## Catalytic Enantioselective Synthesis of Tetrasubstituted Chromanones via Palladium-Catalyzed Asymmetric Conjugate Arylation Using Chiral Pyridine-Dihydroisoquinoline (PyDHIQ) Ligands

Doohyun Baek, Huijeong Ryu, Ji Yeon Ryu, Junseong Lee, Brian M. Stoltz\*, and Sukwon Hong\*

## **Table of Contents**

| 1. General Remarks                                       | S2  |
|----------------------------------------------------------|-----|
| 2. Additional Screening Data and Unsuccessful Substrates |     |
| 3. Ligand Synthesis and Compound Characterization        | S4  |
| 4. Experimental Procedures and Compound Characterization |     |
| 5. References                                            | S26 |
| 6. X-Ray Analysis for Compound 6e and [(S)-3d]PdCl2      | S27 |
| 7. NMR Spectra for Compounds                             |     |

#### 1. General Remarks

Unless otherwise specified, all reactions were performed in inert atmosphere with high purity argon (99.999%). Tetrahydrofuran (THF), dichloromethane ( $CH_2Cl_2$ ), and diethyl ether ( $Et_2O$ ) were dried under positive pressure of high purity nitrogen (99.999%) using a J. C. Meyer Solvent Purification System prior to use. Commercially available HPLC grade water (H<sub>2</sub>O) from fisher chemical was used. 2-substituted chromone derivatives were synthesized according to literature procedure.<sup>1</sup> Naphthalene was purified by sublimation and 4dimethylaminopyiridne (DMAP) was recrystallized in toluene prior to use. All other chemicals including arylboronic acids were purchased from commercial sources (Sigma-Aldrich Co., Alfa Aesar, TCI and Acros Organics) and were used as received without further purification. Reaction temperature was controlled by IKA ETS-D5 temperature controller with IKA hotplate stirrer C-MAG HS7. Hamilton 700 series glass microliter syringes were used to measure amount of  $H_2O$ . High purity  $O_2(99.995\%)$  was used to make  $O_2$  balloon. Racemic samples were prepared by employing 2,2'-bipyidine as a (N,N)-ligand. Thin-layer chromatography (TLC) was performed using Merck silica gel 60 F254 precoated plates and visualized by UV fluorescence quenching, panisaldehyde, or iodine staining. Merck silica gel 60 (particle size 40-63 nm) was used for flash chromatography. Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL spectrometer, operating at 400 MHz for <sup>1</sup>H NMR, at 101 MHz for <sup>13</sup>C NMR and at 376 MHz for <sup>19</sup>F NMR. All chemical shifts for <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy were assigned to residual signals from CDCl<sub>3</sub> (<sup>1</sup>H) at 7.25 ppm and (<sup>13</sup>C) at 77.13 ppm. High resolution mass spectra (HRMS) were obtained using a JEOL JMS-700 MStation mass spectrometer or obtained at Korea Basic Science Institute (Daegu, South Korea). Specific Optical rotations were obtained using a JASCO P-2000 Series Polarimeter (wavelength = 589 nm). Enantiomeric ratios were determined by chiral HPLC analysis using an Agilent 1260 infinity and Daicel Chiralpak (IC or ID) columns (4.6 mm x 25 cm). Absolute configuration of compound **6e** was determined by X-ray crystallography, and all other products are assigned by analogy.

List of abbreviations: TLC – Thin-layer chromatography, NMR – Nuclear magnetic resonance, IR - Infrared, HRMS – High resolution mass, THF – Tetrahydrofuran, DCM – Dichloromethane, EA – Ethyl acetate, DMF – N,N-Dimethylformamide , DMAP – 4-dimethylaminopyiridine, IPA – isopropyl alcohol, EDC – 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide, HOBt – Hydroxybenzotriazole, t<sub>R</sub> – Retention time, ee – Enantiomeric excess.

#### 2. Additional Screening Data and Unsuccessful Substrates<sup>a</sup>



<sup>a</sup>Unless otherwise noted, all reactions were carried out with **4** (0.5 mmol, 1 equiv.),  $ArB(OH)_2$  (0.6 mmol, 1.2 equiv.),  $Pd(TFA)_2$  (0.025 mmol, 5 mol%), ligand (0.030 mmol, 6 mol%), additive (0.15 mmol, 30 mol%),  $H_2O$  (0.35 mL, 1.43 M) for 12 h.<sup>b</sup>Isolated yield. <sup>c</sup>Determined by HPLC with DAICEL chiralpak. <sup>d</sup>No desired product. <sup>e</sup>Reaction carried out in  $H_2O$  (0.7 mL, 0.71 M).



#### 3. Ligand Synthesis



Compound **1a** and **1b** was prepared according to literature procedures.<sup>2</sup> To a flask charged with stir bar and CuI (2.26 mmol, 0.5 equiv.) in THF (9 mL, 0.5 M), aryl magnesium bromide (9.05 mmol, 2 equiv.) was slowly added at -78 °C and stirred for 15 min. **1a** or **1b** (4.52 mmol, 1.0 equiv.) was added to the mixture and the resulting suspension was warmed to 24 °C with vigorous stirring. Reaction was monitored by TLC (4:1 Hexanes/EtOAc), and stirred until starting material spot was disappeared. Then reaction was quenched with a saturated aqueous NH<sub>4</sub>Cl solution (25 mL) and extracted with EtOAc (30 mL x3). The combined organic layers were dried over MgSO<sub>4</sub> and concentrated. Crude product was obtained as yellow solid. Filtered by short flash chromatography to remove dimer of Grignard reagent.

To a flask charged with glass-coated stir bar and Li (61.0 mmol, 16.0 equiv.) in THF (25 mL, 0.15 M), naphthalene (0.38 mmol, 0.10 equiv.) was added at 24 °C. When the color of solution changed to deep purple blue color, products (3.81 mmol, 1.0 equiv.) obtained from previous Grignard step were added to the suspension at -78 °C. The resulting suspension was warmed to 24 °C slowly and stirred for overnight. The solution was transferred through a cannula to another flask and quenched by saturated aqueous NH<sub>4</sub>Cl solution (50 mL). After saturated aqueous NH<sub>4</sub>Cl layer was discarded, 1M HCl aqueous solution was added to the solution and organic layer was discarded. Then 20% w/v NaOH aqueous solution was added to the acidic aqueous solution. When the pH of aqueous layer was 8, The aqueous layer was extracted with EtOAc and dried over MgSO<sub>4</sub>. The residue was filtered and concentrated to afford chiral amines. The product used without further purification.

To a mixture of picolinic acid (2.15 mmol, 1.0 equiv.), chiral amine obtained from previous deprotection step (2.15 mmol, 1.0 equiv.), and HOBt (2.68 mmol, 1.25 equiv.) in DMF (2 mL, 0.35 M), EDC (2.68 mmol, 1.25 equiv.) was added at 0 °C and stirred for 12 h at 24 °C. The solution was quenched by water (10 mL), and extracted with EtOAc (15 mL) and dried over MgSO<sub>4</sub>. The residue was filtered, concentrated and purified by flash chromatography. Compound **2a-2e** was obtained as pale yellow solid.

#### (S)-N-(4-methyl-1-phenylpentan-2-yl)picolinamide (2a)



Purified by column chromatography (4:1 Hexane/EtOAc), 66% overall yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.48 (d, J = 4.2 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 9.5 Hz, 1H), 7.76 (td, J = 7.7, 1.7 Hz, 1H), 7.34 (ddd, J = 7.5, 4.7, 1.2 Hz, 1H), 7.15-7.26 (m, 5H), 4.47 (qd, J = 10.0, 6.1 Hz, 1H), 2.88 (ddd, J = 29.6, 13.5, 6.3 Hz, 2H), 1.62-1.72 (m, 1H), 1.32-1.48 (m, 2H), 0.88 (d, J = 6.5 Hz, 6H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.6, 149.9, 147.9, 138.1, 137.2, 129.5, 128.2, 126.2, 126.0, 122.1, 48.4, 43.2, 41.8, 24.9, 23.3, 21.9;

IR v = 3661, 3376, 2958, 2909, 1673, 1519, 1466, 1433, 1384, 1251, 1161, 1077, 1055, 868, 819, 750, 701 cm<sup>-1</sup>; HRMS (EI) calc'd for  $C_{18}H_{22}N_2O$  [M]<sup>+</sup>: 282.1732, found: 282.1730; [ $\alpha$ ]<sub>D</sub><sup>25</sup>-4.5 (c 1.06, CHCl<sub>3</sub>);

## (S)-N-(4-methyl-1-phenylpentan-2-yl)-5-(trifluoromethyl)picolinamide (2b)



Purified by column chromatography (8:1 Hexane/EtOAc) , 63% overall yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.78 (s, 1H), 8.30 (d, J = 8.2 Hz, 1H), 8.07 (dd, J = 8.1, 2.2 Hz, 1H), 7.82 (d, J = 9.2 Hz, 1H), 7.17-7.28 (m, 5H), 4.43-4.53 (m, 1H), 2.90 (d, J = 6.4 Hz, 2H), 1.62-1.72 (m, 1H), 1.37-1.51 (m, 2H), 0.90 (dd, J = 6.5, 1.9 Hz, 6H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.3, 153.0, 145.2 (q, J = 3.8 Hz), 137.9, 134.8 (q, J = 3.8 Hz), 129.6, 128.7 (q, J = 33.7 Hz), 128.4, 126.5, 123.3 (q, J = 274.5 Hz), 122.2, 48.8, 43.4, 41.7, 25.1, 23.4, 22.0; <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.39;

IR  $\nu = 3668$ , 3377, 2983, 2898, 1678, 1577, 1523, 1327, 1165, 1136, 1077, 1018, 941, 870, 753, 702 cm<sup>-1</sup>; HRMS (EI) calc'd for C<sub>19</sub>H<sub>21</sub>F<sub>3</sub>N<sub>2</sub>O [M]<sup>+</sup>: 350.1606, found: 350.1608; [ $\alpha$ ]<sub>D</sub><sup>25</sup>-2.0 (c 0.55, CHCl<sub>3</sub>)

## (S)-N-(1-(2,6-dimethylphenyl)-3-phenylpropan-2-yl)-5-(trifluoromethyl)picolinamide (2c)



Purified by column chromatography (10:1 Hexane/EtOAc), 67% overall yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.78 (s, 1H), 8.18 (d, J = 8.0 Hz, 1H), 8.00-8.04 (m, 2H), 7.26-7.28 (m, 1H), 7.17-7.24 (m, 4H), 6.93-6.99 (m, 3H), 4.56-4.62 (m, 1H), 2.91-3.07 (m, 4H), 2.33 (s, 6H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.3, 152.7, 145.1 (q, J = 3.9 Hz), 138.2, 136.9, 135.1, 134.8 (q, J = 2.8 Hz), 129.3, 128.7 (q, J = 33.7 Hz),128.5, 128.5, 126.6, 126.4, 123.3 (q, J = 273.5 Hz), 122.01, 51.54, 41.19, 34.45, 20.50; <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.32;

IR v = 3673, 2985, 2911, 1605, 1562, 1470, 1391, 1321, 1162, 1128, 1078, 1016, 966, 858, 766 cm<sup>-1</sup>; HRMS (EI) calc'd for  $C_{24}H_{23}F_3N_2O$  [M]<sup>+</sup>: 412.1762, found: 412.1764; [ $\alpha$ ]<sub>D</sub><sup>25</sup>+54.4 (c 1.31, CHCl<sub>3</sub>);

## (S)-N-(1-(2,6-diethylphenyl)-3-phenylpropan-2-yl)-5-(trifluoromethyl)picolinamide (2d)



Purified by column chromatography (8:1 Hexane/EtOAc), 55% overall yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.82 (s, 1H), 8.24 (d, J = 8.0 Hz, 1H), 8.16 (d, J = 8.8 Hz, 1H), 8.02 (dd, J = 8.2, 1.7 Hz, 1H), 7.30-7.34 (m, 4H), 7.21-7.26 (m, 1H), 7.15 (dd, J = 8.2, 6.7 Hz, 1H), 7.07 (d, J = 7.6 Hz, 2H), 4.66 (td, J = 14.9, 8.0 Hz, 1H), 3.00-3.23 (m, 4H), 2.78 (tt, J = 21.8, 7.3 Hz, 4H), 1.26 (t, J = 7.4 Hz, 6H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.3, 152.7, 145.0 (q, J = 3.9 Hz), 143.0, 138.2, 134.6 (q, J = 2.9 Hz), 133.2, 129.2, 128.5 (q, J = 33.7 Hz), 128.4, 126.8, 126.5, 126.4, 123.2 (q, J = 274.4 Hz), 121.9, 52.6, 40.8, 32.8, 26.2, 15.7; <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.29;

IR  $\nu = 3385$ , 2963, 1681, 1579, 1520, 1455, 1327, 1166, 1136, 1076, 1018, 870, 756, 702 cm<sup>-1</sup>; HRMS (EI) calc'd for C<sub>26</sub>H<sub>27</sub>F<sub>3</sub>N<sub>2</sub>O [M]<sup>+</sup>: 440.2075, found: 440.2078; [\alpha]<sub>D</sub><sup>25</sup>+0.5 (c 1.55, CHCl<sub>3</sub>);

#### (S)-N-(1-phenyl-3-(2,4,6-triisopropylphenyl)propan-2-yl)-5-(trifluoromethyl) picolinamide (2e)



Purified by column chromatography (8:1 Hexane/EtOAc), 47% overall yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.80 (s, 1H), 8.27 (d, J = 8.4 Hz, 1H), 8.15 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.21-7.33 (m, 5H), 6.98 (s, 2H), 4.52 (td, J = 14.7, 7.2 Hz, 1H), 2.97-3.24 (m, 6H), 2.81-2.92 (m, 1H), 1.18-1.29 (m, 18H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.5, 152.8, 147.4, 146.9, 145.0 (q, J = 3.8 Hz), 138.5, 134.7 (q, J = 2.9 Hz), 129.3, 128.9, 128.7 (q, J = 33.7 Hz), 128.5, 126.6, 123.3 (q, J = 273.5 Hz), 122.0, 121.1, 53.5, 40.9, 34.1, 31.6, 29.5, 24.5, 24.1, 24.0; <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.30;

IR v = 3407, 2960, 1678, 1606, 1575, 1510, 1473, 1326, 1165, 1141, 1076, 1018, 940, 872, 752, 705 cm<sup>-1</sup>; HRMS (EI) calc'd for  $C_{31}H_{37}F_3N_2O$  [M]<sup>+</sup>: 510.2858, found: 510.2860;  $[\alpha]_D^{25}$  +1.83 (c=2.23, CHCl<sub>3</sub>);



To a mixture of picolinamide **2a-2e** (1.04 mmol, 1.0 equiv.) and DMAP (3.13 mmol, 3.0 equiv.) in toluene (42 mL, 0.025 M),  $Tf_2O$  (5.22 mmol, 5.0 equiv.) was added dropwise. The mixture was heated to 90 °C in an oil bath and stirred for 12 h. The solution was cooled to 24 °C, quenched by Na<sub>2</sub>CO<sub>3</sub> (50 mL), extracted with EtOAc (60 mL, x3) and dried over MgSO<sub>4</sub> successively. The residue was filtered, concentrated and purified by flash chromatography. Compound **2a-2e** was obtained as pale reddish brown oil (**3a**), or pale yellow solid (**3b**, **3c**, **3d**, **3e**).

## (S)-3-isobutyl-1-(pyridin-2-yl)-3,4-dihydroisoquinoline (3a)



Purified by column chromatography (9:1 Hexane/EtOAc), 93% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (d, J = 4.2 Hz, 1H), 7.85 (d, J = 7.6 Hz, 1H), 7.76 (td, J = 7.6, 1.9 Hz, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.28-7.35 (m, 2H), 7.19-7.25 (m, 2H), 3.66-3.73 (m, 1H), 2.81 (dd, J = 15.4, 5.1 Hz, 1H), 2.59 (dd, J = 15.4, 12.0 Hz, 1H), 1.98-2.08 (m, 1H), 1.77-1.84 (m, 1H), 1.44-1.50 (m, 1H), 0.97 (dd, J = 6.7, 2.1 Hz, 6H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.6, 157.3, 148.3, 138.4, 136.8, 130.6, 128.1, 128.1, 127.5, 126.5, 123.9, 123.7, 55.3, 44.7, 31.9, 24.8, 22.8, 22.7;

IR v = 3671, 2953, 2909, 1609, 1562, 1466, 1433, 1325, 1243, 1050, 994, 967, 900, 802, 746, 719, 689, 667 cm<sup>-1</sup>; HRMS (EI) calc'd for C<sub>18</sub>H<sub>20</sub>N<sub>2</sub> [M]<sup>+</sup>: 264.1626, found: 264.1625;  $[\alpha]_D^{25}$ +136.6 (c 0.95, CHCl<sub>3</sub>);

## (S)-3-isobutyl-1-(5-(trifluoromethyl)pyridin-2-yl)-3,4-dihydroisoquinoline (3b)



Purified by column chromatography (13:1 Hexane/EtOAc), 89% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.91 (s, 1H), 8.04 (d, J = 1.5 Hz, 2H), 7.36-7.42 (m, 2H), 7.26 (t, J = 8.0 Hz, 2H), 3.73 (ddd, J = 19.7, 7.0, 5.2 Hz, 1H), 2.84 (dd, J = 15.6, 5.0 Hz, 1H), 2.61 (dd, J = 15.4, 12.4 Hz, 1H), 2.00-2.10 (m, 1H), 1.77-1.84 (m, 1H), 1.46-1.53 (m, 1H), 0.99 (q, J = 3.3 Hz, 6H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.7, 160.7, 145.4 (q, J = 3.8 Hz), 138.5, 134.1 (q, J = 3.8 Hz), 131.1, 127.9, 127.8, 127.8, 126.7, 126.6 (q, J = 33.6 Hz), 123.9, 123.6 (q, J = 281.2 Hz), 55.8, 44.8, 32.0, 24.9, 22.8,

22.8; <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.32;

IR v = 3661, 2983, 2954, 1605, 1562, 1467, 1390, 1321, 1164, 1131, 1078, 1017, 967, 861, 746 cm<sup>-1</sup>; HRMS (EI) calc'd for C<sub>19</sub>H<sub>19</sub>F<sub>3</sub>N<sub>2</sub> [M]<sup>+</sup>: 332.1500, found: 332.1497;  $[\alpha]_D^{25}$ +122.9 (c 0.64, CHCl<sub>3</sub>);

#### (S)-3-(2,6-dimethylbenzyl)-1-(5-(trifluoromethyl)pyridin-2-yl)-3,4-dihydroisoquinoline (3c)



Purified by column chromatography (13:1 Hexane/EtOAc), 81% yield. Carefully rinsed three times with distilled petroleum ether at 0 °C. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.96 (s, 1H), 8.03-8.09 (m, 2H), 7.49 (d, J = 7.8 Hz, 1H), 7.40 (td, J = 7.6, 1.2 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.22-7.25 (m, 1H), 7.07-7.13 (m, 3H), 3.90-3.98 (m, 1H), 3.39 (q, J = 6.7 Hz, 1H), 3.11 (dd, J = 13.7, 8.7 Hz, 1H), 2.71-2.83 (m, 2H), 2.41 (s, 6H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.9, 160.4, 145.4 (q, J = 3.8 Hz), 138.4, 137.2, 136.3, 134.1 (q, J = 3.8 Hz), 131.2, 128.4,

128.0, 127.9, 127.6, 126.8, 126.6 (q, J = 33.6 Hz), 126.2, 123.8, 123.6 (q, J = 273.4 Hz), 58.2, 35.6, 31.2, 20.7; <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.32;

IR  $\nu = 3678$ , 2983, 2917, 1605, 1562, 1470, 1391, 1321, 1162, 1128, 1078, 966, 858, 766 cm<sup>-1</sup>; HRMS (EI) calc'd for C<sub>24</sub>H<sub>21</sub>F<sub>3</sub>N<sub>2</sub> [M]<sup>+</sup>: 394.1657, found: 394.1656; [ $\alpha$ ]<sub>D</sub><sup>25</sup>-75.5 (c 1.23, CHCl<sub>3</sub>);

## (S)-3-(2,6-diethylbenzyl)-1-(5-(trifluoromethyl)pyridin-2-yl)-3,4-dihydroisoquinoline (3d)



Purified by column chromatography (13:1 Hexane/EtOAc), 56% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.01 (s, 1H), 8.10 (s, 2H), 7.56 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.17-7.34 (m, 5H), 3.91-3.99 (m, 1H), 3.47-3.54 (m, 1H), 3.20 (dd, J = 14.1, 8.8 Hz, 1H), 2.79-2.89 (m, 6H), 1.29 (t, J = 7.6 Hz, 6H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.7, 160.4, 145.3 (q, J = 4.7 Hz), 143.2, 138.4, 134.5, 133.9 (q, J = 2.8 Hz), 131.1, 128.0, 127.8, 127.6, 126.7, 126.6, 126.5 (q, J = 32.7 Hz), 126.3, 123.8, 123.5 (q, J = 273.5 Hz), 59.2, 34.1, 31.0, 26.3, 15.6; <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.15;

IR v = 3597, 3065, 2961, 1605, 1562, 1456, 1391, 1320, 1163, 1129, 1078, 1016, 965, 854, 742 cm<sup>-1</sup>; HRMS (EI) calc'd for  $C_{26}H_{25}F_3N_2$  [M]<sup>+</sup>: 422.1970, found: 422.1968;  $[\alpha]_D^{25}$ -1.4 (c 0.85, CHCl<sub>3</sub>);

#### (S)-1-(5-(trifluoromethyl)pyridin-2-yl)-3-(2,4,6-triisopropylbenzyl)-3,4-dihydroisoquinoline (3e)



Purified by column chromatography (13:1 Hexane/EtOAc), 37% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.96 (s, 1H), 8.07 (s, 2H), 7.37-7.46 (m, 2H), 7.22-7.30 (m, 2H), 7.05 (s, 2H), 3.82-3.90 (m, 1H), 3.29-3.40 (m, 3H), 3.10 (dd, J = 14.1, 9.2 Hz, 1H), 2.72-2.95 (m, 3H), 1.19-1.30 (m, 18H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 163.9, 160.6, 147.7, 146.9, 145.5 (q, J = 3.9 Hz), 138.4, 134.0 (q, J = 2.9 Hz), 131.2, 130.1, 128.0, 127.7, 126.8 (q, J = 32.7 Hz), 126.8, 124.0, 123.6 (q, J = 273.5 Hz), 121.1, 59.8, 34.2, 32.9, 30.5, 29.5, 24.8, 24.3, 24.2; <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.23;

IR v = 3678, 2983, 2901, 1606, 1563, 1459, 1389, 1321, 1164, 1132, 1078, 1016, 966, 938, 860 cm<sup>-1</sup>; HRMS (EI) calc'd for  $C_{31}H_{35}F_{3}N_{2}$  [M]<sup>+</sup>: 492.2752, found: 492.2750;  $[\alpha]_{D}^{25}$ -0.9 (c 0.71, CHCl<sub>3</sub>);



To a solution of (*S*)-3d (0.15 mmol, 1.0 equiv.) in toluene (1.5 mL, 0.1 M),  $PdCl_2$  (0.15 mmol, 1.0 equiv.) was added. The mixture was stirred and refluxed for 24 h. The mixture was cooled to 24 °C, filtered, concentrated and purified with flash chromatography. Compound [(*S*)-3d]PdCl<sub>2</sub> was obtained as yellow solid.

# ((S)-3-(2,6-diethylbenzyl)-1-(5-(trifluoromethyl)pyridin-2-yl)-3,4-dihydroisoquinoline) palladium(II) chloride ([(S)-3d]PdCl<sub>2</sub>)



Purified by column chromatography (15:1 Hexane/EtOAc), 43% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.93 (s, 1H), 8.01-8.06 (m, 2H), 7.45 (d, J = 7.6 Hz, 1H), 7.37 (t, J = 7.1 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 7.17-7.20 (m, 2H), 7.10 (d, J = 7.6 Hz, 2H), 3.81-3.89 (m, 1H), 3.40 (dd, J = 13.7, 6.1 Hz, 1H), 3.10 (dd, J = 13.9, 9.0 Hz, 1H), 2.67-2.81 (m, 6H), 1.20 (t, J = 7.4 Hz, 6H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.3, 159.2, 148.9 (q, J = 3.8 Hz), 143.9, 137.5, 137.2 (q, J = 2.8 Hz), 134.5, 132.1, 130.5 (q, J = 34.7 Hz), 130.2, 128.5, 127.6 (q, 2.9 Hz), 127.1, 126.5, 125.9, 123.2, 120.5, 57.0, 29.9, 29.0, 26.3, 16.0; <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.57

Elemental Analysis Calc'd for C<sub>26</sub>H<sub>25</sub>Cl<sub>2</sub>F<sub>3</sub>N<sub>2</sub>Pd (%): C 52.06, H 4.20, N,4.67; found C 52.44, H 4.77, N 4.47;  $[\alpha]_D^{25}$  +0.01 (c 0.22, CHCl<sub>3</sub>);

#### 4. Experimental Procedures



H<sub>2</sub>O (700 µL, 0.71 M) was added through 500 µL glass microsyringes to a 4 mL screw-top septum vial charged with a stir bar, chromones (0.50 mmol), Pd(OCOCF<sub>3</sub>)<sub>2</sub> (8.30 mg, 0.025 mmol), (*S*)-3c (11.8 mg, 0.03 mmol), NH<sub>4</sub>PF<sub>6</sub> (24.4 mg, 0.15 mmol) and arylboronic acid (0.60 mmol). O<sub>2</sub> balloon was equipped to the septum of the vial. The mixture was heated to 70 °C and stirred for 20 h. The reaction was monitored by TLC (4:1 hexanes/EtOAc). To the reaction vial, EA (300 µL, x3) was added to extract products. After brief extraction, the organic layer (EA) was directly loaded on the silica gel and purified by column chromatography in each condition to afford desired products. Absolute configuration of compound **6e** was determined by X-ray crystallography, and all other products are assigned by analogy.

#### (S)-2-methyl-2-phenylchroman-4-one (6a)



Purified by column chromatography (11:1 Hexane/EtOAc), 98% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (dd, J = 8.0, 1.5 Hz, 1H), 7.39-7.48 (m, 3H), 7.32-7.17 (3H), 7.06 (dd, J = 8.4, 0.8 Hz, 1H), 6.90-6.94 (m, 1H), 3.31 (d, J = 16.4 Hz, 1H), 3.08 (d, J = 16.4 Hz, 1H), 1.75 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.8, 160.1, 143.0, 136.3, 128.7, 127.7, 126.7, 125.3, 121.1, 121.0, 118.4, 82.5, 48.1, 30.0; The data matched with previously reported literature.<sup>3</sup>

IR v = 2997, 2896, 2361, 1692, 1607, 1461, 1376, 1312, 1272, 1236, 1177, 1121, 1051, 952, 890, 765, 701 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  +12.1 (c 0.54, CHCl<sub>3</sub>); HPLC Conditions: 10% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak IC column,  $\lambda$ = 220 nm, t<sub>R</sub> (min): major = 6.1, minor = 7.55, 95% ee.



#### (S)-2-methyl-2-(p-tolyl)chroman-4-one (6b)



Purified by column chromatography (13:1 Hexane/EtOAc), 80% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (dd, J = 7.8, 1.6 Hz, 1H), 7.43-7.47 (m, 1H), 7.29 (dt, J = 8.4, 1.9 Hz, 2H), 7.03-7.10 (m, 3H), 6.89-6.93 (m, 1H), 3.29 (d, J = 16.5 Hz, 1H), 3.06 (d, J = 16.5 Hz, 1H), 2.27 (s, 3H), 1.74 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.9, 160.2, 140.0, 137.5, 136.2, 129.4, 126.7, 125.3, 121.2, 121.1, 118.4, 82.5, 48.2, 30.2, 21.1; The data matched with previously reported literature.<sup>3</sup>

IR  $\nu = 3673$ , 2955, 1693, 1607, 1461, 1375, 1311, 1273, 1237, 1175, 1120, 1050, 951, 890, 818, 766 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  +38.5 (c 0.77, CHCl<sub>3</sub>); HPLC Conditions: 3% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak ID column,  $\lambda = 220$  nm, t<sub>R</sub> (min): major = 7.72, minor = 8.20, 96% ee.



(S)-2-(4-ethylphenyl)-2-methylchroman-4-one (6c)



Purified by column chromatography (13:1 Hexane/EtOAc), 85% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (dd, J = 7.8, 1.7 Hz, 1H), 7.43-7.47 (m, 1H), 7.31 (dt, J = 8.4, 2.1 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 7.05 (dd, J = 8.4, 0.8 Hz, 1H), 6.90-6.94 (m, 1H), 3.30 (d, J = 16.4 Hz, 1H), 3.06 (d, J = 16.4 Hz, 1H), 2.57 (q, J = 7.6 Hz, 2H), 1.74 (s, 3H), 1.18 (t, J = 7.4 Hz, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.0, 160.2, 143.7, 140.2, 136.2, 128.2, 126.7, 125.3, 121.2, 121.0, 118.4, 82.5, 48.2, 30.1, 28.4, 15.3;

IR  $\nu = 2968$ , 2929, 1692, 1607, 1514, 1461, 1415, 1375, 1309, 1273, 1236, 1175, 1121, 1078, 1044, 951, 890, 832, 765 cm<sup>-1</sup>; HRMS (EI) calc'd for C<sub>18</sub>H<sub>18</sub>O<sub>2</sub> [M]<sup>+</sup>: 266.1307, found: 266.1294; [ $\alpha$ ]<sub>D</sub><sup>25</sup>+33.8 (c 0.89, CHCl<sub>3</sub>); HPLC Conditions: 10% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak IC column,  $\lambda = 220$  nm, t<sub>R</sub> (min): major = 5.86, minor = 7.78, 98% ee.



(S)-2-(4-methoxyphenyl)-2-methylchroman-4-one (6d)



Purified by column chromatography (9:1 Hexane/EtOAc), 51% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (dd, J = 7.8, 1.8 Hz, 1H), 7.42-7.46 (m, 1H), 7.30-7.34 (m, 2H), 7.02 (d, J = 8.2 Hz, 1H), 6.89-6.93 (m, 1H), 6.78-6.82 (m, 2H), 3.73 (s, 3H), 3.28 (d, J = 16.5 Hz, 1H), 3.05 (d, J = 16.5 Hz, 1H), 1.73 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.0, 160.1, 159.0, 136.2, 134.9, 126.7, 121.2, 121.0, 118.4, 114.0, 82.4, 55.3, 48.1, 30.3; The data matched with previously reported literature.<sup>3</sup>

IR v = 2976, 2367, 1691, 1609, 1513, 1461, 1415, 1376, 1310, 1252, 1182, 1122, 1079, 1033, 950, 890, 832, 768 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  +42.5 (c 0.37, CHCl<sub>3</sub>); HPLC Conditions: 10% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak IC column,  $\lambda$  = 220 nm, t<sub>R</sub> (min): major = 8.41, minor = 11.24, 90% ee.



#### (S)-2-(4-(tert-butyl)phenyl)-2-methylchroman-4-one (6e)



Purified by column chromatography (15:1 Hexane/EtOAc), 78% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (dd, J = 7.8, 1.8 Hz, 1H), 7.44-7.48 (m, 1H), 7.28-7.34 (m, 4H), 7.05 (dd, J = 8.2, 0.7 Hz, 1H), 6.90-6.94 (m, 1H), 3.30 (d, J = 16.5 Hz, 1H), 3.05 (d, J = 16.5 Hz, 1H), 1.74 (s, 3H), 1.26 (s, 9H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.0, 160.2, 150.6, 140.0, 136.2, 126.7, 125.6, 125.0, 121.1, 121.0, 118.5, 82.5, 48.2, 34.5, 31.3, 29.9;

IR v = 2962, 2360, 1693, 1608, 1510, 1462, 1401, 1363, 1310, 1273, 1239, 1120, 1082, 1016, 952, 891, 835, 763 cm<sup>-1</sup>; HRMS (EI) calc'd for  $C_{20}H_{22}O_2$  [M]<sup>+</sup>: 294.1620, found: 294.1610;  $[\alpha]_D^{25}$  +27.5 (c 0.95, CHCl<sub>3</sub>); HPLC Conditions: 10% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak IC column,  $\lambda$  = 220 nm, t<sub>R</sub> (min): major = 5.12, minor = 6.89, 98% ee.



(S)-2-(3-methoxyphenyl)-2-methylchroman-4-one (6f)



Purified by column chromatography (9:1 Hexane/EtOAc), 81% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (dd, J = 7.8, 1.7 Hz, 1H), 7.43-7.48 (m, 1H), 7.20 (t, J = 8.2 Hz, 1H), 7.05 (d, J = 8.4 Hz, 1H), 6.91-6.97 (m, 3H), 6.73-6.76 (m, 1H), 3.74 (s, 3H), 3.28 (d, J = 16.8 Hz, 1H), 3.07 (d, J = 16.4 Hz, 1H), 1.74 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.7, 160.1, 159.9, 144.8, 136.3, 129.8, 126.7, 121.2, 118.4, 117.7, 112.8, 111.6, 82.5, 55.3, 48.2, 30.0; The data matched with previously reported literature.<sup>3</sup>

IR  $\nu = 3072$ , 2836, 1691, 1607, 1461, 1376, 1325, 1290, 1237, 1177, 1150, 1121, 1046, 952, 868, 767, 701 cm<sup>-1</sup>;  $[\alpha]_D^{25}$ +34.0 (c 1.00, CHCl<sub>3</sub>); HPLC Conditions: 10% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak IC column,  $\lambda = 220$  nm, t<sub>R</sub> (min): major = 8.30, minor = 12.01, 99% ee.



(S)-2-methyl-2-(m-tolyl)chroman-4-one (6g)



Purified by column chromatography (15:1 Hexane/EtOAc), 82% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (dd, J = 7.8, 1.7 Hz, 1H), 7.44-7.48 (m, 1H), 7.15-7.21 (m, 3H), 7.02-7.07 (m, 2H), 6.92 (td, J = 7.4, 1.0 Hz, 1H), 3.29 (d, J = 16.4 Hz, 1H), 3.06 (d, J = 16.8 Hz, 1H), 2.30 (s, 3H), 1.73 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.9, 160.2, 143.1, 138.3, 136.2, 128.6, 128.6, 126.7, 126.0, 122.4, 121.1, 121.1, 118.5, 82.5, 48.2, 29.9, 21.7; The data matched with previously reported literature.<sup>3</sup>

IR  $\nu = 2978$ , 2922, 2361, 1692, 1607, 1461, 1376, 1325, 1278, 1237, 1120, 1081, 1044, 952, 896, 865, 766, 704cm<sup>-1</sup>;  $[\alpha]_D^{25}$ +10.4 (c 0.91, CHCl<sub>3</sub>); HPLC Conditions: 10% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak IC column,  $\lambda = 220$  nm, t<sub>R</sub> (min): major = 6.12, minor = 7.01, 99% ee.



#### (S)-2-(3,5-dimethylphenyl)-2-methylchroman-4-one (6h)



Purified by column chromatography (15:1 Hexane/EtOAc), 77% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (dd, J = 8.0, 1.6 Hz, 1H), 7.43-7.48 (m, 1H), 7.06 (dd, J = 8.2, 0.9 Hz, 1H), 7.02 (s, 2H), 6.90-6.94 (m, 1H), 6.85 (s, 1H), 3.29 (d, J = 16.5 Hz, 1H), 3.04 (d, J = 16.5 Hz, 1H), 2.26 (s, 6H), 1.72 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.9, 160.2, 143.1, 138.2, 136.2, 129.4, 126.7, 123.1, 121.1, 121.0, 118.4, 82.5, 48.2, 29.8, 21.5; The data matched with previously reported literature.<sup>3</sup>

IR v = 2977, 2920, 1693, 1608, 1461, 1376, 1303, 1238, 1181, 1122, 1081, 1045, 939, 899, 851, 765, 706 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  +8.4 (c 1.00, CHCl<sub>3</sub>); HPLC Conditions: 10% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak IC column,  $\lambda$  = 220 nm, t<sub>R</sub> (min): major = 5.51, minor = 6.63, 97% ee.



(S)-2-(benzo[d][1,3]dioxol-5-yl)-2-methylchroman-4-one (6i)



Purified by column chromatography (13:1 Hexane/EtOAc), 47% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (dd, J = 7.8, 1.7 Hz, 1H), 7.42-7.46 (m, 1H), 7.01 (dd, J = 8.4, 0.8 Hz, 1H), 6.89-6.93 (m, 2H), 6.81 (dd, J = 8.4, 1.9 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H), 5.87 (dd, J = 4.6, 1.5 Hz, 2H), 3.24 (d, J = 16.4 Hz, 1H), 3.04 (d, J = 16.8 Hz, 1H), 1.71 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.7, 159.9, 148.1, 147.1, 136.9, 136.2, 126.6, 121.2, 118.9, 118.4, 108.1, 106.2, 101.2, 82.4, 48.1, 30.4; The data matched with previously reported literature.<sup>3</sup>

IR v = 2978, 2900, 2373, 1689, 1608, 1488, 1461, 1325, 1236, 1119, 1039, 935, 881, 812, 768 cm<sup>-1</sup>;  $[\alpha]_D^{25}$ +67.2 (c 0.50, CHCl<sub>3</sub>); HPLC Conditions: 10% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak IC column,  $\lambda = 220$  nm, t<sub>R</sub> (min): major = 9.65, minor = 13.66, 96% ee.



(S)-2-(4-fluorophenyl)-2-methylchroman-4-one (6j)



Purified by column chromatography (15:1 Hexane/EtOAc), 80% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (dd, J = 7.8, 1.8 Hz, 1H), 7.46 (ddd, J = 8.6, 6.9, 1.5 Hz, 1H), 7.35-7.40 (m, 2H), 7.03 (dd, J = 8.2, 0.7 Hz, 1H), 6.91-6.99 (m, 3H), 3.27 (d, J = 16.5 Hz, 1H), 3.07 (d, J = 16.5 Hz, 1H), 1.73 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.6, 162.2 (d, J = 248.4 Hz), 159.9, 138.9 (d, J = 2.9 Hz), 136.4, 127.2 (d, J = 8.7 Hz), 126.7, 121.3, 121.1, 118.4, 115.6 (d, J = 21.2 Hz), 82.2, 48.2, 30.2; <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  - 114.50; The data matched with previously reported literature.<sup>3</sup>

IR v = 3665, 2963, 1691, 1606, 1461, 1416, 1308, 1271, 1233, 1163, 1121, 1051, 1015, 952, 892, 837, 767 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  +15.4 (c 0.93, CHCl<sub>3</sub>); HPLC Conditions: 10% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak IC column,  $\lambda = 220$  nm, t<sub>R</sub> (min): major = 6.25, minor = 7.27, 98% ee.



#### (S)-2-(4-chlorophenyl)-2-methylchroman-4-one (6k)



Purified by column chromatography (15:1 Hexane/EtOAc), 86% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (dd, J = 7.8, 1.6 Hz, 1H), 7.44-7.48 (m, 1H), 7.34 (dt, J = 9.1, 2.4 Hz, 2H), 7.23-7.27 (m, 2H), 7.04 (dd, J = 8.5, 0.7 Hz, 1H), 6.92-6.96 (m, 1H), 3.25 (d, J = 16.5 Hz, 1H), 3.07 (d, J = 16.5 Hz, 1H), 1.73 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.4, 159.8, 141.7, 136.4, 133.7, 128.9, 126.8, 126.8, 121.4, 121.1, 118.4, 82.2, 48.0, 30.1; The data matched with previously reported literature.<sup>3</sup>

IR v = 3671, 2959, 1693, 1607, 1461, 1400, 1308, 1270, 1236, 1175, 1121, 1096, 1013, 953, 891, 829, 765, 740 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  +22.7 (c 0.94, CHCl<sub>3</sub>); HPLC Conditions: 10% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak IC column,  $\lambda = 220$  nm, t<sub>R</sub> (min): major = 6.31, minor = 7.81, 99% ee.



(S)-2-(4-bromophenyl)-2-methylchroman-4-one (6l)



Purified by column chromatography (15:1 Hexane/EtOAc), 80% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 (dd, J = 7.8, 1.7 Hz, 1H), 7.39-7.48 (m, 3H), 7.25-7.29 (m, 2H), 7.04 (dd, J = 8.4, 0.8 Hz, 1H), 6.94 (td, J = 7.5, 1.0 Hz, 1H), 3.25 (d, J = 16.4 Hz, 1H), 3.07 (d, J = 16.4 Hz, 1H), 1.72 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.4, 159.8, 142.2, 136.4, 131.9, 127.2, 126.8, 121.9, 121.4, 121.1, 118.4, 82.2, 48.0, 30.0; The data matched with previously reported literature.<sup>3</sup>

IR  $\nu = 2984$ , 2903, 1693, 1607, 1461, 1309, 1271, 1235, 1121, 1080, 1009, 953, 891, 825, 770 cm<sup>-1</sup>;  $[\alpha]_D^{25}$ +19.1 (c 0.40, CHCl<sub>3</sub>); HPLC Conditions: 10% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak IC column,  $\lambda = 220$  nm, t<sub>R</sub> (min): major = 6.51, minor = 8.04, 98% ee.



(S)-2-methyl-2-(4-(trifluoromethyl)phenyl)chroman-4-one (6m)



Purified by column chromatography (13:1 Hexane/EtOAc), 31% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (dd, J = 7.8, 1.7 Hz, 1H), 7.46-7.57 (m, 5H), 7.07 (d, J = 9.2 Hz, 1H), 6.94-6.98 (m, 1H), 3.29 (d, J = 16.4 Hz, 1H), 3.12 (d, J = 16.4 Hz, 1H), 1.75 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.2, 159.8, 147.2, 136.6, 130.1 (q, J = 32.7 Hz) 126.8, 125.8 (q, J = 3.8 Hz), 124.0 (q, J = 273.5 Hz), 121.6, 121.1, 118.4, 82.2, 48.0, 29.9; <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.55; The data matched with previously reported literature.<sup>3</sup>

IR v = 3669, 2963, 1693, 1607, 1462, 1410, 1326, 1236, 1168, 1122, 1080, 1016, 954, 893, 844, 766 cm<sup>-1</sup>;  $[\alpha]_D^{25}$ -8.3 (c 0.36, CHCl<sub>3</sub>); HPLC Conditions: 10% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak IC column,  $\lambda = 220$  nm, t<sub>R</sub> (min): major = 5.24, minor = 6.52, 99% ee.



#### (S)-2-(3-fluorophenyl)-2-methylchroman-4-one (6n)



Purified by column chromatography (16:1 Hexane/EtOAc), 60% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (dd, J = 7.8, 1.7 Hz, 1H), 7.46-7.50 (m, 1H), 7.23-7.29 (m, 1H), 7.12-7.16 (m, 2H), 7.06 (dd, J = 8.4, 0.8 Hz, 1H), 6.89-6.97 (m, 2H), 3.25 (d, J = 16.8 Hz, 1H), 3.08 (d, J = 16.4 Hz, 1H), 1.73 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.4, 163.1 (d, J = 247.5 Hz), 159.8, 146.0 (d, J = 6.8 Hz), 136.5, 130.4 (d, J = 8.7 Hz), 126.8, 121.4, 121.1, 120.9 (d, J = 2.9 Hz), 118.4, 114.9 (d, J = 21.2 Hz), 112.7 (d, J = 23.1 Hz), 82.1, 48.1, 29.9; <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -111.81;

IR v = 2971, 1692, 1609, 1461, 1377, 1326, 1274, 1235, 1121, 1045, 954, 910, 879, 766, 700 cm<sup>-1</sup>; HRMS (EI) calc'd for  $C_{16}H_{13}FO_2$  [M]<sup>+</sup>: 256.0900, found: 256.0894; [ $\alpha$ ]<sub>D</sub><sup>25</sup>-3.5 (c 0.46, CHCl<sub>3</sub>); HPLC Conditions: 8% IPA/ Hexanes, 0.9 mL/min, Daicel Chiralpak ID column,  $\lambda = 220$  nm, t<sub>R</sub> (min): major = 7.23, minor = 7.59, 96% ee.



(S)-2-(3-chlorophenyl)-2-methylchroman-4-one (60)



Purified by column chromatography (16:1 Hexane/EtOAc), 55% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (dd, J = 7.9, 1.7 Hz, 1H), 7.46-7.50 (m, 1H), 7.42 (t, J = 1.8 Hz, 1H), 7.18-7.28 (m, 3H), 7.06 (dd, J = 8.4, 0.6 Hz, 1H), 6.93-6.97 (m, 1H), 3.24 (d, J = 16.5 Hz, 1H), 3.07 (d, J = 16.5 Hz, 1H), 1.73 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.2, 159.8, 145.4, 136.5, 134.9, 130.0, 128.1, 126.8, 125.7, 123.4, 121.4, 121.0, 118.5, 82.1, 48.1, 29.7; The data matched with previously reported literature.<sup>3</sup>

IR  $\nu = 3675$ , 2977, 1692, 1607, 1461, 1418, 1377, 1325, 1235, 1165, 1122, 1079, 1047, 954, 893, 765, 698 cm<sup>-1</sup>; [ $\alpha$ ]<sub>D</sub><sup>25</sup>+8.6 (c 0.89, CHCl<sub>3</sub>); HPLC Conditions: 1% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak ID column,  $\lambda = 220$  nm, t<sub>R</sub> (min): major = 10.08, minor = 10.57, 92% ee.



(S)-2-ethyl-2-phenylchroman-4-one (8a)



Purified by column chromatography (15:1 Hexane/EtOAc), 93% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 (dd, J = 8.0, 1.5 Hz, 1H), 7.43-7.47 (m, 1H), 7.33-7.36 (m, 2H), 7.25-7.30 (m, 2H), 7.17-7.21 (m, 1H), 7.07 (dd, J = 8.4, 0.8 Hz, 1H), 6.88-6.92 (m, 1H), 3.26 (d, J = 16.4 Hz, 1H), 3.10 (d, J = 16.4 Hz, 1H), 1.97-2.13 (m, 2H), 0.85 (t, J = 7.4 Hz, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.9, 160.1, 141.3, 136.2, 128.5, 127.6, 126.6, 126.0, 121.4, 121.0, 118.4, 85.2, 46.2, 35.3, 8.0; The data matched with previously reported literature.<sup>3</sup>

IR v = 2971, 1692, 1608, 1461, 1306, 1232, 1121, 1153, 1121, 1079, 1028, 957, 887, 760, 701 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  +7.0 (c 1.01, CHCl<sub>3</sub>); HPLC Conditions: 5% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak ID column,  $\lambda$  = 220 nm, t<sub>R</sub> (min): major = 6.75, minor = 7.25, 98% ee.



#### (*R*)-2-isopropyl-2-phenylchroman-4-one (8b)



Purified by column chromatography (15:1 Hexane/EtOAc), 47% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (dd, J = 7.8, 1.7 Hz, 1H), 7.39-7.44 (m, 1H), 7.14-7.30 (m, 5H), 7.04 (dd, J = 8.4, 1.1 Hz, 1H), 6.83-6.87 (m, 1H), 3.28 (d, J = 16.4 Hz, 1H), 3.14 (d, J = 16.4 Hz, 1H), 2.21-2.31 (m, 1H), 1.04 (d, J = 6.9 Hz, 3H), 0.86 (d, J = 6.9 Hz, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.4, 160.3, 140.0, 136.1, 128.2, 127.7, 127.1, 126.5, 121.6, 120.9, 118.4, 87.6, 42.4, 39.0, 17.5, 17.0; The data matched with previously reported literature.<sup>3</sup>

IR v = 2975, 1692, 1608, 1461, 1306, 1233, 1118, 1030, 980, 898, 841, 760, 703 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  +71.1 (c 0.42, CHCl<sub>3</sub>); HPLC Conditions: 5% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak ID column,  $\lambda = 220$  nm, t<sub>R</sub> (min): major = 6.38, minor = 6.70, 97% ee.



(*R*)-2-cyclohexyl-2-phenylchroman-4-one (8c)



Purified by column chromatography (15:1 Hexane/EtOAc), 48% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (dd, J = 7.8, 1.7 Hz, 1H), 7.39-7.43 (m, 1H), 7.13-7.29 (m, 5H), 7.03 (dd, J = 8.4, 0.8 Hz, 1H), 6.82-6.86 (m, 1H), 3.28 (d, J = 16.4 Hz, 1H), 3.16 (d, J = 16.4 Hz, 1H), 0.89-1.98 (m, 12H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.5, 160.3, 140.3, 136.0, 128.2, 127.6, 127.1, 126.5, 121.6, 120.8, 118.3, 87.5, 49.1, 42.9, 27.6, 27.0, 26.5, 26.4; The data matched with previously reported literature.<sup>3</sup>

IR v = 3665, 2972, 2928, 1692, 1609, 1461, 1407, 1307, 1228, 1056, 902, 879, 842, 819, 760, 705 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  +43.5 (c 0.53, CHCl<sub>3</sub>); HPLC Conditions: 1% MeOH/ Hexanes, 0.9 mL/min, Daicel Chiralpak ID column,  $\lambda$  = 220 nm, t<sub>R</sub> (min): major = 6.08, minor = 6.41, 98% ee.



#### (S)-2-benzyl-2-phenylchroman-4-one (8d)



Purified by column chromatography (13:1 Hexane/EtOAc), 52% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (dd, J = 7.6, 1.5 Hz, 1H), 7.45 (ddd, J = 8.8, 6.9, 1.5 Hz, 1H), 7.17-7.28 (m, 8H), 7.09 (dd, J = 8.4, 0.8 Hz, 1H), 6.97-7.02 (m, 2H), 6.89 (td, J = 7.5, 0.9 Hz, 1H), 3.36 (d, J = 13.7 Hz, 1H), 3.24 (d, J = 16.4 Hz, 1H), 3.17 (d, J = 13.7 Hz, 1H), 3.08 (d, J = 16.4 Hz, 1H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.8, 160.0, 141.2, 136.2, 135.3, 130.9, 128.5, 128.1, 127.9, 127.0, 126.6, 126.3, 121.5, 121.2, 118.5, 84.9, 49.7, 45.3;

IR v = 3061, 3031, 2922, 2851, 1692, 1605, 1462, 1307, 1231, 1122, 1031, 996, 911, 768, 701 cm<sup>-1</sup>; HRMS (FAB) calc'd for  $C_{22}H_{18}O_2$  [M+1]<sup>+</sup>: 315.1380, found: 315.1397; [ $\alpha$ ]<sub>D</sub><sup>25</sup>+36.5 (c 0.20, CHCl<sub>3</sub>); HPLC Conditions: 3% MeOH/ Hexanes, 1.0 mL/min, Daicel Chiralpak ID column,  $\lambda$  = 220 nm, t<sub>R</sub> (min): major = 6.82, minor = 6.36, 98% ee.



#### (S)-2,6-dimethyl-2-phenylchroman-4-one (8e)



Purified by column chromatography (13:1 Hexane/EtOAc), 89% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (d, J = 1.9 Hz, 1H), 7.39-7.42 (m, 2H), 7.25-7.30 (m, 3H), 7.18-7.22 (m, 1H), 6.96 (d, J = 8.4 Hz, 1H), 3.29 (d, J = 16.8 Hz, 1H), 3.06 (d, J = 16.4 Hz, 1H), 2.22 (s, 3H), 1.73 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.0, 158.1, 143.1, 137.3, 130.5, 128.6, 127.7, 126.3, 125.3, 120.7, 118.2, 82.3, 48.1, 30.1, 20.4;

IR  $\nu = 3663$ , 2975, 1689, 1618, 1488, 1423, 1292, 1236, 1193, 1132, 953, 825, 762, 701 cm<sup>-1</sup>; HRMS (EI) calc'd for  $C_{17}H_{16}O_2$  [M+1]<sup>+</sup>: 252.1150, found: 252.1150;  $[\alpha]_D^{25}$  +24.8 (c 0.99, CHCl<sub>3</sub>); HPLC Conditions: 10% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak IC column,  $\lambda = 220$  nm, t<sub>R</sub> (min): major = 6.29, minor = 6.87, 98% ee.



(S)-6-methoxy-2-methyl-2-phenylchroman-4-one (8f)



Purified by column chromatography (10:1 Hexane/EtOAc), 88% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.37-7.40 (m, 2H), 7.17-7.30 (m, 4H), 7.06 (dd, J = 9.0, 3.2 Hz, 1H), 6.98 (d, J = 9.2 Hz, 1H), 3.71 (s, 3H), 3.30 (d, J = 16.4 Hz, 1H), 3.07 (d, J = 16.4 Hz, 1H), 1.73 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.8, 154.7, 153.8, 143.1, 128.6, 127.7, 125.4, 125.3, 120.9, 119.7, 107.1, 82.4, 55.7, 47.9, 30.2; The data matched with previously reported literature.<sup>3</sup>

IR v = 3669, 2965, 1688, 1619, 1487, 1431, 1284, 1220, 1174, 1123, 1072, 1032, 955, 878, 829, 766, 01 cm<sup>-1</sup>;  $[\alpha]_D^{25}$ +39.5 (c 1.09, CHCl<sub>3</sub>); HPLC Conditions: 5% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak IC column,  $\lambda$  = 220 nm, t<sub>R</sub> (min): major = 10.75, minor = 10.14, 98% ee.



(S)-7-methoxy-2-methyl-2-phenylchroman-4-one (8g)



Purified by column chromatography (10:1 Hexane/EtOAc), 92% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (d, J = 8.8 Hz, 1H), 7.40 (dt, J = 7.9, 1.9 Hz, 2H), 7.25-7.30 (m, 2H), 7.18-7.23 (m, 1H), 6.52-6.45 (2H), 3.81 (s, 3H), 3.24 (d, J = 16.8 Hz, 1H), 3.02 (d, J = 16.8 Hz, 1H), 1.73 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  190.3, 166.3, 162.0, 143.2, 128.6, 128.4, 127.7, 125.1, 115.0, 109.4, 101.5, 82.9, 55.6, 47.8, 29.9;

IR v = 3676, 2977, 2896, 1681, 1607, 1495, 1439, 1311, 1264, 1204, 1159, 1136, 1020, 980, 943, 839, 762, 702 cm<sup>-1</sup>; HRMS (EI) calc'd for  $C_{17}H_{16}O_3$  [M]<sup>+</sup>: 268.1099, found: 268.1094;  $[\alpha]_D^{25}$ -95.4 (c 0.99, CHCl<sub>3</sub>); HPLC Conditions: 5% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak ID column,  $\lambda$  = 220 nm, t<sub>R</sub> (min): major = 14.95, minor = 16.86, 98% ee.



#### (S)-6-fluoro-2-methyl-2-phenylchroman-4-one (8h)



Purified by column chromatography (13:1 Hexane/EtOAc), 74% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36-7.41 (m, 3H), 7.14-7.31 (m, 4H), 7.02 (q, J = 4.5 Hz, 1H), 3.32 (d, J = 16.8 Hz, 1H), 3.07 (d, J = 16.4 Hz, 1H), 1.74 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.0, 157.0 (d, J = 243.7 Hz), 156.3 (d, J = 1.9 Hz), 142.6, 128.8, 127.9, 125.3, 123.7 (d, J = 24.0 Hz), 121.5 (d, J = 6.8 Hz), 120.0 (d, J = 7.8 Hz), 111.8 (d, J = 23.1 Hz), 82.8, 47.7, 30.1; <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -121.77;

IR v = 2982, 2901, 1694, 1620, 1481, 1436, 1378, 1309, 1266, 1170, 1117, 1067, 955, 879, 828, 765, 701 cm<sup>-1</sup>; HRMS (EI) calc'd for C<sub>16</sub>H<sub>13</sub>FO<sub>2</sub> [M]<sup>+</sup>: 256.0900, found: 256.0901; [α]<sub>D</sub><sup>25</sup>+14.5 (c 1.00, CHCl<sub>3</sub>); HPLC Conditions: 5% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak ID column,  $\lambda$  = 220 nm, t<sub>R</sub> (min): major = 6.51, minor = 6.89, 98% ee.



(S)-6-chloro-2-methyl-2-phenylchroman-4-one (8i)



Purified by column chromatography (13:1 Hexane/EtOAc), 90% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, J = 2.7 Hz, 1H), 7.35-7.39 (m, 3H), 7.20-7.31 (m, 3H), 7.01 (d, J = 8.8 Hz, 1H), 3.32 (d, J = 16.8 Hz, 1H), 3.07 (d, J = 16.4 Hz, 1H), 1.75 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  190.6, 158.5, 142.5, 136.0, 128.8, 128.0, 126.6, 126.1, 125.3, 121.9, 120.2, 83.0, 47.7, 30.1;

IR v = 3675, 2976, 2901, 1696, 1603, 1469, 1422, 1267, 1229, 1177, 1131, 1068, 954, 897, 826, 763, 701 cm<sup>-1</sup>; HRMS (EI) calc'd for  $C_{16}H_{13}ClO_2$  [M]<sup>+</sup>: 272.0604, found: 272.0604;

 $[\alpha]_D^{25}$ +37.7 (c 0.93, CHCl<sub>3</sub>); HPLC Conditions: 5% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak ID column,  $\lambda = 220$  nm, t<sub>R</sub> (min): major = 6.48, minor = 7.01, 96% ee.



#### (S)-6-bromo-2-methyl-2-phenylchroman-4-one (8j)



Purified by column chromatography (13:1 Hexane/EtOAc), 64% yield. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.85 (d, J = 2.7 Hz, 1H), 7.52 (dd, J = 8.8, 2.3 Hz, 1H), 7.35-7.38 (m, 2H), 7.26-7.31 (m, 2H), 7.20-7.25 (m, 1H), 6.95 (d, J = 8.8 Hz, 1H), 3.31 (d, J = 16.8 Hz, 1H), 3.07 (d, J = 16.4 Hz, 1H), 1.74 (s, 3H); <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  190.5, 159.0, 142.4, 138.8, 129.2, 128.8, 128.0, 125.3, 122.4, 120.5, 113.8, 83.0, 47.7, 30.2;

IR v = 3673, 2975, 2901, 1696, 1598, 1467, 1416, 1266, 1230, 1176, 1133, 1079, 1045, 954, 897, 825, 762, 700 cm<sup>-1</sup>; HRMS (EI) calc'd for  $C_{16}H_{13}BrO_2$  [M]<sup>+</sup>: 316.0099, found:

316.0092; [α]<sub>D</sub><sup>25</sup>+33.3 (c 0.63, CHCl<sub>3</sub>); HPLC Conditions: 5% IPA/ Hexanes, 1.0 mL/min, Daicel Chiralpak ID column,  $\lambda = 220$  nm, t<sub>R</sub> (min): major = 7.03, minor = 7.75, 99% ee.



## 5. References

- 1. D. Zhao, B. Beiring, F. Glorius, Angew. Chem. Int. Ed. 2013, 52, 8454.
- 2. J. L. Vicario, D. Badia, L. Carrillo, Arkivoc, 2007, 304.
- 3. A. L. Gerten, L. M. Stanley, Tetrahedron Lett. 2016, 57, 5460.

#### 6. X-Ray Analysis for Compound 6e and [(S)-3d]PdCl<sub>2</sub>

An X-Ray quality single crystal of compound **6e** was obtained by slow recrystallization from hexane solution (76 mg/700  $\mu$ L) at 25 °C. Weak argon blowing helps to make seed in the solution. An X-ray quality single crystal of **[(S)-3d]PdCl**<sub>2</sub> was obtained by following recrystallization method. To a solution of **[(S)-3d]PdCl**<sub>2</sub> (50 mg) in DCM (0.1 mL), diethyl ether (10 mL) was added slowly to make bilayer system. Reflection data for **6e** and **[(S)-3d]PdCl**<sub>2</sub> were collected on a Bruker APEX-II CCD-based diffractometer with graphite-monochromated MoK $\alpha$  radiation ( $\lambda = 0.71073$  Å).



Figure S1. X-Ray Coordinate of Compound 6e

| Table S1 | . X-Rav | Crystal | Data and | Structure | Refinement | for Co | mpound | <b>6e</b> |
|----------|---------|---------|----------|-----------|------------|--------|--------|-----------|
|          |         |         |          |           |            |        |        |           |

| Identification code                | 6e                                         |                               |  |
|------------------------------------|--------------------------------------------|-------------------------------|--|
| CCDC number                        | 1954885                                    |                               |  |
| Empirical formula                  | C20 H22 O2                                 |                               |  |
| Formula weight                     | 294. 37                                    |                               |  |
| Temperature                        | 296(2) K                                   |                               |  |
| Wavelength                         | 0.71073 Å                                  |                               |  |
| Crystal system Triclinic           | Monoclinic                                 |                               |  |
| Space group                        | C2                                         |                               |  |
| Unit cell dimensions               | a=23.2747(4) Å                             | $\alpha = 90^{\circ}$         |  |
|                                    | b=6.77810(10) Å                            | $\beta = 91.9349(17)^{\circ}$ |  |
|                                    | c=10.2443(2) Å                             | $\gamma = 90^{\circ}$         |  |
| Volume                             | 1615.20(5) Å <sup>3</sup>                  |                               |  |
| Z                                  | 4                                          |                               |  |
| Density (calculated)               | $1.211 \text{ mg/m}^3$                     |                               |  |
| Absorption coefficient             | 0.076 mm <sup>-1</sup>                     |                               |  |
| F(000)                             | 632                                        |                               |  |
| Theta range for data collection    | 2.61° to 25.42°                            |                               |  |
| Index ranges                       | -28≤h≤28, -8≤k≤8, -12≤l≤12                 | 2                             |  |
| Reflections collected              | 12536                                      |                               |  |
| Independent reflections            | 2965 [R(int)=0.0180]                       |                               |  |
| Completeness to theta =            | 99.4%                                      |                               |  |
| Data / restraints / parameters     | 2965/1/203                                 |                               |  |
| Goodness-of-fit on F <sup>2</sup>  | 1.043                                      |                               |  |
| Final R indices $[I > 2\sigma(I)]$ | R1 = 0.0306, $wR2 = 0.0793$                | [2880]                        |  |
| R indices (all data)               | R1 = 0.0315, $wR2 = 0.0802$                |                               |  |
| Absolute structure parameter       | 0.0(2)                                     |                               |  |
| Largest diff. peak and hole        | 0.147 and -0.182 $e \cdot \text{\AA}^{-3}$ |                               |  |

| ( | D1-C1    | 1.216(2)   |
|---|----------|------------|
| ( | D2-C3    | 1.367(2)   |
| ( | D2-C4    | 1.457(2)   |
| ( | C1-C2    | 1.475(3)   |
| ( | C1-C5    | 1.506(3)   |
| ( | C2-C3    | 1.400(2)   |
| ( | C2-C6    | 1.401(3)   |
| ( | C3-C9    | 1.389(3)   |
| ( | C4-C10   | 1.524(2)   |
| ( | C4-C5    | 1.526(3)   |
| ( | C4-C11   | 1.530(2)   |
| ( | C6-C7    | 1.377(3)   |
| ( | C7-C8    | 1.393(3)   |
| ( | C8-C9    | 1.386(3)   |
| ( | C11-C16  | 1.386(2)   |
| ( | C11-C12  | 1.387(3)   |
| ( | C12-C13  | 1.388(3)   |
| ( | C13-C14  | 1.390(3)   |
| ( | C14-C15  | 1.387(3)   |
| ( | C14-C17  | 1.538(2)   |
| ( | C15-C16  | 1.389(3)   |
| ( | C17-C20  | 1.519(3)   |
| ( | C17-C19  | 1.530(3)   |
| ( | C17-C18  | 1.537(3)   |
| ( | СЗ-О2-С4 | 116.87(12) |
| ( | D1-C1-C2 | 123.18(18) |
| ( | D1-C1-C5 | 122.50(18) |
| ( | C2-C1-C5 | 114.26(16) |
| ( | C3-C2-C6 | 118.66(17) |
| ( | C3-C2-C1 | 119.77(16) |
| ( | C6-C2-C1 | 121.46(16) |
| ( | 02-C3-C9 | 116.42(15) |

| Table S2. Bond lengths[Å ] and angl | es[°] for compound 6e |
|-------------------------------------|-----------------------|
|                                     |                       |

| O2-C3-C2    | 122.90(16) |
|-------------|------------|
| C9-C3-C2    | 120.66(16) |
| O2-C4-C10   | 103.81(14) |
| O2-C4-C5    | 108.49(13) |
| C10-C4-C5   | 111.36(16) |
| O2-C4-C11   | 109.21(14) |
| C10-C4-C11  | 109.83(14) |
| C5-C4-C11   | 113.65(14) |
| C1-C5-C4    | 111.86(16) |
| C7-C6-C2    | 121.02(17) |
| C6-C7-C8    | 119.38(17) |
| C9-C8-C7    | 120.88(18) |
| C8-C9-C3    | 119.38(16) |
| C16-C11-C12 | 117.40(16) |
| C16-C11-C4  | 121.96(16) |
| C12-C11-C4  | 120.39(16) |
| C11-C12-C13 | 120.96(18) |
| C12-C13-C14 | 122.04(19) |
| C15-C14-C13 | 116.52(17) |
| C15-C14-C17 | 122.14(15) |
| C13-C14-C17 | 121.21(17) |
| C14-C15-C16 | 121.74(16) |
| C11-C16-C15 | 121.31(17) |
| C20-C17-C19 | 108.34(18) |
| C20-C17-C18 | 109.30(18) |
| C19-C17-C18 | 108.22(17) |
| C20-C17-C14 | 112.37(16) |
| C19-C17-C14 | 111.19(15) |
| C18-C17-C14 | 107.32(15) |
|             |            |



Figure S2. X-Ray Coordinate of [(S)-3d]PdCl<sub>2</sub>

## Table S3. X-ray crystal data and structure refinement for [(S)-3d]PdCl<sub>2</sub>

| Identification code                | [(S)-3d]PdCl <sub>2</sub>                     |                       |
|------------------------------------|-----------------------------------------------|-----------------------|
| CCDC number                        | 1843946                                       |                       |
| Empirical formula                  | C27 H27 Cl4 F3 N2 Pd                          |                       |
| Formula weight                     | 684.71                                        |                       |
| Temperature                        | 296(2) K                                      |                       |
| Wavelength                         | 0.71073 Å                                     |                       |
| Crystal system Triclinic           | Orthohombic                                   |                       |
| Space group                        | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> |                       |
| Unit cell dimensions               | a=7.3222(2) Å                                 | $\alpha = 90^{\circ}$ |
|                                    | b=16.3645(5) Å                                | $\beta = 90^{\circ}$  |
|                                    | c=22.9119(6) Å                                | $\gamma = 90^{\circ}$ |
| Volume                             | 2745.40(13) Å <sup>3</sup>                    |                       |
| Z                                  | 4                                             |                       |
| Density (calculated)               | $1.657 \text{ mg/m}^3$                        |                       |
| Absorption coefficient             | 1.104 mm <sup>-1</sup>                        |                       |
| F(000)                             | 1272                                          |                       |
| Theta range for data collection    | 2.17° to 19.77°                               |                       |
| Index ranges                       | -8≤h≤8, -19≤k≤19, -27≤l≤2 <sup>-</sup>        | 7                     |
| Reflections collected              | 37246                                         |                       |
| Independent reflections            | 5004 [R(int)=0.0716]                          |                       |
| Completeness to theta =            | 99.7%                                         |                       |
| Data / restraints / parameters     | 5004/0/336                                    |                       |
| Goodness-of-fit on F <sup>2</sup>  | 0.996                                         |                       |
| Final R indices $[I > 2\sigma(I)]$ | R1 = 0.0441, $wR2 = 0.0932$                   | [3907]                |
| R indices (all data)               | R1 =0.0676, wR2 = 0.1018                      |                       |
| Absolute structure parameter       | -0.04(2)                                      |                       |
| Largest diff. peak and hole        | 0.689 and -0.472 $e \cdot Å^{-3}$             |                       |

| Pd1-N22.017(5)Pd1-N12.024(6)Pd1-C122.2800(18)Pd1-C112.2870(17)N1-C51.313(9)N1-C11.361(8)N2-C71.301(9)N2-C111.479(9)C12-C131.387(10)C12-C81.398(10)C15-C91.381(9)C15-C141.395(10)C14-C131.394(10)C7-C11.474(9)C7-C81.403(10)C9-C101.492(10)C1-C21.379(10)C11-C161.562(10)C11-C161.562(10)C17-C181.418(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C21-C201.360(12)C19-C181.398(11)C18-C231.518(11)C18-C231.518(11)C18-C231.373(10)C4-C61.498(10) |         |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|
| Pd1-N12.024(6)Pd1-Cl22.2800(18)Pd1-Cl12.2870(17)N1-C51.313(9)N1-C11.361(8)N2-C71.301(9)N2-C111.479(9)C12-C131.387(10)C12-C81.398(10)C15-C91.381(9)C15-C141.395(10)C14-C131.394(10)C7-C11.474(9)C7-C81.475(9)C8-C91.403(10)C9-C101.492(10)C1-C21.379(10)C11-C161.562(10)C17-C181.418(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C11-C101.513(10)C12-C201.360(12)C19-C181.398(11)C18-C231.518(11)C18-C231.518(11)C4-C51.373(10)C4-C61.498(10)    | Pd1-N2  | 2.017(5)   |
| Pd1-Cl22.2800(18)Pd1-Cl12.2870(17)N1-C51.313(9)N1-C11.361(8)N2-C71.301(9)N2-C111.479(9)C12-C131.387(10)C12-C81.398(10)C15-C91.381(9)C15-C141.395(10)C14-C131.394(10)C7-C11.474(9)C7-C31.403(10)C9-C101.492(10)C1-C21.379(10)C1-C21.379(10)C1-C21.385(11)C17-C161.562(10)C17-C181.418(11)C17-C161.524(9)C22-C251.503(11)C21-C201.371(12)C19-C181.398(11)C18-C231.518(11)C18-C231.518(11)C4-C51.373(10)C4-C61.498(10)                                                   | Pd1-N1  | 2.024(6)   |
| Pd1-C112.2870(17)N1-C51.313(9)N1-C11.361(8)N2-C71.301(9)N2-C111.479(9)C12-C131.387(10)C12-C131.398(10)C12-C81.398(10)C15-C91.381(9)C15-C141.395(10)C14-C131.394(10)C7-C11.474(9)C7-C81.475(9)C8-C91.403(10)C9-C101.492(10)C1-C21.379(10)C11-C161.562(10)C17-C121.385(11)C17-C131.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C19-C101.371(12)C19-C181.398(11)C18-C231.518(11)C18-C231.518(11)C4-C51.375(10)C4-C61.498(10)                                   | Pd1-Cl2 | 2.2800(18) |
| N1-C51.313(9)N1-C11.361(8)N2-C71.301(9)N2-C111.479(9)C12-C131.387(10)C12-C81.398(10)C15-C91.381(9)C15-C141.395(10)C15-C141.395(10)C14-C131.394(10)C7-C11.474(9)C7-C81.403(10)C9-C101.492(10)C1-C21.379(10)C11-C161.515(10)C17-C181.418(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C21-C201.371(12)C19-C181.398(11)C18-C231.518(11)C18-C231.518(11)C4-C51.375(10)C4-C61.498(10)                                                                                 | Pd1-Cl1 | 2.2870(17) |
| N1-C11.361(8)N2-C71.301(9)N2-C111.479(9)C12-C131.387(10)C12-C81.398(10)C15-C91.381(9)C15-C141.395(10)C15-C141.395(10)C1-C11.474(9)C7-C11.475(9)C8-C91.403(10)C9-C101.492(10)C1-C21.379(10)C1-C21.379(10)C1-C161.562(10)C17-C181.418(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C19-C101.371(12)C19-C201.371(12)C19-C201.371(12)C19-C201.373(10)C4-C31.375(10)C4-C61.498(10)                                                                    | N1-C5   | 1.313(9)   |
| N2-C71.301(9)N2-C111.479(9)C12-C131.387(10)C12-C131.398(10)C15-C91.381(9)C15-C141.395(10)C14-C131.394(10)C7-C11.474(9)C7-C81.475(9)C8-C91.403(10)C9-C101.492(10)C1-C21.379(10)C11-C161.515(10)C17-C181.418(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C61.498(10)                                                                                                             | N1-C1   | 1.361(8)   |
| N2-C111.479(9)C12-C131.387(10)C12-C81.398(10)C15-C91.381(9)C15-C141.395(10)C14-C131.394(10)C7-C11.474(9)C7-C81.475(9)C8-C91.403(10)C9-C101.492(10)C1-C21.379(10)C11-C161.515(10)C17-C181.418(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C61.498(10)                                                                                                                           | N2-C7   | 1.301(9)   |
| C12-C131.387(10)C12-C81.398(10)C15-C91.381(9)C15-C141.395(10)C14-C131.394(10)C7-C11.474(9)C7-C81.475(9)C8-C91.403(10)C9-C101.492(10)C1-C21.379(10)C11-C101.515(10)C11-C161.562(10)C17-C181.418(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C19-C201.371(12)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C61.498(10)                                                                                                         | N2-C11  | 1.479(9)   |
| C12-C81.398(10)C15-C91.381(9)C15-C141.395(10)C14-C131.394(10)C7-C11.474(9)C7-C81.475(9)C8-C91.403(10)C9-C101.492(10)C1-C21.379(10)C11-C101.515(10)C11-C161.562(10)C17-C181.418(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C21-C201.371(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C61.498(10)                                                                                                                                         | C12-C13 | 1.387(10)  |
| C15-C91.381(9)C15-C141.395(10)C14-C131.394(10)C7-C11.474(9)C7-C81.475(9)C8-C91.403(10)C9-C101.492(10)C1-C21.379(10)C11-C101.515(10)C11-C161.562(10)C17-C181.418(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C19-C201.371(12)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C61.498(10)                                                                                                                                        | C12-C8  | 1.398(10)  |
| C15-C141.395(10)C14-C131.394(10)C7-C11.474(9)C7-C81.475(9)C8-C91.403(10)C9-C101.492(10)C1-C21.379(10)C11-C101.515(10)C11-C161.562(10)C17-C221.385(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C61.498(10)                                                                                                                                                                      | C15-C9  | 1.381(9)   |
| C14-C131.394(10)C7-C11.474(9)C7-C81.475(9)C8-C91.403(10)C9-C101.492(10)C1-C21.379(10)C11-C101.515(10)C11-C161.562(10)C17-C221.385(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C19-C201.371(12)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C61.498(10)                                                                                                                                                                      | C15-C14 | 1.395(10)  |
| C7-C11.474(9)C7-C81.475(9)C8-C91.403(10)C9-C101.492(10)C1-C21.379(10)C1-C101.515(10)C11-C161.562(10)C17-C221.385(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C19-C201.371(12)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C61.498(10)                                                                                                                                                                                       | C14-C13 | 1.394(10)  |
| C7-C81.475(9)C8-C91.403(10)C9-C101.492(10)C1-C21.379(10)C1-C101.515(10)C11-C101.515(10)C11-C161.562(10)C17-C221.385(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C21-C201.371(12)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C61.498(10)                                                                                                                                                                                    | C7-C1   | 1.474(9)   |
| C8-C91.403(10)C9-C101.492(10)C1-C21.379(10)C11-C101.515(10)C11-C161.562(10)C17-C221.385(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C21-C201.371(12)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C61.498(10)                                                                                                                                                                                                                | C7-C8   | 1.475(9)   |
| C9-C101.492(10)C1-C21.379(10)C11-C101.515(10)C11-C161.562(10)C17-C221.385(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C21-C201.371(12)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C61.498(10)                                                                                                                                                                                                                              | C8-C9   | 1.403(10)  |
| C1-C21.379(10)C11-C101.515(10)C11-C161.562(10)C17-C221.385(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C21-C201.371(12)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C31.375(10)C4-C61.498(10)                                                                                                                                                                                                                               | C9-C10  | 1.492(10)  |
| C11-C101.515(10)C11-C161.562(10)C17-C221.385(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C21-C201.371(12)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C31.375(10)C4-C61.498(10)                                                                                                                                                                                                                                             | C1-C2   | 1.379(10)  |
| C11-C161.562(10)C17-C221.385(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C21-C201.371(12)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C31.375(10)C4-C61.498(10)                                                                                                                                                                                                                                                             | C11-C10 | 1.515(10)  |
| C17-C221.385(11)C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C21-C201.371(12)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C31.375(10)C4-C61.498(10)                                                                                                                                                                                                                                                                             | C11-C16 | 1.562(10)  |
| C17-C181.418(11)C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C21-C201.371(12)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C31.375(10)C4-C61.498(10)                                                                                                                                                                                                                                                                                             | C17-C22 | 1.385(11)  |
| C17-C161.524(9)C22-C211.410(10)C22-C251.503(11)C21-C201.371(12)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C31.375(10)C4-C61.498(10)                                                                                                                                                                                                                                                                                                             | C17-C18 | 1.418(11)  |
| C22-C21 $1.410(10)$ C22-C25 $1.503(11)$ C21-C20 $1.371(12)$ C19-C20 $1.360(12)$ C19-C18 $1.398(11)$ C18-C23 $1.518(11)$ C4-C5 $1.373(10)$ C4-C3 $1.375(10)$ C4-C6 $1.498(10)$                                                                                                                                                                                                                                                                                         | C17-C16 | 1.524(9)   |
| C22-C25 $1.503(11)$ C21-C20 $1.371(12)$ C19-C20 $1.360(12)$ C19-C18 $1.398(11)$ C18-C23 $1.518(11)$ C4-C5 $1.373(10)$ C4-C3 $1.375(10)$ C4-C6 $1.498(10)$                                                                                                                                                                                                                                                                                                             | C22-C21 | 1.410(10)  |
| C21-C201.371(12)C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C31.375(10)C4-C61.498(10)                                                                                                                                                                                                                                                                                                                                                            | C22-C25 | 1.503(11)  |
| C19-C201.360(12)C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C31.375(10)C4-C61.498(10)                                                                                                                                                                                                                                                                                                                                                                            | C21-C20 | 1.371(12)  |
| C19-C181.398(11)C18-C231.518(11)C4-C51.373(10)C4-C31.375(10)C4-C61.498(10)                                                                                                                                                                                                                                                                                                                                                                                            | C19-C20 | 1.360(12)  |
| C18-C231.518(11)C4-C51.373(10)C4-C31.375(10)C4-C61.498(10)                                                                                                                                                                                                                                                                                                                                                                                                            | C19-C18 | 1.398(11)  |
| C4-C5 1.373(10)<br>C4-C3 1.375(10)<br>C4-C6 1.498(10)                                                                                                                                                                                                                                                                                                                                                                                                                 | C18-C23 | 1.518(11)  |
| C4-C3 1.375(10)<br>C4-C6 1.498(10)                                                                                                                                                                                                                                                                                                                                                                                                                                    | C4-C5   | 1.373(10)  |
| C4-C6 1.498(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C4-C3   | 1.375(10)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C4-C6   | 1.498(10)  |

| Table S4. Bond lengths[Å ] and angles[°] for | [(S)-3d]PdCl <sub>2</sub> |
|----------------------------------------------|---------------------------|
| Table 54. Dona lengths[A] and angles[] 101   |                           |

| C3-C2       | 1.384(10)  |
|-------------|------------|
| C26-C25     | 1.527(11)  |
| C24-C23     | 1.515(11)  |
| C6-F1       | 1.334(10)  |
| C6-F3       | 1.335(8)   |
| C6-F2       | 1.342(10)  |
| Cl3-C27     | 1.723(13)  |
| Cl4-C27     | 1.765(12)  |
| N2-Pd1-N1   | 80.1(2)    |
| N2-Pd1-Cl2  | 95.34(17)  |
| N1-Pd1-Cl2  | 175.41(18) |
| N2-Pd1-Cl1  | 174.39(16) |
| N1-Pd1-Cl1  | 94.30(16)  |
| Cl2-Pd1-Cl1 | 90.27(8)   |
| C5-N1-C1    | 119.0(6)   |
| C5-N1-Pd1   | 127.2(5)   |
| C1-N1-Pd1   | 113.7(5)   |
| C7-N2-C11   | 118.2(5)   |
| C7-N2-Pd1   | 115.3(5)   |
| C11-N2-Pd1  | 126.5(4)   |
| C13-C12-C8  | 119.9(7)   |
| C9-C15-C14  | 121.2(7)   |
| C13-C14-C15 | 119.4(7)   |
| N2-C7-C1    | 115.5(6)   |
| N2-C7-C8    | 121.9(6)   |
| C1-C7-C8    | 122.6(6)   |
| C12-C8-C9   | 120.2(6)   |
| C12-C8-C7   | 122.9(7)   |
| C9-C8-C7    | 116.6(6)   |
| C15-C9-C8   | 118.9(7)   |
| C15-C9-C10  | 124.7(7)   |
| C8-C9-C10   | 116.3(6)   |
| C12-C13-C14 | 120.1(7)   |

| N1-C1-C2    | 120.9(6) |
|-------------|----------|
| N1-C1-C7    | 114.4(6) |
| C2-C1-C7    | 124.4(6) |
| N2-C11-C10  | 109.8(6) |
| N2-C11-C16  | 109.5(6) |
| C10-C11-C16 | 114.7(6) |
| C9-C10-C11  | 109.8(6) |
| C22-C17-C18 | 119.4(7) |
| C22-C17-C16 | 121.2(7) |
| C18-C17-C16 | 119.4(7) |
| C17-C16-C11 | 111.9(6) |
| C17-C22-C21 | 119.3(8) |
| C17-C22-C25 | 123.3(7) |
| C21-C22-C25 | 117.4(8) |
| C20-C21-C22 | 121.3(8) |
| C20-C19-C18 | 122.7(9) |
| C19-C18-C17 | 118.0(7) |
| C19-C18-C23 | 121.4(8) |
| C17-C18-C23 | 120.6(7) |
| C19-C20-C21 | 118.8(9) |
| C5-C4-C3    | 119.1(7) |
| C5-C4-C6    | 121.6(6) |
| C3-C4-C6    | 119.3(7) |
| C4-C3-C2    | 118.8(7) |
| C1-C2-C3    | 119.2(7) |
| N1-C5-C4    | 122.9(7) |
| C24-C23-C18 | 116.8(8) |
| C22-C25-C26 | 112.6(7) |
| F1-C6-F3    | 107.0(7) |
| F1-C6-F2    | 106.8(6) |
| F3-C6-F2    | 105.9(7) |
| F1-C6-C4    | 111.8(7) |
| F3-C6-C4    | 112.5(7) |

| F2-C6-C4    | 112.4(7) |
|-------------|----------|
| Cl3-C27-Cl4 | 112.4(5) |

## 7. NMR Spectra for Compounds






















































S55










































