Supplementary information

Seyed Mohamad Moosavi,^{†,¶} Henglu Xu,^{†,¶} Linjiang Chen,[‡] Andrew I. Cooper,[‡]

and Berend Smit*,[†]

[†]Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17,

CH-1951 Sion, Valais, Switzerland

‡Leverhulme Research Centre for Functional Materials Design, Materials Innovation

Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.

 \P These authors contributed equally to this work

E-mail: berend.smit@epfl.ch

Supplementary Figure 1: The geometric landscape of **T0** molecule. The color coding shows the average conventional geometric descriptors, (a) crystal density, (b) accessible surface area, (c) largest included sphere, and (d) void fraction, respectively.

Supplementary Figure 2: The geometric landscape of **P2** molecule. The color coding shows the average conventional geometric descriptors, (a) crystal density, (b) accessible surface area, (c) largest included sphere, and (d) void fraction, respectively.

Supplementary Figure 3: The correlation between geometry and function for methane storage application for **T2** molecule. Low standard deviation in each bin of the geometric landscape shows the extend of importance of pore geometry for this application.

Supplementary Figure 4: Learning curve of the machine learning model. The mean absolute errors (MAE) were computed 10 times each with a unique random seed for each train set size. Error bars show the standard deviations.