Supporting Information

Non-Covalent Allosteric Regulation of Capsule Catalysis

Vicente Martí-Centelles, Rebecca L. Spicer and Paul J. Lusby*

Table of Contents

Table of Contents	2
Experimental Procedures	2
Initial host–guest experiments cage C-2 with Ph₃PO and benzoquinone	3
Association constant determination	4
Experimental details	4
Models of the host-guest complexes	4
Individual NMR titration data	7
Individual UV-Vis titration data	
Determination of Diels-Alder reaction kinetic parameters	23
Experimental details	23
Kinetic models	23
Kinetic data for individual DA reactions	25
X ray crystallography	
Overlay of cages crystal structures	33
Crystal data of [pentacenequinone⊂C-2]·(BArF)₄	35
References	

Experimental Procedures

All reagents and solvents were purchased from Alfa Aesar, VWR or Sigma Aldrich and used without further purification unless stated otherwise. All reactions were carried out under air, unless stated otherwise. Benzoquinone was recrystallized form hot CH_2Cl_2/pet ether 60-80 (1:5). Cages C-1 and C-2 were prepared using literature procedures.^[S1,S2]

All ¹H, ¹³C and ¹⁹F NMR spectra were recorded on either a 500 MHz Bruker AV III equipped with a DCH cryoprobe (Ava500), a 500 MHz Bruker AV IIIHD equipped with a Prodigy cryo-probe (Pro500), a 600 MHz Bruker AV IIIHD equipped with a TCI cryo-probe (Ava600) or a 400 MHz Bruker AV III equipped with BBFO+ probe (Ava400) at a constant temperature of 300 K. The temperature was set and controlled at 300 K with an air flow of 400 L h⁻¹ in order to avoid any temperature fluctuations due to sample heating during the magnetic field pulse gradients. Chemical shifts are reported in parts per million. Coupling constants (J) are reported uncorrected in hertz (Hz). Apparent multiplicities are reported using the following standard abbreviations: m = multiplet, q = quartet, t = triplet, d = doublet, s = singlet, bs = broad singlet. All analysis was performed with MestReNova, Version 11. All assignments were made using a combination of COSY, NOESY, HSQC and HMBC NMR spectra.

All UV/Vis spectroscopy was carried out on a JASCO V-670 Spectrophotometer running Spectra Manager II (Jasco). All measurements were made at room temperature using a fused silica cuvette with a 10 mm path length, unless stated otherwise.

Initial host-guest experiments cage C-2 with Ph₃PO and benzoquinone

Figure S1. ¹H NMR (500 MHz, CD₂Cl₂, 300 K): (a) cage C-2 (0.5 mM), (b) cage C-2 (0.5 mM) and Ph₃PO (5 mM), (c) cage C-2 (0.5 mM), Ph₃PO (5 mM) and benzoquinone (5 mM), (d) cage C-2 (0.5 mM) and benzoquinone (5 mM).

Association constant determination

Experimental details

¹H NMR titration experiments were carried out on a 400 MHz Bruker AV III spectrometer equipped with BBFO+ probe (Ava400) at 300 K. Initial sample volumes were 500 μ L with 0.45–0.50 mM concentration of the cage (C-1 or C-2). Solutions of the guest quinones were 15–30 mM in the same stock solution of the cage. ¹H NMR spectra were recorded at 0–30 equivalents of quinone.

All UV/Vis spectroscopy titration experiments were carried out on a JASCO V-670 Spectrophotometer running Spectra Manager II (Jasco). All measurements were made at room temperature using a fused silica cuvette with a 10 mm path length. Initial sample volumes were 2000 μ L with 10–50 μ M concentration of pentacenequinone. Solutions of the cage (C-1 or C-2) were 0.2–1 mM in the same stock solution of the pentacenequinone. UV-Vis spectra were recorded at 0–2.5 equivalents of pentacenequinone. For experiments with Ph₃PO a very similar procedure was used: initial sample volumes were 2000 μ L with 10–50 μ M concentration of pentacenequinone and Ph₃PO 1–5 mM. Solutions of the cage (C-1 or C-2) were 0.2–1 mM in the same stock solution of the same stock solution of the pentacenequinone and Ph₃PO 1–5 mM. Solutions of the cage (C-1 or C-2) were 0.2–1 mM in the same stock solution of pentacenequinone and Ph₃PO 1–5 mM. Solutions of the cage (C-1 or C-2) were 0.2–1 mM in the same stock solution of the same stock solution so

Association constants were obtained by analysis of the resulting titration data and fitting to the models described below using the Levenberg-Marquardt Nonlinear Least-Squares Algorithm^[S3] implemented in the R software^[S4] and the RStudio^[S5] software interface. The error of the determined association constants are estimated to be less than 10%.

Models of the host-guest complexes

For each host-guest complex considered in this work the corresponding equations^[S6] associated to the equilibrium system (described in this section) were be solved numerically using the R software (*nleqslv* library for multiple equation solving)^[S7] except for the 1:1 host–guest model where the corresponding algebraic equation was used.^[2,6]

Host–Guest 1:2 [Cage·(Ph₃PO)₂]

Figure S2. Equilibria involved in the binding of Ph₃PO in the outside binding pockets of the cage.

The corresponding equations for the equilibria represented in the Figure S2 are:

 $[Host]_{0} = [H] + [HG] + [HG_{2}]$ $[Guest]_{0} = [G] + [HG] + 2 [HG_{2}]$ $K_{11} = [HG]/([H] [G])$ $K_{12} = [HG_{2}]/([HG] [G])$

For a system where the two sites behave independently (i.e. statistical 1:2 model) the system can be described with 3 parameters (K_{11} , δ_0 and δ_{12}) as long as $K_{11} = 4 \times K_{12}$ and $\delta_{11} = (\delta_0 + \delta_{12})/2$.

It is important to note that a fast equilibrium is observed with regard to the ¹H NMR timescale and therefore time averaged spectra of this equilibrium can be described using the following equation:

 $\delta = \delta_0 \left([H]/[Host]_0 \right) + \delta_{11} \left([HG]/[Host]_0 \right) + \delta_{12} \left([HG_2]/[Host]_0 \right)$

Fitting of the equation to the experimental data it was possible to obtain the K_{11} and K_{12} for Ph₃PO with both cages C-1 and C-2.

The statistical 1:2 model is equivalent to the 1:1 binding model where the total binding sites concentration is twice the host concentration. The intrinsic association constant (K_{Ass}) can be obtained using the 1:1 model for fitting and 2 times concentration of the cage as the concentration of the host. For this fitting, the K_{11} and K_{12} are related with K_{Ass} by the statistical factors $\Omega_i = 2$ and $\Omega_i = 1/2$, and therefore $K_{11} = 2 \times K_{Ass}$ and $K_{12} = 1/2 \times K_{Ass}$ (see Figure S3).^[S8] In both titrations of cages C-1 and C-2 with Ph₃PO the data fitted well to the 1:1 model (see Figure S7 and Figure S12).

Figure S3. Statistical factors for the host–guest 1:2 binding model. (a) Host with one binding site, (b) Host with two binding sites, first association constant step of a receptor with two binding sites, (c) Host with one binding sites, second association constant step of a receptor with two binding sites.

External pockets Host–Guest 1:2 and internal cavity 1:1 guest binding for [(pentacenequinone⊂cage)·(Ph₃PO)₂]

Figure S4. Equilibria involved in the cage–quinone–Ph₃PO system.

The corresponding mass balances and equilibrium constants are as follows ($G1 = quinone, G2 = Ph_3PO, H = Host$):

 $[Host]_{0} = [H] + [H \cdot G2] + [H \cdot (G2)_{2}] + [H \cdot G2 \cdot G1] + [H \cdot (G2)_{2} \cdot G1] + [H \cdot G1]$ $[Guest1]_{0} = [G2] + [H \cdot G2] + 2 [H \cdot (G2)_{2}] + [H \cdot G2 \cdot G1] + 2 [H \cdot (G2)_{2} \cdot G1]$ $[Guest2]_{0} = [G1] + [H \cdot G1] + [H \cdot G2 \cdot G1] + [H \cdot (G2)_{2} \cdot G1]$ $K_{11} = [H \cdot G2]/([H] [G2])$ $K_{12} = [H \cdot (G2)_{2}]/([H \cdot G2] [G2])$ $K_{H \cdot G2 \cdot G1} = [H \cdot G2 \cdot G1]/([H \cdot G2] [G1])$ $K_{H \cdot (G2)_{2} \cdot G1} = [H \cdot (G2)_{2} \cdot G1]/([H \cdot (G2)_{2}] [G1])$

In these equilibria, ¹H NMR titration experiments indicate that both external sites behave independently in the absence and presence of the guest (see Figure S9), and therefore $K_{11} = 4 \times K_{12}$ and $K_{Q11} = 4 \times K_{Q12}$. Additionally, choosing a guest that binds in the internal cavity very strongly would allow to assume that $K_Q = K_{Q1} = K_{Q2} > 10^6$ M⁻¹ (as confirmed by UV-Vis titrations, see UV-Vis titration section).

This complex set of equations was considered could not be used for benzoquinone guest that is in fast equilibrium with regard to the ¹H NMR timescale. For Ph₃PO guest under the experimental conditions using 0.5 mM cage C-1 or C-2 and 10 equivalents of Ph₃PO he calculated composition in solution is: 89% of 1:2 complex, 11% of 1:1 complex and less than 1% of free cage. Assuming only the major species in solution the association constant of benzoquinone with cages C-1 (Ph₃PO)₂ and C-2 (Ph₃PO)₂ using the standard host–guest 1:1 model used previously in our research group for cages C-1 and C-2 with quinone guests.^[S2] The association constant of pentacenequinone with cage C-1 is described in ref [S1] and the association constant of pentacenequinone with cage C-2 is described in ref [S9].

For pentacenequinone guest the equilibria K_Q is in slow exchange with regard to the ¹H NMR timescale, and therefore, the change of the free cage signals with the addition Ph₃PO and [pentacenequinone \subset cage] with the addition of Ph₃PO could be monitored simultaneously in the same experiment. Simultaneous fitting was performed to obtain K_{11} , K_{12} for free cage and K_{Q11} , K_{Q12} for [pentacenequinone \subset cage] using the following equations:

$$\begin{split} \delta_{\rm H} &= \delta_{\rm H0} \left([{\rm H}] / ([{\rm H}] + [{\rm H} \cdot {\rm G2}] + [{\rm H} \cdot ({\rm G2})_2]) \right) + \delta_{\rm H11} \left([{\rm H} \cdot {\rm G2}] / ([{\rm H}] + [{\rm H} \cdot {\rm G2}] + [{\rm H} \cdot ({\rm G2})_2]) \right) \\ &+ \delta_{\rm H12} \left([{\rm H} \cdot ({\rm G2})_2] / ([{\rm H}] + [{\rm H} \cdot {\rm G}] + [{\rm H} \cdot ({\rm G2})_2]) \right) \end{split}$$

- $\delta_{HQ} = \delta_{HG10} \left([H \cdot G1] / ([H \cdot G1] + [H \cdot G1 \cdot G2] + [H \cdot G1 \cdot (G2)_2]) \right)$
 - $+ \delta_{\mathrm{HG11}} \left([\mathrm{H} \cdot \mathrm{G1} \cdot \mathrm{G2}] / ([\mathrm{H} \cdot \mathrm{G1}] + [\mathrm{H} \cdot \mathrm{G1} \cdot \mathrm{G2}] + [\mathrm{H} \cdot \mathrm{G1} \cdot (\mathrm{G2})_2]) \right)$
 - $+ \delta_{\mathrm{HG12}} \left([\mathrm{H} \cdot \mathrm{G1} \cdot (\mathrm{G2})_2] / ([\mathrm{H} \cdot \mathrm{G1}] + [\mathrm{H} \cdot \mathrm{G1} \cdot \mathrm{G2}] + [\mathrm{H} \cdot \mathrm{G1} \cdot (\mathrm{G2})_2]) \right)$

Individual NMR titration data

Triphenylphosphine oxide with cage C-1

Figure S5. Partial ¹H NMR spectra (500 MHz, CD₂Cl₂, 300 K) of the titration of cage C-1 (0.43 mM) with Ph₃PO (25 mM).

Figure S6. ¹H NMR (500 MHz, CD_2Cl_2 , 300 K) titration curve of cage C-1 (0.43 mM) with Ph₃PO (25 mM). Curve obtained by monitoring the external cage cavity proton *b*. The solid points represent experimental data and the continuous dashed line represents the fitted binding isotherm to the statistical 1:2 host–guest model.

Figure S7. ¹H NMR (500 MHz, CD₂Cl₂, 300 K) titration curve of cage C-1 (0.43 mM) with Ph₃PO (25 mM). Curve obtained by monitoring the external cage cavity proton *b*. The solid points represent experimental data and the continuous dashed line represents the fitted binding isotherm to the 1:1 host–guest model using [Host]. = $2 \times [C-1]$ = 0.86 mM, therefore $K_{11} = 2 \times K_{Ass} = 2 \times 4117$ M⁻¹ = 8234 M⁻¹ and $K_{12} = 1/2 \times K_{Ass} = 1/2 \times 4117$ M⁻¹ = 2059 M⁻¹.

<u>Triphenylphosphine oxide simultaneously with [pentacenequinone \subset C-1] and C-1</u>

Figure S8. Partial ¹H NMR spectra (600 MHz, CD_2Cl_2 , 300 K) of the titration of cage C-1 (0.48 mM) in the presence of pentacenequinone (0.25 mM) with Ph₃PO.

Figure S9. ¹H NMR (600 MHz, CD₂Cl₂, 300 K) titration curve of cage C-2 (0.47 mM) in the presence of pentacenequinone (0.25 mM) with Ph₃PO (25 mM). Curves obtained by monitoring the external cage cavity proton *b* for empty cage (red) and [pentacenequinone \subset C-1] (brown). The solid points represent experimental data, the continuous brown line represents the fitted binding isotherm, and the continuous red line represents the predicted binding isotherm using the previously determined association constants for cage only.

Triphenylphosphine oxide with cage C-2

Figure S10. Partial ¹H NMR spectra (400 MHz, CD_2Cl_2 , 300 K) of the titration of cage C-2 (0.47 mM) with Ph₃PO (25 mM).

Figure S11. ¹H NMR (400 MHz, CD_2Cl_2 , 300 K) titration curve of cage C-2 (0.47 mM) with Ph₃PO (25 mM). Curve obtained by monitoring the external cage cavity proton *b*. The solid points represent experimental data and the continuous dashed line represents the fitted binding isotherm to the statistical 1:2 host–guest model.

Figure S12. ¹H NMR (400 MHz, CD₂Cl₂, 300 K) titration curve of cage C-2 (0.47 mM) with Ph₃PO (25 mM). Curve obtained by monitoring the external cage cavity proton *b*. The solid points represent experimental data and the continuous dashed line represents the fitted binding isotherm to the 1:1 host–guest model using [Host]. = $2 \times [C-2] = 0.94$ mM, therefore $K_{11} = 2 \times K_{Ass} = 2 \times 4125$ M⁻¹ = 8250 M⁻¹ and $K_{12} = 1/2 \times K_{Ass} = 1/2 \times 4125$ M⁻¹ = 2063 M⁻¹.

<u>Triphenylphosphine oxide with [*N*-methylmaleimide \subset C-1]</u>

Figure S13. Partial ¹H NMR spectra (400 MHz, CD_2Cl_2 , 300 K) of the titration of cage C-2 (0.42 mM) in the presence of benzoquinone (25 mM) with Ph₃PO (25 mM).

Figure S14. ¹H NMR (400 MHz, CD₂Cl₂, 300 K) titration curve of cage C-2 (0.42 mM) in the presence of benzoquinone (25 mM) with Ph₃PO (25 mM). Curve obtained by monitoring the external cage cavity proton *b*. The solid points represent experimental data and the continuous dashed line represents the fitted binding isotherm to the statistical 1:2 host–guest model.

Figure S15. ¹H NMR (400 MHz, CD₂Cl₂, 300 K) titration curve of cage C-2 (0.42 mM) in the presence of benzoquinone (25 mM) with Ph₃PO (25 mM). Curve obtained by monitoring the external cage cavity proton *b*. The solid points represent experimental data and the continuous dashed line represents the fitted binding isotherm to the 1:1 host–guest model using [Host]. = $2 \times [C-2] = 0.84$ mM, therefore $K_{11} = 2 \times K_{Ass} = 2 \times 2160$ M⁻¹ = 4320 M⁻¹ and $K_{12} = 1/2 \times K_{Ass} = 1/2 \times 2160$ M⁻¹ = 1080 M⁻¹.

Benzoquinone with $[C-1 \cdot (Ph_3PO)_2]$

Figure S16. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 300 K) of the titration of cage C-1 (0.47 mM) with benzoquinone (25 mM) in the presence of Ph₃PO (5 mM).

Figure S17. ¹H NMR (500 MHz, CD₂Cl₂, 300 K) titration curve of cage C-1 (0.47 mM) with benzoquinone (25 mM) in the presence of Ph₃PO (5 mM). Curve obtained by monitoring the internal cage cavity proton *a*. The solid points represent experimental data and the continuous dashed line represents the fitted binding isotherm to the model host–guest 1:1.

Figure S18. Partial ¹H NMR spectra (400 MHz, CD_2Cl_2 , 300 K) of the titration of cage C-2 (0.42 mM) with benzoquinone (25 mM) in the presence of Ph₃PO (5 mM).

Figure S19. ¹H NMR (400 MHz, CD₂Cl₂, 300 K) titration curve of cage C-2 (0.42 mM) with benzoquinone (25 mM) in the presence of Ph₃PO (5 mM). Curve obtained by monitoring the internal cage cavity proton *a*. The solid points represent experimental data and the continuous dashed line represents the fitted binding isotherm to the model host–guest 1:1.

Individual UV-Vis titration data

Figure S20. UV-Vis (CH₂Cl₂, rt) of the titration of pentacenequinone (10 µM) with cage C-1 (0 to 2.3 equiv).

Figure S21. UV-Vis (CH₂Cl₂, rt) titration curve of pentacenequinone (10 μ M) with cage C-1 (0 to 2.3 equiv). Curve obtained by monitoring the absorbance at 448 nm. The solid points represent experimental data and the continuous dashed line represents the fitted binding isotherm to the model host–guest 1:1.

Pentacenequinone with cage [C-1 (Ph₃PO)]

Figure S22. UV-Vis (CH₂Cl₂, rt) of the titration of pentacenequinone (10 μ M) with cage C-1 (0 to 2.0 equiv) in the presence of Ph₃PO (1 mM).

Figure S23. UV-Vis (CH₂Cl₂, rt) titration curve of pentacenequinone (10 μ M) with cage C-1 (0 to 2.0 equiv) in the presence of Ph₃PO (1 mM). Curve obtained by monitoring the absorbance at 445 nm. The solid points represent experimental data and the continuous dashed line represents the fitted binding isotherm to the model host–guest 1:1. Under these conditions the estimated species distribution using the $K_{Ass C-1-(Ph_3PO)_2} = 8200 \text{ M}^{-1}$ and $K_{Ass C-1-Ph_3PO} = 2100 \text{ M}^{-1}$ is: 4% free cage C-1, 31% C-1(Ph_3PO) complex, and 65% C-1(Ph_3PO)₂ complex.

Pentacenequinone with cage [C-2·(Ph₃PO)]

Figure S24. UV-Vis (CH₂Cl₂, rt) of the titration of pentacenequinone (50 μ M) with cage C-2 (0 to 2.0 equiv) in the presence of Ph₃PO (5 mM).

Figure S25. UV-Vis (CH₂Cl₂, rt) titration curve of pentacenequinone (50 μ M) with cage C-2 (0 to 2.0 equiv) in the presence of Ph₃PO (5 mM). Curve obtained by monitoring the absorbance at 444 nm. The solid points represent experimental data and the continuous dashed line represents the fitted binding isotherm to the model host–guest 1:1. Under these conditions the estimated species distribution using the $K_{Ass C-2-(Ph_3PO)_2} = 8200 \text{ M}^{-1}$ and $K_{Ass C-2-Ph_3PO} = 2100 \text{ M}^{-1}$ is: <1% free cage C-2, 9% C-2(Ph_3PO) complex, and 91% C-2(Ph_3PO)_2 complex.

Figure S26. Comparison of the UV-Vis of the cages C-1 and C-2 with pentacenequinone (PQ) in CH_2Cl_2 at room temperature: (a) 20 μ M C-1, 10 μ M PQ, and 1 mM Ph₃PO; (b) 100 μ M C-2, 50 μ M PQ, and 5 mM Ph₃PO.

Determination of Diels–Alder reaction kinetic parameters

Experimental details

The kinetic experiments were monitored by ¹H NMR using the following procedure: To an NMR tube was introduced a stock solution containing the cage (C-1 or C-2) compound (450 μ L of a stock solution 0.56 mM in CD₂Cl₂) or just CD₂Cl₂ (450 μ L) for the uncatalyzed reactions, quinone (20 μ L of a stock solution 62.5 mM in CD₂Cl₂), and the internal standard tetrakis(trimethylsilyl)silane (10 μ L of a stock solution 15.2 mM in CD₂Cl₂). The Diels–Alder reaction was then started by the addition of the corresponding diene (20 μ L of a stock solution in CD₂Cl₂, 5–10 equivalents depending on diene reactivity). ¹H NMR spectra were recorded at regular intervals until sufficient data was collected to determine the kinetic parameters. In all cases the NMR reactions were kept at 298 K. Kinetic ¹H NMR data was processed using the MestreNova 11 software and the concentration of all chemical species were determined for each reaction time. All reactions were performed at least twice and a representative example is reported in the supporting information.

Experimental kinetic constants for the catalyzed reaction (k_{cat}) were obtained by fitting to the simulated kinetic model using the Levenberg-Marquardt Nonlinear Least-Squares Algorithm^[S3] implemented in the R software^[S4] and the RStudio^[S5] software interface. Fittings were carried out simultaneously to the formation of the product and disappearance of the quinone minimizing the fitting mathematical errors and ensuring that the data fits to the kinetic model. The determined concentration by ¹H NMR spectroscopy corresponds to the total concentration of quinone and Diels–Alder adduct as long they are in fast exchange with the supramolecular complexes of the different catalyst species described in Figure S27. Therefore the fittings were performed to A+E+J+K (total quinone concentration, free and bound to the catalyst) and C+F+L+M (total Diels–Alder adduct concentration, free and bound to the catalyst) and C+F+L+M (total Diels–Alder adduct concentration, free and bound to the catalyst). The association constants of the quinones were determined by ¹H NMR titrations or estimated form the kinetic experiments (in this last case, the changes in the chemical shifts of the cage, quinone and Diels–Alder adduct were additionally used to identify whether the Diels–Alder adducts bound stronger or weaker than the substrate). The observed kinetic constant (k_{Obs}) was obtained by fitting the data to the uncatalyzed reaction model (A + B \rightarrow C).

Kinetic models

The kinetic model considers both the second order uncatalyzed background and the second order catalyzed reactions (steps 3, 11 and 13 in Figure S27) by the cage compound. The active species E, J and M are obtained by the formation of a supramolecular complex between the quinone and the cage compound (steps 2, 7, 8, 9 and 10 in Figure S27). The model also considers the possible product inhibition by the formation of a supramolecular complex between the cage compound (steps 4, 12 and 14 in Figure S27). All the equilibria steps are assumed to be fast relative to cycloaddition, in accordance with NMR observations. From the reactions described in Figure S27 the corresponding set of differential equations were solved using the package *deSolve*^[S10] implemented in the R software^[S4] and the RStudio^[S5] software interface.

Figure S27. Cage catalyzed Diels–Alder reaction mechanism in the presence of Ph₃PO.

$$\begin{split} & d[A]/dt = -k_{uncat} \cdot [A] \cdot [B] - k_{assAfr} \cdot [A] \cdot [D] + k_{assArr} \cdot [E] - k_{assAfr} \cdot [H] \cdot [A] + k_{assAfr} \cdot [J] - k_{assAfr} \cdot [I] \cdot [A] + k_{assAfr} \cdot [K] \\ & d[B]/dt = -k_{uncat} \cdot [A] \cdot [B] - k_{cat} \cdot [E] \cdot [B] - k_{cat1} \cdot [J] \cdot [B] - k_{cat2} \cdot [K] \cdot [B] \\ & d[C]/dt = +k_{uncat} \cdot [A] \cdot [B] + k_{assCr} \cdot [F] - k_{assCr} \cdot [D] \cdot [C] + k_{assHCr} \cdot [L] - k_{assHCr} \cdot [H] \cdot [C] + k_{assICr} \cdot [M] - k_{assICr} \cdot [I] \cdot [C] \\ & d[D]/dt = -k_{assAfr} \cdot [A] \cdot [D] + k_{assAr} \cdot [E] + k_{assCr} \cdot [F] - k_{assCr} \cdot [D] \cdot [C] - k_{assHCr} \cdot [D] \cdot [G] + k_{assICr} \cdot [H] \\ & d[E]/dt = -k_{assAfr} \cdot [A] \cdot [D] - k_{assAr} \cdot [E] - k_{cat} \cdot [E] \cdot [B] - k_{assEGr} \cdot [D] \cdot [C] - k_{assBGr} \cdot [D] \\ & d[E]/dt = +k_{assAfr} \cdot [A] \cdot [D] - k_{assAr} \cdot [E] - k_{cat} \cdot [E] \cdot [B] - k_{assEGr} \cdot [D] \cdot [G] + k_{assEGr} \cdot [J] \\ & d[G]/dt = -k_{assAfr} \cdot [B] - k_{assCr} \cdot [F] + k_{assCr} \cdot [D] \cdot [C] - k_{assFGr} \cdot [D] + k_{assEGr} \cdot [J] \\ & d[G]/dt = -k_{assDGr} \cdot [D] \cdot [G] + k_{assDGr} \cdot [H] - k_{assFGr} \cdot [D] \cdot [G] + k_{assFGr} \cdot [L] \\ & d[G]/dt = -k_{assDGr} \cdot [D] \cdot [G] + k_{assDGr} \cdot [H] - k_{assHGr} \cdot [H] \cdot [G] + k_{assEGr} \cdot [M] \\ & d[H]/dt = + k_{assDGr} \cdot [D] \cdot [G] - k_{assFGr} \cdot [L] - k_{assHGr} \cdot [H] \cdot [G] + k_{assHGr} \cdot [M] \\ & d[H]/dt = + k_{assHGr} \cdot [H] \cdot [G] - k_{assHGr} \cdot [H] \cdot [G] + k_{assHGr} \cdot [H] \cdot [G] + k_{assIGr} \cdot [M] - k_{assAfr} \cdot [J] + k_{assAfr} \cdot [L] - k_{assHGr} \cdot [H] \cdot [C] \\ & d[I]/dt = + k_{assHGr} \cdot [H] \cdot [G] - k_{assHGr} \cdot [I] - k_{assAfr} \cdot [H] \cdot [G] + k_{assHGr} \cdot [H] \cdot [G] + k_{assIGr} \cdot [H] \cdot [C] \\ & d[I]/dt = + k_{assAfr} \cdot [H] \cdot [A] - k_{assAfr} \cdot [J] + k_{assGfr} \cdot [E] \cdot [G] - k_{assEGr} \cdot [J] - k_{assIGr} \cdot [H] \cdot [G] + k_{assIGr} \cdot [H] \cdot [G] - k_{assIGr} \cdot [H] \cdot$$

The kinetic constant and association constants for species involving one Ph₃PO were estimated assuming that $\Delta G_{\text{cage}}(\text{Ph}_{3}\text{PO}) = 1/2 \times (\Delta G_{\text{cage}} + \Delta G_{\text{cage}}(\text{Ph}_{3}\text{PO})_{2})$ using the following equations:^[S11]

 $k_{\text{cat1}} = (k_{\text{cat}} \times k_{\text{cat2}})^{1/2}$ $K_{\text{assHA}} = (K_{\text{assA}} \times K_{\text{assIA}})^{1/2}$ $K_{\text{assHC}} = (K_{\text{assC}} \times K_{\text{assIC}})^{1/2}$

Kinetic data for individual DA reactions

Reaction of benzoquinone and isoprene

Figure S28. Diels–Alder kinetic data for the reaction of benzoquinone with isoprene. Cage C-2 gives significant acceleration (green triangles) and structurally similar C-1 (red triangles) gives no enhancement compared to the uncatalyzed reaction (black squares). Addition of Ph₃PO to cage C-2 (pale green circles) maintains the catalytic activity. Addition of Et₃PO to cage C-2 (dark blue circles) reduces the catalytic activity. Addition of Ph₃PO to cage C-1 (pale red circles) does produce any effect. Addition of Ph₃PO to uncatalyzed reaction does not produce any effect (grey diamonds). Data for the background reaction, C-1 and C-2 catalyzed reactions from ref [S2].

Figure S29. ¹H NMR spectra (500 MHz, CD_2Cl_2) for the reaction of benzoquinone (2.5 mM) and isoprene (25 mM) in the presence of Ph₃PO (5 mM).

Figure S30. ¹H NMR spectra (500 MHz, CD_2Cl_2) for the reaction of benzoquinone (2.5 mM) and isoprene (25 mM) in the presence of the cage C-1 (0.45 mM) and Ph₃PO (5 mM).

Figure S31. ¹H NMR spectra (500 MHz, CD₂Cl₂) for the reaction of benzoquinone (2.5 mM) and isoprene (25 mM) in the presence of the cage C-2 (0.5 mM) and Et₃PO (5 mM).

Figure S32. ¹H NMR spectra (500 MHz, CD_2Cl_2) for the reaction of benzoquinone (2.5 mM) and isoprene (25 mM) in the presence of the cage C-2 (0.45 mM) and Ph₃PO (5 mM).

Figure S33. Kinetic fitting for the uncatalyzed reaction of benzoquinone and isoprene.

Figure S34. Kinetic fitting for the catalyzed reaction of benzoquinone and isoprene in the presence of the cage C-2 and Ph₃PO. Using $K_{Ass C-2 Product} = 510 \text{ M}^{-1}$ and $k_{cat} = 23.6 \text{ M}^{-1} \text{ h}^{-1}$, $k_{uncat} = 0.060 \text{ M}^{-1} \text{ h}^{-1}$ from ref [S2]; $K_{ass C-2 Ph_3PO}$ 1:1 = 8200 M⁻¹, $K_{ass C-2 Ph_3PO 1:2} = 2100 \text{ M}^{-1}$, $K_{ass [Benzoquinone \subset C-2] Ph_3PO 1:1} = 4300 \text{ M}^{-1}$, $K_{ass [Benzoquinone \subset C-2] Ph_3PO 1:2} = 1100 \text{ M}^{-1}$, and estimating $K_{ass [Product \subset C-2] Ph_3PO 1:1} = 4300 \text{ M}^{-1}$, $K_{ass [Product \subset C-2] Ph_3PO 1:2} = 1100 \text{ M}^{-1}$, $K_{ass C-2 Ph_3PO 1:1} = 4300 \text{ M}^{-1}$, $K_{ass C-2 Ph_3PO 1:2} = 1100 \text{ M}^{-1}$.

Figure S35. Kinetic fitting to obtain k_{Obs} for the catalyzed reaction of benzoquinone and isoprene in the presence of the cage C-2. Data from ref [S2].

Figure S36. Kinetic fitting to obtain k_{Obs} for the catalyzed reaction of benzoquinone and isoprene in the presence of the cage C-2 and Ph₃PO.

Figure S37. Diels–Alder kinetic data for the reaction of benzoquinone with cyclohexadiene. Cage C-2 gives significant acceleration (green triangles) will little evidence of product inhibition. Addition of Ph_3PO to cage C-2 (pale green circles) maintains the catalytic activity. Data for the background reaction and C-2 catalyzed reactions from ref [S2].

Figure S38. ¹H NMR spectra (500 MHz, CD_2Cl_2) for the reaction of benzoquinone (2.5 mM) and cyclohexadiene (12.5 mM) in the presence of the cage C-2 (0.50 mM) and OPPh₃ (5 mM).

Figure S39. Kinetic fitting for the catalyzed reaction of benzoquinone and cyclohexadiene in the presence of the cage C-2 and Ph₃PO. Using $K_{Ass C-2 Product} = 4600 \text{ M}^{-1}$, $k_{cat} = 61 \text{ M}^{-1} \text{ h}^{-1}$, $k_{uncat} = 0.20 \text{ M}^{-1} \text{ h}^{-1}$, from ref [S2]; $K_{ass C-2}$ Ph₃PO 1:1 = 8200 M⁻¹, $K_{ass C-2 Ph_3PO 1:2} = 2100 \text{ M}^{-1}$, $K_{ass [Benzoquinone \subset C-2] Ph_3PO 1:1} = 4300 \text{ M}^{-1}$, $K_{ass [Benzoquinone \subset C-2] Ph_3PO 1:1} = 4300 \text{ M}^{-1}$, $K_{ass [Benzoquinone \subset C-2] Ph_3PO 1:2} = 1100 \text{ M}^{-1}$, estimating $K_{ass [Product \subset C-2] Ph_3PO 1:1} = 4300 \text{ M}^{-1}$, $K_{ass [Product \subset C-2] Ph_3PO 1:2} = 1100 \text{ M}^{-1}$, and obtaining from the fitting $K_{Ass C-2}(Ph_3PO)_{2}$ -Product = (880 ± 70) M⁻¹.

Figure S40. Kinetic fitting to obtain k_{Obs} for the catalyzed reaction of benzoquinone and cyclohexadiene in the presence of the cage C-2. Data from ref [S2].

Figure S41. Kinetic fitting to obtain k_{Obs} for the catalyzed reaction of benzoquinone and cyclohexadiene in the presence of the cage C-2 and Ph₃PO.

X ray crystallography

Crystal structure of [pentacenequinone \subset C-1]·(OTf)₄,^[S1] C-1·(OTf)₄,^[S12] C-2·(SbF₆)₄,^[S13] C-2·(OMs)₄,^[S14] C-2·(OTf)₄,^[S14] and C-2·(BF₄)₄^[S15] were obtained from the literature. The crystal structure of [pentacenequinone \subset C-2]·(BArF)₄ is described below.

Overlay of cages crystal structures

Figure S42. Overlay of the crystal structures of [pentacenequinone⊂C-1]·(OTf)₄ (green), C-1·(OTf)₄ (cyan).

Figure S43. Overlay of the crystal structures of [pentacenequinone⊂C-1]·(OTf)₄ (green), C-1·(OTf)₄ (cyan) showing the counteranions and solvent molecules in short distance/hydrogen bonding with the cage polarized CH protons. BArF counter anions have not been represented for clarity.

Figure S44. Comparison of the crystal structures of [pentacenequinone⊂C-1]·(OTf)₄ (green), C-1·(OTf)₄ (cyan) showing the counteranions and solvent molecules in short distance/hydrogen bonding with the cage polarized CH protons. BArF counter anions have not been represented for clarity.

Figure S45. Overlay of the crystal structures of [pentacenequinone \subset C-2]·(BArF)₄ (green), C-2·(SbF₆)₄ (cyan),C-2·(OMs)₄ (purple), C-2·(OTf)₄ (yellow), C-2·(BF₄)₄ (pale red).

Figure S46. Overlay of the crystal structures of [pentacenequinone⊂C-2]·(BArF)₄ (green), C-2·(SbF₆)₄ (cyan), C-2·(OMs)₄ (purple), C-2·4(OTf)₄ (yellow), C-2·(BF₄)₄ (pale red) showing the counteranions and solvent molecules in short distance/hydrogen bonding with the cage polarized CH protons. BArF counter anions have not been represented for clarity.

Figure S47. Crystal structures of [pentacenequinone \subset C-2]·(BArF)₄ (green), C-2·(SbF₆)₄ (cyan), C-2·4(OMs)₄ (purple), C-2·(OTf)₄ (yellow), C-2·(BF₄)₄ (pale red) showing the counteranions and solvent molecules in short distance/hydrogen bonding with the cage polarized CH protons. BArF counter anions have not been represented for clarity.

Crystal data of [pentacenequinone⊂C-2]·(BArF)₄

Single crystals of pentacenequinone \subset C-1 were obtained by vapour diffusion of diisopropyl ether to a solution of 1 in CH₂Cl₂. Suitable crystals were selected and for single-crystal using a SuperNova, Dual, Cu at zero, Atlas diffractometer. The crystal was kept at 120.00(10) K during data collection. Disordered solvent (not reported in the calculated formula) could not be modelled and it's corresponding electron density was removed using the SQUEEZE routine of PLATON.^[S16] Using Olex2,^[S17] the structure was solved with the ShelXT^[S18] structure solution program using Direct Methods and refined with the ShelXL^[S19] refinement package using Least Squares minimisation. All non-hydrogen atoms were refined with anisotropically, and all hydrogen atoms were added and refined isotropically using a riding model.

Crystal data for [pentacenequinone \subset C-2]·(BArF)₄ (C₂₂₈H₁₀₄B₄Cl₄F₉₆N₁₂O₂Pd₂, *M*=5265.07 g/mol): monoclinic, space group C2/c (no. 15), *a* = 40.6116(6) Å, *b* = 14.3027(2) Å, *c* = 43.1791(9) Å, *β* = 108.163(2)°, *V* = 23831.1(7) Å³, *Z* = 4, *T* = 120.00(10) K, µ(CuKα) = 2.796 mm⁻¹, *Dcalc* = 1.467 g/cm³, 189819 reflections measured (6.59° ≤ 2Θ ≤ 153.096°), 24792 unique (*R*_{int} = 0.0906, R_{sigma} = 0.0615) which were used in all calculations. The final *R*₁ was 0.0936 (I > 2σ(I)) and *wR*₂ was 0.2569 (all data).

Figure S48. Crystal structure of pentacenequinone (orange) encapsulated within cage **C-2** (green). Solvent and counter ions are omitted for clarity. One of the central ligand pyridine rings of the cage is disordered in two parts, only the part with a larger occupancy has been represented for clarity. (a) Front view showing the 8 H-bonds between the pentacenequinone and the cage, (b) top view showing the bend of the ligand.

Empirical formula	$C_{228}H_{104}B_4Cl_4F_{96}N_{12}O_2Pd_2$
Formula weight	5265.07
Temperature/K	120.00(10)
Crystal system	monoclinic
Space group	C2/c
a/Å	40.6116(6)
b/Å	14.3027(2)
c/Å	43.1791(9)
a/°	90
β/°	108.163(2)
$\gamma/^{\circ}$	90
Volume/Å ³	23831.1(7)
Ζ	4
$\rho_{calc}g/cm^3$	1.467
µ/mm ⁻¹	2.796
F(000)	10464.0
Crystal size/mm ³	$0.509 \times 0.188 \times 0.049$
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2Θ range for data collection/	° 6.59 to 153.096
Index ranges	$\textbf{-48} \leq h \leq 50, \textbf{-17} \leq k \leq 18, \textbf{-54} \leq l \leq 54$
Reflections collected	189819
Independent reflections	24792 [$R_{int} = 0.0906$, $R_{sigma} = 0.0615$]
Data/restraints/parameters	24792/728/1790
Goodness-of-fit on F ²	1.103
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0936, wR_2 = 0.2486$
Final R indexes [all data]	$R_1 = 0.1031, wR_2 = 0.2572$
Largest diff. peak/hole / e Å-3	3 1.46/-1.20

Table S1. Crystal data and structure refinement for pentacenequinone⊂C-2.

Table S2. Bond Lengths for pentacenequinone⊂C-2.

		e		ľ
Aton	n Aton	ı Length/Å	Atom	Atom Length/Å
Pd1	N1	2.007(4)	F31	C95 1.335(7)
Pd1	N3 ¹	2.014(4)	F32	C95 1.339(8)
Pd1	N4	2.015(5)	F33	C95 1.334(7)
Pd1	$N6^1$	2.000(5)	F34	C96 1.305(7)
N1	C1	1.350(5)	F35	C96 1.342(6)
N1	C5	1.346(6)	F36	C96 1.319(7)
N3	$Pd1^1$	2.014(4)	F37	C103 1.354(6)
N3	C16	1.336(6)	F38	C103 1.344(6)
N3	C17	1.337(5)	F39	C103 1.329(6)
N4	C20	1.347(7)	F40	C104 1.324(8)
N4	C24	1.358(6)	F41	C104 1.343(8)
N5	C27	1.350(7)	F42	C104 1.332(9)
N5	C31	1.346(8)	F43	C111 1.349(9)
N6	$Pd1^1$	2.000(5)	F44	C111 1.316(10)
N6	C35	1.358(6)	F45	C111 1.331(8)
N6	C36	1.343(7)	F46B	C112 1.366(10)
C1	C2	1.395(6)	F47B	C112 1.347(10)
C2	C3	1.397(7)	F48B	C112 1.346(9)
C2	C6	1.437(6)	C81	C82 1.395(8)
C3	C4	1.384(7)	C81	C86 1.399(7)
C4	C5	1.381(7)	C81	B2 1.642(8)
C6	C7	1.184(7)	C82	C83 1.384(8)

C7	C8A 1.440(11)	C83 C84 1.383(9)
C7	C8B 1.484(19)	C83 C87 1.505(9)
C13	C14 1.192(8)	C84 C85 1.388(9)
C13	C12A 1.421(12)	C85 C86 1.387(7)
C13	C12B 1.53(2)	C85 C88 1.508(8)
C14	C15 1.430(7)	C89 C90 1.404(8)
C15	C16 1.390(7)	C89 C94 1.401(8)
C15	C19 = 1.406(6)	C89 B2 1.643(8)
C17	C18 + 1.378(7)	$C_{00} C_{01} 1.045(0)$
C17	C18 1.378(7)	C_{90} C_{91} $1.400(8)$
C18	C19 1.3/4(7)	C91 C92 1.381(7)
C20		C91 C95 1.500(8)
C21	C22 1.398(8)	C92 C93 1.386(8)
C21	C25 1.435(8)	C93 C94 1.379(8)
C22	C23 1.362(10)	C93 C96 1.495(8)
C23	C24 1.394(9)	C97 C98 1.395(7)
C25	C26 1.190(9)	C97 C102 1.410(7)
C26	C27 1.432(9)	C97 B2 1.635(8)
C27	C28 1.394(8)	C98 C99 1.391(7)
C28	C29 1.376(11)	C99 C100 1.395(7)
C29	C30 1.395(11)	C99 C103 1.493(7)
C30	C31 1.391(10)	C100 C101 1.403(8)
C31	C32 1.447(8)	C101 C102 1.377(8)
C32	C33 1.177(9)	C101 C104 1.515(8)
C33	C34 1.454(8)	C105 C106 1.401(7)
C34	C35 1.373(8)	C105 C110 1.400(8)
C34	$C_{38} = 1.401(9)$	C105 B2 1636(7)
C36	$C_{37} = 1.365(10)$	C105 D2 1.030(7) C106 C107 1.413(8)
C30	$C_{37} = 1.303(10)$	$C100 \ C107 \ 1.413(8)$
C37	$C_{38} = 1.380(10)$	C107 $C108$ $1.384(10)$
CI	C113 1.735(12)	C107 $C111$ $1.467(9)$
E1	$C_{113} 1.784(12)$	$C108 \ C109 \ 1.380(10)$
F1 F2	C50 1.51(2)	C109 $C110$ $1.390(8)$
F2 F2	$C_{50} = 1.270(17)$	C109 C112 1.307(10) C112 E46A 1.242(0)
F3 E4	C50 1.342(17) C57 1.352(13)	C112 F40A $1.342(9)$
F2	C57 = 1.332(13)	C112 F48A 1 365(0)
F6	C57 = 1.317(5)	O1 C39 1.241(6)
F0 F7	$C_{57} = 1.344(11)$ $C_{64} = 1.201(8)$	$C_{20} = C_{40} = 1.241(0)$
F8	C64 = 1.391(8)	C39 $C40$ $1.478(0)C30 C41^1 1.483(7)$
FO	C64 = 1.290(7)	$C_{33} C_{41} 1.483(7)$
F9 E10	C04 1.288(7)	C40 $C41$ $1.430(0)$
F10 E11	C65 = 1.207(11)	C40 $C43$ $1.304(7)$
F11 E12	C(5 - 1.200(0))	C41 C39 1.463(7)
F12	$C_{00} = 1.300(9)$	C41 C42 1.3/4(0)
C50	C51 1.389(9)	C42 C43 1.412(7)
C50	C55 1.403(10)	C43 $C44$ $1.418(6)$
C30	B1 1.037(10)	C43 C49 1.418(7)
C51	$C_{52} = 1.3/5(12)$	C44 $C45$ $1.411(6)$
C52	C53 1.389(14)	C44 C46 1.415(7)
C52	C56 1.500(14)	C46 C47 1.370(8)
C53	C54 1.387(12)	C47 C48 1.392(9)
C54	C55 1.368(10)	C48 C49 1.368(9)
C54	C57 1.499(13)	N0AA C8B 1.54(3)
C58	C59 1.385(9)	N0AA C12B 1.26(4)
C58	C63 1.381(8)	N2A C8A 1.35(2)
C58	B1 1.648(9)	N2A C12A 1.39(2)
C59	C60 1.393(9)	C8A C9A 1.393(8)
C60	C61 1.375(9)	C8B C9B 1.388(10)
C60	C64 1.454(10)	C9A C10A 1.393(9)
C61	C62 1.386(9)	C9B C10B 1.391(10)
C62	C63 1.399(8)	C10A C11A 1.411(9)
C62	C65 1.474(10)	C10B C11B 1.410(10)
B1	C66A 1.688(12)	C11A C12A 1.406(9)
B1	C66B 1.665(14)	C11B C12B 1.392(10)
B1	C74A 1.531(14)	C043 C74A 1.381(9)
B1	C74B 1.77(2)	C043 C78A 1.380(9)
F13A	A C72A 1.344(9)	C66A C67A 1.393(9)

F13B C72B 1.341(10)	C66A C71A 1.393(8)
F14A C72A 1.348(9)	C66B C67B 1.40(2)
F14B C72B 1.346(10)	C66B C71B 1.401(9)
F15A C72A 1.339(9)	C67A C68A 1.395(9)
F15B C72B 1.362(10)	C67B C68B 1.392(10)
F16A C73A 1.330(9)	C68A C69A 1.387(8)
F16B C73B 1.349(10)	C68A C72A 1.489(9)
F17A C73A 1.328(9)	C68B C69B 1.388(10)
F17B C73B 1.334(9)	C68B C72B 1.45(2)
F18A C73A 1.339(9)	C69A C70A 1.378(8)
F18B C73B 1.340(9)	C69B C70B 1.398(10)
F19A C79A 1.322(9)	C70A C71A 1.394(8)
F19B C80B 1.342(9)	C70A C73A 1.496(9)
F20A C79A 1.343(9)	C70B C71B 1.404(9)
F20B C80B 1.344(9)	C70B C73B 1.469(19)
F21A C79A 1.336(9)	C74A C75A 1.393(9)
F21B C80B 1.335(9)	C74B C75B 1.398(10)
F22A C80A 1.351(9)	C74B C79B 1.396(10)
F22B C81B 1.347(10)	C75A C76A 1.380(9)
F23A C80A 1.335(9)	C75B C76B 1.396(10)
F23B C81B 1.347(10)	C76A C77A 1.377(9)
F24A C80A 1.340(9)	C76A C79A 1.506(9)
F24B C81B 1.330(10)	C76B C77B 1.399(10)
F25 C87 1.315(9)	C76B C80B 1.40(2)
F26 C87 1.344(10)	C77A C78A 1.372(9)
F27 C87 1.316(8)	C77B C78B 1.398(9)
F28 C88 1.329(7)	C78A C80A 1.503(9)
F29 C88 1.341(8)	C78B C79B 1.393(10)
F30 C88 1.335(7)	C78B C81B 1.47(2)
¹ 1-X,2-Y,-Z	

Table S3. Bond Angles for pentacenequinone⊂C-2.

	Aton	ı Aton	n Aton	n Angle/°	Atom	Atom	Atom	Angle/°
1	N1	Pd1	N31	178.77(17)	F38	C103	F37	104.3(4)
	N1	Pd1	N4	91.32(16)	F38	C103	C99	113.1(4)
	N31	Pd1	N4	89.91(17)	F39	C103	F37	105.9(4)
	$N6^1$	Pd1	N1	88.29(17)	F39	C103	F38	107.6(4)
	$N6^1$	Pd1	$N3^1$	90.48(17)	F39	C103	C99	113.5(4)
	$N6^1$	Pd1	N4	178.91(15)	F40	C104	F41	109.3(6)
	C1	N1	Pd1	118.9(3)	F40	C104	F42	104.6(7)
,	C5	N1	Pd1	121.8(3)	F40	C104	C101	113.8(5)
,	C5	N1	C1	119.2(4)	F41	C104	C101	111.1(6)
,	C16	N3	$Pd1^1$	120.3(3)	F42	C104	F41	104.6(6)
	C16	N3	C17	119.6(4)	F42	C104	C101	112.8(5)
	C17	N3	Pd1 ¹	120.1(3)	C106	C105	B2	125.2(5)
(C20	N4	Pd1	119.9(3)	C110	C105	C106	115.9(5)
(C20	N4	C24	117.9(5)	C110	C105	B2	118.9(5)
(C24	N4	Pd1	122.2(4)	C105	C106	C107	121.6(6)
(C31	N5	C27	116.5(5)	C106	C107	C111	117.7(6)
(C35	N6	$Pd1^1$	118.7(3)	C108	C107	C106	120.9(6)
,	C36	N6	$Pd1^1$	121.8(4)	C108	C107	C111	121.3(6)
,	C36	N6	C35	119.2(5)	C107	C108	C109	118.3(5)
	N1	C1	C2	121.8(4)	C108	C109	C110	120.6(6)
	C1	C2	C3	119.1(4)	C108	C109	C112	121.3(6)
(C1	C2	C6	118.9(4)	C110	C109	C112	118.0(6)
,	C3	C2	C6	122.0(4)	C109	C110	C105	122.6(6)
(C4	C3	C2	117.9(5)	F43	C111	C107	113.2(6)
	C5	C4	C3	120.6(5)	F44	C111	F43	103.7(7)
	N1	C5	C4	121.4(4)	F44	C111	F45	108.5(7)
(C7	C6	C2	179.1(7)	F44	C111	C107	113.1(6)
(C6	C7	C8A	173.2(7)	F45	C111	F43	104.9(6)

C6	C7	C8B	162.1(10)	F45	C111	C107	112.8(7)
C14	C13	C12A	173.0(9)	F46B	C112	C109	105.3(12)
C14	C13	C12B	162.8(10)	F47B	C112	F46B	108(2)
C13	C14	C15	179.2(8)	F47B	C112	C109	104.6(19)
C16	C15	C14	120.5(4)	F48B	C112	F46B	98.6(14)
C16	C15	C19	118.4(4)	F48B	C112	F47B	121(2)
C19	C15	C14	121.1(4)	F48B	C112	C109	117.4(9)
N3	C16	C15	122.1(4)	F46A	C112	C109	116.7(10)
N3	C17	C18	121.5(4)	F46A	C112	F48A	111.4(11)
C19	C18	C17	120.4(4)	F47A	C112	C109	115.0(12)
C18	C19	C15	118.1(4)	F47A	C112	F46A	105.0(14)
N4	C20	C21	123.3(5)	F47A	C112	F48A	100.7(15)
C20	C21	C22	118.2(5)	F48A	C112	C109	106.8(8)
C20	C21	C25	119.9(5)	C81	B2	C89	109.9(4)
C22	C21	C25	121.8(6)	C97	B2	C81	109.5(4)
C23	C22	C21	119.0(6)	C97	B2	C89	109.6(4)
C22	C23	C24	120.2(5)	C97	B2	C105	107.6(4)
N4	C24	C23	121.4(6)	C105	B2	C81	109.4(4)
C26	C25	C21	175.0(7)	C105	B2	C89	110.8(4)
C25	C26	C27	177.6(6)	01	C39	C40	120.9(4)
N5	C27	C26	115.8(5)	01	C39	C41 ¹	121.0(4)
N5	C27	C28	123.7(6)	C40	C39	C41 ¹	118.1(4)
C28	C27	C26	120.6(5)	C41	C40	C39	120.7(4)
C29	C28	C27	118.5(6)	C45	C40	C39	120.1(4)
C28	C29	C30	119.4(7)	C45	C40	C41	119.2(4)
C31	C30	C29	118.0(7)	C40	C41	C39.	121.2(4)
N5	C31	C30	123.9(6)	C42	C41	C39.	119.4(4)
N3 C20	C31	C32	115.9(6)	C42	C41	C40	119.4(5)
C30	C31	C32	120.2(0)	C41	C42	C45	121.9(4)
C33	C32	C31	177.9(8)	C42	C43	C44	110.3(4)
C32	C33	C34	110.0(8)	C42	C43	C49	122.3(3)
C35	C34	C38	119.6(5)	C49	C45	C44	119.1(3) 118.7(5)
C38	C34	C33	121.7(6)	C45	C44	C45	122.0(5)
N6	C35	C34	121.7(0)	C45	C44	C40	122.0(5) 119.3(5)
N6	C36	C37	121.7(5)	C40	C45	C44	1223(4)
C36	C37	C38	119.7(6)	C47	C46	C44	119.9(5)
C37	C38	C34	119.0(7)	C46	C47	C48	120.8(6)
C11	C113	C12	110.9(5)	C49	C48	C47	121.1(5)
C51	C50	C55	115.9(7)	C48	C49	C43	119.8(5)
C51	C50	B1	123.9(7)	C12B	NOAA	C8B	117(3)
C55	C50	B1	119.9(5)	C8A	N2A	C12A	117.8(16)
C52	C51	C50	122.3(8)	N2A	C8A	C7	113.9(11)
C51	C52	C53	121.1(8)	N2A	C8A	C9A	125.9(12)
C51	C52	C56	119.8(11)	C9A	C8A	C7	119.6(8)
C53	C52	C56	119.1(10)	C7	C8B	N0AA	108.2(16)
C54	C53	C52	117.3(8)	C9B	C8B	C7	122.3(14)
C53	C54	C57	118.0(8)	C9B	C8B	N0AA	123(2)
C55	C54	C53	121.5(8)	C10A	C9A	C8A	116.4(9)
C55	C54	C57	120.5(8)	C8B	C9B	C10B	116.2(18)
C54	C55	C50	121.9(7)	C9A	C10A	C11A	119.9(11)
F1	C56	F3	104.6(11)	C9B	C10B	C11B	118(2)
F1	C56	C52	111.7(14)	C12A	C11A	C10A	120.4(12)
F2	C56	F1	106.3(15)	C12B	C11B	C10B	125(3)
F2	C56	F3	106.9(13)	N2A	C12A	C13	118.0(10)
F2	C56	C52	114.4(11)	N2A	C12A	C11A	119.6(13)
F3	C56	C52	112.3(14)	C11A	C12A	C13	118.1(9)
F4	C57	C54	113.7(7)	N0AA	C12B	C13	111.5(19)
F5	C57	F4	106.3(10)	N0AA	C12B	C11B	121(3)
F5	C57	F6	107.0(7)	C11B	C12B	C13	113.6(14)
F5	C57	C54	113.7(8)	C78A	C043	C74A	120.0(11)
F6	C57	F4	104.1(8)	C67A	C66A	B1	123.4(8)
F6	C57	C54	111.4(10)	C67A	C66A	C71A	119.5(8)
C59	C58	B1	122.6(5)	C71A	C66A	B1	117.1(8)
C63	C58	C59	116.1(5)	C67B	C66B	B1	113.9(10)

C63 C58	B1 120.9(6)	C67B C66B C71B 116.1(12)
C58 C59	C60 121.8(6)	C71B C66B B1 129.9(11)
C59 C60	C64 117.2(6)	C66A C67A C68A 120.2(8)
C61 C60	C59 121.9(6)	C68B C67B C66B 119.9(16)
C61 C60	C64 120.6(6)	C67A C68A C72A 117.1(10)
C60 C61	C62 117.1(6)	C69A C68A C67A 119.8(8)
C61 C62	C63 120.7(6)	C69A C68A C72A 123.0(11)
C61 C62	C65 118-1(6)	C67B C68B C72B 121.2(15)
C63 C62	$C_{65} = 121.2(6)$	C69B C68B C67B 125 5(16)
C58 C63	$C_{62} = 122.5(6)$	C69B C68B C72B 1128(12)
E7 C64	$C_{02} = 122.3(0)$	C70A $C60A$ $C68A$ $1202(7)$
F7 C04	C00 115.8(8)	C/0A CO9A CO8A 120.2(7)
F8 C64	F/ 100.8(7)	C68B C69B C/0B 114.1(15)
F8 C64	C60 113.8(7)	C69A C/0A C/1A 120.5(7)
F9 C64	F7 97.7(7)	C69A C70A C73A 116.7(10)
F9 C64	F8 108.8(7)	C71A C70A C73A 122.8(10)
F9 C64	C60 117.7(6)	C69B C70B C71B 122.1(14)
F10 C65	F11 101.9(6)	C69B C70B C73B 118.7(11)
F10 C65	F12 110.5(8)	C71B C70B C73B 119.1(12)
F10 C65	C62 114.9(9)	C66A C71A C70A 119.8(7)
F11 C65	C62 110.4(8)	C66B C71B C70B 122.3(13)
F12 C65	F11 101.3(9)	F13A C72A F14A 103.1(9)
F12 C65	C62 116.1(6)	F13A C72A C68A 116.3(14)
C50 B1	C58 1124(6)	F14A C72A C68A 110 8(13)
C50 B1	$C_{56} = 112.4(0)$	F15A C72A F13A 103 1(9)
C50 D1	C66P 118 6(6)	F15A = C72A = F15A = 103.1(9)
C50 B1	C00B 118.0(0)	FISA C/2A FI4A 102.2(9)
C20 B1	C/4B 101.4(7)	F15A C/2A C68A 119.2(14)
C58 B1	C66A 97.8(5)	F13B C72B F14B 102.2(10)
C58 B1	C66B 109.3(6)	F13B C72B F15B 102.3(10)
C58 B1	C74B 107.6(7)	F13B C72B C68B 115.3(13)
C74A B1	C50 105.1(6)	F14B C72B F15B 101.1(9)
C74A B1	C58 115.1(6)	F14B C72B C68B 116.9(13)
C82 C81	C86 115.2(5)	F15B C72B C68B 116.7(14)
C82 C81	B2 123.9(5)	F16A C73A F18A 103.6(9)
C86 C81	B2 120.8(5)	F16A C73A C70A 113.8(12)
C83 C82	C81 122.4(5)	F17A C73A F16A 105.3(9)
C82 C83	C87 117.9(6)	F17A C73A F18A 103.8(8)
C84 C83	C^{82} 1213(6)	F17A C73A C70A 114 0(11)
C84 C83	C87 1208(6)	F18A C73A C70A 115 1(11)
C83 C84	$C_{85} = 117.7(5)$	F16B C73B C70B 117 3(11)
C84 C85	$C_{88} = 121.2(5)$	E17P C72P E16P 102 4(0)
$C_{04} C_{05}$	$C_{88} = 121.2(5)$	E17D C72D E18D 104.5(0)
	$C_{84} = 120.4(5)$	F17B C73B F18B 104.5(9)
		F1/B C/3B C/0B 113.9(11)
C85 C86	(81 122.9(5)	F18B C/3B F16B 102.0(9)
F25 C87	F26 103.6(7)	F18B C/3B C/0B 112.9(12)
F25 C87	F27 108.8(7)	C043 C74A B1 123.3(8)
F25 C87	C83 112.8(7)	C043 C74A C75A 116.7(11)
F26 C87	C83 111.7(6)	C75A C74A B1 119.7(9)
F27 C87	F26 105.5(7)	C75B C74B B1 122.5(13)
F27 C87	C83 113.7(6)	C79B C74B B1 120.4(12)
F28 C88	F29 107.2(5)	C79B C74B C75B 117.1(17)
F28 C88	F30 107.6(5)	C76A C75A C74A 122.1(11)
F28 C88	C85 112.9(5)	C76B C75B C74B 124.3(16)
F29 C88	C85 111.5(5)	C75A C76A C79A 118.2(10)
F30 C88	F29 105.3(6)	C77A C76A C75A 121.0(10)
F30 C88	C85 112.0(5)	C77A C76A C79A 120.8(9)
C90 C89	B2 1219(5)	C75B C76B C77B 117 5(15)
C0/ C09	C90 1146(5)	C75B C76B C80B 124 6(12)
C04 C09	$P_{2} = 123.6(5)$	$\begin{array}{c} \text{C77B} \text{C76B} \text{C80B} 124.0(13) \\ \text{C77B} \text{C76B} \text{C80B} 117.0(12) \\ \end{array}$
C01 C02	123.0(3)	C78A C77A C76A 11(A(11))
C91 C90	(09 122.3(3))	C70D C77D C7CD 110.4(11)
C90 C91	(5) 118.5(5)	C/8B C//B C/6B 119.3(15)
C92 C91	C90 121.4(5)	C043 C/8A C80A 118.5(10)
C92 C91	C95 120.1(5)	C77A C78A C043 123.6(11)
C91 C92	C93 117.1(5)	C77A C78A C80A 1179(10)
		C//A C/0A C00A 11/.)(10)
C92 C93	C96 119.6(5)	C77B C78B C81B 120.3(12)

C93C94C89123.2(5)F19AC79AF20A105.3(8)F31C95F32105.4(5)F19AC79AF21A105.4(8)F31C95C91112.0(5)F19AC79AC76A114.7(9)F32C95C91112.0(5)F20AC79AC76A114.7(9)F33C95F31107.0(5)F21AC79AC76A114.0(9)F33C95F32107.2(6)F21AC79AC76A114.0(9)F33C95C91112.8(5)C78BC79BC74B119.8(16)F34C96F35108.2(6)F22AC80AC78A116.5(10)F34C96F36108.5(5)F23AC80AF22A103.0(8)F35C96C93112.9(5)F23AC80AF2AA104.3(8)F35C96C93110.1(5)F23AC80AC78A115.1(1)F36C96F35102.9(5)F24AC80AC78A113.4(10)C98C97C102116.0(5)F19BC80BC70B112.3(11)C98C97B2118.9(4)F20BC80BC76B112.3(11)C99C98C97122.1(5)F21BC80BF20B104.1(9)C98C99C103118.4(5)F22BC81BC78B117.1(11)C99C100C101116.8(5)F23BC81BC78B117.1(11)C99C	C94	C93	C96	118.9(5)	C79B	C78B	C81B	117.6(13)
F31C95F32105.4(5)F19AC79AF21A105.4(8)F31C95C91112.0(5)F19AC79AC76A114.7(9)F32C95C91112.0(5)F20AC79AC76A111.9(9)F33C95F31107.0(5)F21AC79AC76A114.0(9)F33C95F32107.2(6)F21AC79AC76A114.0(9)F33C95C91112.8(5)C78BC79BC74B119.8(16)F34C96F35108.2(6)F22AC80AC78A116.5(10)F34C96F36108.5(5)F23AC80AF22A103.0(8)F34C96C93112.9(5)F23AC80AC78A115.1(11)F36C96C93110.1(5)F23AC80AC78A113.4(10)C98C97C102116.0(5)F19BC80BC76B112.3(11)C102C97B2118.9(4)F20BC80BC76B112.3(11)C102C97B2118.9(4)F20BC80BC76B117.1(1)C99C100121.4(5)F21BC80BC76B117.1(1)C99C100116.8(5)F22BC81BF22B102.8(9)C100C101116.8(5)F23BC81BC76B117.1(1)C99C100C101116.8(5)F23BC81BC76B117.1(1)C99C100C101116.8(5)	C93	C94	C89	123.2(5)	F19A	C79A	F20A	105.3(8)
F31C95C91112.0(5)F19AC79AC76A114.7(9)F32C95C91112.0(5)F20AC79AC76A111.9(9)F33C95F31107.0(5)F21AC79AC76A114.0(9)F33C95F32107.2(6)F21AC79AC76A114.0(9)F33C95C91112.8(5)C78BC79BC74B119.8(16)F34C96F35108.2(6)F22AC80AC78A116.5(10)F34C96F36108.5(5)F23AC80AF22A103.0(8)F34C96C93112.9(5)F23AC80AF24A104.3(8)F35C96C93110.1(5)F23AC80AC78A115.1(11)F36C96F35102.9(5)F24AC80AC78A113.4(10)C98C97C102116.0(5)F19BC80BF20B102.7(9)C98C97B2125.1(4)F19BC80BC76B115.3(11)C102C97B2118.9(4)F20BC80BC76B117.1(11)C99C103118.4(5)F21BC80BC76B117.1(11)C99C103118.4(5)F22BC81BF22B102.8(9)C100C101116.8(5)F23BC81BC78B115.6(11)C100C99C103118.4(5)F24BC81BF23B103.4(9)C100C101C104118.2(F31	C95	F32	105.4(5)	F19A	C79A	F21A	105.4(8)
F32C95C91112.0(5)F20AC79AC76A111.9(9)F33C95F31107.0(5)F21AC79AF20A104.5(8)F33C95F32107.2(6)F21AC79AC76A114.0(9)F33C95C91112.8(5)C78BC79BC74B119.8(16)F34C96F35108.2(6)F22AC80AC78A116.5(10)F34C96F36108.5(5)F23AC80AF22A103.0(8)F34C96C93112.9(5)F23AC80AF24A104.3(8)F35C96C93110.1(5)F23AC80AF24A104.3(8)F36C96F35102.9(5)F24AC80AF22A103.0(8)F36C96C93113.7(5)F24AC80AF2A103.0(8)F36C96C93113.7(5)F24AC80AC78B112.3(11)C98C97B2125.1(4)F19BC80BC76B112.3(11)C102C97B2118.9(4)F20BC80BC76B115.3(11)C99C98C97122.1(5)F21BC80BF20B104.1(9)C98C99C100114.4(5)F21BC80BC76B117.1(11)C100C99C103118.4(5)F22BC81BC78B115.6(11)C100C101116.8(5)F22BC81BC78B115.6(11)C100C101 <t< td=""><td>F31</td><td>C95</td><td>C91</td><td>112.0(5)</td><td>F19A</td><td>C79A</td><td>C76A</td><td>114.7(9)</td></t<>	F31	C95	C91	112.0(5)	F19A	C79A	C76A	114.7(9)
F33C95F31107.0(5)F21AC79AF20A104.5(8)F33C95F32107.2(6)F21AC79AC76A114.0(9)F33C95C91112.8(5)C78BC79BC74B119.8(16)F34C96F35108.2(6)F22AC80AC78A116.5(10)F34C96F36108.5(5)F23AC80AF22A103.0(8)F34C96C93112.9(5)F23AC80AF24A104.3(8)F35C96C93110.1(5)F23AC80AC78A115.1(11)F36C96F35102.9(5)F24AC80AC78A113.4(10)C98C97C102116.0(5)F19BC80BF20B102.7(9)C98C97B2125.1(4)F19BC80BC76B115.3(11)C99C98C97122.1(5)F21BC80BF20B103.7(9)C98C99C100121.4(5)F21BC80BF20B104.1(9)C98C99C10318.4(5)F22BC81BC78B117.1(11)C100C99C103118.4(5)F22BC81BC78B115.6(11)C100C101C104120.1(5)F23BC81BC78B115.6(11)C100C101C104118.2(5)F24BC81BF23B103.4(9)C101C104C104118.2(5)F24BC81BC78B117.5(12)F3	F32	C95	C91	112.0(5)	F20A	C79A	C76A	111.9(9)
F33C95F32107.2(6)F21AC79AC76A114.0(9)F33C95C91112.8(5)C78BC79BC74B119.8(16)F34C96F35108.2(6)F22AC80AC78A116.5(10)F34C96F36108.5(5)F23AC80AF22A103.0(8)F34C96C93112.9(5)F23AC80AF24A104.3(8)F35C96C93110.1(5)F23AC80AF24A104.3(8)F36C96F35102.9(5)F24AC80AF2A103.0(8)F36C96F35102.9(5)F24AC80AF2A103.0(8)F36C96C93113.7(5)F24AC80AF2A103.0(8)F36C96C93113.7(5)F24AC80AC78A114.1(1)C98C97C102116.0(5)F19BC80BF20B102.7(9)C98C97B2125.1(4)F19BC80BF20B112.3(11)C102C97B2118.9(4)F20BC80BF20B104.1(9)C98C99C100121.4(5)F21BC80BF20B104.1(9)C98C99C103120.1(4)F21BC80BC76B117.1(11)C100C99C103118.4(5)F22BC81BC78B115.6(11)C100C101116.8(5)F23BC81BF23B104.3(0)C100C101C	F33	C95	F31	107.0(5)	F21A	C79A	F20A	104.5(8)
F33C95C91112.8(5)C78BC79BC74B119.8(16)F34C96F35108.2(6)F22AC80AC78A116.5(10)F34C96F36108.5(5)F23AC80AF22A103.0(8)F34C96C93112.9(5)F23AC80AF24A104.3(8)F35C96C93110.1(5)F23AC80AF24A104.3(8)F36C96F35102.9(5)F24AC80AF24A103.0(8)F36C96C93113.7(5)F24AC80AF2A103.0(8)F36C96C93113.7(5)F24AC80AC78A115.1(1)C98C97C102116.0(5)F19BC80BF20B102.7(9)C98C97B2125.1(4)F19BC80BF20B102.7(9)C98C99C100121.4(5)F21BC80BF19B103.7(9)C98C99C100121.4(5)F21BC80BF20B104.1(9)C98C99C103120.1(4)F21BC80BC76B117.1(11)C100C99C103118.4(5)F22BC81BC78B115.6(11)C100C101C104120.1(5)F23BC81BF23B104.3(0)C102C101C104118.2(5)F24BC81BF23B103.4(9)C100C101C104118.2(5)F24BC81BC78B117.5(12)F37 </td <td>F33</td> <td>C95</td> <td>F32</td> <td>107.2(6)</td> <td>F21A</td> <td>C79A</td> <td>C76A</td> <td>114.0(9)</td>	F33	C95	F32	107.2(6)	F21A	C79A	C76A	114.0(9)
F34C96F35 $108.2(6)$ F22AC80AC78A $116.5(10)$ F34C96F36 $108.5(5)$ F23AC80AF22A $103.0(8)$ F34C96C93 $112.9(5)$ F23AC80AF24A $104.3(8)$ F35C96C93 $110.1(5)$ F23AC80AF24A $104.3(8)$ F36C96F35 $102.9(5)$ F24AC80AF24A $103.0(8)$ F36C96C93 $113.7(5)$ F24AC80AF24A $103.0(8)$ F36C96C93 $113.7(5)$ F24AC80AF2A $103.0(8)$ F36C96C93 $113.7(5)$ F24AC80AC78A $115.1(11)$ C98C97C102 $116.0(5)$ F19BC80BF20B $102.7(9)$ C98C97B2 $125.1(4)$ F19BC80BC76B $112.3(11)$ C102C97B2 $118.9(4)$ F20BC80BC76B $115.3(11)$ C99C99C100 $121.4(5)$ F21BC80BF20B $104.1(9)$ C98C99C103 $120.1(4)$ F21BC80BC76B $117.1(11)$ C100C99C103 $118.4(5)$ F22BC81BC78B $115.6(11)$ C100C101 $116.8(5)$ F23BC81BF22B $104.3(10)$ C100C101C104 $120.1(5)$ F24BC81BF23B $103.4(9)$ C100C101C104 $118.2(5)$ F24BC81	F33	C95	C91	112.8(5)	C78B	C79B	C74B	119.8(16)
F34C96F36108.5(5)F23AC80AF22A103.0(8)F34C96C93112.9(5)F23AC80AF24A104.3(8)F35C96C93110.1(5)F23AC80AC78A115.1(11)F36C96F35102.9(5)F24AC80AF22A103.0(8)F36C96C93113.7(5)F24AC80AC78A113.4(10)C98C97C102116.0(5)F19BC80BF20B102.7(9)C98C97B2125.1(4)F19BC80BC76B112.3(11)C102C97B2118.9(4)F20BC80BC76B115.3(11)C99C99C100121.4(5)F21BC80BF20B104.1(9)C98C99C103120.1(4)F21BC80BC76B117.1(11)C100C99C103118.4(5)F22BC81BC78B111.7(11)C99C100C101116.8(5)F23BC81BF22B104.3(10)C102C101C104120.1(5)F24BC81BF23B104.3(10)C102C101C104118.2(5)F24BC81BF23B103.4(9)C101C102C97122.1(5)F24BC81BF23B103.4(9)C101C104118.2(5)F24BC81BF23B103.4(9)C102C101C104118.2(5)F24BC81BC78B117.5(12)F37 <td>F34</td> <td>C96</td> <td>F35</td> <td>108.2(6)</td> <td>F22A</td> <td>C80A</td> <td>C78A</td> <td>116.5(10)</td>	F34	C96	F35	108.2(6)	F22A	C80A	C78A	116.5(10)
F34C96C93112.9(5)F23AC80AF24A104.3(8)F35C96C93110.1(5)F23AC80AC78A115.1(11)F36C96F35102.9(5)F24AC80AF22A103.0(8)F36C96C93113.7(5)F24AC80AC78A113.4(10)C98C97C102116.0(5)F19BC80BF20B102.7(9)C98C97B2125.1(4)F19BC80BC76B112.3(11)C102C97B2118.9(4)F20BC80BC76B115.3(11)C99C98C97122.1(5)F21BC80BF20B104.1(9)C98C99C100121.4(5)F21BC80BC76B117.1(11)C100C99C103118.4(5)F22BC81BC78B111.7(11)C99C100C101116.8(5)F23BC81BF22B104.3(10)C102C101C104120.1(5)F23BC81BF22B104.3(10)C102C101C104122.1(5)F24BC81BF23B103.4(9)C100C101C104118.2(5)F24BC81BF23B103.4(9)C101C102C97122.1(5)F24BC81BF23B103.4(9)C101C104118.2(5)F24BC81BF23B103.4(9)C101C102C97122.1(5)F24BC81BC78B117.5(12)F37 <td>F34</td> <td>C96</td> <td>F36</td> <td>108.5(5)</td> <td>F23A</td> <td>C80A</td> <td>F22A</td> <td>103.0(8)</td>	F34	C96	F36	108.5(5)	F23A	C80A	F22A	103.0(8)
F35C96C93110.1(5)F23AC80AC78A115.1(11)F36C96F35102.9(5)F24AC80AF22A103.0(8)F36C96C93113.7(5)F24AC80AC78A113.4(10)C98C97C102116.0(5)F19BC80BF20B102.7(9)C98C97B2125.1(4)F19BC80BC76B112.3(11)C102C97B2118.9(4)F20BC80BC76B115.3(11)C99C98C97122.1(5)F21BC80BF20B104.1(9)C98C99C100121.4(5)F21BC80BC76B117.1(11)C100C99C103118.4(5)F22BC81BC78B111.7(11)C99C100C101116.8(5)F23BC81BF22B102.8(9)C100C101C104120.1(5)F23BC81BF22B104.3(10)C102C101C104118.2(5)F24BC81BF23B103.4(9)C101C102C97122.1(5)F24BC81BF23B103.4(9)C101C102C97122.1(5)F24BC81BC78B117.5(12)F37C103C99111.9(4)F24BF24BF24BF24BF24B	F34	C96	C93	112.9(5)	F23A	C80A	F24A	104.3(8)
F36C96F35 $102.9(5)$ F24AC80AF22A $103.0(8)$ F36C96C93 $113.7(5)$ F24AC80AC78A $113.4(10)$ C98C97C102 $116.0(5)$ F19BC80BF20B $102.7(9)$ C98C97B2 $125.1(4)$ F19BC80BC76B $112.3(11)$ C102C97B2 $118.9(4)$ F20BC80BC76B $115.3(11)$ C99C99C100 $121.4(5)$ F21BC80BF20B $104.1(9)$ C98C99C103 $120.1(4)$ F21BC80BC76B $117.1(11)$ C100C99C103 $118.4(5)$ F22BC81BC78B $111.7(11)$ C99C100C101 $116.8(5)$ F23BC81BF22B $102.8(9)$ C100C101C104 $120.1(5)$ F24BC81BF22B $104.3(10)$ C102C101C104 $118.2(5)$ F24BC81BF23B $103.4(9)$ C101C102C97 $122.1(5)$ F24BC81BC78B $117.5(12)$ F37C103C99 $111.9(4)$ $111.9(4)$ $111.9(4)$ $111.9(4)$	F35	C96	C93	110.1(5)	F23A	C80A	C78A	115.1(11)
F36 C96 C93 113.7(5) F24A C80A C78A 113.4(10) C98 C97 C102 116.0(5) F19B C80B F20B 102.7(9) C98 C97 B2 125.1(4) F19B C80B C76B 112.3(11) C102 C97 B2 118.9(4) F20B C80B C76B 115.3(11) C99 C98 C97 122.1(5) F21B C80B F19B 103.7(9) C98 C99 C100 121.4(5) F21B C80B F20B 104.1(9) C98 C99 C103 120.1(4) F21B C80B C76B 117.1(11) C100 C99 C103 118.4(5) F22B C81B C78B 111.7(11) C99 C100 C101 116.8(5) F23B C81B F22B 102.8(9) C100 C101 116.8(5) F23B C81B F22B 104.3(10) C102 C101 C104 120.1(5) F24B C81B F22B 104.3(10)	F36	C96	F35	102.9(5)	F24A	C80A	F22A	103.0(8)
C98 C97 C102 116.0(5) F19B C80B F20B 102.7(9) C98 C97 B2 125.1(4) F19B C80B C76B 112.3(11) C102 C97 B2 118.9(4) F20B C80B C76B 115.3(11) C99 C98 C97 122.1(5) F21B C80B F19B 103.7(9) C98 C99 C100 121.4(5) F21B C80B F20B 104.1(9) C98 C99 C103 120.1(4) F21B C80B C76B 117.1(11) C100 C99 C103 118.4(5) F22B C81B C78B 111.7(11) C99 C100 C101 116.8(5) F23B C81B F22B 102.8(9) C100 C101 121.6(5) F24B C81B F22B 104.3(10) C102 C101 C104 122.6(5) F24B C81B F23B 103.4(9) C101 C102 C97 122.1(5) F24B C81B C78B 117.5(12)	F36	C96	C93	113.7(5)	F24A	C80A	C78A	113.4(10)
C98 C97 B2 125.1(4) F19B C80B C76B 112.3(11) C102 C97 B2 118.9(4) F20B C80B C76B 115.3(11) C99 C98 C97 122.1(5) F21B C80B F19B 103.7(9) C98 C99 C100 121.4(5) F21B C80B F20B 104.1(9) C98 C99 C103 120.1(4) F21B C80B C76B 117.1(11) C100 C99 C103 120.1(4) F21B C80B C76B 117.1(11) C100 C99 C103 118.4(5) F22B C81B C78B 111.7(11) C99 C100 C101 116.8(5) F23B C81B F22B 102.8(9) C100 C101 C104 120.1(5) F24B C81B F22B 104.3(10) C102 C101 C104 118.2(5) F24B C81B F23B 103.4(9) C101 C102 C97 122.1(5) F24B C81B C78B 117.5(12) <td>C98</td> <td>C97</td> <td>C102</td> <td>116.0(5)</td> <td>F19B</td> <td>C80B</td> <td>F20B</td> <td>102.7(9)</td>	C98	C97	C102	116.0(5)	F19B	C80B	F20B	102.7(9)
C102 C97 B2 118.9(4) F20B C80B C76B 115.3(11) C99 C98 C97 122.1(5) F21B C80B F19B 103.7(9) C98 C99 C100 121.4(5) F21B C80B F20B 104.1(9) C98 C99 C103 120.1(4) F21B C80B C76B 117.1(11) C100 C99 C103 118.4(5) F22B C81B C78B 111.7(11) C99 C100 C101 116.8(5) F23B C81B F22B 102.8(9) C100 C101 C104 120.1(5) F24B C81B F22B 104.3(10) C100 C101 C104 120.1(5) F24B C81B F22B 104.3(10) C102 C101 C104 118.2(5) F24B C81B F23B 103.4(9) C101 C102 C97 122.1(5) F24B C81B C78B 117.5(12) F37 C103 C99 111.9(4)	C98	C97	B2	125.1(4)	F19B	C80B	C76B	112.3(11)
C99 C98 C97 122.1(5) F21B C80B F19B 103.7(9) C98 C99 C100 121.4(5) F21B C80B F20B 104.1(9) C98 C99 C103 120.1(4) F21B C80B C76B 117.1(11) C100 C99 C103 118.4(5) F22B C81B C78B 111.7(11) C99 C100 C101 116.8(5) F23B C81B F22B 102.8(9) C100 C101 C104 120.1(5) F24B C81B F22B 104.3(10) C102 C101 C104 121.6(5) F24B C81B F23B 103.4(9) C102 C101 C104 118.2(5) F24B C81B F23B 103.4(9) C101 C102 C97 122.1(5) F24B C81B C78B 117.5(12) F37 C103 C99 111.9(4) C99 C99 C99 C99 C99	C102	C97	B2	118.9(4)	F20B	C80B	C76B	115.3(11)
C98 C99 C100 121.4(5) F21B C80B F20B 104.1(9) C98 C99 C103 120.1(4) F21B C80B C76B 117.1(11) C100 C99 C103 118.4(5) F22B C81B C78B 111.7(11) C99 C100 C101 116.8(5) F23B C81B F22B 102.8(9) C100 C101 C104 120.1(5) F24B C81B F22B 104.3(10) C102 C101 C104 120.1(5) F24B C81B F22B 104.3(10) C102 C101 C104 118.2(5) F24B C81B F23B 103.4(9) C101 C102 C97 122.1(5) F24B C81B C78B 117.5(12) F37 C103 C99 111.9(4) C104 C11.9(4) C11.9(4) C11.9(4)	C99	C98	C97	122.1(5)	F21B	C80B	F19B	103.7(9)
C98 C99 C103 120.1(4) F21B C80B C76B 117.1(11) C100 C99 C103 118.4(5) F22B C81B C78B 111.7(11) C99 C100 C101 116.8(5) F23B C81B F22B 102.8(9) C100 C101 C104 120.1(5) F23B C81B F22B 104.3(10) C102 C101 C104 118.2(5) F24B C81B F23B 103.4(9) C101 C102 C97 122.1(5) F24B C81B C78B 117.5(12) F37 C103 C99 111.9(4) C99 C104 C99 C104	C98	C99	C100	121.4(5)	F21B	C80B	F20B	104.1(9)
C100 C99 C103 118.4(5) F22B C81B C78B 111.7(11) C99 C100 C101 116.8(5) F23B C81B F22B 102.8(9) C100 C101 C104 120.1(5) F23B C81B C78B 115.6(11) C102 C101 C104 121.6(5) F24B C81B F22B 104.3(10) C102 C101 C104 118.2(5) F24B C81B F23B 103.4(9) C101 C102 C97 122.1(5) F24B C81B C78B 117.5(12) F37 C103 C99 111.9(4) C103 C104	C98	C99	C103	120.1(4)	F21B	C80B	C76B	117.1(11)
C99 C100 C101 116.8(5) F23B C81B F22B 102.8(9) C100 C101 C104 120.1(5) F23B C81B C78B 115.6(11) C102 C101 C100 121.6(5) F24B C81B F22B 104.3(10) C102 C101 C104 118.2(5) F24B C81B F23B 103.4(9) C101 C102 C97 122.1(5) F24B C81B C78B 117.5(12) F37 C103 C99 111.9(4) C104 C11.9(4) C11.9(4) C11.9(4)	C100	C99	C103	118.4(5)	F22B	C81B	C78B	111.7(11)
C100 C101 C104 120.1(5) F23B C81B C78B 115.6(11) C102 C101 C100 121.6(5) F24B C81B F22B 104.3(10) C102 C101 C104 118.2(5) F24B C81B F23B 103.4(9) C101 C102 C97 122.1(5) F24B C81B C78B 117.5(12) F37 C103 C99 111.9(4) C104 C11.9(4) C104 C11.9(4)	C99	C100	C101	116.8(5)	F23B	C81B	F22B	102.8(9)
C102 C101 C100 121.6(5) F24B C81B F22B 104.3(10) C102 C101 C104 118.2(5) F24B C81B F23B 103.4(9) C101 C102 C97 122.1(5) F24B C81B C78B 117.5(12) F37 C103 C99 111.9(4) C103	C100	C101	C104	120.1(5)	F23B	C81B	C78B	115.6(11)
C102 C101 C104 118.2(5) F24B C81B F23B 103.4(9) C101 C102 C97 122.1(5) F24B C81B C78B 117.5(12) F37 C103 C99 111.9(4) C81B C81B C81B C81B C81B	C102	C101	C100	121.6(5)	F24B	C81B	F22B	104.3(10)
C101 C102 C97 122.1(5) F24B C81B C78B 117.5(12) F37 C103 C99 111.9(4)	C102	C101	C104	118.2(5)	F24B	C81B	F23B	103.4(9)
F37 C103 C99 111.9(4)	C101	C102	C97	122.1(5)	F24B	C81B	C78B	117.5(12)
	F37	C103	C99	111.9(4)				

¹1-X,2-Y,-Z

Table S4. Torsion Angles for pentacenequinone⊂C-2.

	_		_			_	-	_	
A	В	С	D	Angle/°	Α	В	С	D	Angle/°
Pd1	N1	C1	C2	-177.1(4)	C97	C98	C99	C103	-177.7(5)
Pd1	N1	C5	C4	178.2(4)	C98	C97	C102	C101	0.8(8)
Pd1 ¹	N3	C16	C15	179.4(4)	C98	C97	B2	C81	14.9(7)
Pd1 ¹	N3	C17	C18	-179.8(4)	C98	C97	B2	C89	-105.7(6)
Pd1	N4	C20	C21	175.3(4)	C98	C97	B2	C105	133.8(5)
Pd1	N4	C24	C23	-175.6(5)	C98	C99	C100	C101	0.2(8)
Pd1 ¹	N6	C35	C34	-170.3(5)	C98	C99	C103	F37	80.2(6)
Pd1 ¹	N6	C36	C37	172.1(7)	C98	C99	C103	F38	-37.2(7)
N1	C1	C2	C3	-1.4(8)	C98	C99	C103	F39	-160.1(5)
N1	C1	C2	C6	179.9(5)	C99	C100	C101	C102	1.6(9)
N3	C17	C18	C19	-0.1(9)	C99	C100	C101	C104	-175.0(6)
N4	C20	C21	C22	1.9(8)	C100	C99	C103	F37	-96.0(6)
N4	C20	C21	C25	-174.8(5)	C100	C99	C103	F38	146.6(5)
N5	C27	C28	C29	-1.2(10)	C100	C99	C103	F39	23.7(7)
N6	C36	C37	C38	-1.7(14)	C100	C101	C102	C97	-2.2(9)
C1	N1	C5	C4	1.3(8)	C100	C101	C104	F40	8.2(10)
C1	C2	C3	C4	1.8(8)	C100	C101	C104	F41	-115.7(7)
C2	C3	C4	C5	-0.7(9)	C100	C101	C104	F42	127.2(7)
C3	C4	C5	N1	-0.9(9)	C102	C97	C98	C99	1.1(8)
C5	N1	C1	C2	-0.1(7)	C102	C97	B2	C81	-167.0(5)
C6	C2	C3	C4	-179.6(5)	C102	C97	B2	C89	72.4(6)
C6	C7	C8B	N0AA	132(2)	C102	C97	B2	C105	-48.1(7)
C6	C7	C8B	C9B	-75(3)	C102	C101	C104	F40	-168.5(6)
C7	C8A	C9A	C10A	170.9(8)	C102	C101	C104	F41	67.6(8)
C7	C8B	C9B	C10B	-149.0(15)	C102	C101	C104	F42	-49.5(9)
C14	C13	C12B	N0AA	113(3)	C103	C99	C100	C101	176.3(5)
C14	C13	C12B	C11B	-107(4)	C104	C101	C102	C97	174.5(6)
C14	C15	C16	N3	179.7(6)	C105	C106	C107	C108	-0.3(10)
C14	C15	C19	C18	-179.6(6)	C105	C106	C107	C111	179.6(6)
C16	N3	C17	C18	0.2(8)	C106	C105	C110	C109	2.3(9)

C16	C15	C19	C18	-0.9(9)	C106	C105	B2	C81	-104.2(6)
C17	N3	C16	C15	-0.7(8)	C106	C105	B2	C89	17.1(8)
C17	C18	C19	C15	0.5(9)	C106	C105	B2	C97	136.9(6)
C19	C15	C16	N3	1.0(9)	C106	C107	C108	C109	0.2(11)
C20	N4	C24	C23	19(8)	C106	C107	C111	F43	61 7(9)
C20	C21	C21	C23	1.9(0)	C106	C107	C111	E44	55 0(0)
C20	C21	C22	C23	-1.2(9)	C100	C107	CIII	F44	-55.9(9)
C21	C22	C23	C24	1.0(10)	C106	C107	CIII	F45	-179.4(7)
C22	C23	C24	N4	-1.3(10)	C107	C108	C109	C110	1.2(11)
C24	N4	C20	C21	-2.2(7)	C107	C108	C109	C112	178.6(7)
C25	C21	C22	C23	175.4(6)	C108	C107	C111	F43	-118.4(8)
C26	C27	C28	C29	179.6(6)	C108	C107	C111	F44	124.0(8)
C27	N5	C31	C30	-0.9(9)	C108	C107	C111	F45	0.5(11)
C27	NI5	C21	C22	170.6(5)	C100	C100	C110	C105	26(11)
C27	N5	C31	C32	-1/9.0(5)	C108	C109	C110	C105	-2.0(11)
C27	C28	C29	C30	1.2(11)	C108	C109	C112	F46B	126.9(15)
C28	C29	C30	C31	-1.1(11)	C108	C109	C112	F47B	13(2)
C29	C30	C31	N5	0.9(11)	C108	C109	C112	F48B	-124.6(17)
C29	C30	C31	C32	179.6(7)	C108	C109	C112	F46A	151.1(14)
C31	N5	C27	C26	-179.8(5)	C108	C109	C112	F47A	27.4(17)
C31	N5	C27	C28	1.0(9)	C108	C109	C112	F48A	-83 5(13)
C33	C34	C35	N6	175 1(6)	C110	C105	C106	C107	-0.9(9)
C33	C24	C35	C27	179.1(0)	C110	C105	D2	C107	-0.5(5)
033	0.54	038	C3/	-1/8.1(9)	C110	C105	B2	081	/4.0(6)
C35	N6	C36	C37	-1.3(10)	C110	C105	B2	C89	-164.7(5)
C35	C34	C38	C37	-0.7(14)	C110	C105	B2	C97	-44.9(7)
C36	N6	C35	C34	3.3(8)	C110	C109	C112	F46B	-55.7(14)
C36	C37	C38	C34	2.6(16)	C110	C109	C112	F47B	-170(2)
C38	C34	C35	N6	-2.3(10)	C110	C109	C112	F48B	52.8(18)
C50	C51	C52	C53	0.1(13)	C110	C109	C112	F46A	-31 5(15)
C50	C51	C52	C55	179.7(11)	C110	C100	C112	E47A	-51.5(15)
C50	C51	052	0.56	1/8./(11)	C110	C109	C112	F4/A	-155.2(15)
C50	BI	C66A	C6/A	-35.7(8)	CHI0	C109	CHI2	F48A	93.9(12)
C50	B1	C66A	C71A	147.7(6)	C111	C107	C108	C109	-179.7(7)
C50	B1	C66B	C67B	-60.5(11)	C112	C109	C110	C105	-180.0(6)
C50	B1	C66B	C71B	123.8(12)	B2	C81	C82	C83	-173.0(5)
C50	B1	C74A	C043	88.4(11)	B2	C81	C86	C85	173.6(5)
C50	B1	C74A	C75A	-85.1(10)	B2	C89	C90	C91	179.1(4)
C50	B1	C74B	C75B	-78 9(10)	B2	C89	C94	C93	180.0(4)
C50	D1	C74D	C70D	100.2(8)	D2 D2	C07	C09	C00	170.2(5)
0.50	DI	C/4D	C/9D	100.2(8)	D2	C97	C98	C99	1/9.5(5)
C51	C50	C55	C54	2.6(9)	B 2	C97	C102	C101	-177.5(5)
C51	C50	B1	C58	-138.9(6)	B2	C105	C106	C107	177.4(6)
C51	C50	B1	C66A	-34.2(9)	B2	C105	C110	C109	-176.1(6)
C51	C50	B1	C66B	-9.6(10)	01	C39	C40	C41	179.6(4)
C51	C50	B1	C74A	95.2(8)	01	C39	C40	C45	0.9(7)
C51	C50	B1	C74B	106.4(8)	C39	C40	C41	C39 ¹	0.5(7)
C51	C52	C53	C54	13(13)	C39	C40	C41	C42	179 5(4)
C51	C52	C56	E1	525(16)	C20	C40	C45	C44	170.5(4)
C51	C52	C50	F1 F2	55.5(10)	C39	C40	C45	C44	179.3(4)
C51	C52	C36	FZ	-07(2)	C39 [.]	C41	C42	C43	-1/9.0(5)
C51	C52	C56	F3	170.7(12)	C40	C41	C42	C43	1.9(7)
C52	C53	C54	C55	-0.7(12)	C41 ¹	C39	C40	C41	-0.4(7)
C52	C53	C54	C57	178.2(8)	C41 ¹	C39	C40	C45	-179.1(4)
C53	C52	C56	F1	-127.9(13)	C41	C40	C45	C44	0.8(7)
C53	C52	C56	F2	111.4(15)	C41	C42	C43	C44	-1.0(8)
C53	C52	C56	F3	-11(2)	C41	C42	C43	C49	178 6(5)
C52	C54	C55	C50	12(11)	C42	C42	C44	C45	1/0.0(3)
C55	054	055	C30	-1.3(11)	C42	C45	C44	C45	0.0(7)
053	C54	057	F4	-162.0(7)	C42	C43	C44	C46	1/9.3(5)
C53	C54	C57	F5	-40.3(13)	C42	C43	C49	C48	-178.3(6)
C53	C54	C57	F6	80.7(9)	C43	C44	C45	C40	0.1(8)
C55	C50	C51	C52	-2.0(10)	C43	C44	C46	C47	-1.5(8)
C55	C50	B1	C58	47.3(8)	C44	C43	C49	C48	1.3(9)
C55	C50	B1	C66A	152.0(6)	C44	C46	C47	C48	2.3(10)
C55	C50	B1	C66B	176.5(7)	C45	C40	C41	C39 ¹	179.2(4)
C55	C50	B1	C74 A	-78 7(8)	C45	C40	C/1	C42	-1 8(7)
C55	C50	ים ים	C74D	(0.7(0)	CAE	C44	CAC	C47	177.9(7)
033	050	ы	C/4B	-07.4(8)	045	C44	C46	C4/	1//.8(6)
C55	C54	C57	F4	16.8(11)	C46	C44	C45	C40	-179.2(5)
C55	C54	C57	F5	138.6(9)	C46	C47	C48	C49	-1.3(11)
C55	C54	C57	F6	-100.4(10)	C47	C48	C49	C43	-0.5(11)
	001	001		()					

C57	C54	C55	C50	179.8(7)	C49	C43	C44	C46	-0.3(8)
C58	C59	C60	C61	-0.7(12)	N0AA	C8B	C9B	C10B	-0.3(3)
C58	C59	C60	C64	-174.5(7)	N2A	C8A	C9A	C10A	0.03(11)
C58	B1	C66A	C67A	79.9(7)	C8A	N2A	C12A	C13	-156.5(11)
C58	B1	C66A	C71A	-96.7(7)	C8A	N2A	C12A	C11A	-0.1(4)
C58	B1	C66B	C67B	70.1(10)	C8A	C9A	C10A	C11A	0.1(4)
C58	B1	C66B	C71B	-105.5(13)	C8B	N0AA	C12B	C13	136.6(15)
C58	B1	C74A	C043	-35.9(13)	C8B	N0AA	C12B	C11B	-0.5(6)
C58	B1	C74A	C75A	150.6(9)	C8B	C9B	C10B	C11B	0.8(6)
C58	B1	C74B	C75B	162.9(8)	C9A	C10A	C11A	C12A	-0.2(7)
C58	B1	C74B	C79B	-18.1(10)	C9B	C10B	C11B	C12B	-1.2(8)
C59	C58	C63	C62	-2.1(10)	C10A	C11A	C12A	C13	156.6(11)
C59	C58	B1	C50	27.4(8)	C10A	C11A	C12A	N2A	0.3(7)
C59	C58	B1	C66A	-81 2(8)	C10B	C11B	C12B	C13	-135 2(16)
C59	C58	B1	C66B	-106.4(8)	C10B	C11B	C12B	NOAA	1.1(9)
C59	C58	Bl	C74A	147.8(7)	C12A	N2A	C8A	C7	-171.3(7)
C59	C58	B1	C74B	138 3(8)	C12A	N2A	C8A	C9A	-0.01(16)
C59	C60	C61	C62	-0.6(12)	C12R	NOAA	C8B	C7	1526(13)
C59	C60	C64	E02	54.4(10)	C12B	ΝΟΔΔ	C8B	C9B	0.1(3)
C59	C60	C64	F8	-61 8(11)	C043	C74A	C75A	C76A	4.1(17)
C59	C60	C64	FQ	160 3(8)	C043	C78A	C80A	E22 A	101(17)
C59	C61	C67	C62	109.5(8)	C043	C78A	COOA	F22A	19.1(17) 101 7(14)
C60	C61	C62	C05	1.3(12)	C043	C78A	COOA	F23A	-101./(14)
C60	C61	C62	C65	-1/9.2(9)	C043	C/8A	C80A	F24A	138.3(12)
C01	C60	C64	Г/ ГО	-119.5(9)	COOA	C6/A	COSA	C69A	0.0(3)
C61	C60	C64	F8	124.3(9)	C66A	C6/A	C68A	C/2A	1/5.2(11)
C61	C60	C64	F9	-4.6(13)	C66B	C67B	C68B	C69B	-0.7(18)
C61	C62	C63	C58	0.9(12)	C66B	C6/B	C68B	C/2B	170.5(16)
C61	C62	C65	F10	-59.0(12)	C67A	C66A	C71A	C70A	0.3(6)
C61	C62	C65	F11	55.5(11)	C67A	C68A	C69A	C70A	0.0(6)
C61	C62	C65	F12	170.0(9)	C67A	C68A	C72A	F13A	17.8(16)
C63	C58	C59	C60	1.9(10)	C67A	C68A	C72A	F14A	135.1(10)
C63	C58	B1	C50	-160.3(6)	C67A	C68A	C72A	F15A	-106.8(13)
C63	C58	B1	C66A	91.0(7)	C67B	C66B	C71B	C70B	2.5(18)
C63	C58	B1	C66B	65.8(9)	C67B	C68B	C69B	C70B	1(2)
C63	C58	B1	C74A	-39.9(9)	C67B	C68B	C72B	F13B	15(2)
C63	C58	B1	C74B	-49.4(9)	C67B	C68B	C72B	F14B	134.9(13)
C63	C62	C65	F10	121.3(9)	C67B	C68B	C72B	F15B	-105.3(16)
C63	C62	C65	F11	-124.2(8)	C68A	C69A	C70A	C71A	0.2(9)
C63	C62	C65	F12	-9.7(15)	C68A	C69A	C70A	C73A	177.9(11)
C64	C60	C61	C62	173.0(8)	C68B	C69B	C70B	C71B	0(2)
C65	C62	C63	C58	-179.4(8)	C68B	C69B	C70B	C73B	-176.0(14)
B1	C50	C51	C52	-176.1(7)	C69A	C68A	C72A	F13A	-167.2(11)
B1	C50	C55	C54	176.9(6)	C69A	C68A	C72A	F14A	-49.9(14)
B1	C58	C59	C60	174.5(6)	C69A	C68A	C72A	F15A	68.3(15)
B1	C58	C63	C62	-174.8(7)	C69A	C70A	C71A	C66A	-0.3(8)
B1	C66A	C67A	C68A	-176.7(8)	C69A	C70A	C73A	F16A	168.1(9)
B1	C66A	C71A	C70A	177.0(8)	C69A	C70A	C73A	F17A	47.2(13)
B1	C66B	C67B	C68B	-177.4(11)	C69A	C70A	C73A	F18A	-72.6(12)
B1	C66B	C71B	C70B	178.1(11)	C69B	C68B	C72B	F13B	-172.9(14)
B1	C74A	C75A	C76A	178.1(10)	C69B	C68B	C72B	F14B	-52.8(19)
B1	C74B	C75B	C76B	179.0(12)	C69B	C68B	C72B	F15B	67.0(18)
B1	C74B	C79B	C78B	-178.9(12)	C69B	C70B	C71B	C66B	-2(2)
C81	C82	C83	C84	-1.6(9)	C69B	C70B	C73B	F16B	118.3(15)
C81	C82	C83	C87	-179.6(6)	C69B	C70B	C73B	F17B	-3.1(19)
C82	C81	C86	C85	-2.1(8)	C69B	C70B	C73B	F18B	-123.5(14)
C82	C81	B2	C89	-142.7(5)	C71A	C66A	C67A	C68A	-0.1(3)
C82	C81	B2	C97	96.9(6)	C71A	C70A	C73A	F16A	-14.3(15)
C82	C81	B2	C105	-20.8(7)	C71A	C70A	C73A	F17A	-135.2(11)
C82	C83	C84	C85	0.2(9)	C71A	C70A	C73A	F18A	105.0(12)
C82	C83	C87	F25	-48.4(9)	C71B	C66B	C67B	C68B	-1.2(13)
C82	C83	C87	F26	67.8(9)	C71B	C70B	C73B	F16B	-58.0(17)
C82	C83	C87	F27	-172.9(6)	C71B	C70B	C73B	F17B	-179.4(12)
C83	C84	C85	C86	0.2(8)	C71B	C70B	C73B	F18B	60.1(16)
C83	C84	C85	C88	-179.7(5)	C72.A	C68A	C69A	C70A	-174.9(12)
C84	C83	C87	F25	133.5(7)	C72B	C68B	C69B	C70B	-170 7(15)
-07	205	207	1 40		C/2D	C00D	2070	0,00	1,0.7(15)

C84 C83 C87 F27 9.0(10) C73B C70B C71B C66B 174.1(12) C84 C85 C86 C81 0.8(8) C74A C043 C78A C77A -1(2) C84 C85 C88 F28 -6.3(8) C74A C043 C78A C80A 177.1(11 C84 C85 C88 F29 114.4(6) C74A C043 C76A C77A -4.9(19) C84 C85 C88 F30 -127.9(6) C74A C75A C76A C77A -4.9(19) C86 C81 C82 C83 2.4(8) C74B C75A C76A C77A -4.9(19) C86 C81 B2 C83 2.4(8) C74B C75A C76A C79A 175.3(11 C86 C81 B2 C89 42.1(6) C74B C75B C76B C77B 0.0(3) C86 C81 B2 C97 78.3(6) <th>)))</th>)))
C84 C85 C86 C81 0.8(8) C74A C043 C78A C77A -1(2) C84 C85 C88 F28 -6.3(8) C74A C043 C78A C77A -1(2) C84 C85 C88 F28 -6.3(8) C74A C043 C78A C80A 177.1(11 C84 C85 C88 F29 114.4(6) C74A C75A C76A C77A -4.9(19) C84 C85 C88 F30 -127.9(6) C74A C75A C76A C79A 175.3(11 C86 C81 C82 C83 2.4(8) C74B C75B C76B C77B 0.0(3) C86 C81 B2 C89 42.1(6) C74B C75B C76B C78B 179.6(13) C86 C81 B2 C89 42.1(6) C74B C75B C76B C78B 179.6(13)))
C84 C85 C88 F28 -6.3(8) C74A C043 C78A C80A 177.1(11 C84 C85 C88 F29 114.4(6) C74A C75A C76A C77A -4.9(19) C84 C85 C88 F30 -127.9(6) C74A C75A C76A C79A 175.3(11 C86 C81 C82 C83 2.4(8) C74B C75B C76B C77B 0.0(3) C86 C81 B2 C89 42.1(6) C74B C75B C76B C80B 179.6(13) C86 C81 B2 C89 42.1(6) C74B C75B C76B C80B 179.6(13)))
C84 C85 C88 F29 114.4(6) C74A C75A C76A C77A -4.9(19) C84 C85 C88 F30 -127.9(6) C74A C75A C76A C77A 175.3(11) C86 C81 C82 C83 2.4(8) C74B C75B C76B C77B 0.0(3) C86 C81 B2 C89 42.1(6) C74B C75B C76B C80B 179.6(13) C86 C81 B2 C67 78.3(6) C75A C76A C77A 2.2(10))
C84 C85 C88 F30 -127.9(6) C74A C75A C76A C79A 175.3(11 C86 C81 C82 C83 2.4(8) C74B C75B C76B C77B 0.0(3) C86 C81 B2 C89 42.1(6) C74B C75B C76B C80B 179.6(13) C86 C81 B2 C89 42.1(6) C74B C75B C76B C80B 179.6(13))
C86 C81 C82 C83 2.4(8) C74B C75B C76B C77B 0.0(3) C86 C81 B2 C89 42.1(6) C74B C75B C76B C80B 179.6(13) C86 C81 B2 C89 42.1(6) C74B C75B C76B C80B 179.6(13) C86 C81 B2 C97 78.3(6) C75A C77A C77A C77A 2.3(10))
C86 C81 B2 C89 42.1(6) C74B C75B C76B C80B 179.6(13) C86 C81 B2 C07 78.3(6) C75A C77A C77A C77A 2.3(10))
$C_{24} = C_{24} = C$	
Cov Co1 B2 C97 - 78.3(0) C75A C76A C77A C78A 2.3(19)	
C86 C81 B2 C105 163.9(5) C75A C76A C79A F19A -60.4(14)
C86 C85 C88 F28 173.8(5) C75A C76A C79A F20A 59.6(14)	
C86 C85 C88 F29 -65.5(7) C75A C76A C79A F21A 178.0(10)
C86 C85 C88 F30 52.2(8) C75B C74B C79B C78B 0.2(6)	
C87 C83 C84 C85 178.2(6) C75B C76B C77B C78B 0.0(6)	
C88 C85 C86 C81 -179.3(5) C75B C76B C80B F19B -21.3(15)
C89 C90 C91 C92 1.1(8) C75B C76B C80B F20B 95.9(13)	
C89 C90 C91 C95 179.7(5) C75B C76B C80B F21B -141.1(1	1)
C90 C89 C94 C93 -0.2(7) C76A C77A C78A C043 1(2)	
C90 C89 B2 C81 42.1(6) C76A C77A C78A C80A -177.8(1	1)
C90 C89 B2 C97 162.5(4) C76B C77B C78B C79B 0.1(9)	
C90 C89 B2 C105 -78.9(6) C76B C77B C78B C81B -179.6(1	2)
C90 C91 C92 C93 -0.5(7) C77A C76A C79A F19A 119.9(13)
C90 C91 C95 F31 53.3(7) C77A C76A C79A F20A -120.1(1	2)
C90 C91 C95 F32 -64.9(6) C77A C76A C79A F21A -1.8(16)	
C90 C91 C95 F33 174.0(5) C77A C78A C80A F22A -162.3(1	2)
C91 C92 C93 C94 -0.4(7) C77A C78A C80A F23A 76.9(15)	
C91 C92 C93 C96 179.4(4) C77A C78A C80A F24A -43.0(16)
C92 C91 C95 F31 -128.2(5) C77B C76B C80B F19B 158.3(10)
C92 C91 C95 F32 113.7(6) C77B C76B C80B F20B -84.5(12	,
C92 C91 C95 F33 -7.4(8) C77B C76B C80B F21B 38.5(14)	
C92 C93 C94 C89 0.8(7) C77B C78B C79B C74B -0.2(9)	
C92 C93 C96 F34 -125.9(6) C77B C78B C81B F22B 85.0(13)	
C92 C93 C96 F35 113.1(6) C77B C78B C81B F23B -32.1(15	,
C92 C93 C96 F36 -1.7(7) C77B C78B C81B F24B -154.7(1)))
C94 C89 C90 C91 -0.7(7) C78A C043 C74A B1 -174.7(1	I)
C94 C89 B2 C81 -138.1(5) C78A C043 C74A C75A -1.0(17)	
C94 C89 B2 C97 -17.8(6) C79A C76A C77A C78A -177.9(1	I)
C94 C89 B2 C105 100.8(5) C79B C74B C75B C76B -0.1(3)	
C94 C93 C96 F34 53.8(7) C79B C78B C81B F22B -94.8(12)
C94 C93 C96 F35 -67.1(7) C79B C78B C81B F23B 148.2(10)
C94 C93 C96 F36 178.0(5) C79B C78B C81B F24B 25.6(14)	
C95 C91 C92 C93 -179.1(5) C80B C76B C77B C78B -179.7(1	2)
C96 C93 C94 C89 -179.0(4) C81B C78B C79B C74B 179.5(12)
C97 C98 C99 C100 -1.6(8)	

¹1-X,2-Y,-Z

References

- [S1] D. P. August, G. S. Nichol, P. J. Lusby, Angew. Chem. Int. Ed. 2016, 55, 15022–15026.
- [S2] V. Martí-Centelles, A. L. Lawrence, P. J. Lusby, J. Am. Chem. Soc. 2018, 140, 2862-2868.
- [S3] Timur V. Elzhov, Katharine M. Mullen, Andrej-Nikolai Spiess and Ben Bolker (2015). minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. R package version 1.2-0. <u>https://CRAN.R-project.org/package=minpack.lm</u> [Accessed 31st August 2018]
- [S4] R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>. [Accessed 31st August 2018]
- [S5] Studio Team (2015). RStudio: Integrated Development for R, version 0.99.892. RStudio, Inc., Boston, MA URL <u>http://www.rstudio.com/</u>. [Accessed 31st August 2018]
- [S6] Kenneth A. Connors, Binding Constants: The Measurement of Molecular Complex Stability. New York: John Wiley & Sons, 1987.
- [S7] Berend Hasselman (2016). nleqslv: Solve Systems of Nonlinear Equations. R package version 3.0.3. <u>https://CRAN.R-project.org/package=nleqslv</u> [Accessed 31st August 2018]
- [S8] G. Ercolani, C. Piguet, M. Borkovec, J. Hamacek J. Phys. Chem. B 2007, 111, 12195–12203.
- [S9] T. A. Young, V. Martí-Centelles, J. Wang, P. J. Lusby, F. Duarte, J. Am. Chem. Soc. 2019, in press, DOI: 10.1021/jacs.9b103028.
- [S10] Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer (2010). Solving Differential Equations in R: Package deSolve. Journal of Statistical Software, 33(9), 1–25. URL <u>http://www.jstatsoft.org/v33/i09/ DOI</u> <u>10.18637/jss.v033.i09</u> [Accessed 31st August 2018]
- [S11] W. M. Getz, P. Lánsky, Chem. Senses 2001, 26, 95–104.
- [S12] P. Liao, B. W. Langloss, A. M. Johnson, E. R. Knudsen, F. S. Tham, R. R. Julian, R. J. Hooley, *Chem. Commun.* 2010, 46, 4932–4934.
- [S13] J. E. M. Lewis, E. L. Gavey, S. A. Cameron, J. D. Crowley, Chem. Sci. 2012, 3, 778–784.
- [S14] J. E. M. Lewis, J. D. Crowley, Supramol. Chem. 2014, 26, 173–181.
- [S15] D. Preston, J. E. M. Lewis, J. D. Crowley, J. Am. Chem. Soc. 2017, 139, 2379–2386.
- [S16] A. L. Spek, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 9–18.
- [S17] O.V. Dolomanov, L. J. Bourhis, R.J Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339–341.
- [S18] G.M. Sheldrick, Acta Cryst. 2015, A71, 3–8.
- [S19] G.M. Sheldrick, Acta Cryst. 2015, C71, 3-8.