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DFT data exploration and cleaning. Figure S1 shows all activation barriers ΔE‡
HH as a 

function of the respective H-H distance in the transition state d‡
HH. The resulting scatter plot 

was used to identify outliers. The data points within the range 2.00 Å < d‡
HH < 2.25 Å are 

associated with calculations that, at the DFT-2 stage, converged into spurious transition states 

nearby the equilibrium geometry of the dihydride product. These data points, which have the 

longest d‡
HH values and ΔE‡

HH < 0, were thus excluded. The data points with d‡
HH < 0.80 Å 

were also excluded since they were identified as non-activated dihydrogen structures – their 

mean d‡
HH value (0.78 Å) is very close to the interatomic distance of the isolated H2 molecule 

optimized at the same level of theory (0.77 Å). After excluding the outliers, the refined {d‡
HH, 

ΔE‡
HH} space included the 1,947 data points used to train and test the machine learning models 

(vide infra). The final success rate over the attempted 2,574 H2-activation barriers was 75.6%.

Figure S1. The scatter plot A contains all the 2,197 data points converged in the DFT calculations. The transparent 

red box highlights the dihydride outliers. After excluding the dihydrides, plot B shows the remaining data (2,087 

points), with the transparent blue box highlighting the dihydrogen outliers. Plot C shows the final {d‡
HH, ΔE‡

HH} 

space of DFT data (1,947 points) after excluding all outliers.
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Figure S2. Histograms showing the distribution of the H-H activation barriers (A) and distances (B).

Figure S3. Scatter plots of the H-H activation barriers vs. A) χ1 (i.e., polarization of the Ir-Ligand bonds) and B) 

S2 (i.e., size of the metal complexes at depth = 2).
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Figure S4. Combined interpretation of the MA features I-2 and S-2. The I-2 feature counts the number of atoms 

at a distance of two chemical bonds from Ir, whereas the S-2 feature accounts for the size of the atoms placed at 

the same distance from the metal center.
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The I-2 vs. ΔE‡
HH scatter plot shown in Figure S4 shows five distinct values, corresponding to 

the number of second nearest atoms to Ir. The peak at I-2 = 9 corresponds to all complexes in 

which the A ligands (Figure 2) are a combination of PR3, AsR3, or NR3, the B ligand is nitro, 

and the C ligand is arbitrary - no other combination yields I2 = 9. Interestingly, this combination 

of ligands guarantees an H2-activation barrier lower than 10 kcal/mol. In the S-2 distribution, 

we can see eight distinct peaks instead of the five yielded by I-2. Since all atoms at d = 2 are 

heavy atoms (i.e., not H), the I-2 peak at 9 corresponds to the S-2 peak at ~9.5. The same is true 

for the correlating I-2 = 5 and S-2 ≈ 5.2 peaks, which originate from a combination of two 

heterocyclic A ligands, a halide B ligand, and an arbitrary C ligand. In the three intermediate 

I-2 peaks at 6, 7, and 8, the B ligand can contain the OH or SH ligands, which are the only 

placing an H atom at d = 2. This singularity splits these I-2 peaks into the six intermediate peaks 

observed in the S-2 scatter plot. Combined with the fact that the left-hand peaks in each pair 

yields ΔE‡
HH values that, on average, are higher than those in the right-hand side peaks, these 

results show that the OH (and SH) ligands are increasing the  ΔE‡
HH barrier, in line with the 

fingerprint analysis shown in Figure S6 (panel D).
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Architectures and features used in the neural networks

Table S1. Neural networks in Experiment 1 based on different hyperparameter sets and trained on MAD3 

features, 20% and 80% test data, rmsprop optimizer, relu activation and adaptive learning rate. 

ID Training 
fraction

HL1 HL2 HL3 HL4 L2 reg. Dropout patience

NN1 80 801 - - - 0.000178 1.527922 20

NN2 80 459 78 - - 0.000123 0.000391 47

NN3 80 954 374 128 - 1e-06 1e-08 45

NN4 80 883 84 136 31 1e-06 5.281509 24

NN5 20 232 - - - 0.002843 2.196804 27

NN6 20 380 151 - - 0.000770 1.503655 30

NN7 20 91 369 140 - 0.1 1e-08 23

NN8 20 584 94 41 20 0.000441 1.625533 29

Table S2. Results of the hyperparameter search from Experiment 1. n is the number of architectures trained by 

the Bayesian optimization algorithm used for hyperparameter optimization.

train:test:val 80:10:10 20:40:40

# Layers r2 MAE n r2 MAE n

1 0.678780 1.819524 663 0.644204 1.973622 620

2 0.785287 1.516890 372 0.710946 1.765680 701

3 0.766591 1.437768 347 0.689518 1.856310 401

4 0.714288 1.555579 666 0.706799 1.745859 452
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Table S3. Results of the hyperparameter search for Experiment 2. n is the number of architectures trained by the 

Bayesian optimization algorithm used for hyperparameter optimization. Lowest mean absolute errors (objective 

of the Bayesian optimization) are found for depth = 5. FA features perform significantly better than MA, MAD, 

and MD.

f. sets FA MA MAD MD

depth r2 MAE n r2 MAE n r2 MAE n r2 MAE n

1 0.35 2.71 633 0.59 2.19 507 0.57 2.23 487 0.59 2.19 555

2 0.67 1.95 651 0.71 1.80 509 0.72 1.71 532 0.69 1.71 731

3 0.69 1.81 583 0.70 1.80 472 0.72 1.73 456 0.70 1.77 712

4 0.76 1.58 537 0.69 1.78 502 0.69 1.72 505 0.70 1.78 552

5 0.78 1.51 433 0.68 1.83 466 0.71 1.67 603 0.69 1.76 629

Table S4. Results of the hyperparameter search for Experiment 3. n is the number of neural network architectures 

trained by the Bayesian optimization algorithm used for hyperparameter optimization.

train:test:val 80:10:10 20:40:40

# Layers r2 MAE n r2 MAE n

1 0.769 1.473 660 0.668 1.930 625

2 0.810 1.277 514 0.742 1.632 631

3 0.853 1.123 705 0.764 1.577 526

4 0.845 1.121 456 0.763 1.575 416
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Feature correlations

Figure S5. Correlation pairplot between all FA5 features (chi1-chi5, Z1-Z5, I1-I5, T1-T5, and S1-S5). All features 

apart from Z-features have high correlations with each other.


