Site-Specific Growth of MOF-on-MOF Heterostructures with Controllable Nano-Architectures: Beyond the Combination of MOF Analogues

Chao Liu, Lina Lin, Qiang Sun, Jing Wang, Rong Huang, Wenyi Chen, Shumin Li, Jingjing Wan, Jin Zou, Chengzhong Yu

School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
Key Laboratory of Polar Materials and Devices (MOE), Department of electronics, East China Normal University Shanghai 200241, P. R. China.
Materials Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
Methods

Chemicals
Titanium(IV) isopropoxide (TPOT, 97%, Aldrich), (99.5%, Sinopharm Chemical Regent Co., Ltd), aminoterephthalate (99%, Aldrich), Zinc nitrate hexahydrate (Zn(NO$_3$)$_2$$\cdot$6H$_2$O, 98%, Sinopharm Chemical Regent Co., Ltd), 2-methylimidazole (2-MeIM, Aldrich), N,N-Dimethylformamide (DMF, 99%, Greagent), methanol (AR), Millipore water were used in all experiments.

Synthesis of cMIL-125

The cake-like cMIL-125 nanoparticles were prepared according to a previous report with a slight modification 1. Briefly, 0.6 mL of TPOT and 0.56 g of aminoterephthalate were dissolved into 40 mL mixture of DMF and CH$_3$OH (9:1, v/v). The mixture was transferred to a 100 mL Teflon-line autoclave and heated at 150 °C for 24h before stirring for 5 min. Then, the yellow solid product was collected by washing with DMF and methanol for 3 times. Finally, the as-synthesized cMIL-125 was dispersed in 30 mL methanol for further use. The concentration of cMIL-125 stock solution was determined to be \sim 20 g/L.

Synthesis of cMIL-125@ZIF-8 heterostructure

To synthesize cMIL-125@ZIF-8 heterostructure, 0.1 mL of cMIL-125 suspension (\sim 2 mg of cMIL-125), 3 mL of 25 mM 2-MIM solution and 5 ml of 25 mM Zn(NO$_3$)$_2$$\cdot$6H$_2$O solution are mixed and then allowed to react at room temperature for 4 h. The product is then collected by centrifugation, washed with methanol several times, and dried overnight.

Synthesis of bMIL-125

The synthesis procedure of bMIL-125 was also synthesized by a reported method 2. A solution prepared by dissolving 0.7 mL of TPOT and 0.86 g of aminoterephthalate in 40 mL mixture of DMF and CH$_3$OH (1:1, v/v) was transferred to a 100 mL Teflon-line autoclave and heated at 150 °C for 15h. Then, the yellow samples were collected by washing with DMF and methanol for 3 times. The as-synthesized bMIL-125 was dispersed in 40 mL methanol for further use.

Synthesis of bMIL-125@ZIF-8 heterostructure
The synthesis process of MIL-125@ZIF-8 heterostructure was similar with MIL-125@ZIF-8 except using MIL-125 as the seed.

Synthesis of ZIF-8

The synthesis process of ZIF-8 was similar with MIL-125@ZIF-8 except without adding MIL-125 using methanol as the solvent.

Material characterization. Transmission electron microscopy (TEM) images were obtained with Hitachi HT7700 at 120 KV. HRTEM observations were carried out using a JEM-2100F (JEOL, Japan) operating at 200 kV equipped with an X-ray energy dispersive spectrometer (EDS: X-Max 80T, Oxford, UK) for chemical composition analyses. X-ray diffraction (XRD) patterns were recorded using a Bruker D8 Advanced X-Ray Diffractometer with Cu Kα radiation (λ=0.154 nm). Fourier transform infrared (FT-IR) spectra of samples were obtained by using FT-IR-Nicolet IS-10 Thermo Fisher. To determine the Ti/Zn contents, all samples were digested in a dilute nitric acid solution (~40 wt%), then the mixture were filtered through 0.22 mm membrane filter. The metal ion containing filtrates were analyzed by inductive coupled plasma atomic emission spectroscopy (ICP-AES) (Optima 7000DV, PerkinElmer, USA). UV-vis spectra were obtained by using a UV-Vis spectrophotometer (Perkin Elmer Lambda 750). The surface charges of all the samples were measured by Zeta Potential Analyzer (ZetaPALS, Brookhaven Instruments, USA) based on electrophoretic mobility of the nanoparticles in aqueous media at pH=7.

Photocatalysis test

The photocatalytic degradation of orange (Ⅱ) was carried out in a 70 ml quartz reactor with 25 mg of as-synthesized sample and 50 mL of orange (Ⅱ) PBS solution (50 ppm, pH=7). The suspension was stirred in dark for 60 min to establish the adsorption equilibrium before the photocatalytic test started. Then, 300 W Xe lamp was used as the source of visible light using a cut-off filter of 420 nm to remove UV light. The catalysis sample was filtrated by a 0.22 μm PTFE syringe filter at settled time points. The concentrations of orange (Ⅱ) were monitored by
measuring the absorption intensity at maximum absorbance wavelength ($\lambda=483$ nm) using a UV-vis spectrophotometer. The photocatalytic performances of ZIF-8, MIL-125, MIL-125@ZIF-8 were compared based on the same dosages. The removal efficiency refers to the removal rate of dye from the original solution.

Scheme S1. (A) A schematic diagram showing the lattice mismatch in the \{110\}_\text{MIL-125}/\{001\}_\text{ZIF-8} interface; (B) A proposed overlaid molecular structure along b direction in (A) of the \{110\} face of MIL-125 and the \{001\} face of ZIF-8. The structures in (B) are proposed according to previous reports.S3, S4
Figure S1. (a, b) SEM images and (c) TEM image of MIL-125.

Figure S2. XRD pattern of MIL-125.

Figure S3. SEM image of MIL-125@ZIF-8 after sonication in methanol with frequency of 50 KHz for 10 min.

Figure S4. TEM image of MIL-125@ZIF-8.
Figure S5. FT-IR spectra of ZIF-8, MIL-125, MIL-125@ZIF-8.

Figure S6. N$_2$ sorption curves of different samples.

Figure S7. (a) TEM image and (b) SAED pattern in the marked region.
Figure S8. SEM image of sample after growth of ZIF-8 on MIL-125 for 2 min without methanol washing. The scale bar is 500 nm.

Figure S9. SEM image of sample by adding MIL-125 after growth of ZIF-8 for 2 min for pre-nucleation. The scale bar is 500 nm.

Figure S10. SEM image of sample by adding MIL-125 after growth of ZIF-8 for 5 min for pre-nucleation. The scale bar is 500 nm.
Figure S11. SEM and TEM images of ZIF-8 dodecahedron.

Figure S12. XRD pattern of ZIF-8 dodecahedron.

Figure S13. SEM image of MIL-125@ZIF-8 with larger ZIF-8 diameter. The scale bar is 500 nm.
Figure S14. (a, b) XRD patterns of MIL-125@ZIF-8 with larger ZIF-8 diameter. (b) is the enlarged pattern of (a) in the range of 2θ from 5°-12°.

Figure S15. (a, b) SEM images and (c) TEM image of MIL-125.
Figure S16. XRD pattern of bMIL-125.

Figure S17. TEM image of bMIL-125@ZIF-8.
Figure S18. FT-IR spectra of ZIF-8, bMIL-125, bMIL-125@ZIF-8.

Figure S19. XRD pattern of bMIL-125@ZIF-8.
Figure S20. Enlarged XRD pattern of MIL-125@ZIF-8.

Figure S21. SEM images of (a) MIL-88B and (b) MIL-88B/ZIF-8. The scale bar is 500 nm.

Figure S22. XRD patterns of ZIF-8, MIL-88B and MIL-88B/ZIF-8.
Figure S23. SEM images of (a) HKUST-1 and (b) MIL-125/HKUST-1. The scale bar is 2 μm.

Figure S24. XRD patterns of MIL-125, HKUST-1 and MIL-125/HKUST-1.

Figure S25. SEM images of (a) MIL-125 and (b) MIL-125/HKUST-1. The scale bar is 500 nm.
Figure S26. XRD patterns of ZIF-8, MIL-125 and MIL-125/ZIF-8.

Figure S27. SEM image of sample obtained by adding Zn$^{2+}$ first and then 2-MeIM. The scale bar is 1μm.
The ultraviolet-visible (UV-vis) spectra (Figure S28) of supernatants during orange II degradation by MIL-125@ZIF-8 show that the intensity of peak at 483 nm corresponding to orange II gradually decreased with reaction processed, confirming the removal of orange II. Meanwhile, no new peaks are generated in the UV-vis spectra, indicating no other organic products generated or remained.

Figure S29. Zeta potentials of ZIF-8.
Figure S30. Zeta potentials of MIL-125.

Figure S31. Zeta potentials of MIL-125.
Figure S32. UV-vis spectra of ZIF-8.

Figure S33. TOC removal rates of different catalysts.

Figure S34. DMPO spin-trapping EPR spectra for superoxide radical detection of MIL-125@ZIF-8 in dark and MIL-125@ZIF-8 and MIL-125/ZIF-8 mixture in methanol under visible light irradiations.
Figure S35. DMPO spin-trapping EPR spectra of MIL-125@ZIF-8 in water under visible light irradiations for detection of hydroxyl radical.

Table S1. Physical parameters of different samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>BET surface area/m² g⁻¹</th>
<th>Pore volume/cm³ g⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>cMIL-125</td>
<td>1082.7</td>
<td>0.63</td>
</tr>
<tr>
<td>bMIL-125</td>
<td>1063.9</td>
<td>0.59</td>
</tr>
<tr>
<td>cMIL-125@ZIF-8</td>
<td>1236.9</td>
<td>0.67</td>
</tr>
<tr>
<td>bMIL-125@ZIF-8</td>
<td>1171.7</td>
<td>0.65</td>
</tr>
<tr>
<td>ZIF-8</td>
<td>1339.1</td>
<td>0.73</td>
</tr>
</tbody>
</table>

References

