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Supplementary Note 1: Details of XAS data collection 

 

 

For in-situ X-ray absorption spectroscopy (XAS) measurements for CuZn nanocatalysts we used 

a home-made cell for electrochemical measurements. A platinum mesh and leak free Ag/AgCl 

electrode were used as counter and reference electrodes, respectively. For the XAS studies, the 

CuZn NPs samples were deposited on a carbon foil substrate (GoodFellow), while the other side 

of the substrate was covered with Kapton. The sample was mounted in the electrochemical cell 
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with its Kapton-covered side acting as a window, while the side coated with the CuZn catalyst was 

in contact with the electrolyte. 

In-situ XAS measurements for Cu50Zn50 and Cu30Zn70 nanoparticles (NPs) were performed at 

the SAMBA beamline at SOLEIL synchrotron. XAS data at Cu K-edge (E0 = 8979 eV) and Zn K-

edge (E0 = 9659 eV) were collected, using a Si(220) monochromator for energy selection. Higher 

harmonics were rejected using a Pd-coated mirror. The beam size was 1 x 0.5 mm. Measurements 

were performed in fluorescence mode using a 13-channel Ge detector. The intensity of the incident 

radiation was measured by an ionization chamber filled with a 500 mbar N2/500 mbar He mixture. 

Two additional ionization chambers filled with 1700 mbar N2 (in I1 chamber) and 150 mbar Ar/850 

mbar N2 (in I2 chamber) were used for measurements in transmission mode for reference samples. 

In-situ XAS measurements for Cu100, Zn100 and Cu70Zn30 NPs were performed at the CLAESS 

beamline at the ALBA synchrotron in a similar manner using Si(111) monochormator and 6-chanel 

Si drift detector, and beam size of 0.3 x 0.3 mm. 

 

Supplementary Note 2: Details of neural network architecture and training 

 

For neural network (NN)-based interpretation of EXAFS data in partially oxidized NPs, we use 

a similar procedure as previously developed for mono- and bimetallic compounds.1, 2 To generate 

and train the NN we rely on the off-the-shelf available NN implementation, available within 

Wolfram Mathematica 11.3.3  For NN training we use theoretical Cu K-edge EXAFS spectra, 

obtained in classical molecular dynamics (MD) simulations (see Supplementary Note 3). 

The so called hyperparameters of the NN (e.g., number of NN layers and number of nodes in 

each layer) are obtained by a manual grid search, with the goal to optimize the performance of the 
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NN on a validation set, i.e., a set of spectra for which the corresponding true structure is known, 

but that was not used for NN training. 

Our NN consists of an input layer, five hidden layers with 450 nodes in each, and an output 

layer. A hyperbolic tangent function is used as activation function. The batch size for NN training 

is 512. We perform training for 300 rounds. The loss function is defined as L2-norm between NN 

output and the true radial distribution function (RDF) value, averaged over all examples in the 

batch. The “ADAM” method (stochastic gradient descent with adaptive with adaptive learning 

rate) was employed with default parameters β1=0.9 and β2 = 0.999, is used for the optimization of 

NN weights. 

Similarly as in our previous works,1, 2 the nodes in the input layer are set to the values of 

experimental or theoretical EXAFS spectra, which are mapped via Morlet wavelet transform4, 5 

(WT) to (k,R) space. The integration of spectra for WT is carried out in the range between kmin = 

3 Å-1 and knax = 11 Å-1. To reduce the influence of systematic errors and also to reduce the NN 

size, for each point in the (k,R) space we compare the corresponding absolute WT values for a 

subset of training spectra, and use as inputs for the NN only those ca. 800 points that have variance 

larger than 10% of the maximal observed variance. Each WT point is encoded by two NN input 

nodes, containing the real and imaginary parts of complex Morlet WT value, resulting in ca. 1600 

nodes in the NN input layer. 

The output nodes of the NN correspond to the concatenated lists of bin heights for histograms 

of Cu—O and Cu—Cu bond lengths, calculated in the range between Rmin = 1.0 Å and Rmax = 5.5 

Å and with bin size ΔR. The latter determines the resolution of our method in R-space and is limited 

by the k-range used for analysis to 1/(2𝑘𝑚𝑎𝑥 − 2𝑘𝑚𝑖𝑛).
6  Therefore, here we use ΔR=0.06 Å, 

which results in 2 ∙ 76 = 152 output nodes. 
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To estimate the uncertainties of the NN-yielded RDFs, we train independently several NNs using 

different subsets of training sets, and compare their predictions. The average value is reported as 

the final NN-yielded answer, while the standard deviation of NNs predictions is used to calculate 

the error bars. 

The NN training was carried out on a personal computer and took ca. 30 min per NN. 

 

Supplementary Note 3: Molecular dynamics simulations and generation of theoretical 

EXAFS spectra for NN training 

For NN training we use theoretical EXAFS spectra, obtained in classical MD simulations. MD 

is carried out using the GULP code.7, 8 See Ref.9  for technical details on the MD simulations and 

EXAFS calculations. MD-EXAFS simulations were carried out at LASC cluster.10 Several CPU 

hours were needed per each MD simulation. 

To define forces acting within Cu—Cu, Cu—O and O—O atomic pairs, we tried out the Sutton-

Chen (SC) force field model,11 Lennard-Jones (LJ) type potential12 and reaxFF-type potentials.13 

Default values for parameters for SC and reaxFF-type potentials were used, as provided within 

GULP code. Parameters for LJ-type potential were taken from Ref.,12 but with ε0 parameter for 

O—O bond increased up to 0.2754 eV, since the structures obtained with the original ε0 value 

were not stable. Examples of EXAFS spectra for bulk reference materials, calculated with these 

interaction models, together with the corresponding RDFs are shown in Figure S1 and Figure 1 

in the main text. 

When the calculated EXAFS spectra are compared with experimental data, Figure 1(a), one can 

notice that the agreement for Cu2O and CuO oxide materials is not as good as that obtained for 

metallic systems employing the SC potential. Moreover, we have found that the currently widely 
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used reaxFF potential13 fails to represent the dynamics and structure of Cu2O as probed by EXAFS, 

and is outperformed in this case by a simple LJ-type potential, which is therefore used for the Cu2O 

models in Figures 1(a) and S1.  Somewhat better agreement between the reaxFF-based model and 

experimental Cu K-edge EXAFS was obtained for CuO and, especially, for copper hydroxide 

Cu(OH)2.  

Despite the noticeable disagreement between theoretical and experimental EXAFS, we have 

found that Cu—O and Cu—Cu RDFs obtained in these MD simulations, are in fact quite 

reasonable. To demonstrate that, in Figure 1(b,c) in the main text we compare RDFs for MD 

models with the ones independently extracted from experimental EXAFS spectra by a reverse 

Monte Carlo approach (RMC). 9, 14-16 RMC is an iterative stochastic structure fitting method, which 

relies on random modifications of the initial atomistic structure model until a good agreement 

between the calculated structure-sensitive data (EXAFS spectra in our case) and the experimental 

measurements is obtained. Note here that RMC can only be used for the interpretation of EXAFS 

spectra in relatively simple, well-defined homogeneous materials, because the initial structure 

model needs to be specified. RMC is not suitable for studies of materials experiencing structural 

transformations, and it is also computationally expensive, requiring several CPU days of 

calculations for the interpretation of a single spectrum. RMC is useful here, however, for validation 

of the accuracies of the MD and NN methods. RMC-EXAFS simulations are carried out using 

EVAX code.14 See Ref.17 for the technical details of RMC simulations. 

As shown in Figure 1(a) in the main text, 3D structure models, extracted from RMC analysis, 

provide much better match with experimental EXAFS data than MD simulations. The RDFs, 

extracted from RMC models, however, are in a good agreement with those from MD. This allows 

us to conclude that the differences between MD-EXAFS and experimental EXAFS for oxide 
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materials in Figure 1(a) are mostly due to many-atomic contributions to EXAFS data (multiple-

scattering effects), which are not represented by RDFs, and/or minor inaccuracies in the atomic 

thermal motion amplitudes in the MD models. For example, the noticeably lower amplitude of the 

first peak in the Fourier-transformed MD-EXAFS for CuO, Figure 1(a), is a result of 

systematically underestimated Cu—O bond strength in the reaxFF model, which is responsible 

also for the broader first peak in the Cu—O RDF than that obtained from the RMC-based analysis 

of the corresponding experimental EXAFS data, Figure 1(b). 

Nevertheless, the overall resemblance between RDFs from MD simulations and those extracted 

from experimental data for the reference oxide materials allows us to use the MD simulations to 

generate training spectra for our NN method. Let us emphasize here that in our approach we need 

only realistic-looking theoretical EXAFS data, and do not require a perfect agreement between 

simulated and experimental data. Theoretical data are used only to train a NN and to establish the 

relationship between spectral features and materials structure, and are not used to directly match 

the results of experimental measurements.  However, the accuracy of the NN predictions needs to 

be carefully validated by applying it to the analysis of experimental data for reference materials, 

for which the corresponding structure is known, as we do below (Supplementary Note 4). 

As in our previous works,2, 18, 19 we have also carried out MD simulations at different 

temperatures to introduce different degree of disorder in our models, and have rescaled the atomic 

coordinates in the MD models in the range between 80% and 120% to account for possible 

differences in lattice spacings in our MD models and experimentally investigated samples, ending 

up with ca. 12000 unique structure models and corresponding EXAFS spectra. We do not use them 

directly for the NN training, but instead combine them in random linear combinations, employing 

the fact that for a mixture of several species with concentrations 𝑤𝑖, both corresponding EXAFS 
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spectra 𝜒(𝑘) and partial RDFs 𝑔𝑝(𝑅) can be expressed as 𝜒(𝑘) = ∑ 𝑤𝑖𝜒𝑖(𝑘)𝑖  and 𝑔𝑝(𝑅) =

∑ 𝑤𝑖𝑔𝑝,𝑖(𝑅)𝑖 , where 𝜒𝑖(𝑘) and 𝑔𝑝,𝑖(𝑅) are spectra and RDFs for pure compounds, respectively. 

The use of linear combinations allows us to further expand the training set and generate an almost 

unlimited number of training examples (60000 such examples are used for NN training in this 

case), and allows our method to work with EXAFS spectra of heterogeneous samples and mixtures 

of different phases. 

Finally, to account for the fact that photoelectron reference energy E0 value (see Eq.(1) in the 

main text) can change from sample to sample due to, e.g., reduction/oxidation of the sample 

components, each of the training EXAFS spectra is artificially shifted by a random ΔE0 value in 

the range between +10 and -10 eV. Thus we ensure that the NN does not assign any physical 

meaning to a small shift of the energy scale in the experimental EXAFS data. We have 

demonstrated before20 that such a simple approach allows one to address the uncertainty of the E0 

values in experimental data. 
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Figure S1. Examples of EXAFS spectra used for the NN training: theoretical Cu K-edge 

EXAFS data, calculated in MD simulations for metallic Cu (Sutton-Chen type potential), Cu2O 

(LJ-type potential) and CuO (reaxFF-type potential) (a) and corresponding partial Cu-O and 

Cu-Cu RDFs (b). Insets show snapshots of the corresponding MD models (Cu atoms – large 

blue spheres, O atoms – small red spheres). The simulations are carried out at different 

temperatures to introduce different degrees of disorder in the model. Spectra and RDFs are 

shifted vertically for clarity. 
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Supplementary Note 4: Validation of NN-EXAFS method with RMC data 

 

To validate the accuracy of our NN method, in Figure S2 we apply it for the interpretation of 

experimental EXAFS data for metallic and non-metallic reference compounds: metallic Cu at 

different temperatures, Cu2O and CuO oxides, Cu(OH)2 hydroxide. The RDFs, yielded by NN, are 

compared with the results of RMC simulations, also carried out for these materials. The average 

predictions of three independently trained NNs are reported as thick solid lines in Figure S2 (and 

other figures here and in the main text), while the uncertainty (standard deviation of NNs 

predictions) is reflected by shaded region in Figure S2. Good agreement (within uncertainty) 

between RMC and NN results for such different compounds as shown in Figure S2, gives us 

confidence in the accuracy of our NN method for a broad range of materials with different degree 

of disorder. Moreover, while our NN is trained on MD-EXAFS data for Cu and copper oxides 

only, due to the similarity of the scattering functions of elements that are neighbors in the Periodic 

Table, it can be used to extract Cu-N contribution in copper nitride Cu3N (Figure S2(b)) and total 

Cu-metal (Cu-M) contribution in copper-zinc brass alloy (Figure S2(a)). Even more so, our NN, 

trained on Cu K-edge EXAFS data, can be immediately applied for the interpretation of EXAFS 

data of Zn and Ni (that are neighbors of Cu in Periodic Table), and gives reliable results, when 

used for interpretation of EXAFS data in metallic Ni, Zn, Zn-Cu alloys, as well as zinc and nickel 

oxides, Figures S2(a),(c). 
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Figure S2. Validation of the NN accuracy with RMC data. Cu-X (X = O or N) and Cu-M (M = 

Cu, Zn or Ni) partial RDFs, extracted by a NN from experimental Cu K-edge (a,b), Ni K-edge (a, 

c) and Zn K-edge (c) EXAFS data. Insets show the final structure models, obtained in RMC 

calculations. RDFs are shifted vertically for clarity. 

 

To demonstrate the accuracy of the former approach not just for pure compounds, but also for 

their heterogeneous mixtures, in Figure S3 we use a NN to extract Cu—O and Cu—Cu RDFs 

from model spectra, constructed as linear combinations of experimental Cu K-edge spectra for a 

Cu foil and CuO with weights wCu and (1-wCu), correspondingly, Figure S3(a). By varying the 

weight of the metallic contribution, wCu, we mimic EXAFS spectra for mixtures of coexisting 

reduced and non-reduced species. In Figure S3(b), the RDFs yielded by the NN are compared 

with the corresponding properly weighted linear combinations of RDFs from RMC simulations 

for pure Cu and CuO compounds (see Figure S2(b)). For a more quantitative comparison we 

estimate average Cu—O and Cu—Cu coordination numbers by integrating the first peak in Cu—

O and Cu—Cu RDFs. Integration limits are indicated by vertical dashed lines in Figure S3(b). 
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The obtained coordination numbers and their dependency on wCu are shown in Figures S3(c) and 

(d). The expected true dependency is shown by solid black lines, which reflect the linear change 

in the Cu—O coordination number from 4 (in pure CuO) to 0 (in pure metallic Cu), and that in the 

Cu—Cu coordination number from 0 (in pure CuO) to 12 (in pure fcc-type metallic Cu). Good 

agreement between these linear dependencies and the NN results demonstrates the accuracy of our 

NN and its applicability for quantitative analysis of heterogeneous mixtures. 

After NN validation is completed, we can apply the method for the interpretation of real 

experimental data for bimetallic catalysts. Experimental Cu K-edge and Zn K-edge EXAFS data 

for CuZn nanocatalysts are shown in Figure S4 in the main text.  The results (Cu-O and Cu-M 

RDFs, where M = Cu or Zn), obtained from Cu K-edge EXAFS data are shown in Figure S5 and 

Figures 5(a,b) and 6(a) in the main text. Changes in the position of the 1st peak in Cu-M RDF, 

corresponding to the increase of the Cu-M interatomic distance due to gradual Cu and Zn alloying, 

are shown in Figure S6 and Table S1. The corresponding changes in the position of the 3rd peak 

in the Cu-M RDF are also given in Table S1, and plotted in Figure 6 within the main text. Zn-O 

and Zn-M RDFs, extracted from Zn K-edge EXAFS data, are shown in Figure S7 and in Figures 

5(c,d) and 7(a) in the main text. The time-dependencies of the integrated areas under the 1st Zn—

O RDF peak (1st shell Zn—O coordination number) and under the 1st Zn—M RDF peak (1st shell 

Zn—M coordination number) for bimetallic CuZn nanocatalysts and for the monometallic Zn100 

sample are shown in Table S2 and in Figure 7(b-e) of the main text. See the main text for detailed 

discussion of the obtained results. 
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Figure S3. Validation of the NN accuracy for heterogeneous mixtures. Model EXAFS spectra 

obtained by linearly combining experimental Cu K-edge EXAFS of a Cu foil and CuO (b). Cu—

O and Cu—Cu RDFs yielded by NN for the spectra shown in (a) are compared with linear 

combinations of the corresponding RDFs extracted by RMC from experimental EXAFS data for 

pure compounds (b). First shell Cu—O (c) and Cu—Cu (d) coordination numbers are obtained by 

integrating RDFs shown in (b) up to the R value, indicated by vertical dashed lines in (b). 
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Figure S4. Time-dependent Cu K-edge (a) and Zn K-edge (b) EXAFS spectra for Cu100, Zn100, 
Cu70Zn30, Cu50Zn50 and Cu30Zn70NPs. Spectra are shifted vertically for clarity. 
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Figure S5. Evolution of the partial RDFs for the Cu100 NP sample (a), Cu70Zn30 NPs (b) and 

Cu30Zn70 NPs (c), as extracted by NN from time-dependent Cu K-edge EXAFS data (see Figure 

4(a) in the main text and Figure S4(a)). RDFs extracted from the Cu K-edge EXAFS for Cu foil 

and CuZn brass foil are shown for comparison. Vertical solid and dashed lines show the positions 

of maxima for the 1st and 3rd RDF peaks in Cu foil and CuZn brass foil, respectively. 
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Figure S6. Time-dependencies of the positions of the 1st peak in Cu—M RDF for Cu100 NPs (a), 

Cu70Zn30 NPs (b), Cu50Zn50 NPs (c) and Cu30Zn70 NPs (d), as extracted by NN from time-

dependent Cu K-edge EXAFS data (see Figure 4(a) in the main text and Figure S4(a)). 

 

 

 

 

 

 

 



 

 

16 

 

Figure S7. Evolution of the partial RDFs for Cu70Zn30 NPs (a), Cu30Zn70 NPs (b) and Zn100 NPs 

(c), as extracted by NN from time-dependent Zn K-edge EXAFS data (see Figure 5(a) in the main 

text and Figure S5(a)). 
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Table S1. Time-dependencies of the positions of the 1st peak (R1) and 3rd peak (R3) in Cu—M 

RDF for Cu100 NPs (a), Cu70Zn30 NPs (b), Cu50Zn50 NPs (c) and Cu30Zn70 NPs (d), as extracted by 

NN from time-dependent Cu K-edge EXAFS data (see Figure 4(a) in the main text and Figure 

S4(a)). 

Cu100 Cu70Zn30 Cu50Zn50 Cu30Zn70 

Time (min) R1(Å) R3(Å) Time (min) R1(Å) R3(Å) Time (min) R1(Å) R3(Å) Time (min) R1(Å) R3(Å) 

14 2.57(1) 4.46(2) 14 2.56(1) 4.43(2) 36 2.55(1) 4.42(1) 12 2.58(1) 4.48(2) 

28 2.55(1) 4.43(2) 28 2.58(1) 4.47(2) 48 2.53(1) 4.40(2) 24 2.58(1) 4.49(2) 

42 2.55(1) 4.42(2) 42 2.58(1) 4.46(3) 60 2.57(1) 4.48(3) 36 2.60(1) 4.50(2) 

56 2.56(2) 4.43(3) 56 2.55(2) 4.43(4) 72 2.57(2) 4.45(3) 48 2.57(1) 4.48(3) 

70 2.55(1) 4.42(2) 70 2.56(1) 4.46(2) 84 2.58(3) 4.48(4) 60 2.58(2) 4.49(2) 

84 2.55(1) 4.42(2) 84 2.57(1) 4.47(3) 96 2.58(1) 4.47(3) 72 2.58(1) 4.51(2) 

98 2.55(1) 4.42(2) 98 2.58(1) 4.47(2) 108 2.56(1) 4.46(2) 84 2.59(1) 4.50(2) 

112 2.57(1) 4.46(2) 112 2.57(2) 4.45(2) 120 2.58(1) 4.49(2) 96 2.58(3) 4.49(5) 

126 2.58(1) 4.48(2) 126 2.58(1) 4.47(1) 132 2.58(1) 4.48(2) 108 2.58(4) 4.48(5) 

140 2.56(1) 4.44(1) 140 2.56(1) 4.45(1) 144 2.57(1) 4.47(1) 120 2.58(1) 4.49(2) 

   874 2.58(1) 4.47(2) 156 2.56(2) 4.44(4) 132 2.60(1) 4.53(3) 

   888 2.58(1) 4.47(2) 168 2.57(1) 4.46(2) 144 2.58(1) 4.48(2) 

   916 2.58(1) 4.47(2) 180 2.57(1) 4.47(2) 156 2.60(1) 4.51(1) 

   930 2.57(2) 4.46(3) 192 2.59(2) 4.50(2)    

      408 2.58(1) 4.49(2)    

      420 2.58(1) 4.49(1)    

      432 2.60(1) 4.51(2)    

      444 2.60(1) 4.51(1)    
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Table S2. The time-dependencies of the integrated areas under the 1st Zn—O RDF peak (1st shell 

Zn—O coordination number) and under the 1st Zn—M RDF peak (1st shell Zn—M coordination 

number) for bimetallic CuZn nanocatalysts and for monometallic Zn100 NP sample, as extracted 

by NN from time-dependent Zn K-edge EXAFS data (see Figure 5(a) in the main text and Figure 

S5(a)). 

Cu70Zn30 Cu50Zn50 Cu30Zn70 Zn100 

Time (min) Zn-O Zn-M Time (min) Zn-O Zn-M Time (min) Zn-O Zn-M Time (min) Zn-O Zn-M 

0 3.1(2) 1.1(3) 0 1.9(2) 0.4(2) 0 3.4(1) 2.0(6) 0 2.3(3) 1.4(4) 

8 3.8(4) 1.1(3) 8 2.8(3) 2.4(2) 8 3.4(1) 1.7(8) 11 0.9(2) 10.9(5) 

16 2.7(5) 6.3(1) 16 1.8(4) 5.4(6) 16 3.4(1) 1.5(6) 22 0.2(1) 11.4(2) 

24 1.6(4) 6.5(9) 24 2.2(1) 4.4(3) 24 3.5(2) 1.8(4) 33 0.4(2) 11.2(7) 

32 1.0(4) 7.0(7) 32 1.9(3) 4.8(5) 32 3.6(3) 1.3(4) 44 0.2(1) 10.6(1) 

40 1.0(3) 7.4(5) 40 0.0(3) 10.6(5) 40 2.3(4) 4.6(8)    

48 1.6(4) 5.1(1) 48 2.0(3) 6.3(8) 48 0.2(2) 11.1(2)    

56 0.8(3) 8.6(1) 56 0.8(0) 8.7(3) 56 0.4(1) 10.6(3)    

64 1.9(2) 6.0(1) 64 0.9(5) 7.6(3) 64 0.6(2) 9.4(8)    

72 1.2(6) 7.0(9) 72 1.4(4) 6.9(2) 72 0.4(2) 10.8(1)    

80 0.6(2) 8.5(9) 80 0.8(3) 7.7(2) 80 0.2(1) 11.1(6)    

88 1.9(3) 4.3(4) 88 0.2(1) 10.5(9) 88 0.3(2) 10.8(5)    

96 0.9(4) 9.3(1) 96 0.3(2) 10.8(4) 96 0.4(1) 10.6(1)    

104 0.2(1) 10.8(3) 104 0.4(2) 9.6(1) 536 0.3(2) 10.9(2)    

112 0.4(2) 11.2(9) 112 0.3(2) 10.6(7) 544 0.2(1) 11.3(4)    

120 0.2(1) 11.2(8) 120 0.2(2) 11.5(5) 552 0.2(1) 11.2(4)    

128 0.1(1) 11.(5) 128 0.2(1) 10.8(3) 560 0.1(1) 11.2(3)    

   136 0.1(1) 11.3(5) 568 0.1(1) 11.3(2)    

   144 0.1(1) 11.2(3) 576 0.1(1) 11.4(1)    

      584 0.1(1) 11.1(2)    
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