Electronic Supplementary Information

Synthesis and Properties of Hypervalent Electron-rich Pentacoordinate Nitrogen Compounds

Chenting Yan, ${ }^{\text {a }}$ Masato Takeshita, ${ }^{\text {a } J u n-y a ~ N a k a t s u j i, ~}{ }^{\text {a }}$ Akihiro Kurosaki, ${ }^{\text {a }}$ Kaoko Sato, ${ }^{\text {a }}$ Rong Shang, ${ }^{* a}$ Masaaki Nakamoto, ${ }^{a}$ Yohsuke Yamamoto, ${ }^{* a}$ Yohei Adachi, ${ }^{\text {b }}$ Ko Furukawa, ${ }^{\text {c }}$ Ryohei Kishi, ${ }^{\text {d }}$ Masayoshi Nakano ${ }^{\text {d,e }}$
a. Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan b. Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 7398526, Japan
c. Center for Coordination Research Facilities, Institute for Research Promotion, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
d. Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
e. Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

Contents

1. Experimental section
2. UV-Vis, EPR, CV spectra
3. Crystal Structure Determination
4. DFT calculation
5. π-donating methoxy derivative $\left(2^{\mathrm{Me}} \mathrm{c}\right)$
6. NMR spectra
7. References

1. Experimental section

Experimental Procedures

Instrumentation and Chemicals

All manipulations were performed under Ar or N_{2} atmosphere by using standard Schlenk or glove box techniques. All the solvents were dried prior to use. Column chromatography was carried out using Merck silica gel 60 and KANTO CHEMICAL silica gel 60 N . The ${ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (100 MHz) and ${ }^{19} \mathrm{~F} \mathrm{NMR}(376 \mathrm{MHz})$ spectra were recorded using a JEOL EX400 spectrometers. The chemical shift (δ) are reported from the internal CHCl_{3} for ${ }^{1} \mathrm{H}(\delta 7.26)$ and from the internal CDCl_{3} for ${ }^{13} \mathrm{C}(\delta 77.0)$ and from the internal CFCl_{3} for ${ }^{19} \mathrm{~F}(\delta 0.00)$. Mass spectra were recorded with a Thermo Fisher Scientific samples. The X-ray crystal structural analysis was performed using a Bruker APEX II Ultra. The DFT calculations were performed using the Gaussian 16 program package.

Scheme 1. Synthesis of methoxyl- and isopropoxyl-carbonyl substituted bromobenzenes. (i) $\mathrm{Br}_{2}, \mathrm{Fe}, \mathrm{CHCl}_{3}$, room temperature (r.t.), $3 \mathrm{~h}, 90 \%$; (ii) KMnO_{4}, t - $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}, 95^{\circ} \mathrm{C}, 24 \mathrm{~h}, 97 \%$; (iii) $1^{\mathrm{Me}}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{SO}_{4}, 95^{\circ} \mathrm{C}, 24 \mathrm{~h}, 82 \%$; $\boldsymbol{1}^{\mathrm{Pr}}, i-\mathrm{PrOH}, \mathrm{H}_{2} \mathrm{SO}_{4}, 95^{\circ} \mathrm{C}, 24$ h, 78%;

1.1 Synthesis of 2-Bromo-5-tert-butyl-1,3-dimethylbenzene (b)

In a 250 mL round-bottom flask equipped with a magnetic stir bar and an addition funnel were added 5-tert-butyl-mxylene ($91.0 \mathrm{~mL}, 480 \mathrm{mmol}$) and iron powder ($1.00 \mathrm{~g}, 1.36 \mathrm{mmol}$) to 75 mL of chloroform. The solution was cooled to $0^{\circ} \mathrm{C}$. A solution of bromine ($27.5 \mathrm{~mL}, 525 \mathrm{mmol}$) in 25 mL of solution of chloroform was added dropwise via the addition funnel. The reaction was stirred for 3 h at room temperature and then poured into a cold solution of dilute aqueous $\mathrm{NaOH}(\sim 1 \mathrm{M})$. The mixture was separated, and the aqueous layer was washed several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried with MgSO_{4}, filtered, and concentrated to a clear oil, which became a white solid upon standing. The crude solid was recrystallized from ethanol to give $105 \mathrm{~g}\left(437 \mathrm{mmol}, 90 \%\right.$ yield) of the title compound. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $7.11(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 149.8,137.8,125.6,124.6,34.3,31.4,24.2$. MS (GCEI): [M] ${ }^{+} \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{Br}$ Calcd for: 240.05136 Found: 240.05148 . M.P.: $48.5-49.8^{\circ} \mathrm{C}$.

1.2 Synthesis of 2-Bromo-5-tert-butyl-isophthalic Acid (c)

In a 500 mL three-necked round-bottom flask equipped with a mechanical stirrer and a reflux condenser was added 2-bromo-5-tert-butyl-1,3-dimethylbenzene ($24.5 \mathrm{~g}, 101 \mathrm{mmol}$) and $\mathrm{KMnO}_{4}(33.7 \mathrm{~g}, 214 \mathrm{mmol})$, dispersed in 200 mL of a 1:1 mixture of tert-butyl alcohol and water. The reaction mixture was heated to reflux for 1 h . After the mixture was cooled to room temperature, more $\mathrm{KMnO}_{4}(33.2 \mathrm{~g}, 210 \mathrm{mmol})$ was added and the reaction mixture was refluxed for an additional 20 h. After the mixture was cooled to room temperature, the reaction was filtered through Celite and the filtrate was reduced by $1 / 3$. The solution was acidified with concentrated HCl . The resulting white precipitate was collected by filteration and dissolved in aqueous NaHCO_{3}. The aqueous layer was washed with ether to remove any residual organics. The aqueous layer was then acidified with concentrated HCl and the precipitate was collected and oven-dried ($\sim 80^{\circ} \mathrm{C}$) overnight to give 29.6 g ($98.3 \mathrm{mmol}, 97 \%$ yield) of the title compound. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta(\mathrm{ppm}) 13.60(\mathrm{~s}, 2 \mathrm{H}), 7.68(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) $\delta(\mathrm{ppm}) 168.3,150.7,136.6,127.8,113.3,34.6,30.6 . \mathrm{MS}(E S I) \mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{H}]-\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Br}$ Calcd for: 298.99344 Found: 298.99225. M.P.:236.4-239.9 ${ }^{\circ} \mathrm{C}$.

1.3 Synthesis of Dimethyl 2-Bromo-5-tert-butyl-isophthalate (1 ${ }^{\mathrm{Me}}$)

In a 100 mL three-necked round-bottom flask equipped with a magnetic stir bar and a reflux condenser was added 2-bromo-5-tert-butyl-isophthalic acid ($8.0 \mathrm{~g}, 26.6 \mathrm{mmol}$), in 57.0 mL of methanol and 6 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The reaction mixture was heated to reflux for 24 h and neutralized with NaHCO_{3} at $0^{\circ} \mathrm{C}$. The aqueous solution was washed several times with ether. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated. Recrystallization from hexane gave 7.13 g $\left(21.6 \mathrm{mmol}, 82 \%\right.$ yield) $\mathbf{1}^{\mathrm{Me}}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.68(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 167.6,150.9,135.1,129.6,115.8,77.48,52.8,34.8,31.0 . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{BrNa}$ Calcd for: 407.08284 Found: 407.08310. M.P.:100.3-101.1 ${ }^{\circ} \mathrm{C}$.

1.4 Synthesis of diisopropyl 2-bromo-5-(tert-butyl) isophthalate (1 ${ }^{\text {ipr }}$)

In a 100 mL two-necked round-bottom flask equipped with a magnetic stir bar and a reflux condenser was added 2-bromo-5-tert-butyl-isophthalic acid ($8.0 \mathrm{~g}, 26.6 \mathrm{mmol}$), in 57.0 mL of isopropanol and 6.0 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The reaction mixture was heated to reflux for 24 h and neutralized with NaHCO_{3}. The aqueous solution was washed several times with diethyl ether. The combined organic layers were dried over MgSO_{4} and filtered. Removal of solvent gave $7.96 \mathrm{~g}\left(24.4 \mathrm{mmol}, 78 \%\right.$ yield) $\mathbf{1}^{\mathrm{iPr}}$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.59(\mathrm{~s}, 2 \mathrm{H}), 5.32-5.22(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=4 \mathrm{~Hz}, 12 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl ${ }_{3}$) $\delta(\mathrm{ppm}) 166.9,150.8,135.9,128.9,115.0,70.0,34.8,30.921 .8 . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{BrNa}$ Calcd for: 351.02024 Found: 351.02075.

General Procedure for Ullmann Coupling

The para-substituted diarylamine (1.0-1.2 eq. to the tridentate ligand precursor), dimethyl 2-bromo-5-tert-butylisophthalate ($\mathbf{1}^{\mathrm{Me}}$) or diisopropyl 2-bromo-5-(tert-butyl)isophthalate (1^{iPr}), potassium carbonate (1.5 eq. to the tridentate ligand precursor), and copper bronze ($10-20 \mathrm{~mol} \% \mathrm{eq}$. to the tridentate ligand precursor) were combined with $n-\mathrm{Bu}_{2} \mathrm{O}$ in a round-bottom flask equipped with a magnetic stir bar and reflux condenser. The reaction was heated to $170-190{ }^{\circ} \mathrm{C}$ for 48 96 h under argon. The reaction was filtered, the solvent removed by vacuum distillation, and the residue purified by column chromatography.

1.5 Synthesis of dimethyl 2-(bis(4-chlorophenyl) amino)-5-(tert-butyl) isophthalate (2 ${ }^{\mathrm{Me}} \mathbf{a}$)

Bis(4-chlorophenyl) amine ($7.30 \mathrm{~g}, 22.3 \mathrm{mmol}$) was coupled with dimethyl 2-Bromo-5-tert-butyl-isophthalate ($\mathbf{1}^{\mathrm{Me}}$) (6.92 $\mathrm{g}, 21.2 \mathrm{mmol}$) according to the above Ullmann procedure (120 mL of $n-\mathrm{Bu}_{2} \mathrm{O}$ is selected for reaction solvent) for 67 h . The crude product was purified by flash chromatography using a $1: 1$ solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane as the eluent to give $5.92 \mathrm{~g}(10.8$ $\mathrm{mmol}, 51 \%$ yield) of the title compound as a pale-yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.81(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=4$ $\mathrm{Hz}, 4 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 6 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 167.6,149.8,145.5,141.1,132.1$, 131.4, 129.1, 127.3, 123.3, 52.5, 35.0, 31.2. $\mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{NCl}_{2}$ Calcd for: 486.12334 Found: 486.12350. M.P.:158.0-159.5 ${ }^{\circ} \mathrm{C}$.

1.6 Synthesis of dimethyl 2-(bis(4-(trifluoromethyl) phenyl) amino)-5-(tert-butyl) isophthalate (2 ${ }^{\mathrm{Meb}}$)

Bis(4-(trifluoromethyl) phenyl) amine ($610 \mathrm{mg}, 2.00 \mathrm{mmol}$) was coupled with dimethyl 2-Bromo-5-tert-butyl-isophthalate ($\mathbf{1}^{\mathrm{Me}}$) $(658 \mathrm{mg}, 2.00 \mathrm{mmol})$ according to the above Ullmann procedure (15 mL of $n-\mathrm{Bu}_{2} \mathrm{O}$ is selected for reaction solvent) for 96 h at $170^{\circ} \mathrm{C}$. The crude product was purified by flash chromatography using a $1: 1$ solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane as the eluent to give $530 \mathrm{mg}\left(0.958 \mathrm{mmol}, 48 \%\right.$ yield) of the title compound as a white solid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.91(\mathrm{~s}$, $2 \mathrm{H}), 7.45(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.04(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 3.53(\mathrm{~s}, 6 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 167.1,151.0$, $149.2,140.4,132.3,131.7,126.3\left(q,{ }^{3} J_{C-F}=10 \mathrm{~Hz}\right.$), $124.4\left(q,{ }^{1} J_{c-F}=270 \mathrm{~Hz}\right), 124.3\left(q,{ }^{2} J_{c-F}=30 \mathrm{~Hz}\right), 121.7,52.6,35.1$, 31.1. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.29$. $\mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{28} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{NF}_{6} \mathrm{Na}$ Calcd for: 576.15800 Found: 576.15784.Elemental analysis: Calcld.: C, 60.76; H, 4.55; N, 2.53; Found: C, 61.14; H, 4.54; N, 2.61. M.P.:183.8-185.2 ${ }^{\circ} \mathrm{C}$.

1.7 Synthesis of diisopropyl 2-(bis(4-chlorophenyl) amino)-5-(tert-butyl) isophthalate (2 ${ }^{\text {iPra }}$)

$\operatorname{Bis}\left(4\right.$-chlorophenyl) amine ($289 \mathrm{mg}, 1.21 \mathrm{mmol}$) was coupled with diisopropyl 2-bromo-5-(tert-butyl) isophthalate (1^{iPr}) $(445 \mathrm{mg}, 1.15 \mathrm{mmol})$ according to the above Ullmann procedure for 120 h . The crude product was purified by flash chromatography using a $1: 1$ solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane as the eluent to give $339 \mathrm{mg}(0.625 \mathrm{mmol}, 54 \%$ yield) of the title compound as a pale-yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.73(\mathrm{~s}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 6.90(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H})$, $4.85(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 166.5,149.9,145.3,140.6,133.4,130.4$, 128.9, 126.9, 123.1, 69.5, 34.9, 31.2, 21.6. $\mathrm{MS}(E S I) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]+\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{NCl}_{2}$ Calcd for: 542.18594 Found: 542.18604. Elemental analysis: Calcld.: C, 66.42; H, 6.13; N, 2.58; Found: C, 66.80; H, 6.29; N, 2.63. M.P.:144.8-145.2 ${ }^{\circ} \mathrm{C}$.

1.8 Synthesis of diisopropyl 2-(bis(4-(trifluoromethyl) phenyl) amino)-5-(tert-butyl) isophthalate (2 $\mathbf{2}^{\text {iPrb }}$)

Bis(4-(trifluoromethyl) phenyl) amine ($370 \mathrm{mg}, 1.21 \mathrm{mmol}$) was coupled with diisopropyl 2-bromo-5-(tert-butyl) isophthalate (1^{iPr}) ($562 \mathrm{mg}, 1.45 \mathrm{mmol}$) according to the above Ullmann procedure for 98 h . The crude product was purified by flash chromatography using a $1: 1$ solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane as the eluent to give $405 \mathrm{mg}(0.664 \mathrm{mmol}, 55 \%$ yield) of the title compound as a pale-yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.80(\mathrm{~s}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $4 \mathrm{H}), 4.85(\mathrm{~m}, \mathrm{~J}=24 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=4 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 166.1,150.9,149.1,140.1$, $133.4,130.7,126.2\left(q,{ }^{3} J_{c-F}=10 \mathrm{~Hz}\right), 124.5\left(q,{ }^{1 J}{ }_{c-F}=270 \mathrm{~Hz}\right), 124.0\left(q,{ }^{2} J_{c-F}=30 \mathrm{~Hz}\right), 121.6,69.7,35.0,31.2,21.4 .{ }^{19} \mathrm{~F} \mathrm{NMR}$ ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})-62.45 . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{32} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{NF}_{6} \mathrm{Na}$ Calcd for: 632.22060 Found: 632.22052 Elemental analysis: Calcld.: C, 63.05; H, 5.46; N, 2.30; Found: C, 62.99; H, 5.25; N, 2.28. M.P.:188.8-190.1 ${ }^{\circ} \mathrm{C}$.

1.9 Reaction of 2^{Me} a with $\left(2,4-\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{~N}^{+}+\mathrm{SbCl}_{6}{ }^{-}\left(3^{\mathrm{Me}} \mathrm{a}\right)$

A solution of $2^{\mathrm{Me}} \mathbf{a}(49 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\left(2,4-\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{~N}^{\bullet+} \mathrm{SbCl}_{6}-(105 \mathrm{mg}, 0.100 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred for 30 mins at room temperature. The solution color was changed to dark blue. After the removal of solvent, the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ to give compound $\mathbf{3}^{\mathbf{M e}} \mathbf{a}$ as a dark green solid ($60 \mathrm{mg}, 0.072 \mathrm{mmol}, 72 \%$). Purple crystals of $\mathbf{3}^{\mathrm{Me}} \mathbf{a}$ suitable for X-ray analysis were obtained by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane under light-shielded condition.

1.10 Reaction of $2^{\mathrm{Me}} \mathbf{b}$ with $\left(2,4-\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathbf{N}^{\bullet+} \mathrm{SbCl}_{6}{ }^{-}\left(3^{\mathrm{Me}} \mathbf{b}\right)$

A solution of $\mathbf{2}^{\mathrm{Me}} \mathbf{b}(53 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\left(2,4-\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right){ }_{3} \mathrm{~N}^{\bullet}+\mathrm{SbCl}_{6}{ }^{-}(105 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was stirred for 30 mins at room temperature. The solution color was changed to dark blue. After the removal of solvent, the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ to give compound $\mathbf{3}^{\mathbf{M e}} \mathbf{b}$ as a dark green solid ($65 \mathrm{mg}, 0.073 \mathrm{mmol}, 73 \%$).

1.11 Reaction of $2^{\text {iPra }}$ with $\left(2,4-\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{~N}^{\bullet+} \mathrm{SbCl}_{6}-\left(3^{\mathbf{i P r}} \mathrm{a}\right)$

A solution of $2^{\text {iPra }}$ ($20 \mathrm{mg}, 0.037 \mathrm{mmol}$) and ($\left.2,4-\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{~N}^{\bullet+} \mathrm{SbCl}_{6}-(39 \mathrm{mg}, 0.037 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred for 30 mins at room temperature. The solution color was changed to dark blue. After the removal of solvent, the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ to give compound $3^{\text {iPra }}$ as a dark green solid ($20 \mathrm{mg}, 0.023 \mathrm{mmol}, 62 \%$). Purple crystals of $\mathbf{3}^{\text {iPra }}$ suitable for X-ray analysis were obtained by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / hexane under light-shielded condition.

1.12 Reaction of $2^{\text {iPrb }}$ with $\left(2,4-\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathbf{N}^{\bullet+} \mathrm{SbCl}_{6}{ }^{-}\left(3^{\text {iPrb }}\right)$

A solution of $2^{\text {iPrb }}(35 \mathrm{mg}, 0.057 \mathrm{mmol})$ and $\left(2,4-\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{~N}^{+}+\mathrm{SbCl}_{6}-(60 \mathrm{mg}, 0.057 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was stirred for 30 mins at room temperature. The solution color was changed to dark blue. After the removal of solvent, the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ to give compound $3^{\text {iPrb }}$ as a dark green solid ($58 \mathrm{mg}, 0.062 \mathrm{mmol}, 92 \%$).

2. UV-Vis, EPR and CV spectra

2.1 UV-Vis and Emission spectra

UV/Vis spectrum of 0.01 mM solution of $\mathbf{2}^{\mathrm{Me}} \mathbf{a}-\mathbf{b}, \mathbf{2}^{\text {iPr }} \mathbf{a}-\mathbf{b}$ and $\mathbf{3}^{\mathrm{Me}} \mathbf{a}-\mathbf{b}$ and $\mathbf{3}^{\text {iPr }} \mathbf{a}-\mathbf{b}$ in DCM was recorded on UV-1650PC (SHIMADZU) and HORIBA FluoroMax-4 spectrophotometer in ambient atmosphere at room temperature. The obtained spectrum was illustrated in in Figure S1 and Figure S2.

$2^{\mathrm{Me}} \mathrm{a}$

$2^{\text {Me }} b$

$2^{2 \mathrm{Pr}} \mathrm{a}$

Figure S1. Absorption spectra (solid) and emission spectra (dashed) of $10^{-5} \mathbf{M} \mathbf{2}^{\mathbf{M e}} \mathbf{a} \mathbf{- b}$ and $\mathbf{2}^{\mathbf{i P r}} \mathbf{a - b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.

Table S1 Summary of absorption and emission spectra

Compound	$\mathbf{2}^{\text {Me }} \mathbf{a}$	$\mathbf{2}^{\text {Me }} \mathbf{b}$	$\mathbf{2}^{\text {iPr }} \mathbf{a}$	$\mathbf{2}^{\text {iPr } \mathbf{b}}$
Wavelength (nm)	311	312	312	309
Max. $\boldsymbol{\varepsilon}\left(\mathbf{1 0}^{\mathbf{5}} \mathbf{M}^{\mathbf{- 1}} \mathbf{c m}^{\mathbf{- 1}}\right)$	0.237	0.266	0.136	0.339
Quantum Yield	3.22	3.50	9.43	13.95
Lifetime $(\mathbf{3 1 8 n m})(\mathbf{n s})$	14.98714	13.47508	7.182881	4.996558

Figure S2. Absorption spectra of $10^{-5} \mathrm{M} \mathbf{2}^{\mathrm{Me}} \mathbf{a - b}$ and $\mathbf{2}^{\mathbf{i P r}} \mathbf{a} \mathbf{- b}$ (solid), $\mathbf{3}^{\mathbf{M e}} \mathbf{a} \mathbf{a} \mathbf{b}$ and $\mathbf{3}^{\mathbf{i P r}} \mathbf{a}-\mathbf{b}$ (dashed) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.

Table S2 Summary of absorption spectra

Compound	$\mathbf{3}^{\text {Mea }} \mathbf{a}$	$\mathbf{3}^{\text {Meb }}$	$\mathbf{3}^{\text {iPra }}$	$\mathbf{3}^{\text {iPrb }}$
Wavelength $(\mathbf{n m})$ max. $\boldsymbol{\varepsilon}\left(\mathbf{1 0}^{\mathbf{5}} \mathbf{M}^{\mathbf{- 1}} \mathbf{c m}^{\mathbf{- 1}}\right)$ 745 688 739 681	0.212	0.696	0.197	0.305

2.2 Electron paramagnetic resonance (EPR)

The electron paramagnetic resonance (EPR) spectra of $\mathbf{3}^{\text {Me }} \mathbf{a}-\mathbf{b}$ and $\mathbf{3}^{\text {iPr }} \mathbf{a}-\mathbf{b}$ were measured by using a Bruker ELEXSYS E500 spectrometer at room temperature. All samples were prepared as a $10^{-5 \sim} 10^{-4} \mathrm{mM}$ solution in $\mathrm{CH}_{2} \mathrm{Cl}$. After freeze-pumpthaw cycles, the solution sample in a quartz tube was sealed by frame. Spectral simulation was performed using EasySpin, which is a MATLAB toolbox meant for this.

Table S3 Spin Hamiltonian parameters estimated from the spectral simulation for $\mathbf{3}^{\mathbf{M e}} \mathbf{a} \mathbf{- b}$ and $\mathbf{3}^{\text {iPr}} \mathbf{a}$-b. The number of equivalent protons is noted in brackets.

2.3 Cyclic voltammetry

Cyclic voltammetry measurement of $\mathbf{2}^{\mathbf{M e}} \mathbf{a} \mathbf{- b}$ and $\mathbf{2}^{\text {iPra-b }}$ (1.0 mM) was performed by using an ALS 600D potentiostat / galvanostat in DCM solution containing 100 mM of [$\mathrm{nBu}_{4} \mathrm{~N}$] [PF_{6}] with a scan rate of $100 \mathrm{mV} / \mathrm{s}$ in ambient atmosphere at room temperature. A three-electrode cell, which was equipped with a Pt disk working electrode, a Pt wire counter electrode, and SCE reference electrode, was used. The half wave potentials of $\mathbf{2}^{\mathbf{M e}} \mathbf{a} \mathbf{- b}$ and $\mathbf{2}^{\mathrm{iPr}} \mathbf{a} \mathbf{- b}$ was compensated with that of ferrocene/ferrocenium redox cycle, which is +0.46 V (vs. SCE). The cyclic voltammogram is illustrated in Figure S3.

Figure S3. Cyclic voltammogram of a 1.0 mM solution of $\mathbf{2}^{\mathbf{M e}} \mathbf{a} \mathbf{- b}$ and $\mathbf{2 P r}^{\mathbf{i P r}} \mathbf{a} \mathbf{- b}$ in DCM using 100 mM of [$\left.\mathrm{nBu} u_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ as the supporting electrolyte.

Table S4. Formal potentials of neutral compounds.

Compound	$\mathbf{E}_{\mathrm{pa}} / \mathbf{v}$	$\mathbf{E}_{\mathrm{pc}} / \mathbf{v}$	1.149
$\mathbf{2}^{\mathrm{Me}} \mathbf{a}$	1.243	1.430	1.196
$\mathbf{2}^{\mathbf{M e b}}$	1.541	1.129	1.485
$\mathbf{2}^{\mathbf{i P r} \mathbf{a}}$	1.225	1.417	1.177
$\mathbf{2}^{\mathbf{i P r}}$	1.538		1.477

3. Crystal Structure Determination

Crystals suitable for X-ray structural determination were mounted on a Bruker SMART APEXII CCD diffractometer. Samples were irradiated with graphite monochromated Mo-K radiation ($\lambda=0.71073 \AA 8$) at 173 K for data collection. The data were processed using the APEX program suite. All structures were solved by the SHELXT program (ver. 2014/5). Refinement on F^{2} was carried out by full-matrix least-squares using the SHELXL in the SHELX software package (ver. 2014/7) ${ }^{[1]}$ and expanded using Fourier techniques. All non-hydrogen atoms were refined using anisotropic thermal parameters. The hydrogen atoms were assigned to idealized geometric positions and included in the refinement with isotropic thermal parameters. The SHELXL was interfaced with ShelXle GUI (ver. 742) for most of the refinement steps. ${ }^{[2]}$ The pictures of molecules were prepared using Pov-Ray 3.7.0. ${ }^{[3]}$ The crystallographic data are summarized in Table S5. CCDC-19455301945536 contain the supplementary crystallographic data for this paper.

Table S5. Selected X-ray parameter of $\mathbf{1}^{\mathrm{Me}}, \mathbf{2}^{\mathrm{Me}} \mathbf{a}-\mathbf{b}, \mathbf{2}^{\mathbf{i P r}} \mathbf{a}-\mathbf{b}, \mathbf{3}^{\mathrm{Me}} \mathbf{a}$ and $\mathbf{3}^{\mathbf{i P r}} \mathbf{a}$.

CCDC	$\begin{gathered} \mathbf{1}^{\mathrm{Me}} \\ 1945530 \end{gathered}$	$\begin{gathered} \mathbf{2}^{\text {Me }} \mathbf{a} \\ 1945531 \end{gathered}$	$\begin{gathered} \mathbf{2}^{\text {Meb }} \mathbf{b} \\ 1945532 \end{gathered}$	$\begin{gathered} \mathbf{3}^{\mathrm{Me}} \mathbf{a} \\ 1945533 \end{gathered}$	$\begin{gathered} \mathbf{2}^{\text {iPr }} \mathbf{a} \\ 1945534 \end{gathered}$	$\begin{gathered} \mathbf{2}^{\text {iPr }} \mathbf{b} \\ 1945535 \end{gathered}$	$\begin{gathered} \mathbf{3}^{\text {iPra }} \\ 1945536 \end{gathered}$
Formula	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrO}$	$\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{NO}_{4}$	$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{NO}_{4}$	$\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{Cl}_{8} \mathrm{NO}_{4} \mathrm{Sb}$	$\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{NO}_{4}$	$\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~F}_{6} \mathrm{NO}_{4}$	$\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{Cl}_{8} \mathrm{NO}_{4} \mathrm{Sb}$
Mol wt	329.18	486.37	553.49	820.82	542.47	609.59	876.92
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	Monoclinic	Triclinic	Triclinic	Monoclinic
Space group	Pben	Pbca	$\mathrm{P} 21 / \mathrm{n}$	$\mathrm{P} 21 / \mathrm{n}$	P-1	P-1	$\mathrm{P} 21 / \mathrm{n}$
$a, ~ \AA ̊$	21.874(5)	18.3830(16)	11.7241(3)	11.6398(8)	11.840(2)	10.0890(4)	12.156(3)
b, Å	15.366(3)	13.3271(12)	12.3047(3)	18.4868(13)	14.543(3)	11.8293(5)	15.548(3)
c, Å	8.915(3)	20.1022(18)	18.3432(5)	16.2027(11)	18.231(3)	13.7884(6)	19.482(4)
α, deg	90	90	90	90	97.047(3)	97.5670(10)	90
6, deg	90	90	100.0770(10)	109.070(3)	105.059(3)	107.7540(10)	90.770(4)
$\boldsymbol{\gamma}$, deg	90	90	90	90	102.364(3)	95.2740(10)	90
$\mathrm{V}, \mathrm{A}^{3}$	2996.4(12)	4924.9(8)	2605.40(12)	3295.2(4)	2907.6(9)	1538.29(11)	3681.6(13)
Z	8	8	4	4	4	2	4
$\mathrm{D}_{\text {calc }}, \mathrm{Mg} / \mathrm{m}^{3}$	1.459	1.312	1.411	1.655	1.239	1.316	1.582
Abs coeff, mm ${ }^{-1}$	2.750	0.296	0.122	1.518	0.257	0.110	1.365
F(000)	1344	2032	1144	1628	1144	636	1756
Temp, K	173(2)	173(2)	173(2)	173(2)	173(2)	173(2)	173(2)
Reflections	33840	44338	12410	15559	14070	18837	20884
Independent	3737	4249	4485	5614	10099	7482	8431
Rint	0.0358	0.0348	0.0222	0.0246	0.0334	0.0452	0.0860
Parameters	177	303	413	366	689	451	411
$R 1[I>2 \sigma(I)]$	0.0272	0.0384	0.0385	0.0312	0.0610	0.0406	0.0573
$w R_{2}$ (all data)	0.0727	0.1076	0.1032	0.0800	0.2302	0.1114	0.1058

Front-view

Side-view

Figure S4. Molecular structures of $\mathbf{1}^{\text {Me }}$ obtained from single-crystal X-ray diffraction analysis. Thermal ellipsoids are displayed at 30% probability. Hydrogen atoms are omitted for clarity.

Figure S5. Molecular structure of $\mathbf{2}^{\mathbf{M e}} \mathbf{a}-\mathbf{b}, \mathbf{2 P r}^{\mathrm{iPr}} \mathbf{a}-\mathbf{b}, \mathbf{3}^{\mathbf{M e}} \mathbf{a}$ and $\mathbf{3}^{\mathbf{i P r}} \mathbf{a}$ (Side-view) obtained from single-crystal X-ray diffraction analysis. Thermal ellipsoids are displayed at 30% probability. Hydrogen atoms are omitted for clarity.

Figure S6. The difference of N - O bond length between $\mathbf{2}^{\mathrm{Me}} \mathbf{a}-\mathbf{b}, \mathbf{2}^{\mathrm{iPr}} \mathbf{a}-\mathbf{b}, \mathbf{3}^{\mathrm{Me}} \mathbf{a}$ and $\mathbf{3}^{\text {iPra: }}$: average $\mathrm{N}-\mathrm{O}$ distances (blue); differences of NO distance (orange).

4. DFT calculation

4.1 Optimized geometries

Geometry optimizations were performed at the RCAM- and UCAM-B3LYP-D3/def2-SVP, B3PW91/6-31G(d) and UB3PW91/6$31 G(d)$, B3LYP/6-31G(d,p) and UB3LYP/6-31G(d,p), B3LYP/cc-pVDZ and UB3LYP/cc-pVDZ levels for 2 and $\mathbf{3}$, respectively, using Gaussian 09 program package. Here, IEF-PCM method was employed in order to consider solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ effects.

Single point calculations at the RCAM- and UCAM-B3LYP-D3/def2-SVP levels were performed using ORCA 4.2 program package ${ }^{[4]}$, where C-PCM method was employed for solvent effects. Natural population analysis (NPA) and atoms in molecules (AIM) analysis were performed using the NBO $6.0^{[5]}$ and Multiwfn $3.6^{[6]}$ program packages, respectively. For the domain-based local pair-natural orbital coupled-cluster singles and doubles (DLPNO-CCSD)/def2-SVP calculations ${ }^{[7]}$, the options "NormalPNO" and "VeryTightSCF" as well as def2-SVP/C and def2/JK auxiliary basis were employed.

Table S6. Selected calculated bond lengths ((\AA), angles and dihedral angles $\left[{ }^{\circ}\right]$, and net NPA charges $q[-]$ for $\mathbf{2}^{\mathrm{Me}} \mathbf{a} \mathbf{- b}, \mathbf{2}^{\text {iPra }} \mathbf{a}-\mathbf{b}, \mathbf{3}^{\mathbf{M e}} \mathbf{a}$ and $\mathbf{3}^{\text {iPra }} \mathbf{a}$ at the RCAM- and UCAM-B3LYP-D3/def2-SVP levels in $\mathbf{2}$ and 3, respectively.

Parameters	Ionic rad	Neutral		Ionic rad	Neutral	
	$3^{\text {Mea }}$	$\mathbf{2}^{\mathrm{Me}} \mathrm{a}$	$2^{\text {Meb }}$	$3^{\text {iPra }}$	$\mathbf{2}^{\text {iPra }}$	$2^{\text {iPrb }}$
Coord.	(CO)	(OMe)	(CO)	(OiPr)	(CO)	(CO)
$\mathrm{N}-\mathrm{O} 1$	2.684	2.734	2.795	2.673	2.885	2.882
$\mathrm{N}-\mathrm{O} 2$	2.686	2.734	2.802	2.676	2.889	2.886
$\mathrm{N}-\mathrm{O}_{\text {Ave }}$	2.684	2.734	2.798	2.674	2.887	2.884
$\mathrm{N}-\mathrm{C} 1$	1.435	1.417	1.420	1.439	1.416	1.419
N-C2	1.387	1.405	1.403	1.387	1.408	1.405
N-C3	1.388	1.405	1.401	1.388	1.407	1.404
$\boldsymbol{\Sigma} \mathrm{N} \alpha$	360.0	360.0	360.0	360.0	360.0	360.0
Фоссо	39.1	67.2	56.3	47.0	73.6	74.4
$q(N)$	-0.270	-0.502	-0.497	-0.275	-0.498	-0.493
$q(01)$	-0.645	-0.648	-0.637	-0.602	-0.643	-0.643
$q(02)$	-0.645	-0.648	-0.638	-0.602	-0.643	-0.643
$q(C 1)$	0.178	0.212	0.217	0.165	0.214	0.208
$q(C 2)$	0.170	0.175	0.198	0.176	0.173	0.194
q(C3)	0.171	0.175	0.200	0.174	0.173	0.195

 31G(d) in 3, respectively.

Parameters	Ionic radical	Neutral		Ionic radical	Neutral	
	$3^{\text {Mea }}$	$\mathbf{2}^{\text {Mea }}$	$2^{\text {Meb }}$	$3^{\text {iPra }}$	$2{ }^{\text {iPr }}$ a	$2{ }^{\text {iPr }}$ b
Coord.	(CO)	(OMe)	(CO)	(OiPr)	(CO)	(CO)
N-01	2.727	2.795	2.871	2.798	2.884	2.855
N-O2	2.727	2.796	2.873	2.860	2.870	2.858
$\mathrm{N}-\mathrm{O}_{\text {Ave }}$	2.727	2.796	2.872	2.820	2.877	2.857
$\mathrm{N}-\mathrm{C} 1$	1.436	1.42	1.418	1.432	1.416	1.419
N-C2	1.393	1.409	1.408	1.394	1.410	1.406
N-C3	1.393	1.409	1.407	1.394	1.409	1.407
$\boldsymbol{\Sigma} \mathrm{N} \alpha$	360.0	360.0	360.0	360.0	360.0	360.8
¢ $_{\text {occo }}$	45.3	69.1	66.5	74.2	69.2	65.4

Table S8. Selected calculated bond lengths (A), angles and dihedral angles [${ }^{\circ}$] for $\mathbf{2}^{\mathrm{Me}} \mathbf{a} \mathbf{- b}, \mathbf{2}^{\mathbf{i P r}} \mathbf{a - b}, \mathbf{3}^{\mathrm{Me}} \mathbf{a}$ and $\mathbf{3}^{\mathbf{i P r}} \mathbf{a}$ at the B3LYP/6-31G(d,p) in $\mathbf{2}$ and UB3LYP/631G(d,p) in 3, respectively.

Parameters	Ionic radical	Neutral		Ionic radical	Neutral	
	$3^{\text {Mea }}$	$2^{\text {Mea }}$	$2^{\text {Meb }}$	$3^{\text {iPra }}$	$2{ }^{\text {iPra }}$	$2{ }^{\text {iPrb }}$
Coord.	(CO)	(OMe)	(CO)	(OiPr)	(CO)	(CO)
$\mathrm{N}-\mathrm{O} 1$	2.733	2.801	2.876	2.788	2.885	2.869
$\mathrm{N}-\mathrm{O} 2$	2.734	2.802	2.877	2.845	2.892	2.876
$\mathrm{N}-\mathrm{O}_{\text {Ave }}$	2.733	2.801	2.876	2.816	2.888	2.872
$\mathrm{N}-\mathrm{C} 1$	1.443	1.426	1.424	1.440	1.422	1.425
$\mathrm{N}-\mathrm{C} 2$	1.398	1.415	1.413	1.399	1.415	1.413
N-C3	1.398	1.415	1.413	1.399	1.416	1.412
$\boldsymbol{\Sigma} \mathrm{N} \alpha$	360.0	360.0	360.0	360.0	360.0	360.0
Фocco	43.7	68.6	65.3	70.0	69.5	67.2

 in 3, respectively.

Parameters	Ionic radical	Neutral		Ionic radical	Neutral	
	$3^{\text {Mea }}$	$2^{\text {Mea }}$	$\mathbf{2 M e b}^{\text {M }}$	$3^{\text {iPra }}$	$2^{\text {iPra }}$	$2^{\text {iPrb }}$
Coord.	(CO)	(OMe)	(CO)	(OiPr)	(CO)	(CO)
N-01	2.722	2.771	2.847	2.773	2.857	2.835
$\mathrm{N}-\mathrm{O} 2$	2.723	2.772	2.848	2.824	2.866	2.844
$\mathrm{N}-\mathrm{O}_{\text {Ave }}$	2.722	2.771	2.847	2.798	2.861	2.839
$\mathrm{N}-\mathrm{C} 1$	1.444	1.428	1.426	1.442	1.423	1.427
N-C2	1.398	1.415	1.414	1.399	1.416	1.413
N-C3	1.399	1.415	1.413	1.399	1.415	1.412
гN α	360.0	360.0	360.0	360.0	360.0	360.0
¢ $_{\text {occo }}$	38.3	59.5	57.6	62.8	62.7	58.8

4.2 TD-DFT calculation

TDDFT calculation was carried out at the B3LYP/cc-pVDZ level in $\mathbf{2}$ and at UB3LYP/cc-pVDZ level in $\mathbf{3}$ using the Gaussian 09 program. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for solvent effect.

$2^{\mathrm{Me}} \mathrm{a}$ HO	27 LUM
Excited State	Singlet-A
127 ->128	0.70095
Excited State	2: Singlet-A
127 ->129	0.70014
Excited State	3: Singlet-A
127 ->130	0.48970
127 ->131	0.49809
Excited State	4: Singlet-A
127 ->130	0.50091
127 ->131	-0.48364
Excited State	5: Singlet-A
127 ->132	0.68570
Excited State	6: Singlet-A
121 >128	-0.14620
122 ->128	-0.12228
122 ->129	0.16698
123 ->128	-0.24082
124 ->129	0.33066
125 ->128	0.36901
126 ->128	-0.17813
126 ->129	0.28509

$3.1339 \mathrm{eV} 395.62 \mathrm{~nm} \mathrm{f}=0.0346$ <S**2>=0.000 3.2374 eV $382.97 \mathrm{~nm} \mathrm{f}=0.1086$ <S**2>=0.000 $4.0178 \mathrm{eV} 308.59 \mathrm{~nm} \mathrm{f}=0.1265$ <S**2>=0.000
$4.0805 \mathrm{eV} 303.85 \mathrm{~nm} \mathrm{f}=0.3753<$ S**2 $^{*}>=0.000$
$4.3549 \mathrm{eV} 284.70 \mathrm{~nm} \mathrm{f}=0.0280<\mathrm{S}^{* *} 2>=0.000$
$4.7402 \mathrm{eV} 261.56 \mathrm{~nm} \mathrm{f}=0.0118$ <S**2>=0.000
2ra HOMO 143 LUMO 144

$\begin{aligned} & \text { Excited State } \\ & 143->144 \text { 1: } \\ & 0.70139\end{aligned}$ Excited State
$143 \rightarrow 145$ 2: $\begin{gathered}\text { Singlet-A } \\ 0.70047\end{gathered}$
$3.1253 \mathrm{eV} 396.71 \mathrm{~nm} \mathrm{f}=0.0431$ <S**2>=0.000
$3.2589 \mathrm{eV} 380.45 \mathrm{~nm} \mathrm{f}=0.1286$ <S*2>=0.000 Excited State 3: Singlet- A $\begin{array}{rr}143->146 & 0.60353 \\ 143->147 & -0.34482\end{array}$
Excited State
4: $\begin{gathered}-0.34482 \\ \text { Singlet-A }\end{gathered}$ $\begin{array}{ll}143 \rightarrow 146 & 0.35085 \\ 143->147 & 0.60431\end{array}$
Excited State 5: Singlet-A $4.3770 \mathrm{eV} 283.27 \mathrm{~nm} \mathrm{f}=0.0317$ <S**2>=0.000
$143->148$
Excited State ${ }^{0.68453}$
Excited State
$136 \rightarrow 145$
136 \quad Singlet-A
$\begin{array}{rr}136->145 & 0.15938 \\ 137->144 & -0.19568\end{array}$
$\begin{array}{ll}137 \rightarrow 144 & -0.19568 \\ 138 \rightarrow 144 & -0.12125\end{array}$
$\begin{array}{ll}138->145 & 0.11356 \\ 139 & -12125 \\ 140 & -0.1545\end{array}$
$\begin{array}{ll}139->144 & -0.26758 \\ 140-145 & -0.19364 \\ 141>144\end{array}$
$\begin{array}{ll}141 \rightarrow 144 & -0.19364 \\ 0.50291\end{array}$
$\begin{array}{ll}142 \rightarrow 144 & -0.10948 \\ 142 \rightarrow 145 & 0.1159\end{array}$
$2^{\text {Meb }}$ HOMO 143 LUMO 144

$\underset{\substack{\text { Excited State } \\ 143 \rightarrow 144 \\ \text { 1: } \\ \text { Singlet-A } \\ \hline}}{ }$
$\begin{array}{lll}\text { Excited State } & 2: & 0.69867 \\ \text { Singlet-A }\end{array}$
$\begin{array}{ccc}\text { Excited State } & 2: & \begin{array}{c}\text { Singlet-A } \\ 143->145\end{array} \\ \text { Excited State } & \text { 3: } & \begin{array}{c}\text { Sing44 } \\ \text { Singlet-A }\end{array}\end{array}$
 $\begin{array}{ll}142 \rightarrow 146 & -0.10824 \\ 143 \rightarrow 147 & 0.68630\end{array}$
$\begin{array}{cc}\text { Excited State } \\ 141->146\end{array} \quad \begin{gathered}\text { 5: } \\ -0.12622\end{gathered} \quad 4.5535 \mathrm{eV} 272.28 \mathrm{~nm} \mathrm{f}=0.0290 \quad<\mathrm{S}^{* *} 2>=0.000$ $\begin{array}{ll}141->146 & -0.12622 \\ 142->145 & -0.10370 \\ 143>148 & 0.05771\end{array}$ $143->148 \quad 0.6577$

$\begin{aligned} 143->149 \\ \text { Excited State }\end{aligned}$	$6: \begin{array}{l}0.11286 \\ \text { Singlet-A }\end{array}$

Excited State
$136 \rightarrow 145$$\quad \begin{array}{r}\text { Single } \\ 0.16362\end{array}$ $\begin{array}{ll}136->145 & 0.16362 \\ 137-144 & 0.14972 \\ 139-0.16657\end{array}$ $\begin{array}{rr}137-144 & -0.16657 \\ 139 \rightarrow 145 & 0.11536\end{array}$ $\begin{array}{ll}140 \rightarrow 144 & -0.29742 \\ 141 \rightarrow 145 & 0.1535\end{array}$ $\begin{array}{ll}141 \rightarrow 145 & 0.19374 \\ 142 \rightarrow 144 & 0.50254\end{array}$
Pipb HOMO 159 LUMO 160

$2^{\text {iPrb }}$ HOMO 159 LUMO 160				
Excited State	1:	Singlet-A	3.2910 eV $376.74 \mathrm{~nm} \mathrm{f}=0.0523$	<S**2>=0.000
159 ->160		0.69757		
Excited State	2 :	Singlet-A 0.69749	$3.3987 \mathrm{eV} 364.80 \mathrm{~nm} \mathrm{f}=0.1171$	<S**2>=0.000
Excited State	3:	Singlet-A	$3.9637 \mathrm{eV} 312.80 \mathrm{~nm} \mathrm{f}=0.4213$	<S**2>0.000
159 ->162		0.69874		
Excited State	4:	Singlet-A	4.2374 eV $292.60 \mathrm{~nm} \mathrm{f}=0.0102$	<S**2>=0.000
158 ->162		0.10096		
159 ->163		0.68683		
Excited State	5:	Singlet-A	$4.5454 \mathrm{eV} 272.77 \mathrm{~nm} \mathrm{f}=0.0265$	<S**2>0.000
157 ->162		-0.11625		
159 ->164		0.66042		
159 ->165		-0.10638		
Excited State	6:	Singlet-A	$4.7088 \mathrm{eV} 263.30 \mathrm{~nm} \mathrm{f}=0.0154$	<S**2>=0.000
152 ->161		-0.17221		
153 ->160		-0.16031		
155 ->160		-0.13010		
156 ->160		-0.31352		
157 ->161		0.19257		
158 ->160		0.50540		

Figure S7. TD-DFT of optimized $\mathbf{2}^{\mathbf{M e}} \mathbf{a} \mathbf{- b}$ and $\mathbf{2}^{\mathbf{i P r}} \mathbf{a}-\mathbf{b}$ at the B3LYP/cc-pVDZ level. Experimental absorption (blue) and Oscillator strength (black).

Figure S8. TD-DFT of optimized $\mathbf{3}^{\text {Me }} \mathbf{a - b}$ and $\mathbf{3}^{\text {Pra-b }}$ at the UB3LYP/cc-pVDZ level. Experimental absorption (blue) and Oscillator strength (black).

Figure S9. Spin density distribution of the optimized structure of $\mathbf{3}^{\mathbf{M e}} \mathbf{a}$, calculated at the UB3PW91/6-31G(d) level.

Figure S10. Spin density distribution of the optimized structure of $\mathbf{3}^{\text {iPr }} \mathbf{a}$, calculated at the UB3PW91/6-31G(d) level.

Front view
Side view

Figure S11. Spin density distribution of the optimized structure of $\mathbf{3}^{\mathbf{M e}} \mathbf{b}$, calculated at the UB3PW91/6-31G(d) level.

Figure S12. Spin density distribution of the optimized structure of $\mathbf{3}^{\text {iPrb }}$, calculated at the UB3PW91/6-31G(d) level.

4.4 The atoms in molecules (AIM)

Figure S13. Atom in Molecules (AIM) analysis based on X-ray geometries of $\mathbf{2}^{\mathbf{M e}} \mathbf{a}-\mathbf{b}, \mathbf{2}^{\mathbf{i P r}} \mathbf{a}-\mathbf{b}, \mathbf{3}^{\mathrm{Me}} \mathbf{a}$ and $\mathbf{3}^{\mathbf{i P r}} \mathbf{a}$ showing bond paths between the central nitrogen and the carbonyl oxygen, calculated at the RCAM- and UCAM-B3LYP-D3/def2-SVP levels in $\mathbf{2}$ and $\mathbf{3}$, respectively.

Table S10. Summary of the electron density ($\rho(\mathbf{r}) \mathrm{e} / \mathrm{a}_{0}{ }^{3}$), Laplacian $\left(\nabla^{2} \rho(\mathbf{r})\right.$ e/ $\mathrm{a}_{0}{ }^{5}$) at the bond critical point (bcp) of the N - O bonds, and AIM analysis along with kinetic energy density $G(r)$, potential energy density $V(r)$, and energy density $H(r)$ at the $(3,-1)$ critical point in between N and O based on X-ray geometry.

Parameters	Ionic radical	Neutral		Ionic radical	Neutral		
	$3^{\text {Mea }}$	$2^{\text {Mea }}$	$2^{\text {Meb }}$	$3^{\text {iPra }}$	$2{ }^{\text {iPra }}$	$2^{\text {iPrb }}$	
Coord.	(CO)	(OMe)	(CO)	(OiPr)	(CO)	(CO)	
$\rho(\mathrm{N}-\mathrm{O} 1)$	0.016029	0.014962	-	0.016690	-	0.013793	
$\nabla^{2} \rho(\mathrm{~N}-\mathrm{O} 1)$	0.058460	0.052404	-	0.064195	-	0.052479	
$\rho(\mathrm{N}-\mathrm{O} 2)$	0.013945	0.013607	-	0.016114	-	0.013087	
$\nabla^{2} \rho$ ($\left.\mathrm{N}-\mathrm{O} 2\right)$	0.051214	0.048605	-	0.062402	-	0.048313	
V (potential, $\mathrm{N}-\mathrm{O} 1$)	-0.011815	-0.011446	-	-0.012760	-	-0.010524	
G (kinetic, N-O1)	0.013215	0.012274	-	0.014404	-	0.011822	
H (total, $\mathrm{N}-\mathrm{O} 1)$	0.001400	0.000827	-	0.001644	-	0.001298	
\|V	/G (N-O1)	0.894	0.933	-	0.886	-	0.890
$\mathrm{G} / \rho(\mathrm{N}-\mathrm{O} 1)$	0.824	0.820	-	0.863	-	0.857	
$\mathrm{H} / \mathrm{\rho}$ ($\mathrm{N}-\mathrm{O} 1)$	0.087	0.055	-	0.099	-	0.094	
V (potential, $\mathrm{N}-\mathrm{O} 2$)	-0.010297	-0.010535	-	-0.012367	-	-0.009938	
G (kinetic, $\mathrm{N}-\mathrm{O} 2)$	0.011550	0.011343	-	0.013984	-	0.011008	
H (total, $\mathrm{N}-\mathrm{O} 2)$	0.001253	0.000808	-	0.001617	-	0.001070	
\|V	/G (N-O2)	0.892	0.929	-	0.884	-	0.903
$\mathrm{G} / \rho(\mathrm{N}-\mathrm{O} 2)$	0.828	0.868	-	0.868	-	0.841	
$\mathrm{H} / \mathrm{\rho}(\mathrm{~N}-\mathrm{O} 2)$	0.090	0.062	-	0.100	-	0.082	

 nitrogen and the carbonyl oxygen, calculated at the RCAM- and UCAM-B3LYP-D3/def2-SVP levels in $\mathbf{2}$ and $\mathbf{3}$, respectively.

Table S11. Summary of the electron density ($\rho(\mathbf{r}) \mathrm{e} / \mathrm{a}_{0}{ }^{3}$), Laplacian $\left(\nabla^{2} \rho(\mathbf{r}) \mathrm{e} / \mathrm{a}_{0}{ }^{5}\right.$) at the bond critical point (bcp) of the $\mathrm{N}-\mathrm{O}$ bonds, and AIM analysis along with kinetic energy density $\mathrm{G}(\mathrm{r})$, potential energy density $\mathrm{V}(\mathrm{r})$, and energy density $\mathrm{H}(\mathrm{r})$ at the $(3,-1)$ critical point in between N and O based on fully optimized geometry.

Parameters	Ionic radical	Neutral		Ionic radical	Neutral		
	$3^{\text {Mea }}$	$2^{\text {Mea }}$	$2^{\text {Meb }}$	$3^{\text {iPra }}$	$2{ }^{\text {iPra }}$	$2^{\text {iPrb }}$	
Coord.	(CO)	(OMe)	(CO)	(OiPr)	(CO)	(CO)	
ρ ($\mathrm{N}-\mathrm{O} 1$)	0.016943	0.015888	0.014791	0.016275	0.012671	0.012714	
$\nabla^{2} \rho(\mathrm{~N}-\mathrm{O} 1)$	0.061432	0.057241	0.050928	0.062634	0.047075	0.047472	
$\rho(\mathrm{N}-\mathrm{O} 2)$	0.016889	0.015873	0.014641	0.016165	0.012601	0.012642	
$\nabla^{2} \rho(\mathrm{~N}-\mathrm{O} 2)$	0.061145	0.057130	0.050375	0.062058	0.047001	0.047369	
V (potential)	-0.012547	-0.012277	-0.011199	-0.012377	-0.009665	-0.009629	
G (kinetic)	0.013953	0.013280	0.011965	0.013946	0.010717	0.010736	
H (total)	0.001405	0.001003	0.000767	0.001569	0.001052	0.001107	
\|V	/G	0.899	0.924	0.936	0.887	0.902	0.897
G/ ρ	0.823	0.837	0.809	0.863	0.846	0.849	
H/ ρ	0.0829	0.0632	0.0519	0.0971	0.0830	0.0876	

Atoms in Molecules (AIM) analysis based on fully optimized geometries of $\mathbf{2}^{\mathbf{M e}} \mathbf{a}-\mathbf{b}, \mathbf{2}^{\mathbf{2 i P r}} \mathbf{a} \mathbf{- b}, \mathbf{3}^{\mathbf{M e} \mathbf{a}}$ and $\mathbf{3}^{\text {iPra }}$ showed bond paths between the central nitrogen atom and the ester oxygen atoms in both cation radical and neutral species. The observed 12-$\mathrm{N}-5$ weakly coordinating interaction in neutral compounds may due to the effective delocalization of the lone pair on nitrogen atom and the residue positive charge on nitrogen then can form electrostatic interactions with the adjacent oxygen electron pairs, forming a $n_{0} \rightarrow \pi^{*}{ }_{\text {Nc }}$ interaction as we explained in text.

4.5 The energy difference between $\mathbf{s p}^{2}$ carbonyl (CO) and alkoxyl (OR) coordination modes

Table S12. Single Point (SP) Calcs. at B3LYP-D3/6-31+G* levels for the energy difference between sp^{2} carbonyl ($C O$) and alkoxyl ($O R$) coordination modes. $[\mathrm{a}, \mathrm{b}]$

	Carbonyl oxygen [kcal/mol]	Alkoxyl oxygen [kcal/mol]	Difference [kcal/mol]
$2^{\text {Mea }}$	-1431986.818	-1431988.364	1.55
$2^{\text {Meb }}$	-1278208.598	-1278209.961	1.36
$\mathbf{2}^{\text {iPr }} \mathbf{a}$	-1530690.305	-1530689.352	-0.95
$2^{\text {iPr }}$ b	-1376912.023	-1376911.236	-0.79
$3^{\text {Mea }}$	-1431860.742	-1431860.633	-0.11
$3^{\text {Meb }}$	-1278074.77	-1278074.30	-0.47
$3^{\text {iPr }} \mathbf{a}$	-1530564.449	-1530562.042	-2.40
$3^{\text {iPrb }}$	-1376778.493	-1376775.592	-2.90

[a] RB3LYP-D3/6-311G* (neutral) and UB3LYP-D3/6-311G* (cationic) levels for geometry optimization and frequency analysis. [b] IEFPCM (CH ${ }_{2} \mathrm{Cl}_{2}$ solvent) for solvent effects.

Figure S15. Relaxed potential energy scan for the rotation of single COOR group of $\mathbf{2}^{\text {iPra }}$ and $\mathbf{3}^{\text {iPr }}$ at the RCAM- and UCAM-B3LYP-D3/def2-SVP levels, respectively. The other COOR group is carbonyl coordination. Vertical axis shows the relative energy E to the total energy at the lowest local minimum structure. Dotted line shows the relative energy for the local minimum where both COOR groups are alkoxyl coordination. Note that X-ray geometries were carbonyl coordination for $\mathbf{2}^{\mathbf{i P r}} \mathbf{a}$ and alkoxyl coordination for $\mathbf{3}^{\text {iPr }} \mathbf{a}$, whereas the calculated lowest minimum geometries are predicted to be carbonyl coordination for both systems.

4.6 Examination of applicability of CAM-B3LYP-D3 density for the population and topological analyses

Examination of applicability of CAM-B3LYP-D3 density for the population and topological analyses in comparison with the results from DLPNO-CCSD linearized density by employing simplified models $\mathbf{2 x}$ and $\mathbf{3 x}$.

Figure S16. Structure of simplified model $\mathbf{2 x} / \mathbf{3 x}$ (carbonyl coordination).
Table S13. Selected calculated bond lengths (\AA), angles and dihedral angles [${ }^{\circ}$] for $\mathbf{2 x}$ and $\mathbf{3 x}$ at the RCAM- and UCAM-B3LYP-D3/def2-SVP levels in $\mathbf{2 x}$ and $\mathbf{3 x}$, respectively.

Parameters	Ionic radical		Neutral	
	3 x	3x	2x	2x
Coord.	(CO)	(OH)	(CO)	(OH)
$\mathrm{N}-\mathrm{O} 1$	2.534	2.644	2.877	2.795
N-O2	2.534	2.644	2.877	2.795
$\mathrm{N}-\mathrm{C} 1$	1.435	1.408	1.376	1.384
N-C2	1.457	1.452	1.450	1.447
N-C3	1.457	1.452	1.450	1.447
$\boldsymbol{\Sigma} \mathrm{N} \alpha$	360.0	360.0	360.0	360.0
Фоссо	3.2	47.8	59.3	69.31

Figure S17. Difference of CAM-B3LYP-D3/def2-SVP density and DLPNO-CCSD/def2-SVP linearized density, $\rho(C A M-B 3 L Y P-D 3)$ - $\rho(D L P N O-C C S D)$ (for CO coordination, left: $\mathbf{3 x}$, right: $\mathbf{2 x}$:). Yellow/blue surfaces in isosurface maps represent positive and negative region of with contour values of $\pm \mathbf{0 . 0 0 5}$ a.u. For ionic radical species, ROHF-DLPNO-CCSD method is employed.

Table S14. Comparison of CAM-B3LYP-D3/def2-SVP and DLPNO-CCSD/def2-SVP (linearized density) results for NPA charges and AIM analysis (for CO coordination).

Coord.	Ionic radical 3x		Neutral 2x	
	CAM-B3LYP	DLPNO-CCSD	CAM-B3LYP	DLPNO-CCSD
	(CO)	(CO)	(CO)	(CO)
q(N)	-0.087	-0.058	-0.492	-0.488
q(01)	-0.622	-0.582	-0.621	-0.573
q(O2)	-0.622	-0.582	-0.621	-0.573
$q(C 1)$	0.187	0.163	0.283	0.256
$q(C 2)$	-0.426	-0.381	-0.405	-0.353
q(C3)	-0.426	-0.381	-0.405	-0.353
$\rho(\mathrm{N}-\mathrm{O} 1)$	0.02220	0.02244	0.01268	0.01303
$\nabla^{2} \rho(\mathrm{~N}-\mathrm{O} 1)$	0.08266	0.08319	0.04599	0.04687
$\rho(\mathrm{N}-\mathrm{O} 2)$	0.02219	0.02243	0.01267	0.01303
$\nabla^{2} \rho(\mathrm{~N}-\mathrm{O} 2)$	0.08261	0.08314	0.04599	0.04687

4.7 The comparison of optimized two electron oxidation species vs optimized one electron oxidation species

We optimized the geometries of two electron oxidized species ($4^{\mathrm{Me}} \mathbf{a}-\mathbf{b}, 4^{\mathrm{iPr}} \mathbf{a}-\mathbf{b}$). Results are listed in Table S15. In Table S16 and S17, we also listed the results of cationic radical and neutral species. Because of some difficulties in the optimizations, we could not have obtained yet the optimized geometries of $\mathbf{4}^{\mathbf{M e}} \mathbf{b}(\mathrm{CO})$ and $\mathbf{4}^{\mathbf{i P r}} \mathbf{a}$ (OiPr). Changes in the geometric parameters by oxidization, such as dihedral angle $\Phi_{\text {occo, }}$ are found to be not monotonic. However, some systems of alkoxyl coordination type ($\mathbf{4}^{\mathrm{Me}} \mathbf{b}$ and $\mathbf{4}^{\mathrm{iPr}}$) are found to have very large dihedral angle of $\Phi_{\text {occo }}$.

Table S15. Selected calculated bond lengths (\AA), angles and dihedral angles [${ }^{\circ}$] for $4^{\mathrm{Me}} \mathbf{a}-\mathbf{b}, 4^{\text {iPra }}$-b optimized at the RCAM-B3LYP-D3/def2-SVP level.

ParParamet ers	Dicationic				Dicationic			
	$4^{\text {Mea }}$		$4^{\text {Meb }}$		$4^{\text {iPra }}$		$4{ }^{\text {iPrb }}$	
Coord.	(CO)	(OMe)	(CO)	(OMe)	(CO)	(OiPr)	(CO)	(O iPr)
N-01	2.650	2.676	--a)	2.823	2.732	-a)	2.848	2.931
$\mathrm{N}-\mathrm{O} 2$	2.648	2.677	-a)	2.813	2.747	-a)	2.853	2.901
$\mathrm{N}-\mathrm{C} 1$	1.438	1.423	-a)	1.378	1.420	-a)	1.382	1.370
N-C2	1.359	1.364	-a)	1.385	1.365	-a)	1.382	1.389
N-C3	1.359	1.364	-a)	1.386	1.364	-a)	1.381	1.390
$\mathbf{\Sigma} \mathrm{N} \alpha$	360.0	360.0	-a)	360.0	360.0	-a)	360.0	360.0
¢ $_{\text {occo }}$	37.4	62.7	-a)	91.3	60.5	-a)	72.3	98.8

${ }^{\text {a) }}$ Geometry optimization has not been completed primarily due to the difficulty of convergence.
Table S16. Selected calculated bond lengths (\AA)), angles and dihedral angles [${ }^{\circ}$] for $\mathbf{3}^{\text {Me }} \mathbf{a}$ and $\mathbf{3}^{\text {ipr }} \mathbf{a}$ at the UCAM-B3LYP-D3/def2-SVP level.

ParParamet ers	Cationic radical				Cationic radical			
	$3^{\text {Mea }}$		$3^{\text {Meb }}$		$3^{\text {iPra }}$		$3^{\text {iPrb }}$	
Coord.	(CO)	(OMe)	(CO)	(OMe)	(CO)	(OiPr)	(CO)	(OiPr)
N-01	2.686	2.654	-a)	2.652	2.732	2.676	2.787	--a)
N-O2	2.684	2.656	-a)	2.654	2.731	2.673	2.788	-a)
N----1	1.435	1.434	-a)	1.433	1.431	1.439	1.424	--a)
N-C2	1.388	1.388	-a)	1.390	1.388	1.388	1.393	-a)
N-C3	1.387	1.388	-a)	1.390	1.388	1.387	1.393	-a)
$\boldsymbol{\Sigma} \mathrm{N} \alpha$	360.0	360.0	-a)	360.0	360.0	360.0	360.0	-a)
Occo	39.1	54.1	-a)	55.2	57.4	47.0	66.4	-a)

${ }^{\text {a) }}$ Geometry optimization has not been completed primarily due to the difficulty of convergence.
Table S17. Selected calculated bond lengths (\AA) , angles and dihedral angles [${ }^{\circ}$] for $\mathbf{2}^{\text {Me }} \mathbf{a}$ and $\mathbf{2}^{\mathbf{i P r}} \mathbf{a}$ at the RCAM-B3LYP-D3/def2-SVP level.

ParParamet ers	Neutral				Neutral			
	$\mathbf{2}^{\text {Mea }}$		$2^{\text {Meb }}$		$2^{\text {iPr }}$ a		$2^{\text {iPrb }}$	
Coord.	(CO)	(OMe)	(CO)	(OMe)	(CO)	(OiPr)	(CO)	(O iPr)
N-01	2.826	2.734	2.795	-a)	2.885	2.747	2.882	2.729
$\mathrm{N}-\mathrm{O} 2$	2.824	2.734	2.802	-a)	2.889	2.806	2.886	2.796
$\mathrm{N}-\mathrm{C} 1$	1.416	1.417	1.420	-a)	1.416	1.422	1.419	1.425
N-C2	1.405	1.405	1.403	-a)	1.408	1.398	1.405	1.394
N-C3	1.405	1.405	1.401	-a)	1.407	1.413	1.404	1.413
$\boldsymbol{\Sigma} \mathrm{N} \alpha$	360.0	360.0	360.0	-a)	360.0	359.9	360.0	360.0
¢ $_{\text {occo }}$	61.4	67.2	56.3	-a)	73.6	75.0	74.4	71.3

[^0]We have also performed the AIM analysis for the $(3,-1)$ critical point of the two-electron oxidized species (Figure S18; experimentally two-electron oxidation is not possible, $c f$. CV data). Please note that, as mentioned in the previous reply, we could not obtain the optimized geometries of $4^{\mathrm{Meb}}(\mathrm{CO})$ and 4^{iPr} ($\mathrm{OiPr)}$ despite of much effort.

We have found that for $\mathbf{4}^{\mathrm{Meb}}(\mathrm{OMe}), 4^{i \mathrm{Pr} b}(\mathrm{CO})$ and $4^{i \mathrm{Pr} b}(O \mathrm{OPr}),(3,-1)$ critical points between N and O could not be obtained, whereas those between C and O atoms were obtained. These results indicate that the weak attractive interaction between N atom and O atom may not be observed even in their corresponding dication diradical species (10-N-5), which are considered to have 3-center-4-electron hypervalent bond. In Table S18, we summarized several important values obtained from the AIM analysis.

Figure S18. Atom in Molecules (AIM) analysis of $4^{\mathrm{Me}} \mathbf{a}-\mathbf{b}$ and $\mathbf{4}^{\mathbf{i P r}} \mathbf{a}-\mathbf{b}$ calculated at the RCAM -B3LYP-D3/def2-SVP levels.

Table S18. Summary of AIM analysis along with kinetic energy density $G(r)$, potential energy density $V(r)$, and energy density $H(r)$ at the $(3,-1)$ critical point in between O 1 and $\mathrm{X}(\mathrm{X}=\mathrm{N}$ or C$)$ for two electron oxidized species.

Parameters	Dicationic				Dicationic				
	$4^{\text {Mea }}$		$4^{\text {Meb }}$		$4{ }^{\text {ipra }}$		$4{ }^{\text {iPrb }}$		
Coord.	(CO)	(OMe)	(CO)	(OMe) ${ }^{\text {b }}$	(CO)	(OiPr)	(CO) ${ }^{\text {b }}$	$(\mathrm{OiPr})^{\text {b }}$	
ρ (X-O1)	0.017838	0.016007	-a)	0.014827	0.015295	-a)	0.014249	0.011407	
$\nabla^{2} \rho(X-O 1)$	0.066352	0.063469	-a)	0.051968	0.057455	-a)	0.050160	0.040642	
V (potential)	-0.013053	-0.012153	-a)	-0.010821	-0.011129	-a)	-0.010070	-0.007783	
G (kinetic)	0.014820	0.014010	-a)	0.011906	0.012747	-a)	0.011305	0.008972	
H (total)	0.001767	0.001857	-a)	0.001086	0.001617	-a)	0.001235	0.001189	
\|V	/G	0.881	0.867	-a)	0.736	0.873	-a)	0.891	0.867
G/ ρ	0.831	0.875	-a)	0.803	0.833	-a)	0.793	0.787	
H/ ρ	0.0991	0.116	-a)	0.0732	0.106	-a)	0.0867	0.104	

[^1]
$5 . \pi$-donating methoxy derivative $\left(2^{\mathrm{Me}} c\right)$

During revision, in response to reviewers' suggestions on the $\mathrm{N}-\mathrm{O}$ interactions, we have carried out additional experimental work to synthesize the neutral π-donating methoxy derivative ($\mathbf{2}^{\mathrm{Me}} \mathbf{c}$) as a comparison in addition to the electron-withdrawing substituted derivatives reported in the MS. Since our aim was to enforce the hypervalent bonding (in the 11-N-5 radical cations), we had only electron-withdrawing substituents on the aryl groups initially. AIM on N-O $(3,-1)$ critical points were analyzed based on optimized geometry (Figure S14, Table S11) as well as solid-state geometries (single point calculations based on X-ray structures, Figure 3 and Table 10).

Figure S19. (a) Solid-state molecular structures of $\mathbf{2}^{\mathrm{Me}} \mathbf{c}$. Thermal ellipsoids are set at $\mathbf{3 0 \%}$ probability. Ellipsoids of periphery atoms, hydrogen atoms, and counter ions are omitted for clarity. CCDC number: 1988910. (b) AIM analysis of $\mathbf{2}^{\text {Me }} \mathbf{c}$ based on optimized geometry. (c) AIM analysis of $\mathbf{2}^{\text {Me }} \mathbf{c}$ based on X-ray geometry.

Table S19. Selected experimental and calculated bond lengths (\AA), angles, dihedral angles at the RCAM-B3LYP-D3/def2-SVP level of $\mathbf{2}^{\text {Me }}$ c and its summary of AIM analysis along with kinetic energy density $G(r)$, potential energy density $V(r)$, and energy density $H(r)$ at the $(3,-1)$ critical point in between 01 and N.

Parameters	$2^{\text {Me }} \mathrm{C}$		
	optimized	X-ray	
Coord.	(OMe)	(OMe)	
$\mathrm{N}-\mathrm{O} 1$	2.765	2.939(2)	
N-O2	2.767	3.051(19)	
$\mathrm{N}-\mathrm{O}_{\text {Ave }}$	2.766	2.995(19)	
N-C1	1.411	1.410(2)	
N-C2	1.410	1.415(2)	
N-C3	1.410	1.425(2)	
$\boldsymbol{\Sigma} \mathrm{N} \alpha$	360.0	359.9(38)	
$\Phi_{\text {оссо }}$	73.94	112.8	
$\rho(\mathrm{N}-\mathrm{O} 1)$	0.014966	0.010913	
$\nabla^{2} \rho(\mathrm{~N}-\mathrm{O})$	0.053428	0.039661	
V (potential)	-0.011569	-0.008410	
G (kinetic)	0.012463	0.009163	
H (total)	0.000894	0.000752	
\|V	/G	0.928	0.917
G/ ρ	0.833	0.840	
H/p	0.0597	0.0689	

The optimized structures significantly underestimate the N-O distances for $\mathbf{2}^{\mathbf{M e}} \mathbf{b}$ and $\mathbf{2}^{\mathbf{M e}} \mathbf{c}$, showing the $\mathrm{N}-\mathrm{O}(3,-1)$ critical points on both sides in all neutral and cationic radical structures (Figures S14 and S19). In contrast, the AIM analysis based on solid-state structures showed both $\mathrm{N}-\mathrm{O}(3,-1)$ critical points in cationic radical species and two of the neutral amines
(2 $\mathbf{2}^{\mathrm{Me}} \mathbf{a}$ and $\mathbf{2}^{\mathbf{i P r}} \mathbf{b}$). These structures also exhibit shorter $\mathrm{N}-\mathrm{O}$ distances than $\mathbf{2}^{\mathrm{Me}} \mathbf{b}, \mathbf{2}^{\mathbf{M e}} \mathbf{c}$ and $\mathbf{2}^{\text {iPra }} \mathbf{a}$. The latter structures showed no or only one $(3,-1)$ critical point. The AIM based on X-ray solid-state structures are more reflective than the optimized structures, as the latter are based on significantly shorter N-O distances. The longer N-O distances observed in the solidstate structures are likely due to crystal-packing effect, which means if any $\mathrm{N}-\mathrm{O}$ attractive interaction exists, it is weaker than crystal-packing effect. Overall, these results suggest that the N-O interactions may not exit in all neutral amine species and if they do, they are very weak.

In addition, comparing the para-Cl (2 $\mathbf{2}^{\mathbf{M e}} \mathbf{a}$) and para-OMe ($\mathbf{2}^{\mathrm{Me}} \mathbf{c}$) with same $\mathrm{N}-\mathrm{O}$ coordination modes, the π-donating OMe derivative showed significantly longer $\mathrm{N}-\mathrm{O}$ distances and weaker $\mathrm{N}-\mathrm{O}$ interaction on only one side. However, since we cannot determine how much crystal packing effect contribute to the solid-state structure, we cannot conclude on the OMe π donating effect on the $\mathrm{n}_{\mathrm{O}} \rightarrow \mathrm{p}^{*}{ }_{\mathrm{NC}}$ stabilization, which was the original target reason for synthesizing para-OMe ($\mathbf{2}^{\mathrm{Me}} \mathbf{c}$). Therefore, the results on $\mathbf{2}^{\mathbf{M e}} \mathbf{c}$ is not reported in the MS but in ESI only.

Synthesis of dimethyl 2-(bis(4-methoxyphenyl) amino)-5-(tert-butyl) isophthalate ($\mathbf{2}^{\mathrm{Me}} \mathbf{c}$)
Bis(4-methoxyphenyl) amine ($700 \mathrm{mg}, 3.03 \mathrm{mmol}$) was coupled with dimethyl 2-bromo-5-tert-butyl-isophthalate ($\mathbf{1}^{\mathrm{Me}}$) (1.0 $\mathrm{g}, 3.03 \mathrm{mmol}$) according to the above Ullmann procedure (19 mL of $n-\mathrm{Bu}_{2} \mathrm{O}$) for 96 h at $145^{\circ} \mathrm{C}$. The crude product was purified by flash chromatography using a 1:10 solution of ethyl acetate / hexane as the eluent to give $462 \mathrm{mg}(0.968 \mathrm{mmol}, 32 \%$ yield) of the title compound as a yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) \delta 7.69(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.74(\mathrm{~s}, 4 \mathrm{H})$, $3.74(\mathrm{~s}, 6 \mathrm{H}), 3.50(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) \delta 168.5,154.8,147.7,142.4,141.3,131.6,130.8$, $123.5,114.2,55.5,52.2,34.7,31.2 . \mathrm{MS}(E S I) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{NNa}$ Calcd for: 500.20436 Found: 500.20422. Elemental analysis: Calcld.: C, 70.42; H, 6.54; N, 2.93; Found: C, 70.10; H, 6.24; N, 2.72. M.P.: 94.3-95.4 ${ }^{\circ} \mathrm{C}$. Crystal data:Formula: $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{6}$; Mol wt: 477.54; Crystal system: Monoclinic; Space group: $\mathrm{P} 2_{1} / c ; a$, $\AA: 10.3036(6) ; b, \AA ̊: 18.9257(11) ; c$, \AA : 13.0352(7); α, deg: 90; 6 , deg: 94.843(2); γ, deg: 90; V, $\AA^{3}: 2532.8(2) ; \mathrm{Z}: 4 ; \mathrm{D}_{\text {calc, }} \mathrm{Mg}^{2} / \mathrm{m}^{3}: 1.252 ; \mathrm{Abs}$ coeff, $\mathrm{mm}^{-1}: 0.088 ; F(000)$: 1016; Temp, K:173(2); Reflections:26160; Independent: 5792; Rint: 0.0463; Parameters: 323; $R 1$ [I > 2б(I)]: 0.0510; wR2 (all data): 0.1593.

6. NMR spectra

2-Bromo-5-tert-butyl-1,3-dimethylbenzene (b)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.11(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 149.8,137.8,125.6,124.6,34.3,31.4,24.2$.

$\stackrel{m}{\underset{\sim}{m}} \stackrel{\text { N }}{\sim}$

2-Bromo-5-tert-butyl-isophthalic Acid (c)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta(\mathrm{ppm}) 13.60(\mathrm{~s}, 2 \mathrm{H}), 7.68(\mathrm{~s}, 2 \mathrm{H}), 1.28$ (s, 9H).
$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{\sim}{l}}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) $\delta(\mathrm{ppm})$ 168.3, 150.7, 136.6, 127.8, 113.3, 34.6, 30.6.

c

Dimethyl 2-Bromo-5-tert-butyl-isophthalate ($\mathbf{1}^{\mathrm{Me}}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.68(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 167.6,150.9,135.1,129.6,115.8,77.48,52.8,34.8$, 34.0.

Diisopropyl 2-bromo-5-(tert-butyl) isophthalate (1 ${ }^{\text {iPr }}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.59(\mathrm{~s}, 2 \mathrm{H}), 5.32-5.22(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 12 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$.

 ninininin

웅ํํํ궁

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 166.9,150.8,135.9,128.9,115.0,70.0,34.8,30.9$ 21.8.

Dimethyl 2-(bis(4-chlorophenyl) amino)-5-(tert-butyl) isophthalate (2 ${ }^{\mathrm{Me}} \mathrm{a}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.81(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 4 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 6 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$. $\stackrel{\rightharpoonup}{\infty}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 167.6,149.8,145.5,141.1,132.1,131.4,129.1,127.3,123.3,52.5,35.0,31.2$.
l
$\stackrel{\text { N }}{\stackrel{\text { N }}{\text { I }}}$
$\stackrel{n}{n}$
$\stackrel{\stackrel{y}{c}}{\underset{1}{2}} \underset{1}{\sim}$

Dimethyl 2-(bis(4-(trifluoromethyl) phenyl) amino)-5-(tert-butyl) isophthalate (2 ${ }^{\mathrm{Me}} \mathbf{b}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.91(\mathrm{~s}, 2 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 3.53(\mathrm{~s}, 6 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H})$. $\stackrel{\rightharpoonup}{\boldsymbol{\alpha}}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 167.1,151.0,149.2,140.4,132.3,131.7,126.3\left(\mathrm{q},{ }^{3} \mathrm{~J} \mathrm{c}-\mathrm{F}=10 \mathrm{~Hz}\right), 124.4\left(\mathrm{q},{ }^{1 / \mathrm{J}-\mathrm{F}=270 \mathrm{~Hz}), 124.3}\right.$ $\left(q,{ }^{2} J_{\mathrm{c}-\mathrm{F}}=30 \mathrm{~Hz}\right.$), 121.7, 52.6, 35.1, 31.1.

[^2]

Diisopropyl 2-(bis(4-chlorophenyl) amino)-5-(tert-butyl) isophthalate (2 ${ }^{\text {iPra }}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.73(\mathrm{~s}, 2 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 4.85(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 12 H).
$\stackrel{c}{\text { ¢ }}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 166.5,149.9,145.3,140.6,133.4,130.4,128.9,126.9,123.1,69.5,34.9,31.2,21.6$.

Diisopropyl 2-(bis(4-(trifluoromethyl) phenyl) amino)-5-(tert-butyl) isophthalate (2 ${ }^{\text {iPrb }}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.80(\mathrm{~s}, 2 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.07(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 4.85(\mathrm{~m}, J=24 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 0.99$ (d, $J=4 \mathrm{~Hz}, 12 \mathrm{H}$).

$\underbrace{\infty+\infty}$
$\stackrel{i}{\sim} \stackrel{i}{1}_{2}^{2}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 166.1,150.9,149.1,140.1,133.4,130.7,126.2\left(\mathrm{q},{ }^{3} \mathrm{~J} \mathrm{c}-\mathrm{F}=10 \mathrm{~Hz}\right), 124.5\left(\mathrm{q},{ }^{1} \mathrm{~J} \mathrm{c}-\mathrm{F}=270 \mathrm{~Hz}\right), 124.0$ (q, ${ }^{2} J \mathrm{c}-\mathrm{F}=30 \mathrm{~Hz}$), 121.6, 69.7, 35.0, 31.2, 21.4.

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$-62.45.

Dimethyl 2-(bis(4-methoxyphenyl)amino)-5-(tert-butyl) isophthalate ($\mathbf{2 M e}^{\mathrm{Me}}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.74(\mathrm{~s}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.50(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H})$.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,154.8,147.7,142.4,141.3,131.6,130.8,123.5,114.2,55.5,52.2,34.7,31.2$.

Reference

[1] G. M. Sheldrick, A short history of SHELX. Acta Cryst. 2008, A64, 112-122.
[2] C. B. Hüebschle, G. M. Sheldrick, B. Dittrich, ShelXIe: a Qt graphical user interface for SHELXL. J. Appl. Cryst. 2011, 44, 1281-1284.
[3] Persistence of Vision Raytracer (ver. 3.7.0); Persistence of Vision Pty. Ltd., 2016; Retrieved from http://www.povray.org/download/
[4] (a). F. Neese, The ORCA program system. Wiley. Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73-78; (b) F. Neese, Software update: the ORCA program system, version 4.0. Wiley. Interdiscip. Rev. Comput. Mol. Sci. 2017, 8, e1327.
[5] E. D. Glendening, C. R. Landis, F. Weinhold. NBO 6.0: Natural bond orbital analysis program. J. Comput. Chem. 2013, 34, 1429-1437.
[6] T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyser. J. Comput. Chem. 2012, 33, 580-592.
[7] C. Riplinger, F. Neese, An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013, 138, 034106.

[^0]: ${ }^{\text {a) }}$ Geometry optimization has not been completed primarily due to the difficulty of convergence.

[^1]: a) Geometry optimization has not been completed primarily due to the difficulty of convergence.
 b) Results of $(3,-1)$ critical point in between O 1 and C .

[^2]: ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$-62.29.

