# **Electronic Supplementary Information (ESI)**

# for

# The tongs role of *L*-histidine: a strategy of grasping Tb<sup>3+</sup> by ZIF-8 to design sensors for monitoring anthrax biomarker on-the-spot

Lan Guo, Maosheng Liang, Xiuli Wang, Rongmei Kong, Guang Chen, Lian Xia\*, Fengli Qu\*

Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China

\*E-mail: <u>fengliquhn@hotmail.com</u> (F.L. Qu)

\*E-mail: xialian01@163.com (L. Xia)

### **Table of Contents**

#### **1. Experimental Section**

#### 2. Supporting Figures and Tables

Fig. S1 TGA curve of the synthesized His@ZIF-8 (A) and His@ZIF-8/Tb<sup>3+</sup> (B).

Fig. S2 FT-IR spectra of ZIF-8, His@ZIF-8 and His@ZIF-8/Tb<sup>3+</sup>.

Fig. S3 Zeta potential of His@ZIF-8, His@ZIF-8/Tb<sup>3+</sup> and His@ZIF-8/Tb<sup>3+</sup> upon adding DPA.

Fig. S4 SEM images of His@ZIF-8 (A) and His@ZIF-8/Tb<sup>3+</sup> (B).

Fig. S5 The EDX of His@ZIF-8 (A) and His@ZIF-8/Tb<sup>3+</sup> (B).

**Fig. S6** (A) Effects of pH values on fluorescence intensity of His@ZIF-8/Tb<sup>3+</sup> with DPA (red line) and without DPA (black line). (B) Effects of reaction time on fluorescence intensity of His@ZIF-

 $8/Tb^{3+}$  with DPA.

**Fig. S7** (A) The fluorescence emission spectra of ZIF-8/Tb<sup>3+</sup> and ZIF-8/Tb<sup>3+</sup> with DPA. (B) The fluorescence emission spectra of His@ZIF-8/Tb<sup>3+</sup> and His@ZIF-8/Tb<sup>3+</sup> with DPA. (C) The comparison of fluorescence response ability of ZIF-8/Tb<sup>3+</sup> and His@ZIF-8/Tb<sup>3+</sup>, respectively.

**Fig. S8** SEM images of His@ZIF-8/Tb<sup>3+</sup> before (A) and after (B) reacting with DPA. (C) XRD patterns of His@ZIF-8/Tb<sup>3+</sup> before and after reacting with DPA.

 Table S1 The comparison of different fluorescent probe for DPA detection.

 Table S2 Analytical results of real samples.

## **3. Supporting References**

#### **1. Experimental Section**

**Preparation of ZIF-8 nanocrystals.** ZIF-8 nanocrystals were synthesized according to reporting literature.<sup>1S</sup> Briefly, a solution of  $Zn(NO_3)_2 \cdot 6H_2O$  (1.173 g) in 80 mL methanol was added into a solution of 2-methylimidazole (2.595 g) in 80 mL methanol under stirring with a magnetic bar. After keeping at room temperature for 1 h, ZIF-8 was formed, and then separated by centrifugation at 7000 rpm for 5 min and washed with methanol three times. The collected white powder was dried in the oven at 60 °C overnight.

**Preparation of ZIF-8/Tb<sup>3+</sup>.** The synthesis of ZIF-8/Tb<sup>3+</sup> was performed by dispersing 30.0 mg His@ZIF-8 to 60.0 mL Tb(NO<sub>3</sub>)<sub>3</sub> ethanol solution (10 mmol L<sup>-1</sup>). Then the above solution was stirred for 2 h at room temperature. The product was collected by centrifugation at 7000 rpm for 5 min and repeatedly washed with ethanol for 3 times. The collected white powder was dried in the oven at 60 °C overnight.

# 2. Supporting Figures and Tables



Fig. S1 TGA curve of the synthesized His@ZIF-8 (A) and His@ZIF-8/Tb<sup>3+</sup> (B).



Fig. S2 FT-IR spectra of ZIF-8, His@ZIF-8 and His@ZIF-8/Tb<sup>3+</sup>.



Fig. S3 Zeta potential of His@ZIF-8, His@ZIF-8/Tb<sup>3+</sup> and His@ZIF-8/Tb<sup>3+</sup> upon adding 1  $\mu mol$ 

L<sup>-1</sup> DPA.



Fig. S4 SEM images of His@ZIF-8 (A) and His@ZIF-8/Tb $^{3+}$  (B).



Fig. S5 The EDX of His@ZIF-8 (A) and His@ZIF-8/Tb<sup>3+</sup> (B).



**Fig. S6** (A) Effects of pH values on fluorescence intensity of His@ZIF-8/Tb<sup>3+</sup> with DPA (red line) and without DPA (black line). (B) Effects of reaction time on fluorescence intensity of His@ZIF-8/Tb<sup>3+</sup> with DPA (1  $\mu$ mol L<sup>-1</sup>); HEPES buffer: 20 mmol L<sup>-1</sup>, pH 7.4.



**Fig. S7** (A) The fluorescence emission spectra of ZIF-8/Tb<sup>3+</sup> and ZIF-8/Tb<sup>3+</sup> with 1  $\mu$ mol L<sup>-1</sup> DPA. (B) The fluorescence emission spectra of His@ZIF-8/Tb<sup>3+</sup> and His@ZIF-8/Tb<sup>3+</sup> with 1  $\mu$ mol L<sup>-1</sup> DPA. (C) The comparison of fluorescence response ability of ZIF-8/Tb<sup>3+</sup> and His@ZIF-8/Tb<sup>3+</sup>, respectively. (F<sub>0</sub> is the fluorescence of ZIF-8/Tb<sup>3+</sup> and His@ZIF-8/Tb<sup>3+</sup>; F is the fluorescence of ZIF-8/Tb<sup>3+</sup> and His@ZIF-8/Tb<sup>3+</sup> with 1  $\mu$ mol L<sup>-1</sup> DPA.)



**Fig. S8** SEM images of His@ZIF-8/Tb<sup>3+</sup> before (A) and after (B) reacting with DPA aqueous solution (1 mmol  $L^{-1}$ ) for 3 min. (C) XRD patterns of His@ZIF-8/Tb<sup>3+</sup> before and after reacting with DPA aqueous solution (1 mmol  $L^{-1}$ ) for 3 min.

| Probes                         | Linear range | Detection limit | Response time | Refs.     |
|--------------------------------|--------------|-----------------|---------------|-----------|
| TbP-CPs                        | 0-8 μΜ       | 0.005 μΜ        | 30 s          | 28        |
| RiP/Eu <sup>3+</sup> CPs       | 0-1 μM       | 0.0415 µM       | /             | 38        |
| Tb/Eu@bio-MOF                  | 0.05-1 μM    | 0.034 µM        | 20 s          | 4S        |
| CDs-Cu <sup>2+</sup> systems   | 0.25-20 μM   | 0.079 μΜ        | 1 min         | 55        |
| EBT-Eu <sup>3+</sup>           | 0-32 μM      | 2 µM            | /             | 6S        |
| Terbium functionalized micelle | 0-7 μΜ       | 0.054 μΜ        | /             | 7S        |
| His@ZIF-8/Tb <sup>3+</sup>     | 0-10 μM      | 0.02 μΜ         | 10 s          | This work |

Table S1 The comparison of different fluorescent probe for DPA detection.

/: Not mentioned.

| Sample           | Added (µM) | Found (µM) | Recovery (%) | RSD (%) |
|------------------|------------|------------|--------------|---------|
| Human Urine      | 0          | /          | /            | /       |
|                  | 0.50       | 0.51       | 102.0        | 2.76    |
|                  | 1.00       | 0.99       | 99.0         | 1.28    |
|                  | 5.00       | 5.16       | 103.2        | 0.92    |
| 10% Bovine Serum | 0          | /          | /            | /       |
|                  | 0.50       | 0.49       | 98.0         | 3.12    |
|                  | 1.00       | 1.03       | 103.0        | 1.36    |
|                  | 5.00       | 5.09       | 101.8        | 2.21    |

 Table S2 Analytical results of real samples.

/: Not detected.

# 3. Supporting References

- J. Cravillon, S. Münzer, S. J. Lohmeier, A. Feldhoff, K. Huber and M. Wiebcke, *Chem. Mater.*, 2009, 21, 1410-1412.
- 2S. Y. Q. Luo, L. Zhang, L. Y. Zhang, B. H. Yu, Y. J. Wang and W. B. Zhang, ACS Appl. Mater. Inter., 2019, 11, 15998-16005.
- S. F. Xue, J. F. Zhang, Z. H. Chen, X. Y. Han, M. Zhang and G. Shi, *Anal. Chim. Acta*, 2018, 1012, 74-81.
- Y. H. Zhang, B. Li, H. P. Ma, L. M. Zhang and Y. X. Zheng, *Biosens. Bioelectron.*, 2016, 85, 287-293.
- 5S. P. J. Li, A. N. Ang, H. T. Feng and S. F. Y. Li, J. Mater. Chem. C, 2017, 5, 6962-6972.
- 6S. M. D. Yilmaz and H. A. Oktem, Anal. Chem., 2018, 90, 4221-4225.
- K. Luan, R. Q. Meng, C. F. Shan, J. Cao, J. G. Jia, W. S. Liu and Y. Tang, *Anal. Chem.*, 2018, 90, 3600-3607.