standardized=TRUE, fit.measures=TRUE)

Though the output provided by summary() is extensive the key fit indices are indicated by 
boxes in Figure ESI4. Note that the fit indices match Table 1 in the manuscript and show 
essentially perfect fit: CFI > 0.95; SRMR < 0.08; RMSEA < 0.06 (Hu and Bentler, 1999). 
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Figure ESI4. Summary output for testing baseline model (Step 0) with STEM majors data having 
modified I3 intercept highlighting chi square test statistic, degrees of freedom, p-value, CFI, 
RMSEA and SRMR.

The same code can be executed using the non-STEM majors data and nearly identical fit is 
achieved (Figure ESI5). 

nonSTEM.step0<-cfa(data=combined.invar.mean %>% filter(group=="Non-
STEM Majors"), model=model.test,         
estimator="ML", meanstructure=TRUE)

summary(nonSTEM.step0, standardized=TRUE, fit.measures=TRUE)
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Figure ESI5. R summary output for testing baseline model (Step 0) with unmodified non-STEM 
majors data highlighting chi square test statistic, degrees of freedom, p-value, CFI, RMSEA and 
SRMR.

Looking through the rest of the summary() output gives the values for the model 
parameters. The column Std.all is most typically reported when standardized model 
parameters are given. For both groups, these model parameters (Figures ESI6 & ESI7) match 
those used to simulate the data (loadings of 0.80 as well as associations between the three factors 
of approximately 0.3, 0.2, and 0.1). Examining the values of the intercept terms in both groups 
shows that in the STEM majors group (Figure ESI6) the intercept for I3 is larger than in the non-
STEM majors group by a value of 2, as specified in the model used to simulate the data.
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Figure ESI6. R summary output for testing baseline model (Step 0) with unchanged STEM 
majors data highlighting standardized model parameters and intercepts.

Figure ESI7. R summary output for testing baseline model (Step 0) with unchanged non-STEM 
majors data highlighting standardized model parameters and intercepts.
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It is important to note that this difference in intercept for I3 between the groups (Figures 
ESI6 & ESI7) did not affect the overall fit of each group (Figures ESI4 & ESI5) because the 
parameters in each group were allowed to vary as needed to best fit the model. The purpose of 
testing these baseline models is to ensure that each group has a reasonable fit to the model before 
constraining any parameters to be equal across groups. 

Step 1: Configural Invariance
The next step of invariance testing fits the model to both groups of data simultaneously. 

Within the cfa() function this is easily accomplished by specifying that groups are present and 
providing the name of the grouping variable (group="group"). 

step1.comb.mean<-cfa(data=combined.invar.mean, model=model.test, 
group="group", estimator="ML")

summary(step1.comb.mean, standardized=TRUE, fit.measures=TRUE)

Output from testing this model provides both an overall model chi square and the individual 
group chi square values obtained from Step 0 (Figure ESI8). The rest of the fit indices (CFI, 
RMSEA, and SRMR) are provided for the overall model. As show in Table 1 of the manuscript 
the fit indices for the configural model are essentially perfect. Further exploration of the model 
parameters shows that parameters for both groups have been estimated separately and match 
those in Step 0. 

Figure ESI8. R summary output for configural invariance model (Step 1) with STEM majors 
data having modified I3 intercept highlighting chi square test statistic, degrees of freedom, p-
value, CFI, RMSEA and SRMR.
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Step 2: Metric Invariance (Weak)
To test for metric invariance (weak) the group.equal argument is used to specify that the 

loadings must be held constant across the two groups. 

step2.comb.mean<-cfa(data=combined.invar.mean, model=model.test, 
group="group", estimator="ML", 
group.equal=c("loadings"))

summary(step2.comb.mean, standardized=TRUE, fit.measures=TRUE)

The fit indices for the metric invariance model (Figure ESI9) again match Table 1 in the 
manuscript and show essentially perfect fit. As described in the manuscript the change in fit 
index values can be calculated by hand but the p-value for the Δchi square must be computed. 
 

Figure ESI9. R summary output for metric invariance model (Step 2) with STEM majors data 
having modified I3 intercept highlighting chi square test statistic, degrees of freedom, p-value, 
CFI, RMSEA and SRMR.
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Examination of the model parameters is again done by groups (Figure ESI10) but shows that 
certain parameters have been constrained equal across the groups by assigning them a parameter 
name given in parenthesis (e.g., .p2.). Here the unstandardized loading values in the Estimate 
column are equal in both groups but the Std.all column values vary slightly. This is because 
the factors parameters (i.e., factor covariances) have not been constrained equal across groups 
and therefore affect the standardized loading values. Note that only the loadings have been 
assigned parameter names since these are the only parameters constrained equal across groups. 

Figure ESI10. R summary output for metric invariance model (Step 2) with STEM majors data 
having modified I3 intercept highlighting constraints on loading terms.

Step 3: Scalar Invariance (Strong)
Testing for scalar invariance only requires the addition of constraining the intercept terms to 

be equal, in addition to the loadings that were already constrained in Step 2. 

step3.comb.mean<-cfa(data=combined.invar.mean, model=model.test, 
group="group", estimator="ML", 
group.equal=c("loadings", "intercepts"))

summary(step3.comb.mean, standardized=TRUE, fit.measures=TRUE) 

Again, matching the values found in Table 1 of the manuscript, the fit indices for the strict 
invariance model (Figure ESI11) indicate poor data-model fit, which is to be expected since the 
intercept terms were not simulated to be equal across groups. Notice that the chi square values 
for the individual groups give some indication that the problem is in the STEM Majors group, as 
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it has a much larger (worse) chi square value. Figure ESI12 shows that now the intercept terms 
are constrained to be equal across groups. 

Figure ESI11. R summary output for metric invariance model (Step 3) with STEM majors data 
having modified I3 intercept highlighting chi square test statistic, degrees of freedom, p-value, 
CFI, RMSEA and SRMR.
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Figure ESI12. R summary output for scalar invariance model (Step 3) with STEM majors data 
having modified I3 intercept highlighting constraints on loading and intercept terms.

Step 4: Conservative Invariance (Strict)
Given the poor fit of the scalar invariance model, and out of range delta fit index values, it is 

not appropriate to go on to consider the strict invariance model. However, interested readers can 
test this model by adding “residuals” to the group.equal argument (residuals is another 
name for the error variance terms).  

Step4.comb.mean<-cfa(data=combined.invar.mean, model=model.test, 
group=”group”, estimator=”ML”, 
group.equal=c(“loadings”, “intercepts”, “residuals”))

summary(step4.comb.mean, standardized=TRUE, fit.measures=TRUE)

Exporting Data from R to Mplus
Data within R can be exported in a variety of familiar formats including txt, csv, and xlsx. 

Most conveniently for those working in Mplus there is also a package, MplusAutomation 
(Hallquist and Wiley, 2018), that allows for direct export of data in the correct Mplus format, dat. 
The correct format for Mplus requires data to not have any header information, such as column 
names. The MplusAutomation package also generates appropriate code to communicate the 
structure of the file to Mplus. The R code below shows how to export the simulated PRCQ data to 
Mplus and request the input file, which provides the code to use within Mplus to import the dat 
file in the correct format to be read by Mplus. Note that the group variable had been stored as a 
categorical factor within R and must be changed to a numeric variable for export. In this case the 
first group (STEM majors) will become 1 and the second group will become 2. This can be 
confirmed with the describeBy() function. 
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library(MplusAutomation)

combined.invar.mean$group<-combined.invar.mean$group %>% 
as.numeric()

describeBy(combined.invar.mean, group="group")

prepareMplusData(combined.invar.mean, 
filename="InvarianceMean.dat", inpfile = TRUE, 
keepCols=c("I1", "I2", "I3", "I4","I5", "I6", 
"I7", "I8", "I9", "I10", "I11", "I12", "group"))

As a result of these commands R will create two new files, InvarianceMean.dat and 
InvarianceMean.inp in the working directory of your R session. If you are unsure of 
where your working directory resides, use the command getwd(). 

Invariance Testing with Mplus – Continuous Data
Invariance testing in Mplus begins by opening the inp file generated previously or creating 

a new inp file for your own data. At the top of the inp file will be a title for the model being 
tested, the name of the data file, and the names of the variables in the data file. As before, the 
first step should be to test the model for each group individually. This is accomplished with the 
command USEOBSERVATIONS. Then the model to be tested is specified, this step is similar to 
lavaan but uses the term BY instead of =~ to denote relations between items and factors.  

TITLE: STEM Majors Group Step 0
DATA: FILE = "InvarianceMean.dat";
VARIABLE: 
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group; 
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
USEOBSERVATIONS are group==1;

MODEL:
IC BY I1 I2 I3 I4;
CC BY I5 I6 I7 I8;
AC BY I9 I10 I11 I12;

OUTPUT:
STANDARDIZED;

The output for this model provides the same fit indices and standardized model parameters 
(Figure ESI13) as produced in R (Figures ESI4 & ESI 6) and shown in Table 1 of the 
manuscript. 
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Figure ESI13. Mplus summary output baseline model (Step 0) with STEM majors data having 
modified I3 intercept highlighting chi square test statistic, degrees of freedom, p-value, CFI, 
RMSEA, SRMR, and standardized model parameters.

Similar code can be used for the non-STEM majors group and again the results (Figure 
ESI14) will agree with the R output (Figures ESI15 & ESI17 as well as Table 1 of the 
manuscript. 

TITLE: Non-STEM Majors Group Step 0
DATA: FILE = "InvarianceMean.dat";
VARIABLE: 
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group; 
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
USEOBSERVATIONS are group==2;

MODEL:
IC BY I1 I2 I3 I4;
CC BY I5 I6 I7 I8;
AC BY I9 I10 I11 I12;

OUTPUT:
STANDARDIZED;
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Figure ESI14. Mplus summary output baseline model (Step 0) with Non-STEM majors data 
having modified I3 intercept highlighting chi square test statistic, degrees of freedom, p-value, 
CFI, RMSEA, SRMR, and standardized model parameters.

Step 1: Configural Invariance
To test configural invariance within Mplus, the model is specified separately for each group. 

The ! notation is used to insert comments within the Mplus model code. To provide results 
aligned with the R output the @1 notation is used to identify the model by standardizing the 
loading for the first item on each factor. This is the default setting for the R cfa() function, but 
models in both programs can also be run by standardizing the factors instead of the loadings as a 
method of identifying the model. 

Next the factor intercept is set to zero using brackets and @0 notation. By default, Mplus 
assumes that item intercepts should be equal across groups, these can be freely estimated using 
the bracket notation. Item error variances are coded without the use of brackets. Specifying the 
same model for the second group will tell Mplus to estimate parameters for both models 
separately.
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TITLE: Combined Dataset with Mean Differences Step 1 (Configural)
DATA: FILE = "InvarianceMean.dat";
VARIABLE: 
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group; 
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
GROUPING = group (1 = STEM 2 = NonSTEM);

MODEL:
! Model with standardized loading of first item on each factor
  IC BY I1@1 I2 I3 I4;
  CC BY I5@1 I6 I7 I8;
  AC BY I9@1 I10 I11 I12;
  
! Setting factor intercepts to zero  
  [IC@0];
  [CC@0];
  [AC@0];
  
! Allowing item intercepts to be freely estimated  
  [I1-I12];

! Allowing item error variances to be freely estimated
  I1-I12;

! Specifying the same model for the second group will cause 
! all parameters to be freely estimated for the second group  
MODEL NonSTEM:
  IC BY I1@1 I2 I3 I4;
  CC BY I5@1 I6 I7 I8;
  AC BY I9@1 I10 I11 I12;
  
  [IC@0];
  [CC@0];
  [AC@0];
  
  [I1-I12];
  
  I1-I12; 
OUTPUT:
STANDARDIZED;  

The output from this model (Figure ESI15) matches the fit indices in Table 1 of the 
manuscript for the configural model and both the unstandardized and standardized model 
parameters for the STEM majors group (Figure ESI16) and non-STEM majors group match 
those found using R (Figures ESI6 & ESI7). 
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Figure ESI15. Mplus summary output for configural invariance (Step 1) with STEM majors data 
having modified I3 intercept highlighting fit information.

Figure ESI16. Mplus output for configural invariance (Step 1) with STEM majors data having 
modified I3 intercept highlighting unstandardized and standardized model parameters for both 
groups.



24
ESI – A Primer on Measurement Invariance Testing

Step 2: Metric Invariance (Weak)
Metric invariance is tested by assigning the same parameter names to the loading terms in 

each group. In this example the names L1-L12 are assigned to each of the loading parameters. 
Repeating this assignment in the second group will cause Mplus to set the unstandardized value 
of the parameters equal. 

TITLE: Combined Dataset with Mean Differences Step 2 (Weak)
DATA: FILE = "InvarianceMean.dat";
VARIABLE: 
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group; 
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
GROUPING = group (1 = STEM 2 = NonSTEM);

MODEL:
! Model with standardized loading of first item on each factor
! Assigning a parameter name to each loading value (L1-L12)
  IC BY I1@1 I2 I3 I4 (L1-L4);
  CC BY I5@1 I6 I7 I8 (L5-L8);
  AC BY I9@1 I10 I11 I12 (L9-L12);
  
! Setting factor intercepts to zero  
  [IC@0];
  [CC@0];
  [AC@0];
  
! Allowing item intercepts to be freely estimated  
  [I1-I12];

! Allowing item error variances to be freely estimated
  I1-I12;

! Specifying the same model for the second group will force 
! loadings to be equivalent across groups while other 
! parameters are freely estimated  
MODEL NonSTEM:
  IC BY I1@1 I2 I3 I4 (L1-L4);
  CC BY I5@1 I6 I7 I8 (L5-L8);
  AC BY I9@1 I10 I11 I12 (L9-L12);
  
  [IC@0];
  [CC@0];
  [AC@0];
  
  [I1-I12];
  
  I1-I12;

OUTPUT:
STANDARDIZED;
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The output from this model (Figure ESI17) matches the fit indices in Table 1 of the 
manuscript for the weak invariance model and now the unstandardized parameters are equal 
across groups (Figure ESI18) while the intercepts are allowed to differ. As before, the 
standardized parameters differ slightly, but are aligned with the R output (Figure ESI10). 

Figure ESI17. Mplus summary output for metric invariance (Step 2) with STEM majors data 
having modified I3 intercept highlighting fit information.

Figure ESI18. Mplus output for metric invariance (Step 2) with STEM majors data having 
modified I3 intercept highlighting unstandardized and standardized model parameters for both 
groups.
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Step 3: Scalar Invariance (Strong)
Scalar invariance is tested by assigning the same parameter names to the intercept terms in 

both groups while also removing the restrictions on the mean of the factor terms for the second 
group using the * notation. As seen in Table 1 of the manuscript and in the R output, this 
significantly worsens the value of all fit indices (Figure ESI19) indicating that scalar invariance 
has not been achieved due to differences in loadings across groups. As before, the Mplus model 
parameters (Figure ESI20) are similar to those produced by R (Figure ESI12).

TITLE: Combined Dataset with Mean Differences Step 3 (Strong)
DATA: FILE = "InvarianceMean.dat";
VARIABLE: 
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group; 
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
GROUPING = group (1 = STEM 2 = NonSTEM);

MODEL:
! Model with standardized loading of first item on each factor
! Assigning a parameter name to each loading value (L1-12)
  IC BY I1@1 I2 I3 I4 (L1-L4);
  CC BY I5@1 I6 I7 I8 (L5-L8);
  AC BY I9@1 I10 I11 I12 (L9-L12);
  
! Setting factor intercepts to zero  
  [IC@0];
  [CC@0];
  [AC@0];
  
! Allowing item intercepts to be freely estimated in one group
! assigning a parameter name so they will be equal across groups   
  [I1-I12] (M1-M12); 

! Allowing item error variances to be freely estimated
  I1-I12;

! Specifying the same model parameter names for the second group
! will cause loadings and item intercepts to be equivalent across
! groups while other parameters are freely estimated  
MODEL NonSTEM:
  IC BY I1@1 I2 I3 I4 (L1-L4);
  CC BY I5@1 I6 I7 I8 (L5-L8);
  AC BY I9@1 I10 I11 I12 (L9-L12);
  
! Allowing factor intercepts vary  
  [IC*];
  [CC*];
  [AC*];
  
  [I1-I12] (M1-M12);
  
  I1-I12;

OUTPUT:
STANDARDIZED;
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Figure ESI19. Mplus summary output for scalar invariance (Step 3) with STEM majors data 
having modified I3 intercept highlighting fit information.

Figure ESI20. Mplus output for scalar invariance (Step 3) with STEM majors data having 
modified I3 intercept highlighting unstandardized and standardized model parameters for both 
groups.
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Step 4: Conservative Invariance (Strict)
As noted previously, due to the poor fit of the scalar invariance model, you would stop at 

Step 3 and not go on to test Step 4 (conservative invariance with equal error variance terms). 
However, interested readers can test Step 4 in Mplus by providing the same name to the error 
variance parameters in both groups.  

TITLE: Combined Dataset with Mean Differences Step 4 (Strict)
DATA: FILE = "InvarianceMean.dat";
VARIABLE: 
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group; 
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
GROUPING = group (1 = STEM 2 = NonSTEM);

MODEL:
! Model with standardized loading of first item on each factor
! Assigning a parameter name to each loading value (L1-12)
  IC BY I1@1 I2 I3 I4 (L1-L4);
  CC BY I5@1 I6 I7 I8 (L5-L8);
  AC BY I9@1 I10 I11 I12 (L9-L12);
  
! Setting factor intercepts to zero  
  [IC@0];
  [CC@0];
  [AC@0];
  
! Allow item intercepts to be freely estimated in one group but
! assigning a parameter name so they will be equal across groups   
  [I1-I12] (M1-M12); 

! Allow item error variances to be freely estimated but
! assigning a parameter name so they will be equal across groups 
  I1-I12 (E1-E12);

! Specifying the same model parameter names for the second group
! will cause loadings and item intercepts to be equivalent across
! groups while other parameters are freely estimated  
MODEL NonSTEM:
  IC BY I1@1 I2 I3 I4 (L1-L4);
  CC BY I5@1 I6 I7 I8 (L5-L8);
  AC BY I9@1 I10 I11 I12 (L9-L12);
  
! Allowing factor intercepts vary  
  [IC*];
  [CC*];
  [AC*];
  
  [I1-I12] (M1-M12);
  
  I1-I12(E1-E12);
  
OUTPUT:
STANDARDIZED;
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Fit Indices for other Continuous Datasets
  Tables ESI1 & ESI2 show the data-model fit output from R produced from following the 
previous steps with the two other continuous datasets: combined and 
combined.invar.load. 

Table ESI1. Measurement Invariance Testing for the PRCQ Instrument Comparing STEM 
Majors and Non-STEM Majors With combined Simulated Data for Illustration
Step Testing level χ2 df p-value CFI SRMR RMSEA Δχ2 Δdf p-value ΔCFI ΔSRMR ΔRMSEA

0 STEM majors
Baseline 65 51 0.084 0.998 0.021 0.017 - - - - - -

0 Non-STEM majors
Baseline 52 51 0.437 1.000 0.016 0.004 - - - - - -

1 Configural 117 102 0.142 0.999 0.018 0.012 - - - - - -

2 Metric 120 111 0.245 0.999 0.019 0.009 3 9 0.964 0.000 0.001 0.003

3 Scalar 127 120 0.311 0.999 0.020 0.008 7 9 0.637 0.000 0.001 0.001

4 Conservative 135 132 0.417 1.000 0.020 0.005 8 12 0.786 0.001 0.000 0.003

Note. STEM majors n = 1000. Non-STEM majors n = 1000. Simulated data was used and altered at the scalar level 
(intercepts) for illustrative purposes; fit indices are from R. 

Table ESI2. Measurement Invariance Testing for the PRCQ Instrument Comparing STEM 
Majors and Non-STEM Majors With combined.invar.load Simulated Data for Illustration
Step Testing level χ2 df p-value CFI SRMR RMSEA Δχ2 Δdf p-value ΔCFI ΔSRMR ΔRMSEA

0 STEM majors
Baseline 65 51 0.084 0.998 0.021 0.017 - - - - - -

0
Non-STEM 

majors
Baseline

66 51 0.081 0.997 0.017 0.017 - - - - - -

1 Configural 131 102 0.028 0.997 0.019 0.017 - - - - - -

2 Metric 305 111 < 0.001 0.983 0.051 0.042 101 9 < 0.001 0.014 0.032 0.025

3 Scalar 310 120 < 0.001 0.984 0.051 0.040 5 9 0.834 0.001 0.000 0.002

4 Conservative 433 132 < 0.001 0.974 0.043 0.048 123 12 < 0.001 0.010 0.008 0.008

Note. STEM majors n = 1000. Non-STEM majors n = 1000. Simulated data was used and altered at the scalar level 
(intercepts) for illustrative purposes; fit indices are from R. 
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Creating Ordered Categorical Data in R
As seen in the previous examples, the data simulation function in R creates continuous data 

which may not be representative of data collected from instruments used in chemistry education 
research, which often have five-point Likert-type scales. The code below is used to take the 
original simulated datasets and turn them into Likert-type data by collapsing the full ranges of 
data for each item into five bins using the cut() function. Note that this process of creating 
categorical data from continuous data ensures that each bin will be populated, but issues with 
testing models can arise if authentic categorical data are collected with empty bins (e.g., no 
responses in the 1 category). 

STEM.ord<-STEM
for(i in 1:12){  
  var[i]<-paste0("I", i)
  STEM.ord[[var[i]]]<-as.numeric(cut(STEM[[var[i]]], breaks=5))

}

nonSTEM.ord<-nonSTEM
for(i in 1:12){  
  var[i]<-paste0("I", i)
  nonSTEM.ord[[var[i]]]<-as.numeric(cut(nonSTEM[[var[i]]], 
breaks=5))

}
combined.ord<-rbind(STEM.ord, nonSTEM.ord)

nonSTEM.invar.load.ord<-nonSTEM.invar.load
for(i in 1:12){  
  var[i]<-paste0("I", i)
  nonSTEM.invar.load.ord[[var[i]]]<-
as.numeric(cut(nonSTEM.invar.load[[var[i]]], breaks=5))
}
combined.invar.load.ord<-rbind(STEM.ord, nonSTEM.invar.load.ord)

STEM.invar.mean.ord<-STEM.invar.mean
for(i in 1:12){  
  var[i]<-paste0("I", i)
  STEM.invar.mean.ord[[var[i]]]<-
as.numeric(cut(STEM.invar.mean[[var[i]]], breaks=5))
}
combined.invar.mean.ord<-rbind(STEM.invar.mean.ord, nonSTEM.ord)

When data collected on Likert-type scales have fewer than seven categories or the full range 
of the response scale is not used by most respondents (i.e. a ceiling or floor effect) it is often 
recommended to treat the data as ordinal categorical data rather than continuous. In a factor 
analysis framework, this type of data is best modeled using a robust diagonally weighted least 
squares estimator, such as WLSMV (Finney and DiStefano, 2013). A noticeable difference in 
working with ordinal data the software will compute thresholds which are used to map the 
categorical variables onto an assumed underlying normal distribution of latent item responses 
and therefore create a set of latent correlations. This process is can be conceptualized as the 
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reverse of the process used to create ordered categorical data from the original continuous data 
show in prior steps. 

The concept of thresholds can be visualized by plotting the distribution of values for an item 
both in its continuous and categorical form. For this example, responses to I1 in the continuous 
data are visualized with a density plot (Figure ESI21a) and I1 responses in the categorical data 
are visualized with a bar plot (Figure ESI21b) using the code below.  

plot(density(combined$I1), 
main="Density Plot for Combined Data Item I1 - Continuous",
ylab="Frequency", xlab="Response")

barplot(prop.table(table(combined.ord$I1)), 
main="Frequency Plot for Combined Data Item I1 - Ordinal", 
ylab="Frequency", xlab="Response")

Figure ESI21. Density plot of continuous I1 responses (a) and frequency plot of categorical I1 responses 
(b)

Visual inspection of the two plots shows how the original continuous distribution aligns with 
the categorical data in that the middle responses have higher response frequencies and the 
extreme responses have lower response frequencies. When the ordinal data in Figure ESI21b are 
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used to estimate a factor model, the software will assume the categorical data are representative 
of an underlying continuous variable (DiStefano and Morgan, 2014) and determine cut points, 
called thresholds, where the unobserved continuous distribution would have been divided to 
create the observed categorical distribution. 

Since the categorical data used in this example were created from continuous data, we are 
able find the true cut points using the same code as before. 

summary(cut(combined$I1, breaks=5))

Plotting these cut points (–1.97, –0.672, 0.624, and 1.92) on the continuous distribution 
(Figure ESI22) shows how the categorical data were simulated, and also provides insight into 
how the factor analysis itself will identify thresholds in the categorical data. 

plot(density(combined$I1), main="Density Plot for Combined Data 
Item I1 - Continuous",ylab="Frequency", xlab="Response")

abline(v=c(-1.97, -0.672, 0.624, 1.92), col="grey") 

Figure ESI22. Density plot of continuous I1 responses showing cut points used to create categorical data.

Estimating Models with Ordered Categorical Data in R and Mplus
Running the factor models in R and also exporting the data for running in Mplus will provide 

an opportunity to see the threshold values established by the software. Full measurement 
invariance testing steps will be described in later sections. Both programs will automatically 
switch to the correct estimator (WLSMV) when informed that the data are not continuous. In 
lavaan syntax the argument ordered is used.
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combined.ord.cfa<-cfa(data = combined.ord, model = model.test, 
ordered=c("I1", "I2", "I3", "I4", "I5", 
"I6", "I7", "I8", "I9", "I10", "I11", 
"I12"))

summary(combined.ord.cfa, standardized=TRUE, fit.measures=TRUE)

combined.ord$group<-combined.ord$group %>% as.factor() %>% 
as.numeric()

prepareMplusData(combined.ord, filename="CombinedOrdinal.dat", 
inpfile = T, keepCols=c("I1", "I2", "I3", 
"I4","I5", "I6", "I7", "I8", "I9", "I10", "I11", 
"I12", "group"))

In Mplus the variables are specified as categorical. 

TITLE: Combined Ordinal Data - CFA Model
DATA: FILE = "CombinedOrdinal.dat";
VARIABLE: 
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group; 
MISSING=.;

USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
CATEGORICAL ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;

MODEL:
IC BY I1 I2 I3 I4;
CC BY I5 I6 I7 I8;
AC BY I9 I10 I11 I12;

OUTPUT:
STANDARDIZED;

The full output of both programs can be examined to confirm similarities in how the data are 
treated as well as the matched fit indices and model parameters. Figure ESI23 shows the 
threshold values calculated by each program, indicated with the t notation in R and the $ 
notation in Mplus. As expected, the thresholds for I1 are similar to those used to create the 
categorical data from the continuous, even though neither R or Mplus had access to the 
continuous data when generating the threshold values.

Figure ESI23. Threshold values from R (a) and Mplus (b)
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Data Model Fit for Ordered Categorical Data with WLSMV Estimator

The fit index cut off values recommended by Hu and Bentler (1999) were based on work 
using the maximum likelihood (ML) estimator which is appropriate for continuous data. Since a 
different estimator is used with categorical data, it is not appropriate to use the same Hu and 
Bentler recommendations for fit index cut off values. Simulation studies with the WLSMV 
estimator have indicated that more rigorous cut off values are best, particularly when the data 
contain a small number of categories or are severely nonnormal (Yu, 2002; Beauducel and 
Herzberg, 2006; DiStefano and Morgan, 2014). Recommendations for fit index values with the 
WLSMV estimator are CFI ≥ 0.95 and RMSEA ≤ 0.05. The SRMR is not recommended with the 
WLSMV estimator. In the context of invariance testing, less work has been done to determine 
recommended values for change in CFI and RMSEA values between models compared to the 
ML estimator. As with the fit indices themselves, simulation studies suggest either using more 
rigorous ΔCFI and ΔRMSEA values than those used with ML estimation or providing multiple 
sources of justification for acceptable data-model fit potentially using different estimators to see 
if similar conclusions about invariance would be drawn (Sass ﻿et al., 2014). 

Invariance Testing with R – Ordered Categorical Data
Measurement invariance testing in R with categorical data can be conducted following 

similar steps as those used for continuous data. However, it should be noted that other 
researchers have advocated for a different order of steps or different sets of constraints when 
working with categorical data (Millsap and Yun-Tein, 2004; Wu and Estabrook, 2016; Svetina et 
al., 2019). The primary differences when working with categorical data compared to continuous 
are that the ordinal nature of the data must be specified in order for the correct estimator to be 
used, and thresholds must be constrained along with other model parameters during invariance 
testing steps. 

Also, unique to working with categorical data, a decision must be made about scaling of the 
underlying latent normal distribution for each set of item responses using either delta or theta 
scaling. In delta scaling the total variance of the latent response is set to 1 and in theta scaling the 
variance of the residual term is set to 1. These decisions primarily influence how the model 
parameters are identified. Theta scaling is appropriate for invariance research (Millsap and Yun-
Tein, 2004) and was chosen for the analysis here, but it is possible to convert parameters 
between delta and theta scaling (Finney and DiStefano, 2013). Since theta scaling affects the 
residual terms, Step 4 of invariance testing (strict) is not necessary with categorical data when 
following this method.

The steps taken in this ESI will parallel those used previously for continuous data. The data 
used in this section are the categorical version of the continuous data used in previous examples 
where the mean for I3 was changed in the STEM majors group. The code for all steps of 
invariance testing in R with categorical data are specified below and the fit statistics are 
summarized in Table ESI3 using the WLSMV output from lavaan as given in the Robust 
column. Fit statistics for models using the other categorical datasets are provided in Tables ESI4 
& ESI5. 
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Step 0: Establishing Baseline Model
The baseline model for each group is specified in the same way as the continuous data but 

now using the ordinal data set and specifying which variables are ordered categorical as well as 
the use of the theta parameterization. The same three factor model used for the continuous data is 
used for the categorical data.

STEM.step0.ord<-cfa(data = combined.invar.mean.ord %>% 
filter(group==STEM), model=model.test, 
ordered=c("I1", "I2", "I3", "I4", "I5", "I6", 
"I7", "I8", "I9", "I10", "I11", "I12"), 
parameterization="theta")

summary(STEM.step0.ord, standardized=TRUE, fit.measures=TRUE) 

nonSTEM.step0.ord<-cfa(data=combined.invar.mean.ord %>% 
filter(group=="nonSTEM"), 
model=model.test, ordered=c("I1", "I2", 
"I3", "I4", "I5", "I6", "I7", "I8", "I9", 
"I10", "I11", "I12"), 
parameterization="theta")

summary(nonSTEM.step0.ord, standardized=TRUE, fit.measures=TRUE)

Step 1: Configural Invariance
Configural invariance uses data from both groups while specifying the grouping variable. 

step1.comb.mean.ord<-cfa(data=combined.invar.mean.ord, 
group="group", model=model.test, 
ordered=c("I1", "I2", "I3", "I4", "I5", 
"I6", "I7", "I8", "I9", "I10", "I11", 
"I12"), parameterization="theta")

summary(step1.comb.mean.ord, standardized=TRUE, 
fit.measures=TRUE)

Step 2: Metric Invariance (Weak)
Metric invariance is tested by holding the loadings equal across groups. 

step2.comb.mean.ord<-cfa(data=combined.invar.mean.ord, 
group="group", model=model.test, 
ordered=c("I1", "I2", "I3", "I4", "I5", 
"I6", "I7", "I8", "I9", "I10", "I11", 
"I12"), group.equal=c("loadings"), 
parameterization="theta")

summary(step2.comb.mean.ord, standardized=TRUE, 
fit.measures=TRUE)
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Step 3: Scalar Invariance (Strong)
Adding the constraint of equal thresholds across groups is similar to holding intercepts equal 

to test for scalar invariance in continuous data. 

 step3.comb.mean.ord<-cfa(data=combined.invar.mean.ord, 
group="group", model=model.test, 
ordered=c("I1", "I2", "I3", "I4", "I5", 
"I6", "I7", "I8", "I9", "I10", "I11", 
"I12"), group.equal=c("loadings", 
"thresholds"), parameterization="theta")

summary(step3.comb.mean.ord, standardized=TRUE, 
fit.measures=TRUE)

Table ESI3. Measurement Invariance Testing for the PRCQ Instrument Comparing STEM 
Majors and Non-STEM Majors With combined.invar.mean Simulated Categorical Data 
for Illustration

Step Testing
level χ2 df p-value CFI RMSEA Δχ2 Δdf p-value ΔCFI ΔRMSEA

0 STEM majors
Baseline 81 51 0.005 0.996 0.024 - - - - -

0 Non-STEM majors
Baseline 61 51 0.162 0.999 0.014 - - - - -

1 Configural 142 102 0.006 0.997 0.020 - - - - -

2 Metric 145 111 0.017 0.998 0.018 3 9 0.231 0.001 0.002

3 Scalar 869 144 < 0.001 0.953 0.071 724 9 < 0.001 0.045 0.053
Note. STEM majors n = 1000. Non-STEM majors n = 1000. Simulated data was used and altered at the scalar level 
(intercepts) for illustrative purposes; fit indices are from R. 

Invariance Testing with Mplus – Ordered Categorical Data
Following the previously shown steps, the categorical data in R are exported to Mplus by 

first converting the group variable from a text format into a numeric format.

combined.invar.mean.ord$group<-combined.ord$group %>% as.factor() 
%>% as.numeric()

prepareMplusData(combined.invar.mean.ord, 
filename="CombinedInvarMeanOrdinal.dat", 
inpfile = T, keepCols=c("I1", "I2", "I3", 
"I4","I5", "I6", "I7", "I8", "I9", "I10", 
"I11", "I12", "group"))
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As with lavaan, the default estimator in Mplus is ML but the software will adjust to an 
appropriate estimator for ordinal data (WLSMV) by specifying the item variables as categorical. 
The call for theta parameterization is also added and the models are specified separately for each 
group. Following these steps for R and Mplus should provide similar fit indices and model 
parameters.

Step 0: Establishing Baseline Model
TITLE: Categorical STEM Majors Group Step 0
DATA: FILE = "CombinedInvarMeanOrdinal.dat";
VARIABLE: 
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group; 
MISSING=.;

USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
CATEGORICAL ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
USEOBSERVATIONS are group==2;

ANALYSIS: PARAMETERIZATION=THETA;

MODEL:
IC BY I1 I2 I3 I4;
CC BY I5 I6 I7 I8;
AC BY I9 I10 I11 I12;

OUTPUT:
STANDARDIZED;

TITLE: Categorical Non-STEM Majors Group Step 0
DATA: FILE = "CombinedInvarMeanOrdinal.dat";
VARIABLE: 
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group; 
MISSING=.;

USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
CATEGORICAL ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
USEOBSERVATIONS are group==1;

ANALYSIS: PARAMETERIZATION=THETA;

MODEL:
IC BY I1 I2 I3 I4;
CC BY I5 I6 I7 I8;
AC BY I9 I10 I11 I12;

OUTPUT:
STANDARDIZED;
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Step 1: Configural Invariance
By default, Mplus will constrain thresholds equal across groups so this must be released by 

freeing all thresholds for all variables. The notation to free the thresholds uses the $ character. 
Four thresholds must be freed since four thresholds would be required to divide the underlying 
continuous distribution into five categories. As was done with the continuous data, the factor 
means are set to zero. The error variances are set to one for categorical data, in line with theta 
parameterization. 

TITLE: Categorical Combined Dataset with Mean Differences Step 1 
(Configural)
DATA: FILE = "CombinedInvarMeanOrdinal.dat";
VARIABLE: 
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group; 
CATEGORICAL ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
GROUPING = group (1 = NonSTEM 2 = STEM);

ANALYSIS: PARAMETERIZATION=THETA;

MODEL:
! Model with standardized loading of first item on each factor
  IC BY I1@1 I2 I3 I4;
  CC BY I5@1 I6 I7 I8;
  AC BY I9@1 I10 I11 I12;
  
! Freeing Thresholds
  [I1$1-I12$1*];
  [I1$2-I12$2*];
  [I1$3-I12$3*];
  [I1$4-I12$4*];

! Set factor means to 0  
  [IC@0];
  [CC@0];
  [AC@0];

! Set error variances to 1
  I1-I12@1
  
MODEL STEM:
  IC BY I1@1 I2 I3 I4;
  CC BY I5@1 I6 I7 I8;
  AC BY I9@1 I10 I11 I12;
  
! Freeing Thresholds
  [I1$1-I12$1*];
  [I1$2-I12$2*];
  [I1$3-I12$3*];
  [I1$4-I12$4*];
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! Set factor means to 0  
  [IC@0];
  [CC@0];
  [AC@0];

! Set error variances to 1
  I1-I12@1
  
OUTPUT:
STANDARDIZED;  

Step 2: Metric Invariance (Weak)
Loadings are constrained equal across groups by assigning the same name to the parameters 

in both groups. This is the same method used for invariance testing with the continuous data. 

TITLE: Categorical Combined Dataset with Mean Differences Step 2 
DATA: FILE = "CombinedInvarMeanOrdinal.dat";
VARIABLE: 
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group; 
CATEGORICAL ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
GROUPING = group (1 = NonSTEM 2 = STEM);

ANALYSIS: PARAMETERIZATION=THETA;

MODEL:
! Model with standardized loading of first item on each factor
! Assigning a parameter name to each loading value (L1-L12)
  IC BY I1@1 I2 I3 I4 (L1-L4);
  CC BY I5@1 I6 I7 I8 (L5-L8);
  AC BY I9@1 I10 I11 I12 (L9-L12);

! Freeing Thresholds
  [I1$1-I12$1*];
  [I1$2-I12$2*];
  [I1$3-I12$3*];
  [I1$4-I12$4*];
  
! Set factor means to 0  
  [IC@0];
  [CC@0];
  [AC@0];

! Set error variances to 1
  I1-I12@1
  
MODEL STEM:
  IC BY I1@1 I2 I3 I4 (L1-L4);
  CC BY I5@1 I6 I7 I8 (L5-L8);
  AC BY I9@1 I10 I11 I12 (L9-L12);



40
ESI – A Primer on Measurement Invariance Testing

  ! Freeing Thresholds 
  [I1$1-I12$1*];
  [I1$2-I12$2*];
  [I1$3-I12$3*];
  [I1$4-I12$4*];

  ! Set factor means to 0  
  [IC@0];
  [CC@0];
  [AC@0];

 ! Set error variances to 1
  I1-I12@1
  
OUTPUT:
STANDARDIZED; 

 Step 3: Scalar Invariance (Strong)
Mplus and lavaan differ in their default settings when thresholds are constrained equal across 

groups. To mimic the lavaan output the factor means and error variance terms for the second 
group are freed in the Mplus code. Freeing these parameters also aligns scalar invariance testing 
in the categorical data with the same step for the continuous data. Recall that the goal of Step 3 is 
to determine if the factors are being measured on the same scale in each group so that factor 
means can be compared across groups. Therefore, one group should have a mean of zero in order 
to function as a reference while the mean of the other group is freely estimated.

TITLE: Categorical Combined Dataset with Mean Differences Step 3 
DATA: FILE = "CombinedInvarMeanOrdinal.dat";
VARIABLE: 
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group; 
CATEGORICAL ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12;
GROUPING = group (1 = NonSTEM 2 = STEM);

ANALYSIS: PARAMETERIZATION=THETA;

MODEL:
  IC BY I1@1 I2 I3 I4 (L1-L4);
  CC BY I5@1 I6 I7 I8 (L5-L8);
  AC BY I9@1 I10 I11 I12 (L9-L12);

  [I1$1-I12$1*];
  [I1$2-I12$2*];
  [I1$3-I12$3*];
  [I1$4-I12$4*];
  
  [IC@0];
  [CC@0];
  [AC@0];

  I1-I12@1
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MODEL STEM:
  IC BY I1@1 I2 I3 I4 (L1-L4);
  CC BY I5@1 I6 I7 I8 (L5-L8);
  AC BY I9@1 I10 I11 I12 (L9-L12);
  
! Fix thresholds equal by not specifying for this group
  
! Set factor means free  
[IC*];
[CC*];
[AC*];
   
! Set error variances free
I1-I12*
  
OUTPUT:
STANDARDIZED;

Fit Indices for Invariance Testing Steps with other Simulated Categorical Data
Tables ESI4 & 5 show the data-model fit output from R produced from following the 

previous steps with the two other categorical datasets: combined.ord and 
combined.invar.load.ord. 

Table ESI4. Measurement Invariance Testing for the PRCQ Instrument Comparing STEM 
Majors and Non-STEM Majors With combined.ord Simulated Categorical Data for 
Illustration
Step Testing level χ2 df p-value CFI RMSEA Δχ2 Δdf p-value ΔCFI ΔRMSEA

0 STEM majors
Baseline 81 51 0.005 0.996 0.024 - - - - -

0 Non-STEM majors
Baseline 61 51 0.162 0.999 0.014 - - - - -

1 Configural 142 102 0.006 0.997 0.020 - - - - -

2 Metric 145 111 0.017 0.998 0.018 3 9 0.964 0.001 0.002

3 Scalar 869 144 <0.001 0.953 0.071 724 33 < 0.001 0.045 0.053
Note. STEM majors n = 1000. Non-STEM majors n = 1000. Simulated data was used and altered at the scalar level 
(intercepts) for illustrative purposes; fit indices are from R. 
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Table ESI5. Measurement Invariance Testing for the PRCQ Instrument Comparing STEM 
Majors and Non-STEM Majors With combined.invar.load.ord Simulated Categorical 
Data for Illustration
Step Testing level χ2 df p-value CFI RMSEA Δχ2 Δdf p-value ΔCFI ΔRMSEA

0 STEM majors
Baseline 81 51 0.005 0.996 0.024 - - - - -

0 Non-STEM majors
Baseline 40 51 0.869 1.000 0.000 - - - - -

1 Configural 119 102 0.120 0.999 0.013 - - - - -

2 Metric 383 111 < 0.001 0.982 0.050 264 9 < 0.001 0.017 0.037

3 Scalar 1305 144 < 0.001 0.925 0.090 922 33 < 0.001 0.057 0.040
Note. STEM majors n = 1000. Non-STEM majors n = 1000. Simulated data was used and altered at the scalar level 
(intercepts) for illustrative purposes; fit indices are from R. 
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