H-Bond Donor-Directed Switch of Diastereoselectivity in the Michael Addition of α-Azido Ketones to Nitroolefins

Pei-Gang Ding,^a Feng Zhou,^a Xin Wang,^{*b} Qiu-Hua Zhao,^a Jin-Sheng Yu^{a,c} and Jian Zhou^{*a,d}

^a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China.

^b College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.

^c Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China.

^d State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China. Email: X. Wang: <u>wangxin@scu.edu.cn</u>; J. Zhou: <u>jzhou@chem.ecnu.edu.cn</u>

Supporting Information

(Part I)

Contents	Page
1. General information	2
2. Materials preparation	
2.1 The synthesis of catalysts 3a-f and 4c-d	3-8
2.2 The synthesis of α -azido ketones 1	9-10
3. Condition optimization	11-13
4. General procedure for syn-selective Michael addition	14-24
5. General procedure for anti-selective Michael addition	25-35
6. Synthesis of spiro-pyrrolidines 15	36-38
7. Mechanistic studies	39-58
8. X-ray crystallographic data of syn-5k, anti-5g, anti-14, 15a and 15c	59-109

1. General information:

Unless otherwise noted, all reactions were run in air, and monitored by thin layer chromatography (TLC) using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields referred to pure isolated substances. The infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. Chiral HPLC analysis was performed on a Shimadzu LC-20AD instrument using Daicel Chiracel columns at room temperature and a mixture of HPLC-grade hexane and isopropanol as eluent. Optical rotation was measured using a JASCO P-1030 Polarimeter equipped with a sodium vapor lamp at 589 nm. ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra were obtained using Bruker DPX-500, Bruker DPX-400 or Bruker DPX-300 spectrometer. Chemical shifts were reported in ppm from CDCl₃ with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, br = broad.

Anhydrous DCE was prepared by first distillation over P₂O₅ and then from CaH₂. Anhydrous THF and toluene were prepared by distillation over sodium-benzophenone ketyl prior to use. Powered molecular sieves (MS) was purchased from Aldrich and dried under vacuum at 150 °C for 10 h and then stored under nitrogen. All chiral amino alcohols were purchased from shanghai darui finechemical Co., Ltd. and used as received.

Entry	Chemical name	Abbreviation
1	Petroleum ether	PE
2	Ethyl acetate	EtOAc
3	Tetrahydrofuran	THF
4	Dichloromethane	DCM
5	1,2-Dichloroethane	DCE
6	Acetonitrile	CH ₃ CN
7	1,3-Diphenylguanidine	DPG
8	1,4-Diaza[2.2.2]bicyclooctane	DABCO

List of abbreviation:

2. Materials preparation

2.1 The synthesis of catalysts 3a-f and 4c-d

General procedure: Under an atmosphere of N₂, to a flame-dried 250 mL three-necked flask were added L-phenylalaninol S1 (7.6 g, 50 mmol) and 80 mL THF. After the mixture was cooled down to 0 °C, Et₃N (14.0 mL, 100 mmol) was added via syringe, followed by the dropwise addition of a solution of freshly distilled diisopropyl chlorophosphate S2 (11.0 g, 55 mmol) in anhydrous THF (20 mL). The resulting mixture was allowed to warm to room temperature gradually, and kept stirring for 4 h. Then the reaction was cooled down to 0 °C, followed by the successive dropwise addition of Et₃N (11.0 mL, 75 mmol) and a solution of freshly distilled MsCl (4.5 mL, 60 mmol) in anhydrous THF (20 mL). After being stirred at room temperature until full consumption of intermediate I by TLC analysis (5 h), piperidine S3 (15.3 g, 180 mmol) was added. The resulting mixture was stirred at 70 °C for 1.5 days, and cooled down to room temperature. After 50 mL water was added, the mixture was extracted with *n*-hexane (5×20 mL). The combined organic layer was acidified with HCl (2 M), and aqueous phase was washed with *n*-hexane (3×20 mL). Then the aqueous layer was neutralized with sat. NaHCO₃ (aq.) until pH = 8-9, and extracted with *n*-hexane (5×30 mL). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered, concentrated in *vacuo* to afford pure catalyst (S)-**3a** as white solid (7.1 g, 37% overall yield for 3 steps), m.p. = 97-100 °C. $[\alpha]^{20}_{D}$ = +21.7 (c = 0.8, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.31-7.26 (m, 2H), 7.23-7.17 (m, 3H), 4.65-4.53 (m, 2H), 3.53-3.47 (m, 1H), 3.19 (brs, 1H), 3.13 (ABd, J = 13.3 Hz, J = 4.2 Hz, 1H), 2.68 (ABd, J = 13.2 Hz, J = 7.5 Hz, 1H), 2.36-2.05 (m, 6H), 1.58-1.50 (m, 4H), 1.43-1.39 (m, 2H), 1.35-1.28 (m, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 138.03, 129.79, 128.14, 126.11, 70.59 (d, $J_{C-P} = 3.9 \text{ Hz}$), 70.54 (d, $J_{C-P} = 3.9 \text{ Hz}$), 62.27 (d, $J_{C-P} = 8.5 \text{ Hz}$, 54.57, 49.80, 40.14 (d, $J_{C-P} = 2.5 \text{ Hz}$), 26.03, 24.34, 23.98, 23.93, 23.87 (d, $J_{C-P} = 1.9$ Hz), 23.82 (d, $J_{C-P} = 2.0$ Hz); ³¹P NMR (121 MHz, CDCl₃): δ 7.54 (s, 1P); IR (neat): 3243, 2931, 1649, 1384, 1103, 1004, 901, 742 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₀H₃₆N₂O₃P [M+H]⁺: 383.2458, found: 383.2455.

Catalyst (*R*)-**3a** was obtained from D-phenylalaninol as white solid (52% overall yield for 3 steps), m.p. = 96-98 °C. $[\alpha]^{20}_{D}$ = -25.6 (c = 1.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.25 (m, 2H), 7.22-7.18 (m, 3H), 4.63-4.53 (m, 2H), 3.54-3.48 (m, 1H), 3.13-3.09 (m, 2H), 2.71-2.66 (m, 1H), 2.37-2.28 (m, 4H), 2.20-2.07 (m, 2H), 1.57-1.51 (m, 4H), 1.41-1.39 (m, 2H), 1.34-1.28 (m, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 138.09, 129.79, 128.14, 126.11, 70.62 (d, *J*_{C-P} = 3.8 Hz), 70.56 (d, *J*_{C-P} = 3.8 Hz), 62.36 (d, *J*_{C-P} = 8.4 Hz), 54.62, 49.90, 40.24 (d, *J*_{C-P} = 2.9 Hz), 26.05, 24.36, 23.96, 23.92, 23.85 (d, *J*_{C-P} = 1.9 Hz), 23.81 (d, *J*_{C-P} = 1.8 Hz); ³¹P NMR (161.7 MHz, CDCl₃): δ 7.49 (s, 1P); IR (neat): 2979, 1468, 1383, 1235, 995, 900, 741 cm⁻¹. GC-MS: 382 (M⁺, 4), 281 (17), 201 (66), 110 (12), 98 (100), 91 (7), 84 (6), 70 (5); HRMS (EI): Exact mass calcd for C₂₀H₃₅N₂O₃P [M]⁺: 382.2385, found: 382.2389.

Catalyst **3c** was obtained from L-phenylalaninol as white solid (64% overall yield for 3 steps), m.p. = 87-89 °C. $[\alpha]^{20}_{D}$ = +17.8 (c = 0.8, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.26 (m, 2H), 7.22-7.18 (m, 3H), 4.08-3.99 (m, 3H), 3.91-3.85 (m, 1H), 3.53-3.43 (m, 1H), 3.19 (t, *J* = 8.4 Hz, 1H), 3.01 (ABd, *J* = 13.2 Hz, *J* = 5.2 Hz, 1H), 2.73 (ABd, *J* = 13.4 Hz, *J* = 6.8 Hz, 1H), 2.34-2.23 (m, 4H), 2.22-2.10 (m, 2H), 1.57-1.51 (m, 4H), 1.43-1.38 (m, 2H), 1.32 (t, *J* = 7.2 Hz, 3H), 1.27 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.03, 129.71, 128.18, 126.16, 62.63 (d, *J*_{C-P} = 7.6 Hz), 62.11 (d, *J*_{C-P} = 5.6 Hz), 62.03 (d, *J*_{C-P} = 5.4 Hz), 54.64, 50.08, 40.45 (d, *J*_{C-P} = 2.9 Hz), 26.00, 24.29, 16.25 (d, *J*_{C-P} = 2.7 Hz), 16.18 (d, *J*_{C-P} = 2.9 Hz); ³¹P NMR (121 MHz, CDCl₃): δ 9.08 (s, 1P). IR (neat): 3208, 2936, 2796, 1234, 1038, 967, 744, 701 cm⁻¹. GC-MS: 354 (M⁺, 7), 263 (14), 256 (8), 201 (51), 110 (13), 98 (100), 91 (11), 84 (7), 70 (8); HRMS (EI): Exact mass calcd for C₁₈H₃₁N₂O₃P [M]⁺: 354.2072, found: 354.2074.

Catalyst **3d** was obtained from L-valinol as white solid (40% overall yield for 3 steps), m.p. = 45-47 °C. $[\alpha]^{20}_{D}$ = +16.5 (c = 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ **4.14-4.03** (m, 4H), 3.21-3.12 (m, 1H), 3.07-3.02 (m, 1H), 2.48-2.41 (m, 2H), 2.31-2.15 (m, 4H), 2.08-1.98 (m, 1H), 1.57-1.50 (m, 4H), 1.44-1.39 (m, 2H), 1.34-1.29 (m, 6H), 0.92 (d, *J* = 7.2 Hz, 3H), 0.85 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 62.09 (d, *J*_{C-P} = 2.1 Hz), 62.03 (d, *J*_{C-P} = 2.0 Hz), 59.81 (d, *J*_{C-P} = 7.3 Hz), 54.78, 53.50, 29.81 (d, *J*_{C-P} = 2.8 Hz), 25.97, 24.32, 17.51, 17.37, 16.22, 16.15; ³¹P NMR (121 MHz, CDCl₃): δ 9.72 (s, 1P). IR (neat): 3208, 2933, 2777, 1441, 1388, 1232, 1034, 960 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₄H₃₂N₂O₃P [M+H]⁺: 307.2145, found: 307.2152.

Catalyst **3e** was obtained from L-valinol as white solid (21% overall yield for 3 steps), m.p. = 51-53 °C. $[\alpha]^{20}_{D}$ = +9.6 (c = 0.4, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 4.13-4.02 (m, 4H), 3.68 (t, J = 4.8 Hz, 4H), 3.25-3.14 (m, 1H), 2.88-2.80 (m, 1H), 2.56-2.50 (m, 2H), 2.41-2.34 (m, 2H), 2.31-2.22 (m, 2H), 2.06-1.96 (m, 1H), 1.35-1.29 (m, 6H), 0.93 (d, J = 6.9 Hz, 3H), 0.86 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 67.0, 62.3 (d, J_{C-P} = 3.7 Hz), 62.2 (d, J_{C-P} = 3.6 Hz), 60.1 (d, J_{C-P} = 6.4 Hz), 53.9, 53.3, 30.0 (d, J_{C-P} = 3.3 Hz), 17.9, 17.2, 16.3, 16.2; ³¹P NMR (121 MHz, CDCl₃): δ 9.44 (s, 1P). IR (neat): 3203, 2957, 2806, 1453, 1392, 1223, 1032, 961 cm⁻¹. GC-MS: 308 (M⁺, 0.7), 265 (14), 208 (96), 180 (53), 155 (27), 152 (73), 140 (32), 100 (100), 70 (11), 56 (12); HRMS (EI): Exact mass calcd for C₁₃H₂₉N₂O₄P [M]⁺: 308.1865, found: 308.1879.

Under an atmosphere of N₂, to a flame-dried 25 mL Schlenk tube were added S4¹ (0.44 g, 2.0 mmol) and 10 mL absolute MeOH, followed by the addition of paraformaldehyde (0.09 g, 3.0 mmol) in one-portion. The resulting mixture was refluxed for 2 h until full consumption of S4 by TLC analysis, and then cooled to 0 °C, followed by the slow addition of NaBH₄ (0.08 g, 2.2 mmol). The mixture was stirred at room temperature for about 5 h. After 10 mL H₂O was added, the aqueous phase was extracted with DCM (4×20 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated in *vacuo*, the residue was purified by flash silica gel column chromatography using EtOAc:PE (1:1, v/v) as eluent to furnish S5 as light yellow oil.

Under an atmosphere of N₂, to a flame-dried 50 mL three-necked flask were added **S5** (0.12 g, 0.52 mmol) and 3 mL THF. Then the mixture was cooled down to 0 °C, followed by the successive dropwise addition of Et₃N (0.14 mL, 1.0 mmol) and a solution of freshly distilled diisopropyl chlorophosphate **S2** (0.12 g, 0.57 mmol) in anhydrous THF (2 mL). The mixture was stirred at room temperature for about 5 h until full consumption of **S5** by TLC analysis. Then the reaction was quenched by 10 mL H₂O, neutralized with saturated NaHCO₃ solution (15 mL), and extracted with DCM (4×10 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄,

¹ S4 and S12 were prepared following the published procedure: P. Li, Z. Chai, S.-L. Zhao, Y.-Q. Yang, H.-F. Wang, C.-W. Zheng, Y.-P. Cai, G. Zhao and S.-Z. Zhu, *Chem. Commun.*, 2009, 45, 7369.

and concentrated in *vacuo*, the residue was purified by flash silica gel column chromatography using DCM:MeOH (50:1, v/v) as eluent to furnish **3b** as light yellow oil (0.1 g, 46% yield). $[\alpha]^{20}_{D} = -12.2$ (c = 1.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.23 (m, 4H), 7.19-7.14 (m, 1H), 4.73-4.62 (m, 1H), 4.28-4.14 (m, 1H), 3.80-3.72 (m, 1H), 2.91-2.86 (m, 1H), 2.74-2.68 (m, 1H), 2.52-2.43 (m, 6H), 2.34 (brs, 2H), 2.23-2.18 (m, 1H), 1.54-1.50 (m, 4H), 1.40-1.37 (m, 2H), 1.27 (d, *J* = 6.0 Hz, 3H), 1.23 (d, *J* = 6.4 Hz, 3H), 1.12 (d, *J* = 6.0 Hz, 3H), 0.96 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.45, 129.19, 128.20, 125.89, 69.70 (d, *J*_{C-P} = 5.1 Hz), 69.46 (d, *J*_{C-P} = 5.1 Hz), 60.82, 54.95, 54.03 (d, *J*_{C-P} = 5.0 Hz), 37.60 (d, *J*_{C-P} = 3.6 Hz), 26.95, 25.93, 24.41, 23.85, 23.78 (d, *J*_{C-P} = 2.8 Hz), 23.72, 23.69; ³¹P NMR (161.7 MHz, CDCl₃): δ 8.06 (s, 1P). IR (KBr): 3443, 2934, 1765, 1455, 1385, 1237, 1111, 778, 541 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₁H₃₈N₂O₃P [M+H]⁺: 397.2615, Found: 397.2621.

Under an atmosphere of N₂, to a flame-dried 100 mL three-necked flask were added $S6^2$ (2.52 g, 11.0 mmol) and 20 mL THF. The mixture was cooled down to 0 °C, followed by the dropwise addition of BnMgBr (22 mL, 22.0 mmol, 1 M in THF). Then the resulting mixture was stirred for 4 h at 40 °C until full consumption of S6 by TLC analysis. The reaction was quenched by 30 mL saturated NH₄Cl. Then aqueous phase was extracted with EtOAc (3×20 mL), and the combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated in *vacuo*, the residue was purified by flash silica gel column chromatography using EtOAc:PE (1:5 to 1:2, v/v) as eluent. A recrystallization of the thus obtained S7 in PE improved the diastereoselectivity to over 20:1.

To a 50 mL round-bottom flask were added the pure diastereomer of **S7** (0.18 g, 0.56 mmol) and 1 mL anhydrous MeOH. The mixture was cooled down to 0 °C, followed by the dropwise addition of HCl (0.6 mL, 2.2 mmol, 4 M in dioxane). Then the resulting mixture was stirred at room temperature for about 0.5 h until full consumption of **S7** by TLC analysis. After concentration in *vacuo*, compound **S8**³ was obtained as white solid. It was used immediately in next step without purification. Under an atmosphere of N₂, to a flame-dried 50 mL three-necked flask were added **S8** and 2 mL THF. Then the

² S6 was prepared following the published procedure: K. Brak and J. A. Ellman, J. Am. Chem. Soc., 2009, 131, 3850.

³ The absolute configuration of **S8** was determined by optical rotation comparison after neutralization: M. J. Rodig, H. Seo, D. Hirsch-Weil, K. A. Abboud and S. Hong, *Tetrahedron: Asymmetry*, 2011, **22**, 1097.

mixture was cooled down to 0 °C, followed by the successive dropwise addition of Et₃N (0.23 mL, 1.7 mmol) and a solution of freshly distilled diisopropyl chlorophosphate **S2** (0.13 g, 0.62 mmol) in anhydrous THF (1 mL). The resulting mixture was stirred for 4 h at room temperature. After full consumption of **S8** by TLC analysis, the reaction was quenched by 5 mL H₂O, and neutralized with saturated NaHCO₃ solution (10 mL). Then the aqueous phase was extracted with DCM (3×10 mL), the combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated in *vacuo*, the residue was purified by flash silica gel column chromatography using EtOAc:PE (1:10 to 1:2, v/v) as eluent to furnish **3f** as white solid (0.14 g, 66% yield), m.p. = 85-87 °C. $[\alpha]^{20}_{D} = +14.0$ (c = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 7.30-7.28 (m, 2H), 7.22-7.18 (m, 3H), 4.58-4.48 (m, 2H), 3.53-3.44 (m, 1H), 2.85-2.81 (m, 1H), 2.76-2.72 (m, 1H), 2.17 (t, *J* = 10.0 Hz, 1H), 1.77 (d, *J* = 12.5 Hz, 1H), 1.68-1.65 (m, 2H), 1.61 (brs, 1H), 1.51-1.42 (m, 1H), 1.33-1.30 (m, 6H), 1.29-1.28 (m, 6H), 1.25-1.07 (m, 6H), 0.92-0.84 (m, 1H), 0.78-0.70 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): see part II; ³¹P NMR (202 MHz, CDCl₃): δ 6.48 (s, 1P). IR (neat): 2976, 1697, 1339, 1173, 1051, 978, 881, 737 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₁H₃₆NNaO₃P [M+Na]⁺: 404.2325, Found: 404.2336.

To a 25 mL three-necked flask were added **S10** (0.28 g, 2.0 mmol) and 4 mL MeOH, followed by the addition of **S9**⁴ (0.49 g, 2.0 mmol). The mixture was stirred for 1 day at room temperature. Then the formed precipitate was filtered and dried in *vacuo* to give desired product **S11**.

A 25 mL three-necked flask were added **S11** (0.18 g, 0.5 mmol), 2 mL MeOH and 2 mL DCM, followed by the addition of **S12**¹ (0.11 g, 0.6 mmol) in one-portion. The mixture was stirred for 2 days at room temperature. After full consumption of **S11** by TLC analysis, the solvent was removed in *vacuo*, and then the residue was purified by flash silica gel column chromatography using EtOAc:PE (1:4 to 1:2, v/v) as eluent to furnish **4c** as yellow oil (0.12 g, 46% yield). $[\alpha]^{20}_{D} = -69.7$ (c = 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.75 (s, 2H), 7.67 (s, 1H), 4.26 (dd, J = 10.8 Hz, J = 2.8 Hz, 1H), 3.89 (s, 3H), 2.58 (brs, 2H), 2.51-2.47 (m, 1H), 2.38 (t, J = 11.6 Hz, 1H), 2.22 (brs, 2H), 1.56-1.46 (m, 4H), 1.41-1.37 (m, 2H), 1.33-1.29 (m, 1H), 0.96 (s, 9H); ¹³C NMR (100 MHz, CDCl₃):

⁴ **S9** was prepared following the published procedure: G. Jakab, A. Hosseini, H. Hausmann and P. R. Schreiner, *Synthesis*, 2013, **45**, 1635.

δ 183.9, 171.3, 169.3, 142.3, 132.2 (q, J_{C-F} = 33.5 Hz), 127.1, 124.4, 121.6, 121.0, 118.3 (t, J_{C-F} = 3.9 Hz), 61.7, 58.3, 54.6, 37.2 (d, J_{C-F} = 4.2 Hz), 34.0, 26.2, 26.0, 24.2; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.96 (s, 6F). IR: 2936, 2114, 1701, 1584, 1373, 1134, 908, 731, 648 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₄H₃₀F₆N₃O₂ [M+H]⁺: 506.2237, Found: 506.2238.

Under an atmosphere of N₂, to a 25 mL Schlenk tube were added **S12**¹ (0.66 g, 3.6 mmol) and 20 mL absolute MeOH, followed by the addition of paraformaldehyde (0.16 g, 5.4 mmol). The resulting mixture was refluxed for 2.5 h until full consumption of **S12** by TLC analysis, and then cooled to 0 °C, followed by the slow addition of NaBH₄ (0.15 g, 4.0 mmol). Then the mixture was stirred at room temperature for about 5 h, and then 10 mL H₂O was added. After the aqueous phase was extracted with DCM (4×20 mL), the combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated in *vacuo*, the residue was purified by flash silica gel column chromatography using PE:EtOAc (1:1, v/v) as eluent to furnish **S13** as light yellow oil.

Under an atmosphere of N₂, to a flame-dried 50 mL three-necked flask were added **S13** (0.37 g, 1.8 mmol) and 10 mL MeOH, followed by the addition of **S14**⁵ (0.51 g, 1.5 mmol) in one-portion. The mixture was then stirred for 4 days at room temperature. After concentration in *vacuo*, the residue was purified by flash silica gel column chromatography using acetone:PE (1:4 to 1:2, v/v) as eluent to furnish **4d** as yellow oil (44 mg, 6% yield). $[\alpha]^{20}_{D} = -72.7$ (c = 0.6, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.78-7.69 (m, 2H), 7.48-7.38 (m, 1H), 4.75 (d, *J* = 11.2 Hz, 0.6H), 3.51 (brs, 0.3H), 3.36-3.25 (m, 3H), 2.66-2.58 (m, 4H), 2.40-2.25 (m, 2H), 1.60-1.38 (m, 6H), 1.05-0.98 (m, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 185.0, 180.9, 172.7, 162.1, 140.1, 131.7 (q, *J*_{C-F} = 33.2 Hz), 127.2, 124.5, 121.7, 119.9, 119.0, 115.9, 63.8, 54.7, 54.3, 34.8, 33.5, 27.5, 26.0, 24.3; ¹⁹F NMR (376 MHz, CDCl₃): δ -63.17 (s, 6F). IR: 2113, 1710, 1558, 1365, 1220, 1070, 974, 557 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₄H₃₀F₆N₃O₂ [M+H]⁺: 506.2237, Found: 506.2246.

⁵ S14 was prepared following the published procedure: E. Badiola, B. Fiser, E. Gómez-Bengoa, A. Mielgo, I. Olaizola, I. Urruzuno, J. M. García, J. M. Odriozola, J. Razkin, M. Oiarbide and C. Palomo, *J. Am. Chem. Soc.*, 2014, 136, 17869.

2.2 The synthesis of a-azido ketones 16

General procedure: To a 50 mL three-necked flask were added 1-indanone **S15** (0.13 g, 1 mmol) and 10 mL CH₃CN, followed by the addition of **S16**⁷ (0.51 g, 1.3 mmol). The mixture was refluxed for 5 h until full consumption of **S15** by TLC analysis. After the mixture was cooled down to 40 °C, NaN₃ (0.13 g, 2 mmol) was added. The reaction was kept stirring until full consumption of intermediate **III** by TLC analysis, and then the reaction mixture was cooled down to room temperature. After evaporating solvent, the residue was dissolved in DCM, washed with water (3×10 mL), dried over anhydrous Na₂SO₄, and concentrated in *vacuo*. The residue was purified by column chromatography using EtOAc:PE (1:10, v/v) as eluent to furnish **1a** as white solid (0.15 g, 86% yield).⁶

Substrates 1b-e were prepared according to the above mentioned general procedure:

White solid, m.p. = 39-40 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.84-7.81 (m, 1H), 7.75 (d, J = 7.5 Hz, 1H), 7.37-7.31 (m, 1H), 4.35 (dd, J = 8.2 Hz, J = 4.5 Hz, 1H), 3.48 (ABd, J = 17.7 Hz, J = 8.1 Hz, 1H), 2.85 (ABd, J = 17.7 Hz, J = 4.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 201.1, 151.1, 138.7, 136.2, 129.9, 123.5, 122.0, 61.7, 34.0; HRMS (ESI): Exact mass calcd for C₉H₆BrN₃NaO [M+Na]⁺: 273.9586, found: 273.9597.

White solid, m.p. = 82-85 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.72 (d, *J* = 8.1 Hz, 1H), , 7.46-7.38 (m, 2H), 4.34 (dd, *J* = 8.2 Hz, *J* = 4.8 Hz, 1H), 3.53-3.44 (m, 1H), , 2.95-2.87 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 200.3, 152.6, 142.6, 132.5, 129.0, 126.7, 125.7, 61.8, 32.7; HRMS (DART): Exact mass calcd for C₉H₁₀ClN₄O [M+NH₄]⁺: 225.0538, found: 225.0537.

White solid, m.p. = 88-90 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.92-7.91 (m, 1H), Br N_3 7.77-7.74 (m, 1H), 7.36-7.33 (m, 1H), 4.35 (dd, J = 8.2 Hz, J = 4.5 Hz, 1H), 1d 3.51-3.42 (m, 1H), 2.91-2.83 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 200.4, 149.6, 138.8, 135.9, 128.1, 127.5, 122.4, 62.1, 32.7; HRMS (ESI): Exact mass calcd for C₉H₆BrN₃NaO [M+Na]⁺: 273.9586, found: 273.9593.

⁶ J. C. Lee, S. Kim and W. C. Shin, Synth. Commun., 2000, **30**, 4271.

⁷ S16 was prepared according to the corresponding literature method: G. F. Koser and R. H. Wettach, J. Org. Chem., 1977, 42, 1476.

White solid, m.p. = 31-33 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.56 (s, 1H), 7.48-7.45 ^{Me} Me N₃ (m, 1H), 7.33 (d, J = 8.0 Hz, 1H), 4.30 (dd, J = 8.2 Hz, J = 4.8 Hz, 1H), 3.45 (ABd, J 1e = 17.2 Hz, J = 8.0 Hz, 1H), 2.86 (ABd, J = 17.0 Hz, J = 4.4 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 201.7, 148.4, 138.2, 137.2, 134.1, 126.1, 124.3, 62.2, 32.5, 21.0; HRMS (ESI): Exact mass calcd for C₁₀H₉N₃NaO [M+Na]⁺: 210.0638, found: 210.0638.

General procedure: To a 25 mL single-necked flask were added NaN₃ (0.48 g, 7.4 mmol), 4 mL DMSO and 2 mL acetone at 0 °C, followed by the addition of **S17**⁸ (0.97 g, 3.7 mmol). The mixture was stirring for 15 min until full consumption of **S17** by TLC analysis, and then the reaction mixture was poured out to ice water. The mixture was extracted with Et₂O (3×10 mL), washed with brine (3×10 mL), dried over anhydrous Na₂SO₄, and concentrated in *vacuo*. The residue was purified by flash silica gel column chromatography using Et₂O:PE (1:10, v/v) as eluent to furnish **1f** as white solid (0.39 g, 47% yield), m.p. = 89-91 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.89 (d, *J* = 8.5 Hz, 1H), 7.10 (dd, *J* = 8.5 Hz, *J* = 2.0 Hz, 1H), 7.06 (d, *J* = 2.0 Hz, 1H), 4.54 (ABd, *J* = 11.3 Hz, *J* = 4.5 Hz, 1H), 4.41 (ABd, *J* = 10.5 Hz, *J* = 5.0 Hz, 1H), 4.29 (dd, *J* = 11.2 Hz, *J* = 10.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 187.6, 161.6, 142.9, 128.9, 123.2, 118.2, 117.9, 69.1, 59.8. HRMS (ESI): Exact mass calcd for C₉H₆N₃O₂ClNa [M+Na]⁺: 246.0041, found: 246.0036.

Substrates 1g were prepared according to the above general procedure, 1h and 13 was prepared following the literature procedure⁹, 1i-k was prepared following the literature procedure¹⁰:

1g was obtained in 30% yield as white solid, m.p. = 94-96 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.01 (dd, J = 8.0 Hz, J = 2.0 Hz, 1H), 7.87 (dd, J = 8.5 Hz, J = 1.0 Hz, 1H), 7.68-7.66 (m, 2H), 7.63-7.60 (m, 1H), 7.32-7.30 (m, 3H), 4.51 (ABd, J = 14.0 Hz, J = 5.0 Hz, 1H), 4.01 (ABd, J = 12.0 Hz, J = 5.5 Hz, 1H), 3.80 (dd, J = 14.0 Hz, J = 11.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 190.2, 145.1, 142.2, 136.1, 135.6, 130.3, 128.6, 127.0, 125.7, 123.5, 123.4, 59.8, 49.6, 21.7. HRMS (ESI): Exact mass calcd for C₁₆H₁₄N₄O₃SNa [M+Na]⁺: 365.0679, found: 365.0680.

⁸ S. H. Wood, S. Etridge, A. R. Kennedy, J. M. Percy and D. J. Nelson, *Chem. Eur. J.*, 2019, 25, 5574.

⁹ H. Takeuchi, S. Yanagida, T. Ozaki, S. Hagiwara and S. Eguchi, J. Org. Chem., 1989, 54, 431.

¹⁰ P. Magnus and L. Barth, *Tetrahedron Lett.*, 1992, **33**, 2777.

3. Condition optimization

3.1 The syn-selective Michael addition

With phosphoramide **3a** as catalyst, the solvent effects were examined at first, and typical results were shown in Table S1. By using DCM, CH₃CN or acetone as solvent, the desired product *syn*-**5a** was obtained in low to moderate enantioselectivity (5-61% ee, entries 1-3). When the reaction was run in EtOAc or THF, *syn*-**5a** could be obtained in 89% and 81% ee respectively, but the yield was poor (entries 4-5). Fortunately, toluene was found to be the optimal solvent, affording *syn*-**5a** in 80% yield, 5.4:1 dr and 88% ee (entry 6).

Table S1. The effect of solvent

	0 N ₃ + 1a (0.2 mmol)	CI 2a (1.2 equivs)	O B ⁱ PrO [−] P [−] N ⁱ PrO H 3a (20 mol%) [$r \rightarrow c \rightarrow $	VI VI VI VI VI VI VI VI VI VI VI VI VI V
Entry	Solvent	Time (d)	Yield $(\%)^a$	syn:anti ^b	Ee (%) (major) ^c
1	DCM	4	74	1.9:1	61
2	CH ₃ CN	4	40	1:1.1	5
3	Acetone	3	69	1.8:1	36
4	EtOAc	3	23	1.3:1	89
5	THF	4	29	2.7:1	81
6	Toluene	4	80	5.4:1	88

^{*a*} Isolated yield. ^{*b*} Determined by ¹H NMR analysis of the crude reaction mixtures. ^{*c*} Determined by chiral HPLC analysis, for major diastereomer.

Next, chiral phosphoramides **3c-e** bearing different substituents were examined to further improve the reaction outcome. As shown in Table S2, Ethoxy substituted phosphoramide **3c** could give the *syn*-adduct with 6.0:1 dr and 90% ee (entry 2). The L-valinol-derived phosphoramide **3d** and **3e** showed diminished catalytic activity and stereoselectivity (entries 3-4). Then we tried using additive to improve the stereoselectivities. It was found that the addition of 5Å MS to the reaction mediated by **3a** or **3c** slowed down the reaction rate, but resulted in higher dr and ee values (entries 5-6). With the assistance of 5Å MS, phosphoramide **3a** gave *syn*-**5a** in much higher yield and stereoselectivity than that of **3c** (entries 5-6). Other types of powdered MS were also tried, but no better results were obtained (entries 7-9). Taking into consideration both reactivity and stereoselectivity, we determined that the *syn*-selective Michael addition reaction was carried out in toluene at 0 °C with the addition of 5Å MS, in the presence of 20 mol% of phosphoramide catalyst **3a**.

Table S2. Condition optimization

Entry	Cat.	Additive	Time (d)	Yield ^{a} (%)	syn:anti ^b	$\operatorname{Ee}^{c}(\%)$
1	3 a	/	4	80	5.4:1	88
2	3c	/	4	87	6.0:1	90
3	3d	/	4	78	3.7:1	86
4	3e	/	4	10	2.6:1	70
5	3 a	5Å MS	7	80	8.2:1	95
6	3c	5Å MS	7	56	7.1:1	93
7	3 a	3Å MS	7	82	8.0:1	94
8	3 a	4Å MS	7	79	7.0:1	94
9	3a	13X MS	7	57	8.1:1	94

^a Isolated yield. ^b Determined by ¹H NMR analysis of the crude mixture. ^c Determined by HPLC analysis.

3.2 The anti-selective Michael addition

With squaramide **4b** as catalyst, the solvent effects were also examined, and typical results were shown in Table S3. By using DCE or DCM as the solvent, *anti*-**5a** was obtained with 95% ee, but DCE gave a higher 15:1 dr value (entries 1-2). The reaction run in Et₂O, THF, acetone or CH₃CN proved to be much slower than that in DCE (entries 3-6 vs 1). Toluene gave much lower yield and stereoslectivity (entry 7). When EtOAc was used, no reaction occurred at all (entry 8). Taking into consideration both reactivity and stereoselectivity, the *anti*-selective Michael addition reaction was determined to be conducted in DCE at 0 °C, in the presence of 5 mol% of catalyst **4b**.

	(0.1 mmol)	CI 2a (1.2 equivs)	F ₃ C 4b (5 mol%) solvent,		CI NO ₂ anti-5a
	C = 1 mt	T '	V 1.1 (0/)/	·h	$\mathbf{E} = (0/1) (\mathbf{u} = 1 - \mathbf{u})$
Entry	Solvent	11me (d)	Y1eld (%) ^a	syn:anti	$Ee (\%) (major)^{\circ}$
1	DCE	2	90	1:15	95
2	DCM	2	94	1:10	95
3	Et ₂ O	4	68	1:8	87
4	THF	4	75	1:12	92
5	Acetone	4	41	1:14	96
6	CH ₃ CN	4	24	1:16	95
7	Toluene	4	53	1:6	75
8	EtOAc	4	NR	/	/

^{*a*} Isolated yield. ^{*b*} Determined by ¹H NMR analysis of the crude reaction mixtures. ^{*c*} Determined by chiral HPLC analysis, for major diastereomer.

4. General procedure for syn-selective Michael addition.

To a 5.0 mL vial were added bifunctional phosphoramide catalyst **3a** (23.0 mg, 0.06 mmol, 20 mol%), α -azido ketones **1** or **13** (0.3 mmol) and 90.0 mg 5Å MS, followed by the addition of dry toluene (1 mL). The reaction mixture was cooled down to 0 °C and stirred for about 30 min, then nitroolefins **2** (0.36 mmol) was added. After full consumption of α -azido ketones by TLC analysis, the crude reaction mixture was rapidly passed through a short silica gel column chromatography (5 cm), washed with PE:EtOAc (4:1, v/v), and concentrated in *vacuo*. To determine the diastereoselectivity of the product, the residue was first dissolved in CDCl₃, and took some samples for ¹H NMR analysis. Then the sample for analysis and the rest of crude residue were recombined and purified by silica gel column chromatography (PE:Et₂O = 10:1, v/v) to afford the desired products *syn*-**5** or *syn*-**14**.

Product (*R*,*S*)-**5a** was obtained in 76% yield as light yellow liquid (7 days). ¹H NMR analysis revealed that the dr value was 7:1. HPLC analysis [Chiralcel OZ-H, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 18.80 min, tr (minor) = 29.47 min, minor diastereomer: tr (major) = 34.04 min, tr (minor) = 25.62

min] gave the isomeric composition of major diastereomer: 93% ee; $[\alpha]^{25}_{D} = -13.6$ (c = 0.68, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 7.6 Hz, 1H), 7.63-7.59 (m, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.20-7.18 (m, 2H), 7.13-7.11 (m, 2H), 5.14-5.06 (m, 2H), 4.04 (dd, *J* = 9.4 Hz, *J* = 5.2 Hz, 1H), 3.34 (AB, *J* = 18.0 Hz, 1H), 3.24 (AB, *J* = 17.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 200.3, 150.5, 136.9, 134.7, 134.5, 132.4, 130.2, 129.2, 128.7, 126.3, 125.0, 75.7, 70.8, 49.2, 37.6; IR (neat): 2925, 2101, 1709, 1551, 1376, 1093, 978, 692 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₇ClN₅O₃ [M+NH₄]⁺: 374.1014, Found: 374.1014.

roduct (*S*,*R*)-**5a** was obtained in 89% yield as light yellow liquid by using (*R*)-**3a** as catalyst (7 days). ¹H NMR analysis revealed that the dr value was 7:1. HPLC analysis [Chiralcel OZ-H, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 29.65 min, tr (minor) = 19.02 min, minor diastereomer: tr

(major) = 26.12 min, tr (minor) = 33.88 min] gave the isomeric composition of major diastereomer: 94% ee; $[\alpha]^{25}_{D}$ = +70.2 (c = 0.65, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 7.6 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.42 (t, *J* = 7.2 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.20-7.17 (m, 2H), 7.14-7.12 (m, 2H), 5.14-5.06 (m, 2H), 4.04 (dd, *J* = 9.6 Hz, *J* = 5.6 Hz, 1H), 3.34 (AB, *J* = 17.6 Hz, 1H), 3.24 (AB, *J* = 18.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 200.3, 150.5, 136.9, 134.7, 134.5, 132.4, 130.2, 129.2, 128.7, 126.3, 125.0, 75.7, 70.8, 49.2, 37.6; IR (neat): 2922, 2102, 1710, 1551, 1377, 1093, 977, 718 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₇ClN₅O₃ [M+NH₄]⁺: 374.1014, Found: 374.1011.

Product *syn-***5b** was obtained in 79% yield as light yellow liquid (8 days). ¹H NMR analysis revealed that the dr value was 7:1. HPLC analysis [Chiralcel OZ-H, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 16.52 min, tr (minor) = 24.58 min, minor diastereomer: tr (major) = 27.22 min, tr (minor) = 23.35

min] gave the isomeric composition of major diastereomer: 93% ee; $[\alpha]^{25}_{D} = -117.3$ (c = 1.80, CHCl₃) (dr = 7:1). ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, *J* = 7.6 Hz, 1H), 7.60 (td, *J* = 7.6 Hz, *J* = 1.2 Hz, 1H), 7.44-7.40 (m, 1H), 7.30 (dt, *J* = 7.6 Hz, *J* = 1.2 Hz, 1H), 7.20-7.12 (m, 3H), 7.07 (dt, *J* = 7.6 Hz, *J* = 1.6 Hz, 1H), 5.12-5.05 (m, 2H), 4.04 (dd, *J* = 8.4 Hz, *J* = 6.4 Hz, 1H), 3.36 (AB, *J* = 17.6 Hz, 1H), 3.25 (AB, *J* = 17.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 200.2, 150.4, 136.8, 135.9, 134.8, 134.6, 130.1, 129.1, 129.0, 128.7, 126.9, 126.3, 125.0, 75.5, 70.8, 49.4, 37.6; IR (neat): 2105, 1712, 1553, 1377, 1155, 903, 739 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₇ClN₅O₃ [M+NH₄]⁺: 374.1014, Found: 374.1014.

Product *syn*-**5c** was obtained in 73% yield as light yellow liquid (7 days). ¹H NMR analysis revealed that the dr value was 9:1. HPLC analysis [Chiralcel OZ-H, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 14.64 min, tr (minor) = 20.45 min, minor diastereomer: tr (major) = 16.48 min, tr (minor) = 17.60

min] gave the isomeric composition of major diastereomer: 95% ee; $[\alpha]^{25}_{D} = -87.7$ (c = 1.10, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 7.6 Hz, 1H), 7.56 (td, J = 7.2 Hz, J = 1.2 Hz, 1H), 7.40-7.36 (m, 1H), 7.29-7.26 (m, 1H), 7.21-7.14 (m, 2H), 7.00-6.94 (m, 2H), 5.14 (ABd, J = 14.0 Hz, J = 10.4 Hz, 1H), 5.08 (ABd, J = 13.8 Hz, J = 4.8 Hz, 1H), 4.51 (dd, J = 10.2 Hz, J = 4.8 Hz, 1H), 3.39 (AB, J = 18.0 Hz, 1H), 3.26 (AB, J = 18.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 200.0, 161.0 (d, $J_{C-F} = 245.3$ Hz, 1C), 150.5, 136.6, 134.4, 130.4 (d, $J_{C-F} = 8.7$ Hz, 1C), 129.5 (d, $J_{C-F} = 3.3$ Hz, 1C), 128.5, 126.1, 124.9, 124.6 (d, $J_{C-F} = 2.6$ Hz, 1C), 121.1 (d, $J_{C-F} = 13.5$ Hz, 1C), 116.0 (d, $J_{C-F} = 22.9$ Hz, 1C), 74.7, 71.1, 42.4, 37.6 (d, $J_{C-F} = 2.6$ Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -114.61 (s, 1F); IR (neat): 2103, 1710, 1606, 1553, 1467, 1377, 1218, 1014, 719 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₇FN₅O₃ [M+NH₄]⁺: 358.1310, Found: 358.1308.

Product *syn*-**5d** was obtained in 85% yield as light yellow liquid (9 days). ¹H NMR analysis revealed that the dr value was 9:1. HPLC analysis [Chiralcel OZ-H, 3% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 21.14 min, tr (minor) = 33.08 min, minor diastereomer: tr (major) = 36.98 min, tr (minor) = 28.80

min] gave the isomeric composition of major diastereomer: 96% ee; $[\alpha]^{25}_{D} = -125.7$ (c = 1.01, CHCl₃) (dr = 9:1). ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 7.6 Hz, 1H), 7.58-7.55 (m, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.27-7.25 (m, 2H), 7.20-7.16 (m, 4H), 5.17-5.07 (m, 2H), 4.07 (dd, *J* = 9.8 Hz, *J* = 4.8 Hz, 1H), 3.39 (AB, *J* = 17.6 Hz, 1H), 3.23 (AB, *J* = 17.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 200.56, 150.65, 136.60, 134.72, 133.78, 128.87, 128.86, 128.66, 128.52, 126.23, 124.88, 75.85, 70.94, 49.84, 37.55; IR (neat): 2102, 1710, 1605, 1552, 1376, 1093, 742 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₈N₅O₃ [M+NH₄]⁺: 340.1404, Found: 340.1402.

syn-5d

Product *syn-***5e** was obtained in 79% yield as light yellow liquid (10 days). ¹H NMR analysis revealed that the dr value was 9:1. HPLC analysis [Chiralcel OZ-H, 3% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 17.62 min, tr

(minor) = 27.65 min, minor diastereomer: tr (major) = 30.99 min, tr (minor) = 23.31 min] gave the isomeric composition of major diastereomer: 96% ee; $[\alpha]^{25}_{D}$ = -138.8 (c = 0.82, CHCl₃) (dr = 9:1). ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 8.0 Hz, 1H), 7.58 (td, *J* = 7.2 Hz, *J* = 1.2 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.29-7.27 (m, 1H), 7.07-6.99 (m, 4H), 5.14-5.03 (m, 2H), 4.04 (dd, *J* = 10.4 Hz, *J* = 4.4 Hz, 1H), 3.39 (AB, *J* = 17.6 Hz, 1H), 3.20 (AB, *J* = 17.6 Hz, 1H), 2.22 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 200.6, 150.8, 138.5, 136.6, 134.7, 130.7, 129.6, 128.7, 128.5, 126.3, 124.9, 76.0, 70.9, 49.4, 37.5, 21.0; IR (neat): 2101, 1710, 1606, 1552, 1378, 1218, 747 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₈H₂₀N₅O₃ [M+NH₄]⁺: 354.1561, Found: 354.1559.

Product *syn*-**5f** was obtained in 81% yield as white solid (7 days), m.p. = 111-112 °C. ¹H NMR analysis revealed that the dr value was 8:1. HPLC analysis [Chiralcel OZ-H, 3% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 27.38 min, tr (minor) = 46.16 min, minor diastereomer: tr (major) = 48.54 min, tr (minor) = 37.61 min] gave the isomeric composition of major diastereomer: 93% ee;

[α]²⁵_D = -102.0 (c = 0.58, CHCl₃) (dr = 8:1). ¹H NMR (400 MHz, CDCl₃): δ7.80 (d, J = 7.6 Hz, 1H), 7.75-7.67 (m, 4H), 7.53-7.42 (m, 3H), 7.35 (t, J = 7.6 Hz, 1H), 7.27-7.25 (m, 1H), 7.23-7.20 (m, 1H), 5.27 (ABd, J = 13.6 Hz, J = 10.8 Hz, 1H), 5.20 (ABd, J = 13.6 Hz, J = 4.0 Hz, 1H), 4.25 (dd, J = 10.8 Hz, J = 4.0 Hz, 1H), 3.45 (AB, J = 17.6 Hz, 1H), 3.25 (AB, J = 17.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 200.6, 150.7, 136.6, 134.7, 133.0, 133.0, 131.3, 128.9, 128.8, 128.5, 127.9, 127.6, 126.6, 126.6, 126.3, 125.7, 124.9, 76.0, 71.0, 50.0, 37.6; IR (neat): 2102, 1710, 1605, 1552, 1377, 1093, 719 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₁H₂₀N₅O₃ [M+NH₄]⁺: 390.1561, Found: 390.1560.

Product *syn*-**5g** was obtained in 85% yield as light yellow liquid (7 days). ¹H NMR analysis revealed that the dr value was 10:1. HPLC analysis [Chiralcel OZ-H, 5% *syn*-**5g** ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 17.34 min, tr (minor) = 24.14 min, minor diastereomer: tr (major) = 25.79 min, tr (minor) = 22.00 min] gave the isomeric composition of major diastereomer: 96% ee; $[\alpha]^{25}_{D} = -171.4$ (c = 0.72, CHCl₃) (dr = 9:1). ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, *J* = 7.6 Hz, 1H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.17 (d, *J* = 5.2 Hz, 1H), 6.94 (d, *J* = 7.6 Hz, 1H), 6.86 (t, *J* = 4.4 Hz, 1H), 5.06-5.00 (m, 1H), 4.47-4.43 (m, 1H), 3.48 (AB, *J* = 17.6 Hz, 1H), 3.27 (AB, *J* = 17.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 200.2, 150.8, 136.7, 135.9, 134.5, 128.6, 128.3, 127.1, 126.4, 126.1, 125.1, 76.8, 70.5, 44.8, 37.7; IR (neat): 2101, 1710, 1606, 1553, 1376, 1217, 803, 702 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₅H₁₆N₅O₃S [M+NH₄]⁺: 346.0968, Found: 346.0968.

Product *syn*-**5h** was obtained in 76% yield as light yellow liquid (8 days). ¹H NMR analysis revealed that the dr value is 15:1. HPLC analysis [Chiralcel OZ-H, 5% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 16.88 min, tr (minor) = 27.51 min, minor diastereomer: tr (major) = 29.49 min, tr (minor) =

21.28 min] gave the isomeric composition of major diastereomer: 94% ee; $[\alpha]^{25}_{D} = -50.5$ (c = 1.01, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.83 (d, *J* = 7.8 Hz, 1H), 7.68-7.63 (m, 1H), 7.48-7.40 (m,

2H), 7.25-7.20 (m, 3H), 7.13-7.10 (m, 2H), 6.63 (d, J = 15.6 Hz, 1H), 5.77-5.68 (m, 1H), 4.82 (ABd, J = 12.6 Hz, J = 3.9 Hz, 1H), 4.68 (ABd, J = 7.8 Hz, J = 1.5 Hz, 1H), 3.64 (td, J = 10.2 Hz, J = 3.9 Hz, 1H), 3.46 (AB, J = 17.7 Hz, 1H), 3.31 (AB, J = 17.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 200.3, 150.5, 137.3, 136.9, 135.5, 134.4, 128.7, 128.5, 128.4, 126.6, 126.5, 124.9, 121.2, 75.6, 70.1, 48.3, 37.7; IR (neat): 3028, 2103, 1713, 1607, 1553, 1379, 1242, 969, 745, 694 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₉H₂₀N₅O₃ [M+NH₄]⁺: 366.1561, Found: 366.1559.

Product *syn*-**5i** was obtained in 70% yield as light yellow liquid (5 days). ¹H NMR analysis revealed that the dr value was 13:1. HPLC analysis [Chiralcel OZ-H, 5% 'PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 20.65 min, tr (minor) = 27.52 min, minor diastereomer: tr (major) = 33.88 min, tr (minor) = 24.68 min] gave the isomeric composition of major diastereomer: 93% ee; $[\alpha]^{25}D = -30.5$ (c = 1.34, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 7.6 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 7.49-7.26 (m, 4H), 6.99-6.97 (m, 2H), 6.55 (d, J = 15.6 Hz, 1H), 5.76-5.70 (m, 1H), 4.82 (ABd, J =12.4 Hz, J = 3.6 Hz, 1H), 4.67 (ABd, J = 12.6 Hz, J = 10.4 Hz, 1H), 3.61 (td, J = 10.0 Hz, J = 3.6 Hz, 1H), 3.43 (AB, J = 17.2 Hz, 1H), 3.32 (AB, J = 18.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 200.1, 150.4, 136.9, 136.0, 134.4, 134.4, 131.7, 128.8, 128.1, 126.5, 125.0, 122.4, 122.1, 75.5, 70.1, 48.3, 37.7; IR (neat): 2962, 2105, 1713, 1607, 1554, 1434, 1009, 859 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₉H₁₉BrN₅O₃ [M+NH₄]⁺: 444.0666, Found: 444.0662.

Product *syn-***5j** was obtained in 68% yield as light yellow liquid (6 days). ¹H NMR analysis revealed that the dr value was 12:1. HPLC analysis [Chiralcel OZ-H, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 17.48 min, tr (minor) = 26.74 min, minor diastereomer: tr (major) = 29.67 min, tr (minor) = 21.52 min] gave the isomeric composition of major diastereomer: 92% ee; $[\alpha]^{25}_{D} = -39.5$ (c

= 1.1, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.84 (d, J = 7.8 Hz, 1H), 7.68 (d, J = 7.5 Hz, 1H), 7.50-7.42 (m, 2H), 7.23-7.16 (m, 1H), 6.94-6.88 (m, 2H), 6.82-6.78 (m, 1H), 6.59 (d, J = 15.6 Hz, 1H), 5.80-5.72 (m, 1H), 4.81 (ABd, J = 12.6 Hz, J = 3.6 Hz, 1H), 4.68 (ABd, J = 12.8 Hz, J = 10.8 Hz, 1H), 3.63 (td, J = 10.2 Hz, J = 3.6 Hz, 1H), 3.44 (AB, J = 17.4 Hz, 1H), 3.32 (AB, J = 17.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 200.1, 162.9 (d, J_{C-F} = 244.6 Hz, 1C), 150.4, 137.8 (d, J_{C-F} = 7.7 Hz, 1C), 137.0, 136.1 (d, J_{C-F} = 2.6 Hz, 1C), 134.4, 130.0 (d, J_{C-F} = 8.2 Hz, 1C), 128.8, 126.5, 125.0, 122.8,

122.6 (d, $J_{C-F} = 2.9$ Hz, 1C), 115.2 (d, $J_{C-F} = 21.2$ Hz, 1C), 113.0 (d, $J_{C-F} = 21.9$ Hz, 1C), 75.5, 70.1, 48.1, 37.7; ¹⁹F NMR (376 MHz, CDCl₃): δ -113.11 (s, 1F); IR (neat): 2099, 1703, 1607, 1555, 1437, 1236, 932, 746 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₉H₁₉FN₅O₃ [M+NH₄]⁺: 384.1466, Found: 384.1465.

Product *syn*-**5k** was obtained in 81% yield as white solid (8 days), m.p. = 93-95 °C. ¹H NMR analysis revealed that the dr value was 12:1. HPLC analysis [Chiralcel OZ-H, 5% ¹PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 16.69 min, tr (minor) = 25.98 min, minor diastereomer: tr (major) = 28.04 min, tr (minor) = 21.03 min] gave the isomeric composition of major diastereomer: 94% ee; $[\alpha]^{25}_{D}$ = -64.0 (c = 0.48, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, *J* = 8.0 Hz, 1H), 7.69-7.64 (m, 1H), 7.48-7.42 (m, 2H), 7.22-7.16 (m, 1H), 7.12-7.08 (m, 1H), 7.01-6.94 (m, 2H), 6.74 (d, *J* = 16.0 Hz, 1H), 5.88-5.81 (m, 1H), 4.87-4.82 (m, 1H), 4.73-4.67 (m, 1H), 3.64 (td, *J* = 10.4 Hz, *J* = 4.0 Hz, 1H), 3.47 (AB, *J* = 17.6 Hz, 1H), 3.33 (AB, *J* = 17.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 200.18, 160.22 (d, *J*_{C-F} = 249.2 Hz, 1C), 150.49, 136.90, 134.43, 130.04 (d, *J*_{C-F} = 3.1 Hz, 1C), 129.77 (d, *J*_{C-F} = 8.4 Hz, 1C), 128.72, 127.83 (d, *J*_{C-F} = 3.4 Hz, 1C), 126.49, 124.98, 124.10, 124.06 (d, *J*_{C-F} = 2.0 Hz, 1C), 123.37 (d, *J*_{C-F} = 12.0 Hz, 1C), 115.75 (d, *J*_{C-F} = 21.9 Hz, 1C), 75.56, 70.11, 48.74, 37.72; ¹⁹F NMR (376 MHz, CDCl₃): δ -117.06 (s, 1F); IR (neat): 2098, 1703, 1555, 1378, 1235, 971, 756, 699 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₉H₁₉FN₅O₃ [M+NH₄]⁺: 384.1466, Found: 384.1464.

Product *syn*-**51** was obtained in 80% yield as white solid (9 days), m.p. = 70-71 °C. ¹H NMR analysis revealed that the dr value was 13:1. HPLC analysis [Chiralcel OZ-H, 5% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 13.66 min, tr (minor) = 21.88 min, minor diastereomer: tr (major) = 24.98 min, tr (minor) = 16.40 min] gave the isomeric composition of major diastereomer: 94% ee; $[\alpha]^{25}_{D}$ = -48.8 (c = 0.56, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.83 (d, *J* = 7.5 Hz, 1H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.49-7.42 (m, 2H), 7.15-6.99 (m, 3H), 6.89-6.81 (m, 2H), 5.62-5.53 (m, 1H), 4.85-4.79 (m, 1H), 4.72-4.64 (m, 1H), 3.66 (td, *J* = 10.5 Hz, *J* = 3.9 Hz, 1H), 3.47 (AB, *J* = 17.7 Hz, 1H), 3.33 (AB, *J* = 17.4 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.30, 150.49, 136.87, 135.74, 135.64, 135.03, 134.48, 130.14, 128.71, 128.22, 126.48, 126.00, 125.98, 124.93, 122.79, 75.71, 70.04, 48.56, 37.73, 19.55, 19.53; GC-MS: 362 (M⁺, 0.2), 144 (100), 129 (39), 116 (22), 105 (7), 89 (17), 63 (4); IR (neat): 2099, 1704, 1606, 1554, 1377, 1236, 896, 746 cm⁻¹; HRMS (EI): Exact mass calcd for C₂₀H₁₈N₄O₃ [M]⁺: 362.1379, found: 362.1380.

Product *syn-***5m** was obtained in 88% yield as light yellow liquid (-20 °C, 4 days). ¹H NMR analysis revealed that the dr value was 12:1. HPLC analysis [Chiralcel OZ-H, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 16.67 min, tr (minor) = 25.86 min, minor diastereomer: tr (major) = 19.70 min, tr

(minor) = 18.47 min] gave the isomeric composition of major diastereomer: 90% ee; $[\alpha]^{25}_{D}$ = -25.6 (c = 1.20, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.82-7.77 (m, 2H), 7.35 (t, *J* = 8.0 Hz, 1H), 7.27-7.22 (m, 3H), 7.21-7.16 (m, 2H), 6.67 (d, *J* = 15.6 Hz, 1H), 5.79-5.73 (m, 1H), 4.77 (ABd, *J* = 12.6 Hz, *J* = 3.6 Hz, 1H), 4.67 (ABd, *J* = 12.6 Hz, *J* = 10.8 Hz, 1H), 3.67 (td, *J* = 10.0 Hz, *J* = 4.0 Hz, 1H), 3.37 (AB, *J* = 18 Hz, 1H), 3.22 (AB, *J* = 18.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.66, 150.29, 139.40, 137.58, 136.17, 135.33, 130.34, 128.50, 128.46, 126.59, 123.67, 121.83, 120.66, 75.41, 69.96, 47.91, 38.55; IR (neat): 2103, 1718, 1553, 1378, 1266, 1122, 908, 730, 692 cm⁻¹; HRMS (DART): Exact mass calcd for C₁₉H₁₉N₅O₃Br [M+NH₄]⁺: 444.0666, Found: 444.0668.

Product *syn-***5n** was obtained in 79% yield as white solid (2 days), m.p. = 125-127 °C. ¹H NMR analysis revealed that the dr value was 12:1. HPLC analysis [Chiralcel OZ-H, 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 13.54 min, tr (minor) = 21.69 min, minor diastereomer:

tr (major) = 24.17 min, tr (minor) = 16.04 min] gave the isomeric composition of major diastereomer: 88% ee; $[\alpha]^{25}_{D}$ = -24.9 (c = 0.9, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.76 (d, *J* = 8.4 Hz, 1H), 7.45-7.41 (m, 2H), 7.28-7.20 (m, 3H), 7.19-7.12 (m, 2H), 6.64 (d, *J* = 15.6 Hz, 1H), 5.72 (dd, *J* = 15.6 Hz, *J* = 9.9 Hz, 1H), 4.82 (ABd, *J* = 12.6 Hz, *J* = 3.9 Hz, 1H), 4.70 (ABd, *J* = 12.6 Hz, *J* = 10.5 Hz, 1H), 3.63 (td, *J* = 10.2 Hz, *J* = 3.9 Hz, 1H), 3.44 (AB, *J* = 18.0 Hz, 1H), 3.28 (AB, *J* = 18.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 198.9, 151.9, 143.6, 137.6, 135.3, 132.7, 129.6, 128.6, 128.5, 126.7, 126.6, 126.0, 120.7, 75.5, 70.1, 48.2, 37.4; IR (neat): 2104, 1716, 1599, 1554, 1324, 1242, 969, 745, 694 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₉H₁₉ClN₅O₃ [M+NH₄]⁺: 400.1171, Found: 400.1170.

Product *syn*-**50** was obtained in 72% yield as white solid (-20 °C, 4 days), m.p. = 129-130 °C. ¹H NMR analysis revealed that the dr value was 13:1. HPLC analysis [Chiralcel OZ-H, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 19.05 min, tr (minor) = 29.78 min, minor

diastereomer: tr (major) = 38.31 min, tr (minor) = 23.10 min] gave the isomeric composition of major diastereomer: 93% ee; $[\alpha]^{25}_{D}$ = -89.1 (c = 0.93, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.96 (d, *J* = 1.8 Hz, 1H), 7.76 (dd, *J* = 8.2 Hz, *J* = 1.8 Hz, 1H), 7.31 (d, *J* = 8.4 Hz, 1H), 7.28-7.22 (m, 3H), 7.17-7.13 (m, 2H), 6.63 (d, *J* = 15.6 Hz, 1H), 5.75-5.67 (m, 1H), 4.83 (ABd, *J* = 12.6 Hz, *J* = 3.9 Hz, 1H), 4.70 (ABd, *J* = 12.6 Hz, *J* = 10.5 Hz, 1H), 3.63 (td, *J* = 9.9 Hz, *J* = 3.6 Hz, 1H), 3.41 (AB, *J* = 18 Hz, 1H), 3.25 (AB, *J* = 17.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.0, 149.0, 139.6, 137.6, 136.0, 135.3, 128.6, 128.5, 128.0, 127.7, 126.6, 122.8, 120.7, 75.5, 70.3, 48.2, 37.3; IR (neat): 2099, 1725, 1600, 1555, 1374, 1212, 969, 744, 673 cm⁻¹; HRMS (DART): Exact mass calcd for C₁₉H₁₉N₅O₃Br [M+NH₄]⁺: 444.0666, Found: 444.0665.

Product *syn*-**5p** was obtained in 69% yield as white solid (8 days), m.p. = 130-132 $^{\circ}$ C. ¹H NMR analysis revealed that the dr value was 14:1. HPLC analysis [Chiralcel OZ-H, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 14.59 min, tr (minor) = 21.22 min, minor diastereomer: tr (major) =

23.96 min, tr (minor) = 17.80 min] gave the isomeric composition of major diastereomer: 95% ee; $[\alpha]^{25}_{D} = -69.6$ (c = 1.44, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.62 (s, 1H), 7.49-7.46 (m, 1H), 7.30 (d, J = 7.6 Hz, 1H), 7.26-7.21 (m, 3H), 7.15-7.13 (m, 2H), 6.62 (d, J = 15.6 Hz, 1H), 5.74 (dd, J = 15.6 Hz, J = 10.0 Hz, 1H), 4.81 (ABd, J = 12.6 Hz, J = 3.6 Hz, 1H), 4.69 (ABd, J = 12.6 Hz, J = 10.8Hz, 1H), 3.63 (td, J = 10.4 Hz, J = 3.6 Hz, 1H), 3.41 (AB, J = 17.6 Hz, 1H), 3.25 (AB, J = 17.2 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.3, 147.9, 138.9, 138.2, 137.3, 135.5, 134.5, 128.5, 128.4, 126.6, 126.2, 124.7, 121.2, 75.7, 70.4, 48.3, 37.3, 21.1; IR (neat): 2108, 1715, 1555, 1494, 1377, 1285, 969, 752, 695 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₀H₂₂N₅O₃ [M+NH₄]⁺: 380.1717, Found: 380.1715.

The reaction was conducted with replacing 5Å MS by 20 mol% K₂HPO₄·3H₂O. Product *syn*-5q was obtained in 76% yield as light yellow liquid (3 days). ¹H NMR analysis revealed that the dr value was 3:1. HPLC analysis [Chiralcel OZ-H, 5% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 9.83 min, tr (minor) = 15.06 min, minor diastereomer: tr (major) = 16.55 min, tr (minor) = 13.47 min] gave the isomeric composition of major diastereomer: 90% ee; $[\alpha]^{25}_{D}$ = -94.6 (c = 0.31, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.81 (d, J = 8.1 Hz, 1H), 7.52-7.48 (m, 2H), 4.75-4.67 (m, 1H), 4.49-4.43 (m, 1H), 4.17-4.05 (m, 1H), 3.39 (AB, J = 24.4 Hz, 1H), 3.27 (AB, J = 24.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 196.08, 151.91, 144.20, 131.25, 130.02, 126.94, 126.90, 125.16 (q, $J_{C-F} = 279.9$ Hz, 1C), 70.03 (t, $J_{C-F} = 3.4$ Hz, 1C), 66.83, 45.16 (q, $J_{C-F} = 26.6$ Hz, 1C), 36.83 (d, $J_{C-F} = 2.4$ Hz, 1C); ¹⁹F NMR (282 MHz, CDCl₃): δ -64.86 (d, J = 5.4 Hz, 3F); IR (neat): 2926, 2111, 1719, 1599, 1569, 1379, 1212, 1072, 903, 619 cm⁻¹; HRMS (DART): Exact mass calcd for C₁₂H₉N₄O₃ClF₃ [M+H]⁺: 349.0310, Found: 349.0307.

Br CF₃ NO₂

The reaction was conducted with replacing 5Å MS by 20 mol% K_2HPO_4 ·3H₂O. Product *syn-***5r** was obtained in 76% yield as light yellow liquid (2 days). ¹H NMR

analysis revealed that the dr value was 4:1. HPLC analysis [Chiralcel OZ-H, 5% syn-**5r** ⁱPrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 9.73 min, tr (minor) = 15.67 min, minor diastereomer: tr (major) = 17.66 min, tr (minor) = 16.4 min] gave the isomeric composition of major diastereomer: 92% ee; $[\alpha]^{25}_{D} = -107.9$ (c = 1.16, CHCl₃) (dr = 4:1). ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 1.6 Hz, 0.2H) (minor), 7.99 (d, J = 1.6 Hz, 1H) (major), 7.86-7.83 (m, 1H) (major), 7.82 (d, J = 1.6 Hz, 0.1H) (minor), 7.41 (d, J = 8.0 Hz, 1H) (major), 7.38 (s, 0.1H) (minor), 5.06 (ABd, J = 15.2 Hz, J = 4.8 Hz, 0.2H) (minor), 4.78 (ABd, J = 15.2 Hz, J = 5.6 Hz, 0.2H) (minor), 4.74-4.68 (m, 1H) (major), 4.51-4.46 (m, 1H) (major), 4.30 (t, J = 6.8 Hz, 0.2H) (minor), 4.15-4.05 (m, 1H) (major), 3.42 (AB, J = 18.0 Hz, 0.2H) (minor), 3.37 (AB, J = 18.4 Hz, 1H) (major), 3.25 (AB, J = 18 Hz, 1H) (major), 3.09 (AB, J = 18.0 Hz, 0.2H) (minor); ¹³C NMR (100 MHz, CDCl₃): *δ* 196.2 (major), 195.9 (minor), 149.0 (major), 148.4 (minor), 140.0 (major), 139.8 (minor), 134.6 (major), 134.5 (minor), 129.8 (q, $J_{C-F} = 207.5$ Hz, 1C) (minor), 128.6 (minor), 128.5 (major), 128.1 (major), 128.0 (minor), 125.1 (q, J_{C-F} = 279.9 Hz, 1C) (major), 123.2 (major), 123.1 (minor), 70.0 (d, J_{C-F} = 2.7 Hz, 1C) (major), 67.0 (major), 66.7 (minor), 65.5 (minor), 45.2 (q, J_{C-F} = 26.9 Hz, 1C) (major), 36.8 (d, J_{C-F} = 2.3 Hz, 1C) (major), 35.7 (d, J_{C-F} = 2.5 Hz, 1C) (minor); ¹⁹F NMR (376) MHz, CDCl₃): δ -64.49 (s, 3F) (minor), -64.81 (s, 3F) (major); IR (neat): 2926, 2111, 1719, 1669, 1563, 1467, 1376, 1217, 1019, 612 cm⁻¹; HRMS (DART): Exact mass calcd for C₁₂H₉N₄O₃BrF₃ [M+H]⁺: 392.9805, Found: 392.9800.

The reaction was conducted with replacing 5Å MS by 20 mol% K₂HPO₄·3H₂O. Product *syn*-**5s** was obtained in 52% yield as light yellow liquid (6 days). ¹H NMR analysis revealed that the dr value was 2:1. HPLC analysis [Chiralcel OZ-H, 3% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 25.59 min, tr (minor) = 41.71 min, minor diastereomer: tr (major) = 37.49 min, tr (minor) = 34.93 min] gave the isomeric composition of major diastereomer: 87% ee; $[\alpha]^{25}_{D} = -63.1$ (c = 1.12, CHCl₃) (dr = 2:1). ¹H NMR (400 MHz, CDCl₃): δ 7.98 (t, J = 2.4 Hz, 1.5H), 7.85-7.81 (m, 1.5H), 7.42-7.37 (m, 1.5H), 6.46-6.18 (m, 1H) (major), 6.08-5.80 (m, 0.5H) (minor), 4.91 (ABd, J = 14.8 Hz, J = 4.8 Hz, 0.5H) (minor), 4.82 (ABd, J = 14.8Hz, J = 6.4 Hz, 0.5H) (minor), 4.74 (ABd, J = 14.4 Hz, J = 6.8 Hz, 1H) (major), 4.32 (ABd, J = 14.4 Hz, J = 4.0 Hz, 1H) (major), 3.71-3.62 (m, 1.5H), 3.40 (AB, J = 17.6 Hz, 0.5H) (minor), 3.32 (AB, J = 18.0 Hz, 1H) (major), 3.18 (AB, J = 18.0 Hz, 1H) (major), 3.02 (AB, J = 17.6 Hz, 0.5H) (minor); ¹³C NMR (100 MHz, CDCl₃): δ 197.2 (minor), 196.7 (major), 149.0 (major), 148.9 (minor), 139.9 (major), 139.8 (minor), 134.9 (major), 134.7 (minor), 128.4 (major), 128.4 (minor), 128.1 (major), 123.2 (major), 123.0 (minor), 114.2 (t, $J_{C-F} = 243.2$ Hz, 1C) (major), 114.0 (t, $J_{C-F} = 244.4 \text{ Hz}, 1C$ (minor), 69.5 (d, $J_{C-F} = 4.6 \text{ Hz}, 1C$) (minor), 69.1 (major), 67.9 (d, $J_{C-F} = 6.1 \text{ Hz}, 1C$) 1C) (major), 67.3 (d, $J_{C-F} = 4.7$ Hz, 1C) (minor), 44.5 (t, $J_{C-F} = 20.1$ Hz, 1C) (major), 36.7 (d, $J_{C-F} = 20.1$ Hz, 1C) (major), 36.7 (d, J_{C-F} = 20.1 2.9 Hz, 1C) (major), 35.9 (t, $J_{C-F} = 2.5$ Hz, 1C) (minor); ¹⁹F NMR (376 MHz, CDCl₃): δ -117.77 (d, $J_{\text{F-F}} = 295.5 \text{ Hz}, 1\text{F}$ (minor), -120.56 (d, $J_{\text{F-F}} = 294.4 \text{ Hz}, 1\text{F}$) (major), -122.68 (d, $J_{\text{F-F}} = 295.2 \text{ Hz}, 1\text{F}$) (minor), -122.93 (d, $J_{F-F} = 294.4$ Hz, 1F) (major); IR (neat): 2926, 2111, 1719, 1563, 1467, 1376, 1217, 1019, 612 cm⁻¹; HRMS (DART): Exact mass calcd for $C_{12}H_{10}N_2O_3BrF_2$ [M-N₂+H]⁺: 346.9837, Found: 346.9837.

Product *syn*-**5t** was obtained in 68% yield as light yellow liquid (7 days). ¹H NMR analysis revealed that the dr value was 9:1. HPLC analysis [Chiralcel AD-H, 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 25.54 min, tr (minor) = 23.50 min, minor diastereomer: tr (major) = 21.54 min, tr (minor) = 30.51 min] gave the isomeric composition of major diastereomer: 93% ee; $[\alpha]^{25}_{D} = +265.4$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.85

(d, J = 8.4 Hz, 1H), 7.41 (d, J = 8.4 Hz, 2H), 7.14-7.11 (m, 3H), 7.08 (d, J = 1.6 Hz, 1H), 6.37 (d, J = 15.6 Hz, 1H), 6.01 (dd, J = 15.8 Hz, J = 9.6 Hz, 1H), 4.84-4.82 (m, 2H), 4.53 (AB, J = 12.8 Hz, 1H), 4.49 (AB, J = 12.8 Hz, 1H), 3.54-3.48 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 186.7, 160.8, 143.6, 136.2, 134.2, 131.8, 129.4, 128.2, 123.9, 122.6, 121.6, 118.3, 118.1, 75.7, 71.6, 65.9, 45.0; IR (neat): 2253, 2118, 1713, 1489, 1364, 1227, 903, 727, 650 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₉H₁₄N₄O₄ClBrNa [M+Na]⁺: 498.9779, Found: 498.9779.

Product *syn*-**5u** was obtained in 53% yield as light yellow liquid (7 days). ¹H NMR analysis revealed that the dr value was 3:1. HPLC analysis [Chiralcel OZ-H, 30% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 39.69 min, tr (minor) = 49.02 min, minor diastereomer: tr (major) = 21.69 min, tr (minor) = 29.41 min] gave the isomeric composition of major diastereomer: 65% ee; $[\alpha]^{25}_{D} = +4.3$ (c = 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 8.01 (dd, *J* = 8.0 Hz, *J* = 1.5 Hz, 1H), 7.85-7.84 (m, 2H), 7.80 (dd, *J* = 8.0 Hz, *J* = 1.0 Hz, 1H), 7.59-7.56 (m, 1H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.23-7.19 (m, 1H), 7.18-7.17 (m, 2H), 6.42 (d, *J* = 16.0 Hz, 1H), 6.12-6.07 (m, 1H), 4.93 (ABd, *J* = 12.5 Hz, *J* = 3.5 Hz, 1H), 4.83 (ABd, *J* = 12.5 Hz, *J* = 10.5 Hz, 1H), 4.40 (AB, *J* = 13.5 Hz, 1H), 4.16 (AB, *J* = 14.0 Hz, 1H), 3.77-3.72 (m, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 188.6, 145.3, 141.9, 136.2, 136.1, 135.6, 134.4, 131.7, 130.2, 129.7, 128.3, 127.2, 124.4, 122.5, 121.6, 121.4, 119.2, 75.4, 67.5, 52.1, 44.9, 21.6; IR (neat): 2253, 1713, 1582, 1443, 1364, 1227, 1082, 905, 729, 650 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₆H₂₂N₅O₅BrSNa [M+Na]⁺: 618.0417, Found: 618.0405.

The reaction was conducted with 30 mol% **3a** at rt. Product *syn*-**14** was obtained in 38% yield as light yellow liquid (7 days). ¹H NMR analysis revealed that the dr value was 3:1. HPLC analysis [Chiralcel IF, 15% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 10.50 min, tr (minor) = 9.53 min, minor diastereomer: tr (major) = 18.13 min, tr (minor) = 12.91 min] gave the

isomeric composition of major diastereomer: 81% ee; $[\alpha]^{25}_{D} = +32.2$ (c = 0.74, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.81-7.78 (m, 2H), 7.71-7.68 (m, 2H), 7.44-7.41 (m, 2H), 7.14-7.10 (m, 2H), 6.27 (d, J = 16 Hz, 1H), 5.96 (dd, J = 15.8 Hz, J = 9.2 Hz, 1H), 5.15 (d, J = 4.4 Hz, 1H), 4.77 (ABd, J = 13.6 Hz, J = 7.6 Hz, 1H), 4.51 (ABd, J = 13.6 Hz, J = 6.0 Hz, 1H), 3.70-3.63 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 193.02, 135.21, 134.28, 133.14, 132.65, 131.82, 129.94, 129.88, 128.13, 122.56, 121.07, 75.74, 64.20, 43.48; IR (neat): 2111, 1712, 1608, 1554, 1488, 1219, 1073, 910, 735 cm⁻¹; HRMS (DART): Exact mass calcd for C₁₈H₁₅N₂O₃Br₂ [M-N₂+H]⁺: 464.9444, Found: 464.9441.

5. General procedure for anti-selective Michael addition.

To a 5.0 mL vial were added bifunctional squaramide catalyst **4b** (7.4 mg, 0.015 mmol, 5.0 mol%) and α -azido ketones **1** or **13** (0.3 mmol, 1.0 equiv), followed by the addition of dry DCE (3.0 mL). The reaction mixture was cooled down to 0 °C and stirred for about 30 min, then nitroolefins **2** (0.36 mmol, 1.2 equivs) was added. After full consumption of α -azido ketones by TLC analysis, the crude reaction mixture was rapidly passed through a short silica gel column chromatography (5 cm), washed with PE:EtOAc (4:1, v/v), and concentrated in *vacuo*. To determine the diastereoselectivity of the product, the residue was first dissolved in CDCl₃, and took some samples for ¹H NMR analysis. Then the sample for analysis and the rest of crude residue were recombined and purified by silica gel column chromatography (PE:Et₂O = 10:1, v/v) to afford the desired products *anti*-**5** or *anti*-**14**.

Product (S,S)-**5a** was obtained in 99% yield as light yellow liquid (2.5 days). ¹H NMR analysis revealed that the dr value was 15:1. HPLC analysis [Chiralcel OZ-H, (S,S)-**5a** 5% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 28.20 min, tr (minor) = 36.94 min, minor diastereomer: tr (major) = 20.03 min, tr (minor) = 32.90 min] gave the isomeric composition of major diastereomer: 95% ee; $[\alpha]^{25}_{D} = +130.5$ (c = 0.9, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.79-7.77 (m, 1H), 7.64 (td, J = 7.6 Hz, J = 1.2 Hz, 1H), 7.45-7.41 (m, 1H), 7.35 (dt, J = 7.6 Hz, J = 0.8 Hz, 1H), 7.28-7.26 (m, 4H), 5.43 (ABd, J = 14.0 Hz, J =4.2 Hz, 1H), 4.94 (ABd, J = 13.8 Hz, J = 10.5 Hz, 1H), 3.96 (dd, J = 10.8 Hz, J = 4.0 Hz, 1H), 3.26 (AB, J = 17.6 Hz, 1H), 3.00 (AB, J = 17.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.8, 149.9, 136.8, 134.7, 133.4, 133.1, 130.4, 129.2, 128.8, 126.3, 125.5, 75.4, 70.5, 46.7, 37.0; IR (neat): 2104, 1712, 1551, 1466, 1339, 1093, 909, 739, 627 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₇ClN₅O₃ [M+NH₄]⁺: 374.1014, Found: 374.1012. Product (*R*,*R*)-**5a** was obtained in 99% yield as light yellow liquid (2.5 days) by using (*R*)-**4b** as catalyst. ¹H NMR analysis revealed that the dr value was 13:1. HPLC analysis [Chiralcel OZ-H, 5% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 34.69 min, tr (minor) = 26.46 min, minor diastereomer: tr (major) = 30.60 min, tr (minor) = 19.11 min] gave the isomeric composition of major diastereomer: 95% ee; $[\alpha]^{25}_{D} = -113.3$ (c = 1.93, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 7.6 Hz, 1H), 7.63 (tt, *J* = 7.6 Hz, *J* = 1.2 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.29-7.24 (m, 4H), 5.39 (ABd, *J* = 13.8 Hz, *J* = 4.4 Hz, 1H), 4.95 (ABd, *J* = 13.8 Hz, *J* = 10.4 Hz, 1H), 3.98 (dd, *J* = 10.6 Hz, *J* = 4.4 Hz, 1H), 3.27 (AB, *J* = 18 Hz, 1H), 2.99 (AB, *J* = 17.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.8, 149.9, 136.7, 134.6, 133.3, 133.0, 130.3, 129.1, 128.7, 126.2, 125.3, 75.3, 70.4, 46.6, 36.8; IR (neat): 2925, 2104, 1712, 1606, 1553, 1377, 1094, 909, 738, 626 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₇ClN₅O₃ [M+NH₄]⁺: 374.1014, Found: 374.1010.

Product *anti*-**5b** was obtained in 99% yield as white solid (2.5 days), m.p. = 117-119 °C. ¹H NMR analysis revealed that the dr value was 14:1. HPLC analysis [Chiralcel OZ-H, 3% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 32.51 min, tr (minor) = 41.57 min, minor diastereomer: tr (major) = 22.95

min, tr (minor) = 35.53 min] gave the isomeric composition of major diastereomer: 95% ee; $[\alpha]^{25}_{D}$ = +88.0 (c = 0.94, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.80 (d, *J* = 7.8 Hz, 1H), 7.66 (td, *J* = 7.5 Hz, *J* = 1.2 Hz, 1H), 7.47-7.42 (m, 1H), 7.39-7.33 (m, 2H), 7.28-7.22 (m, 3H), 5.40 (ABd, *J* = 13.8 Hz, *J* = 4.4 Hz, 1H), 4.94 (ABd, *J* = 13.6 Hz, *J* = 10.8 Hz, 1H), 3.91 (dd, *J* = 10.7 Hz, *J* = 3.9 Hz, 1H), 3.26 (AB, *J* = 17.7 Hz, 1H), 3.02 (AB, *J* = 17.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.81, 136.84, 136.81, 134.85, 133.40, 130.19, 129.08, 128.96, 128.79, 127.35, 126.30, 125.49, 75.34, 70.57, 47.00, 37.24; IR (neat): 2922, 2106, 1714, 1554, 1466, 1378, 1087, 906, 741 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₇ClN₅O₃ [M+NH₄]⁺: 374.1014, Found: 374.1013.

Product *anti*-**5c** was obtained in 95% yield as white solid (3 days), m.p. = 63-64 °C. ¹H NMR analysis revealed that the dr value was 8:1. HPLC analysis [Chiralcel OZ-H, 3% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 24.77 min, tr (minor) = 23.03 min, minor diastereomer: tr (major) = 20.40 min, tr

(minor) = 30.12 min] gave the isomeric composition of major diastereomer: 91% ee; $[\alpha]^{25}_{D} = +76.6$ (c

= 1.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.80 (d, *J* = 7.8 Hz, 1H), 7.66 (td, *J* = 7.5 Hz, *J* = 1.2 Hz, 1H), 7.51 (td, *J* = 7.5 Hz, *J* = 1.8 Hz, 1H), 7.46-7.38 (m, 2H), 7.33-7.25 (m, 1H), 7.15 (td, *J* = 7.5 Hz, *J* = 1.5 Hz, 1H), 7.18-7.01 (m, 1H), 5.50-5.44 (m, 1H), 5.08-5.00 (m, 1H), 4.32 (dd, *J* = 10.2 Hz, *J* = 4.5 Hz, 1H), 3.33 (AB, *J* = 17.7 Hz, 1H), 3.03 (AB, *J* = 17.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.9, 160.8 (d, *J*_{C-F} = 245.0 Hz, 1C), 150.0, 136.7, 133.4, 130.3 (d, *J*_{C-F} = 8.6 Hz, 1C), 130.2 (d, *J*_{C-F} = 3.2 Hz, 1C), 128.7, 126.3, 125.3, 124.8 (d, *J*_{C-F} = 3.5 Hz, 1C), 122.1 (d, *J*_{C-F} = 13.3 Hz, 1C), 116.0 (d, *J*_{C-F} = 23.1 Hz, 1C), 74.6 (d, *J*_{C-F} = 2.7 Hz, 1C), 71.0, 40.5, 37.4 (d, *J*_{C-F} = 2.8 Hz, 1C); ¹⁹F NMR (282 MHz, CDCl₃): δ -115.36 (s, 1F); IR (neat): 2107, 1715, 1555, 1467, 1342, 1233, 909, 760 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₇FN₅O₃ [M+NH₄]⁺: 358.1310, Found: 358.1307.

Product *anti*-**5d** was obtained in 90% yield as white solid (5 days), m.p. = 99-101 °C. ¹H NMR analysis revealed that the dr value was 20:1. HPLC analysis [Chiralcel OZ-H, 5% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 22.08 min, tr (minor) = 27.85 min, minor diastereomer: tr (major) = 16.36 min, tr

(minor) = 24.30 min] gave the isomeric composition of major diastereomer: 96% ee; $[\alpha]^{25}_{D}$ = +124.4 (c = 0.44, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.63 (td, *J* = 7.2 Hz, *J* = 1.2 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.35-7.24 (m, 6H), 5.40 (ABd, *J* = 13.6 Hz, *J* = 4.4 Hz, 1H), 5.00 (ABd, *J* = 13.6 Hz, *J* = 10.4 Hz, 1H), 3.99 (dd, *J* = 10.2 Hz, *J* = 4.4 Hz, 1H), 3.31 (AB, *J* = 17.6 Hz, 1H), 2.99 (AB, *J* = 17.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 200.1, 150.1, 136.6, 134.5, 133.6, 129.0, 128.9, 128.7, 128.6, 126.2, 125.4, 75.6, 70.7, 47.3, 36.9; IR (neat): 2105, 1712, 1604, 1551, 1422, 1287, 699 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₈N₅O₃ [M+NH₄]⁺: 340.1404, Found: 340.1402.

Product *anti-***5e** was obtained in 91% yield as light yellow liquid (5 days). ¹H NMR analysis revealed that the dr value was 25:1. HPLC analysis [Chiralcel OZ-H, 5% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 18.29 min, tr (minor) = 24.24 min, minor diastereomer: tr (major) = 13.85 min, tr (minor) =

21.27 min] gave the isomeric composition of major diastereomer: 95% ee; $[\alpha]^{25}_{D}$ = +142.5 (c = 2.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.62 (td, *J* = 7.6 Hz, *J* = 1.6 Hz, 1H), 7.43-7.39 (m, 1H), 7.36-7.33 (m, 1H), 7.20-7.18 (m, 2H), 7.09-7.07 (m, 2H), 5.36 (ABd, *J* = 13.6 Hz, *J* = 4.4 Hz, 1H), 4.97 (ABd, *J* = 13.6 Hz, *J* = 10.4 Hz, 1H), 3.96 (dd, *J* = 10.6 Hz, *J* = 4.4 Hz, 1H),

3.32 (AB, J = 17.6 Hz, 1H), 2.98 (AB, J = 17.6 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.1, 150.1, 138.3, 136.5, 133.5, 131.2, 129.5, 128.8, 128.4, 126.2, 125.2, 75.6, 70.7, 46.8, 36.7, 20.9; IR (neat): 2104, 1714, 1554, 1378, 1219, 910, 799, 627 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₈H₂₀N₅O₃ [M+NH₄]⁺: 354.1561, Found: 354.1559.

Product *anti*-**5f** was obtained in 99% yield as white solid (5 days), m.p. = 126-128 $^{\circ}$ C. ¹H NMR analysis revealed that the dr value was 22:1. HPLC analysis [Chiralcel OZ-H, 3% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 39.89 min, tr (minor) = 51.85 min, minor diastereomer: tr (major) = 28.61 min, tr (minor) = 50.18 min] gave the isomeric composition of major diastereomer: 95% ee;

 $[\alpha]^{25}_{D}$ = +129.7 (c = 0.60, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.80-7.75 (m, 5H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.49-7.46 (m, 3H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.31 (d, *J* = 7.6 Hz, 1H), 5.52-5.27 (m, 1H), 5.15-5.08 (m, 1H), 4.17-4.12 (m, 1H), 3.36 (AB, *J* = 17.6 Hz, 1H), 2.99 (AB, *J* = 17.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 200.03, 150.03, 136.62, 133.46, 133.07, 133.05, 132.15, 128.88, 128.75, 128.64, 127.99, 127.59, 126.64, 126.56, 126.27, 126.11, 125.44, 75.67, 70.90, 47.37, 37.13; GC-MS: 372 (M⁺, 3), 191 (12), 154 (59), 149 (20), 144 (100), 128 (13), 116 (30), 89 (25), 49 (14); IR (neat): 2099, 1709, 1548, 1467, 1341, 1226, 914, 748, 671 cm⁻¹; HRMS (EI): Exact mass calcd for C₂₁H₁₆N₄O₃ [M]⁺: 372.1222, found: 372.1217.

Product *anti*-**5g** was obtained in 96% yield as white solid (5 days), m.p. = 94-96 °C. ¹H NMR analysis revealed that the dr value was 20:1. HPLC analysis [Chiralcel OZ-H, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 23.33 min, tr (minor) = 27.78 min, minor diastereomer: tr (major) = 18.17 min, tr

(minor) = 25.67 min] gave the isomeric composition of major diastereomer: 97% ee; $[\alpha]^{25}_{D}$ = +163.5 (c = 0.68, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, *J* = 7.6 Hz, 1H), 7.65 (td, *J* = 7.6 Hz, *J* = 1.2 Hz, 1H), 7.45-7.38 (m, 2H), 7.21 (dd, *J* = 5.2 Hz, *J* = 1.2 Hz, 1H), 6.98 (dd, *J* = 3.6 Hz, *J* = 1.2 Hz, 1H), 6.90 (dd, *J* = 5.2 Hz, *J* = 3.6 Hz, 1H), 5.37 (ABd, *J* = 13.6 Hz, *J* = 4.0 Hz, 1H), 4.86 (ABd, *J* = 13.6 Hz, *J* = 10.4 Hz, 1H), 4.38 (dd, *J* = 10.4 Hz, *J* = 4.0 Hz, 1H), 3.42 (AB, *J* = 17.6 Hz, 1H), 3.08 (AB, *J* = 17.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.77, 150.24, 136.64, 136.15, 133.50, 128.59, 128.55, 126.80, 126.33, 125.32, 76.65, 70.28, 43.56, 36.91; IR (neat): 2108, 1714, 1556, 1467, 1339, 1156, 911, 709 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₅H₁₆N₅O₃S [M+NH₄]⁺: 346.0968, Found: 346.0969.

The reaction was conducted with 10 mol% **4b**. Product *anti*-**5h** was obtained in 78% yield as light yellow liquid (5 days). ¹H NMR analysis revealed that the dr value was 6:1. HPLC analysis [Chiralcel OZ-H, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 19.04 min, tr (minor) = 26.94 min, minor diastereomer: tr

(major) = 15.66 min, tr (minor) = 24.04 min] gave the isomeric composition of major diastereomer: 90% ee; $[\alpha]^{25}_{D}$ = +188.4 (c = 0.67, CHCl₃) (dr = 6:1). ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, *J* = 8.0 Hz, 1H), 7.69 (t, *J* = 8.0 Hz, 1H), 7.45 (t, *J* = 8.4 Hz, 2H), 7.25-7.23 (m, 3H), 7.21-7.19 (m, 2H), 6.58 (d, *J* = 16.0 Hz, 1H), 5.89 (dd, *J* = 15.7 Hz, *J* = 9.2 Hz, 1H), 5.08 (dd, *J* = 12.4 Hz, *J* = 4.0 Hz, 1H), 4.64 (dd, *J* = 12.4 Hz, *J* = 10.4 Hz, 1H), 3.66 (td, *J* = 10.0 Hz, *J* = 4.0 Hz, 1H), 3.42 (AB, *J* = 17.6 Hz, 1H), 3.11 (AB, *J* = 17.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 200.0, 150.3, 137.7, 136.7, 135.6, 133.8, 128.7, 128.6, 128.5, 126.6, 126.4, 125.4, 120.9, 75.7, 69.8, 46.2, 36.5; IR (neat): 2102, 1714, 1606, 1552, 1435, 1378, 1156, 970, 742, 693 cm⁻¹; HRMS (DART): Exact mass calcd for C₁₉H₂₀N₅O₃ [M+ NH₄]⁺: 366.1561, Found: 366.1562.

Product *anti*-**5v** was obtained in 89% yield as light yellow liquid (1.5 days). ¹H NMR analysis revealed that the dr value was 10:1. HPLC analysis [Chiralcel OZ-H, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 24.61 min, tr (minor) = 26.47 min, minor diastereomer: tr (major) = 20.70 min, tr (minor) = 32.17 min] gave the isomeric composition of major diastereomer: 93% ee; $[\alpha]^{25}$ _D

= +82.4 (c = 1.14, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ7.79 (dd, J = 7.8 Hz, J = 0.8 Hz, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.31 (t, J = 8.0 Hz, 1H), 7.28-7.23 (m, 4H), 5.34 (ABd, J = 13.8 Hz, J = 4.0 Hz, 1H), 4.96 (ABd, J = 13.6 Hz, J = 10.4 Hz, 1H), 4.05 (dd, J = 10.4 Hz, J = 4.4 Hz, 1H), 3.21 (AB, J = 18 Hz, 1H), 2.92 (AB, J = 18.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ199.3, 149.8, 139.3, 135.4, 134.9, 132.3, 130.4, 130.3, 129.3, 124.1, 121.6, 75.1, 70.4, 46.5, 37.6; IR (neat): 2109, 1721, 1556, 1494, 1379, 1096, 912, 733 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₆BrClN₅O₃ [M+NH₄]⁺: 452.0120, Found: 452.0117.

Product *anti*-**5**w was obtained in 86% yield as white solid (3 days), m.p. = 115-116 °C. ¹H NMR analysis revealed that the dr value was 17:1. HPLC analysis [Chiralcel OZ-H, 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 19.55 min, tr (minor) = 30.55 min, minor

diastereomer: tr (major) = 14.92 min, tr (minor) = 23.18 min] gave the isomeric composition of major diastereomer: 95% ee; $[\alpha]^{25}_{D}$ = +143.1 (c = 1.10, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8.4 Hz, 1H), 7.42-7.40 (m, 1H), 7.36-7.35 (m, 1H), 7.30-7.24 (m, 4H), 5.36 (ABd, *J* = 13.8 Hz, *J* = 4.4 Hz, 1H), 4.93 (ABd, *J* = 13.6 Hz, *J* = 10.8 Hz, 1H), 3.98 (dd, *J* = 10.6 Hz, *J* = 4.4 Hz, 1H), 3.24 (AB, *J* = 17.6 Hz, 1H), 2.96 (AB, *J* = 18 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 198.4, 151.3, 143.5, 134.8, 132.7, 131.8, 130.3, 129.6, 129.2, 126.5, 126.4, 75.2, 70.5, 46.5, 36.5; IR (neat): 2104, 1715, 1554, 1467, 1378, 1096, 910, 738 cm⁻¹; HRMS (DART): Exact mass calcd for C₁₇H₁₆Cl₂N₅O₃ [M+NH₄]⁺: 408.0625, Found: 408.0625.

Product *anti*-**5x** was obtained in 91% yield as light yellow liquid (2 days). ¹H NMR analysis revealed that the dr value was 30:1. HPLC analysis [Chiralcel OZ-H, 10% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 20.81 min, tr (minor) = 27.86 min, minor diastereomer: tr (major) = 14.77 min, tr (minor) = 25.27 min] gave the isomeric composition of major diastereomer:

96% ee; $[\alpha]^{25}_{D}$ = +130.1 (c = 1.39, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 2.0 Hz, 1H), 7.74 (dd, *J* = 6.2 Hz, *J* = 1.2 Hz, 1H), 7.29-7.24 (m, 5H), 5.35 (ABd, *J* = 13.8 Hz, *J* = 4.0 Hz, 1H), 4.93 (ABd, *J* = 13.6 Hz, *J* = 10.8 Hz, 1H), 3.99 (dd, *J* = 10.6 Hz, *J* = 4.0 Hz, 1H), 3.20 (AB, *J* = 17.6 Hz, 1H), 2.92 (AB, *J* = 17.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 198.5, 148.4, 139.5, 135.1, 134.9, 132.6, 130.3, 129.3, 128.2, 127.8, 122.9, 75.2, 70.7, 46.5, 36.5; IR (neat): 2106, 1716, 1553, 1470, 1377, 1095, 980, 731, 652 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₆BrClN₅O₃ [M+NH₄]⁺: 452.0120, Found: 452.0116.

Product *anti*-**5y** was obtained in 99% yield as white solid (4 days), m.p. = 74-76 °C. ¹H NMR analysis revealed that the dr value was 14:1. HPLC analysis [Chiralcel OZ-H, 3% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 34.86 min, tr (minor) = 46.17 min, minor diastereomer: tr (major) = 23.57 min, tr (minor) = 36.79 min] gave the isomeric composition of major

diastereomer: 94% ee; $[\alpha]^{25}_{D}$ = +134.1 (c = 1.24, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.58 (s, 1H), 7.47 (d, *J* = 8.1 Hz, 1H), 7.27-7.23 (m, 5H), 5.39 (ABd, *J* = 13.6 Hz, *J* = 4.2 Hz, 1H), 4.93 (ABd, *J* = 13.8 Hz, *J* = 10.8 Hz, 1H), 3.94 (dd, *J* = 10.8 Hz, *J* = 4.2 Hz, 1H), 3.20 (AB, *J* = 17.4 Hz, 1H), 2.94 (AB, *J* = 17.4 Hz, 1H), 2.41 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.8, 147.3, 139.0, 138.1, 134.7, 133.6, 133.2, 130.4, 129.2, 126.0, 125.3, 75.5, 70.9, 46.7, 36.7, 21.1; IR (neat): 2107, 1712, 1554, 1493, 1377, 1095, 982, 734 cm⁻¹; HRMS (DART): Exact mass calcd for C₁₈H₁₉ClN₅O₃ [M+NH₄]⁺: 388.1171, Found: 388.1171.

The reaction was run with **4b** and K₂HPO₄·3H₂O (20 mol%, each). Product *anti*-**5q** was obtained in 88% yield as light yellow liquid (3.5 days). ¹H NMR analysis revealed that the dr value was 11:1. HPLC analysis [Chiralcel OZ-H, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 13.43

min, tr (minor) = 16.55 min, minor diastereomer: tr (major) = 9.85 min, tr (minor) = 15.04 min] gave the isomeric composition of major diastereomer: 94% ee; $[\alpha]^{25}_{D}$ = +203.9 (c = 0.92, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.85-7.82 (m, 1H), 7.50-7.48 (m, 2H), 5.06 (ABd, *J* = 15.2 Hz, *J* = 4.8 Hz, 1H), 4.78 (ABd, *J* = 15.4 Hz, *J* = 6.0 Hz, 1H), 4.18-4.09 (m, 1H), 3.46 (AB, *J* = 18.0 Hz, 1H), 3.12 (AB, *J* = 18.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 195.7, 151.2, 143.9, 131.1, 129.9, 126.9, 126.8, 124.5 (q, *J*_{C-F} = 280.3 Hz, 1C), 70.1 (q, *J*_{C-F} = 2.6 Hz, 1C), 66.5, 45.5 (q, *J*_{C-F} = 26.6 Hz, 1C), 35.8 (q, *J*_{C-F} = 2.4 Hz, 1C); ¹⁹F NMR (282 MHz, CDCl₃): δ -64.50 (s, 3F); IR (neat): 2926, 2114, 1723, 1601, 1571, 1462, 1378, 1217, 1074, 668 cm⁻¹; HRMS (DART): Exact mass calcd for C₁₂H₉N₄O₃ClF₃ [M+H]⁺: 349.0310, Found: 349.0307.

Br $(J_{N_3} = 0)$ The reaction was conducted with **4b** and K₂HPO₄·3H₂O (10 mol%, each). Product *anti*-**5r** was obtained in 91% yield as light yellow liquid (3.5 days). ¹H NMR analysis revealed that the dr value was 19:1. HPLC analysis [Chiralcel OZ-H, 5% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 16.89 min, tr (minor) = 18.34 min, minor diastereomer: tr (major) = 10.10 min, tr (minor) = 15.51 min] gave the isomeric composition of major diastereomer: 94% ee; $[\alpha]^{25}_{D} = +98.2$ (c = 0.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, J = 1.6 Hz, 1H), 7.84-7.82 (m, 1H), 7.38 (d, J = 8.0 Hz, 1H), 5.05 (ABd, J = 15.2Hz, J = 4.4 Hz, 1H), 4.77 (ABd, J = 15.2 Hz, J = 5.6 Hz, 1H), 4.17-4.08 (m, 1H), 3.42 (AB, J = 18.0Hz, 1H), 3.09 (AB, J = 17.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 195.9, 148.3, 139.8, 134.5, 128.7, 128.0, 124.5 (q, $J_{C-F} = 224.3$ Hz, 1C), 123.1, 70.1 (d, $J_{C-F} = 2.0$ Hz, 1C), 66.7, 45.5 (q, $J_{C-F} = 21.4$ Hz, 1C), 35.7 (t, $J_{C-F} = 1.8$ Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -64.48 (s, 3F); IR (neat): 2113, 1723, 1568, 1467, 1380, 1256, 1199, 1137, 990, 792 cm⁻¹; HRMS (DART): Exact mass calcd for Cl₂H₈N₄O₃BrF₂ [M-F]⁺: 372.9742, Found: 372.9736.

The reaction was run with **4b** and $K_2HPO_4\cdot 3H_2O$ (20 mol%, each). Product *anti-5s* was obtained in 93% yield as light yellow liquid (3 days). ¹H NMR analysis revealed that the dr value was 7:1. HPLC analysis [Chiralcel OZ-H, 5%]

ⁱPrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 22.52 min, tr (minor) = 25.04 min, minor diastereomer: tr (major) = 18.03 min, tr (minor) = 26.52 min] gave the isomeric composition of major diastereomer: 94% ee; $[\alpha]^{25}_{D} = +152.6$ (c = 0.53, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 8.01-8.00 (m, 1H), 7.84-7.81 (m, 1H), 7.37 (d, J = 8.4 Hz, 1H), 6.08-5.80 (m, 1H), 4.91 (ABd, J = 14.8 Hz, J = 4.8 Hz, 1H), 4.82 (ABd, J = 14.8 Hz, J = 6.4 Hz, 1H), 3.76-3.65 (m, 1H), 3.39 (AB, J = 17.2 Hz, 1H), 3.01 (AB, J = 17.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 197.2, 148.9, 139.8, 134.7, 128.5, 128.1, 123.0, 114.0 (t, $J_{C-F} = 244.1$ Hz, 1C), 69.6 (t, $J_{C-F} = 4.5$ Hz, 1C), 67.3 (d, $J_{C-F} = 4.5$ Hz, 1C), 44.5 (t, $J_{C-F} = 19.6$ Hz, 1C), 35.9 (t, $J_{C-F} = 2.6$ Hz, 1C); ¹⁹F NMR (282 MHz, CDCl₃): δ -117.08--118.50 (m, 1F), -122.02--123.46 (m, 1F); IR (neat): 2926, 2109, 1719, 1561, 1435, 1378, 1258, 1146, 1071, 822 cm⁻¹; HRMS (DART): Exact mass calcd for C₁₂H₁₀N₂O₃BrF₂ [M-N₂+H]⁺: 346.9837, Found: 346.9835.

The reaction was run with 10 mol% **4b**. Product *anti*-**5t** was obtained in 76% yield as light yellow liquid (7 days). ¹H NMR analysis revealed that the dr value was 18:1. HPLC analysis [Chiralcel AD-H, 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 30.10 min, tr (minor) = 21.50 min, minor diastereomer: tr (major) = 25.58 min, tr (minor) = 23.44 min] gave the isomeric

anti-5t diastereomer: u (major) = 25.38 mm, u (mmor) = 25.44 mm gave me isomeric composition of major diastereomer: 84% ee; $[\alpha]^{25}_{D} = +220.7$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, J = 8.8 Hz, 1H), 7.47-7.44 (m, 2H), 7.25-7.22 (m, 2H), 7.15 (dd, J = 8.4 Hz, J = 2.0 Hz, 1H), 7.10 (d, J = 1.6 Hz, 1H), 6.61 (d, J = 15.6 Hz, 1H), 6.03 (dd, J = 15.6 Hz, J = 9.6 Hz, 1H), 4.63-4.53 (m, 2H), 4.53 (AB, J = 11.6 Hz, 1H), 4.33 (AB, J = 11.6 Hz, 1H), 3.57 (td, J = 9.2 Hz, J = 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 188.2, 161.1, 143.8, 137.3, 134.3, 131.9, 129.6, 128.3, 123.9, 122.7, 121.0, 118.3, 117.5, 75.3, 70.9, 66.7, 43.4; IR (neat): 2253, 2118, 1713, 1443, 1364, 1227, 1082, 905, 727, 650 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₉H₁₄N₄O₄ClBrNa [M+Na]⁺: 498.9779, Found: 498.9778.

The reaction was conducted with 20 mol% **4b**. Product *anti*-**5u** was obtained in 58% yield as light yellow liquid (7 days). ¹H NMR analysis revealed that the dr value was 4:1. HPLC analysis [Chiralcel OZ-H, 30% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 29.51 min, tr (minor) = 21.87 min, minor diastereomer: tr (major) = 49.82 min, tr (minor) = 40.50 min] gave the isomeric

^N/₁₅ anti-5u diastereomer: tr (major) = 49.82 min, tr (minor) = 40.50 min] gave the isomeric composition of major diastereomer: 91% ee; $[\alpha]^{25}_{D} = +60.0$ (c = 0.1, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 8.06-8.04 (m, 1H), 7.83 (d, *J* = 9.0 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.58-7.54 (m, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.19 (t, *J* = 7.5 Hz, 1H), 6.70 (d, *J* = 16.0 Hz, 1H), 6.10 (dd, *J* = 16.0 Hz, *J* = 9.5 Hz, 1 H), 4.72-4.71 (m, 2H), 4.62 (AB, *J* = 13.0 Hz, 1H), 3.85 (AB, *J* = 13.0 Hz, 1H), 3.82-3.79 (m, 1H), 2.43 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 189.3, 145.3, 142.0, 138.0, 136.2, 135.1, 134.6, 131.7, 130.2, 129.8, 128.4, 127.3, 124.3, 122.4, 121.0, 120.3, 118.7, 77.2, 75.2, 68.0, 51.5, 43.9, 21.6; IR (neat): 2112, 1711, 1557, 1364, 1215, 1011, 910, 748, 573 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₆H₂₂N₅O₅BrSNa [M+Na]⁺: 618.0417, Found: 618.0409.

O Anti-5z The reaction was run with **4b** and K₂HPO₄·3H₂O (20 mol%, each) at rt. Product *anti*-**5z** was obtained in 70% yield as light yellow liquid (7 days). ¹H NMR analysis revealed that the dr value was 15:1. HPLC analysis [Chiralcel AD-H, 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 17.61 min, tr (minor) = 20.11 min, minor diastereomer: tr (major) = 14.59 min, tr (minor) = 19.03 min] gave the isomeric composition of major diastereomer: 95% ee; $[\alpha]^{25}_{D}$ =

+40.9 (c = 0.90, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.49-7.43 (m, 3H), 7.31-7.26 (m, 2H), 7.23 (d, *J* = 7.8 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.49 (d, *J* = 15.6 Hz, 1H), 5.93 (dd, *J* = 15.8 Hz, *J* = 9.6 Hz, 1H), 4.50 (d, *J* = 6.3 Hz, 2H), 3.69-3.61 (m, 1H), 3.03-2.87 (m, 2H), 2.17-1.93 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 205.4, 138.4, 137.7, 136.5, 134.6, 132.3, 131.8, 129.4, 128.2, 128.1, 127.3, 122.4, 122.0, 76.2, 73.3, 47.7, 33.4, 32.0, 22.3; IR (neat): 2102, 1715, 1553, 1445, 1225, 1072, 974, 808, 752, 592 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₁H₁₉N₄O₃BrNa [M+Na]⁺: 477.0533, Found: 477.0530.

Br O V NO₂ Anti-5za

The reaction was conducted with 0.2 mmol **1i**, 0.1 mmol **2i**, 10 mol% **4b** and 0.1 mL DCE at rt. Product *anti-***5za** was obtained in 93% yield as light yellow liquid (2 days). ¹H NMR analysis revealed that the dr value was >50:1. HPLC analysis [Chiralcel OZ-H, 15% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 14.55 min, tr (minor) = 26.83 min] gave the isomeric composition of major diastereomer: 98% ee; $[\alpha]^{25}_{D} = +212.50$ (c = 0.9, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.42 (m, 2H),

7.20-7.17 (m, 2H), 6.50 (d, J = 15.6 Hz, 1H), 5.91 (dd, J = 15.8 Hz, J = 9.2 Hz, 1H), 4.87 (ABd, J = 12.8 Hz, J = 4.0 Hz, 1H), 4.50 (ABd, J = 12.6 Hz, J = 10.0 Hz, 1H), 3.58-3.52 (m, 1H), 2.52-2.44 (m, 1H), 2.32-2.22 (m, 1H), 2.11-2.05 (m, 1H), 2.02-1.89 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 211.3, 136.5, 134.5, 131.8, 128.1, 122.5, 121.7, 75.5, 69.9, 44.4, 36.7, 31.3, 18.1; IR (neat): 2099, 1740, 1551, 1487, 1402, 1377, 1072, 1009, 970, 810 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₅H₁₅N₄O₃BrNa [M+Na]⁺: 401.0220, Found: 401.0208.

Fr The reaction was conducted with 0.2 mmol **1**j, 0.1 mmol **2**i, 10 mol% **4b** and 0.1 mL DCE at rt. Product *anti*-**5zb** was obtained in 36% yield as light yellow liquid (4 days). ¹H NMR analysis revealed that the dr value was >50:1. HPLC analysis [Chiralcel OZ-H, 5% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 29.52 min, tr (minor) = 34.70 min] gave the isomeric composition of major diastereomer: 91% ee; $[\alpha]^{25}_{D}$ = +25.5 (c = 0.6, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ7.47-7.45 (m, 2H), 7.26-7.23 (m, 2H), 6.55 (d, *J* = 16.0 Hz, 1H), 6.01 (dd, *J* = 15.6 Hz, *J* = 9.6 Hz, 1H), 4.47 (ABd, *J* = 12.8 Hz, *J* = 10.4 Hz, 1H), 4.28 (ABd, *J* = 12.8 Hz, *J* = 3.2 Hz, 1H), 3.65 (td, *J* = 9.6 Hz, *J* = 3.2 Hz, 1H), 2.69-2.66 (m, 2H), 2.24-2.19 (m, 1H), 2.15-2.09 (m, 1H), 1.96-1.79 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 206.6, 136.1, 134.5, 131.8, 128.2, 122.5, 122.1, 76.2, 73.3, 45.7, 39.3, 35.7, 27.2, 21.0; IR (neat): 2102, 1715, 1551, 1250, 1190, 1072, 974, 704, 569 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₆H₁₇N₄O₃BrNa [M+Na]⁺: 415.0376, Found: 415.0374.

The reaction was conducted with 0.2 mmol **1k**, 0.1 mmol **2i**, 10 mol% **4b** and 0.1 mL DCE at rt. Product *anti*-**5zc** was obtained in 58% yield as light yellow liquid (2 days). ¹H NMR analysis revealed that the dr value was >50:1. HPLC analysis [Chiralcel OZ-H, 15% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 27.45 min, tr (minor) = 38.08 min] gave the isomeric composition of major

diastereomer: 96% ee; $[\alpha]^{25}_{D}$ = +56.0 (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 6.51 (d, *J* = 16.0 Hz, 1H), 5.96 (dd, *J* = 15.8 Hz, *J* = 9.2 Hz, 1H), 4.46 (ABd, *J* = 12.8 Hz, *J* = 10.0 Hz, 1H), 4.34 (ABd, *J* = 12.8 Hz, *J* = 3.6 Hz, 1H), 4.34-4.28 (m, 1H), 4.17 (dd, *J* = 12.0 Hz, *J* = 1.6 Hz, 1H), 3.84 (td, *J* = 11.2 Hz, *J* = 3.6 Hz, 1H), 3.75 (td, *J* = 10.0 Hz, *J* = 4.0 Hz, 1H), 3.60 (d, *J* = 11.6 Hz, 1H), 3.05-2.97 (m, 1H), 2.75-2.69 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 203.0, 137.2, 134.4, 131.8, 128.3, 122.6, 121.1, 75.8, 72.6, 72.3, 68.8, 44.6, 40.7; IR (neat): 2104, 1717, 1551, 1420, 1364, 1223, 1092, 1009, 972, 810 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₅H₁₅N₄O₄BrNa [M+Na]⁺: 417.0169, Found: 417.0169.

The reaction was conducted with 20 mol% **4b**. Product *anti*-**14** was obtained in 31% yield as white solid (7 days), m.p. = 89-91 °C. ¹H NMR analysis revealed that the dr value was 5:1. HPLC analysis [Chiralcel IF, 15% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 18.82 min, tr (minor) = 13.31 min, minor diastereomer: tr (major) = 10.88 min, tr (minor) = 9.76 min] gave the isomeric composition of major diastereomer: 92% ee; $[\alpha]^{25}_{D} = +129.3$ (c = 0.70,

CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.81-7.78 (m, 2H), 7.71-7.65 (m, 2H), 7.41-7.38 (m, 2H), 7.13-7.06 (m, 2H), 6.48 (d, *J* = 16.0 Hz, 1H), 6.01-5.95 (m, 1H), 4.89-4.87 (m, 1H), 4.73-4.64 (m, 2H), 3.69-3.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 193.2, 135.5, 134.3, 133.5, 132.6, 131.8, 130.1, 130.0, 128.0, 122.8, 122.5, 75.8, 63.3, 43.4; IR: 3003, 2924, 2114, 1709, 1556, 1365, 1217, 1072, 1009, 808 cm⁻¹; HRMS (DART): Exact mass calcd for C₁₈H₁₈N₅O₃Br₂ [M+NH₄]⁺: 509.9771, Found: 509.9770.

6. Synthesis of spiro-pyrrolidines 15

To a 25 mL Schlenk tube were added (*R*,*S*)-**5a** (35.7 mg, 0.1 mmol), 10% Pd/C (10 mg) and 3.5 mL EtOAc. The reaction mixture was purged with H₂, and stirred under an atmosphere of H₂ (1 atm, H₂ balloon) at room temperature for 3 h until full consumption of (R,S)-5a by TLC analysis. Then the mixture was filtered through a pad of Celite, and concentrated in *vacuo*. The residue was dissolved in 1.5 mL THF, followed by the addition of TsOH·H2O (1.9 mg, 0.01 mmol), 5Å MS (15 mg) and 4-methylbenzaldehyde (13.2 mg, 0.11 mmol). Then the reaction mixture was stirred at 60 °C for 2 h until full consumption of IV. After the mixture was cooled down to room temperature, 1,3-diphenylguanidine (DPG) (4.2 mg, 0.02 mmol) was added and kept stirring for 1.5 days until full consumption of V. The crude product was purified by fast column chorography (PE:Et₂O = 8:1 to 4:1) to give 15a as white solid (60% overall yield for 3 steps), m.p. = 166-168 °C. HPLC analysis [Chiralcel AD-H, 15% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 25.83 min, t_r (minor) = 23.25 min] gave the isomeric composition of the product: 93% ee. $[\alpha]^{25}_{D} = -240.5$ (c = 0.30, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ7.58 (d, *J* = 7.6 Hz, 1H), 7.53 (td, *J* = 7.6 Hz, *J* = 1.2 Hz, 1H), 7.37-7.32 (m, 3H), 7.29 (t, J = 7.6 Hz, 1H), 7.22-7.20 (m, 2H), 7.15-7.13 (m, 4H), 6.20 (t, J = 9.6 Hz, 1H), 5.62 (d, *J* = 9.6 Hz, 1H), 4.38 (d, *J* = 10.0 Hz, 1H), 3.57 (AB, *J* = 17.2 Hz, 1H), 3.40 (AB, *J* = 17.6 Hz, 1H), 2.63 (brs, 1H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 207.4, 151.3, 138.5, 135.9, 134.8, 134.4, 134.1, 131.6, 130.2, 129.0, 128.9, 128.0, 127.6, 126.1, 124.3, 92.9, 73.2, 61.5, 54.5, 38.5, 21.2; IR (neat): 1699, 1556, 1494, 1401, 1095, 967, 815, 621 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂O₃Cl [M+H]⁺: 433.1313, Found: 433.1309.

Product **15b** was obtained from (*S*,*R*)-**5a** (7:1 dr, 94% ee) as white solid (52% overall yield for 3 steps), m.p. = 166-167 °C. HPLC analysis [Chiralcel AD-H, 15% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 30.02 min, t_r (minor) = 33.91 min] gave the isomeric composition of the product: 94% ee. $[\alpha]^{25}_{D}$ =

+212.7 (c = 0.86, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 7.6 Hz, 1H), 7.52 (td, J = 7.2
Hz, J = 1.2 Hz, 1H), 7.37-7.32 (m, 3H), 7.30-7.26 (m, 1H), 7.23-7.19 (m, 2H), 7.18-7.12 (m, 4H), 6.20 (t, J = 10.0 Hz, 1H), 5.61 (d, J = 9.2 Hz, 1H), 4.38 (d, J = 10.0 Hz, 1H), 3.57 (AB, J = 17.6 Hz, 1H), 3.40 (AB, J = 17.6 Hz, 1H), 2.70 (brs, 1H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 207.4, 151.3, 138.5, 135.9, 134.8, 134.5, 134.1, 131.6, 130.2, 129.0, 128.9, 128.0, 127.6, 126.1, 124.3, 92.9, 73.3, 61.5, 54.5, 38.5, 21.2; IR (neat):1699, 1555, 1494, 1216, 1158, 967, 815, 750, 622 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂O₃Cl [M+H]⁺: 433.1313, Found: 433.1313.

To a 25 mL Schlenk tube were added (S,S)-5a (35.7 mg, 0.1 mmol), 10% Pd/C (10 mg) and 3.5 mL EtOAc. The reaction mixture was purged with H_2 , and stirred under an atmosphere of H_2 (1 atm, H_2 balloon) at room temperature for 5 h until full consumption of (S,S)-5a by TLC analysis. Then the mixture was filtered through a pad of Celite, and concentrated in *vacuo*. The residue was dissolved in 1.5 mL THF, followed by the addition of TsOH·H₂O (1.9 mg, 0.01 mmol), 5Å MS (15 mg) and 4-methylbenzaldehyde (13.2 mg, 0.11 mmol). Then the reaction mixture was stirred at 60 °C for 2 h until full consumption of VI. After the mixture was cooled down to room temperature, DABCO (3.3 mg, 0.03 mmol) was added and kept stirring for 3 days until full consumption of VII. The crude product was purified by fast column chorography (PE:Et₂O = 4:1 to 2:1) to give **15c** as white solid (27% overall yield for 3 steps), m.p. = 135-137 °C. HPLC analysis [Chiralcel AD-H, 30% 'PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 30.71 min, t_r (minor) = 23.66 min] gave the isomeric composition of the product: 95% ee. $[\alpha]^{25}_{D} = +13.8$ (c = 0.65, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 7.6 Hz, 1H), 7.51 (td, J = 7.6 Hz, J = 1.2 Hz, 1H), 7.37-7.33 (m, 3H), 7.20-7.17 (m, 3H), 7.14-7.10 (m, 2H), 7.00-6.97 (m, 2H), 5.83 (t, J = 8.8 Hz, 1H), 4.99 (d, J = 8.4 Hz, 1H), 4.66 (d, J =8.8 Hz, 1H), 3.25 (brs, 1H), 3.15 (AB, J = 16.4 Hz, 1H), 3.06 (AB, J = 16.4 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 204.4, 152.1, 138.8, 136.2, 135.1, 133.8, 132.5, 132.0, 129.4, 128.9, 128.8, 128.0, 126.8, 126.4, 124.5, 94.2, 74.0, 65.9, 57.8, 36.6, 21.2; IR (neat): 2926, 2854, 1720, 1695, 1555, 1468, 1375, 1289, 1125, 1017, 744 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂O₃Cl [M+H]⁺: 433.1313, Found: 433.1312.

O H N N NO₂ Cl Product **15d** was obtained from (*R*,*R*)-**5a** (13:1 dr, 95% ee) as white solid (24% overall yield for 3 steps), m.p. = 135-137 °C. HPLC analysis [Chiralcel AD-H, 30% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 24.39 min, t_r (minor) = 32.83 min] gave the isomeric composition of the product: 94% ee. $[\alpha]^{25}_{D}$ = -15.3 (c = 0.51, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, *J* = 7.6 Hz,

1H), 7.51 (td, J = 7.6 Hz, J = 1.6 Hz, 1H), 7.37-7.33 (m, 3H), 7.22-7.17 (m, 3H), 7.15-7.10 (m, 2H), 7.00-6.98 (m, 2H), 5.83 (t, J = 8.4 Hz, 1H), 4.99 (d, J = 8.4 Hz, 1H), 4.66 (d, J = 8.4 Hz, 1H), 3.25 (brs, 1H), 3.15 (AB, J = 16.4 Hz, 1H), 3.06 (AB, J = 16.8 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 204.4, 152.1, 138.8, 136.2, 135.1, 133.8, 132.5, 132.0, 129.4, 128.9, 128.8, 128.0, 126.8, 126.4, 124.5, 94.2, 74.0, 65.9, 57.8, 36.6, 21.2; IR (neat): 2923, 2105, 1713, 1607, 1554, 1379, 1217, 1158, 909, 743 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂O₃Cl [M+H]⁺: 433.1313, Found: 433.1312.

7. Mechanistic studies

7.1 ¹H NMR studies

NMR analysis was conducted to investigate the potential H-bonding interaction of the catalyst with α -azido indanone **1a** or nitroolefin **2e**. In case of phosphoramide **3a**, toluene (*d*₈) was distilled from dried 5Å MS before use. Unfortunately, due to its extremely poor solubility in organic solvents other than DMSO or DMF that may interfere the analysis of H-bonding interactions, the NMR analysis of the H-bonding interactions between squaramide **4b** and substrates failed.

To assign the NH signal of phosphoramide **3a**, the H/D exchange experiments were first tried. As shown in Figure S1, when a drop of D₂O was added to a solution of **3a** in toluene-*d*₈, the broad signal at δ = 3.15 ppm disappeared to a great extent, which should be attributed to the NH signal of **3a**.

Figure S1.Deuteration experiments of phosphoramide 3a (500 MHz, toluene-d8, 25 °C).

The ¹H NMR analysis revealed that phosphoramide **3a** could form H-bonding interactions with either α -azido indanone **1a** or nitroolefin **2e**. As shown in Figure S2, when **3a** was mixed with 1.0 equiv of **1a** or **2e** in toluene- d_8 , its NH signal shifted from 2.945 to ca. 3.025 and 2.977 ppm, respectively (d vs e and f, $\Delta\delta \approx 0.08$ and 0.03 ppm). Notably, when all the three components were mixed together, the NH signal obviously shifted to 3.148 ppm (d vs g, $\Delta\delta = 0.20$ ppm). This change is significantly greater than that observed by mixing either **1a** or **2e** with catalyst **3a** (0.20 vs 0.08 or 0.03), suggesting the catalyst-substrate recognition model in the transition state differed from the binding model of phosphoramide **3a** with either α -azido indanone **1a** or nitroolefin **2e**.

Figure S2. Partial ¹H NMR spectra (500 MHz, toluene- d_8 , 25 °C, 5.0 mM).

7.2 Results of DFT calculations and discussion

To have a better understanding of the role of H-bond donors in controlling diastereoselectivity in this bifunctional tertiary amine-catalyzed reaction, theoretical calculations were conducted. The most important transition states (TS) of C-C addition step that determined the stereoselectivity of the titled reaction are given below. The details of theoretical studies on the whole reaction and origin of stereoselectivity will be reported later. All DFT calculations were performed with Gaussian 09 program.¹¹ The Truhlar's M06-2X exchange-correlation functional¹² were utilized with the standard 6-31G(d,p) basis set. The geometries of transition states were fully optimized, followed by vibrational frequency calculations at the same levels of theory to obtain the zero-point energies (ZPE) and verify whether it is a transition state on the potential energy surfaces (PES). To estimate the bulk solvent effects on the reaction, all the structures were optimized in the toluene or CH₂Cl₂ with the polarized model using equation formalism variant (IEFPCM). 13 The continuum the integral temperature-dependent enthalpy corrections and the entropy effects were computed at 298 K and 1 atmosphere of pressure. To obtain more accurate energies of TSs, single-point energy calculations

¹¹ M. J. Frisch et al. *Gaussian 09*, Revision A. 1, Gaussian, Inc., Wallingford, CT, 2009.

¹² Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215.

 ¹³ (a) B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 106, 5151; (b) B. Mennucci, E. Cances and J. Tomasi, J. Phys. Chem. B, 1997, 101, 10506; (c) J. Tomasi, B. Mennucci and E. Cances, J Mol Struct (THEOCHEM), 1999, 464, 211.

using a larger basis set 6-311++G(d,p) was performed and the D3 dispersion correction of Grimme was included.¹⁴

For phosphoramide **3a**-catalyzed reaction, four transition states with different hydrogen bonds have been identified and their structures were present in Figure S3. The computed relative Gibbs free energy by the single-point calculations with larger basis set and D3 dispersion correction are close to those at the M06-2X/6-31G(d,p) level. We used the results by single-point calculations for discussion in following section.

All the four TSs lead to the major syn-product observed experimentally, but **TSI2A** is the lowest free energy transition state with a total Gibbs free energy barrier of 15.0 kcal/mol. We also identified the TSs leading to minor *anti*-product in experiment. But their Gibbs free energies are higher than that of TSI2A. More details and discussions about the result will be reported in our future work. The TSI2A is unprecedented in literature reports, and is characterized by two N–O[…]H–N hydrogen bonds between nitroolefin 2d with the alkylammonium ion generated in situ and phosphoramide N-H bond. The corresponding hydrogen bond distances are 1.68 and 2.08 Å, respectively, suggesting the former is a strong hydrogen bond and the latter is a relatively weak one. More importantly, the enolate anion in **TSI2A** was stabilized by three nonclassical C-H.^{..}O hydrogen bonds. Among the three H-bondings, the N⁺-CH of the quininium ion interacts with the oxygen of enolate anion to form the N⁺-C-H^{...}O H-bonding.¹⁵ The corresponding H-bonding distance is 2.29 Å, which is shorter than the sum of van der Waals radii of an oxygen atom (1.5 Å) and a carbon-bonded hydrogen (~1.2 Å).¹⁶ The other two nonclassical C-H...O hydrogen bonds between the oxygen of enolate anion with the C-H bond of the phenyl ring and the α -H of the amide nitrogen have also relative short H…O distances of 2.31 and 2.25 Å, respectively. Notably, this present model, TSI2A, is unprecedented in previous reported ion pair-hydrogen bonding model (type A model) and Brønsted acid-hydrogen bonding model (type B model),¹⁷ because the electrophile interacts with both the H-bond donor and alkylammonium ion while the enolate anion as nucleophile interacts with alkylammonium ion to form the N⁺-C-H···O hydrogen-bond.

¹⁴ S. Ehrlich, J. Moellmann, W. Reckien, T. Bredow and S. Grimme, *ChemPhysChem*, 2011, **12**, 3414.

¹⁵ For a review: (a) K. Brak and E. N. Jacobsen, Angew. Chem., Int. Ed., 2013, **52**, 534; for selected examples: (b) Y. Chen, W. Zhang, Y.-H. Li, X.-S. Xue, X. Li and J.-P. Chen, J. Org. Chem., 2017, **82**, 9321; (c) M. T. Reetz, S. Hütte and R. Goddard, J. Am. Chem. Soc., 1993, **115**, 9339; (d) C. E. Cannizzaro and K. N. Houk, J. Am. Chem. Soc. 2002, **124**, 7163; (e) T. Ohshima, T. Shibuguchi, Y. Fukuta and M. Shibasaki, Tetrahedron, 2004, **60**, 7743.

¹⁶ (a) R. Taylor and O. Kennard, J. Am. Chem. Soc., 1982, 104, 5063; (b) C. E. Cannizzaro and K. N. Houk, J. Am. Chem. Soc., 2002, 124, 7163.

¹⁷ (a) H. Hiemstra and H. Wynberg, J. Am. Chem. Soc., 1981, 103, 417; (b) M. N. Grayson and K. N. Houk, J. Am. Chem. Soc., 2016, 138, 1170; (c) T. Okino, Y. Hoashi, T. Furukawa, X. Xu and Y. Takemoto, J. Am. Chem. Soc., 2005, 127, 119; (d) A. Hamza, G. Schubert, T. Soós and I. Pápai, J. Am. Chem. Soc., 2006, 128, 13151.

Figure S3. The optimized structures for TS modes of phosphoramide **3a**-catalyzed α -azido indanone **1a** and nitroolefin **2d**. The relative Gibbs free energies were calculated at the IEFPCM-M06-2X-D3/6-311++G(d,p)//IEFPCM-M06-2X/6-31G(d,p) level and given in kcal/mol. The relative Gibbs free energies at the IEFPCM-M06-2X/6-31G(d,p) level are given in parameters. The bond distances are given in Å.

The **TSI2B** was higher in free energy by 2.3 kcal/mol, with a reversed catalyst-substrate recognition pattern, because the alkylammonium ion formed in situ and phosphoramide N–H bond of **3a** interact with the indanone **1a** derived enolate. We also identified the corresponding the Brønsted acid-hydrogen bonding model (**TSI2C**) and the ion pair-hydrogen bonding model (**TSI2D**). Although strong hydrogen bonds formed in both transition states, the lowest free energy transition state **TSI2A** is still 2.1 and 5.4 kcal/mol lower than the **TSI2C** and **TSI2D**, respectively. Figure S3 shows that the hydrogen bond interactions in the **TSI2A** lead to the *Re* face nucleophilic addition of the enolate anion to the *Si* face of nitroolefin to afford the final *syn*-adduct. Compared with **TSI2A**, the other three TSs have higher total Gibbs free energy barrier. Thus, the reaction would prefer to proceed via the **TSI2A**. Some weak C–H…O H–bondings have also been observed in **TSI2B**, **TSI2C** and **TSI2D**, but they are weaker than the N⁺–C–H…O hydrogen-bond in **TSI2A**, which is more important to stabilize the enolate anion in TS.

The three possible transition states for the C-C addition step of squaramide **4b**-catalyzed reaction are shown in Figure S4, with different types of H-bonding interactions being found. The **TSII2A** and

TSII2B correspond to the type B and type A model. The **TSII2C** is a new model with the hydrogen bond between azido group and two N-H bonds of **4b**. Among the three TSs, **TSII2A** is the lowest TS leading to the major *anti*-product, in which the enolate derived from **1a** interacts with the two squaramide N–H bonds of **4b** to form two C–O[…]H–N hydrogen bonds and an N–O[…]H–N interaction come into being between the nitro group of **2d** and the alkylammonium ion of **4b**. The three strong H-bonding interactions and small intermolecular repulsion in **TSII2A** contribute to a low total Gibbs free energy barrier of 4.6 kcal/mol, which is 6.8 and 14.2 kcal/mol lower than those of **TSII2B** and **TSII2C**, respectively. Figure S4 also shows that the three H-bonding interactions in **TSII2A** lead to the *Si* face nucleophilic addition of the enolate anion to the *Si* face of nitroolefin to yield the final *anti*-adduct.

Figure S4 The optimized structures for TS modes of squaramide 4b-catalyzed α -azido indanone 1a and nitroolefin 2d. The relative Gibbs free energies were calculated at the IEFPCM-M06-2X-D3/6-311++G(d,p)//IEFPCM-M06-2X/6-31G(d,p) level and given in kcal/mol. The relative Gibbs free energies at the IEFPCM-M06-2X/6-31G(d,p) level are given in parameters. The bond distances are given in Å.

Compared with **TSII2A**, **TSII2B** also has three strong hydrogen bonds, but strong intermolecular repulsions between the enolate and nitroolefin lead to a much higher free energy barrier, by 6.8 kcal/mol. We also identified the **TSII2C** with the hydrogen bonds between azido group of **1a** derived enolate and squaramide N–H bond of **4b**. However, the **TSII2C** has quite weak hydrogen bonds as the

hydrogen bond distances in this TS are much longer than those of other two TSs. As a result, it is the highest free energy TS among the three TSs. Figure S5 displayed the obvious different intermolecular repulsions between reactants and **4b** for **TSII2A** and **TSII2B**. In **4b**-catalyzed reaction, it would be the model B rather than the model A involved to form the *anti*-product.

Figure S5 Different intermolecular repulsions between reactants and squaramide catalyst **4b**. The bond distances are given in Å.

The present calculated results indicate that the different H-bonding modes are involved by using different H-bond donors, and finally enable the *syn*-selective or *anti*-selective Michael addition reaction. In phosphoramide **3a**-catalyzed reaction, the lowest **TS**, **TSI2A**, prefer to form hydrogen bonds between nitro group of **2d** and the phosphoramide N-H bond and the alkylammonium ion of **3a**. In contrast, the lowest **TS** for squaramide **4b**-catalyzed reaction, **TSII2A**, prefer to form hydrogen bonds between the enolate and the dual H-bond donor of the squaramide of catalyst **4b**. In addition, **TSII2A** forms stronger hydrogen bonds, so it has a much lower total Gibbs free energy barrier than **TSI2A** (4.6 vs 15.0 kcal/mol). These theoretical results indicate that the reaction catalyzed by **4b** should be faster than that by **3a**, which is in accordance with experimental results.

In conclusion, our theoretical calculations reveal the significant role of the hydrogen bonds in the present catalyst-controlled reactions, highlighting the possibility of varying the H-bond donors of bifunctional tertiary amines to enable different catalyst-substrate binding models for stereodivergent asymmetric catalysis.

Coordinates for the optimized transition states at the IEFPCM-M06-2X/6-31G(d,p) level.

toluene solvent)

Center Number	Atomic Number	Atomic Type	X X	oordinates (Ang Y	gstroms) Z
1	7	0	2,291360	-0.554604	0.884394
2	1	Õ	1.555030	-0.875455	1.512067
3	5	Õ	3.836434	-0.932786	1.284659
4	8	0	4.491386	-1.212002	-0.155639
5	8	Õ	3.930436	-2.013074	2.290466
6	8	0	4.651138	0.404796	1.671922
7	6	0	4.260947	1.164657	2.840858
8	1	0	3.162287	1.192988	2.869118
9	6	0	4.808722	2.564390	2.630905
10	1	0	5.900665	2.527625	2.572537
11	1	0	4.425130	3.001385	1.705835
12	6	0	4.804335	0.509265	4.100137
13	1	0	4.509634	1.091130	4.977604
14	1	0	4.427690	-0.509628	4.200428
15	6	0	5.932518	-1.304891	-0.288732
16	1	0	6.370566	-1.417908	0.709656
17	6	0	6.432608	-0.025203	-0.935065
18	1	0	7.514194	-0.073643	-1.087111
19	1	0	5.950137	0.109717	-1.908702
20	6	0	6.214014	-2.544684	-1.116147
21	1	0	7.290408	-2.671475	-1.256475
22	6	0	1.824885	0.296707	-0.208606
23	1	0	0.786469	0.534428	0.041456
24	6	0	1.803525	-0.446368	-1.546594
25	1	0	1.335910	0.185739	-2.303179
26	1	0	2.816031	-0.705469	-1.866959
27	6	0	2.633996	1.592903	-0.331077
28	1	0	2.586711	2.084107	0.647642
29	1	0	3.686818	1.346451	-0.510139
30	6	0	2.162770	2.557528	-1.397342
31	6	0	3.102687	3.331773	-2.083221
32	6	0	0.806963	2.730689	-1.699083
33	6	0	2.705931	4.266186	-3.036106
34	1	0	4.159487	3.199752	-1.862581
35	6	0	0.409134	3.659847	-2.657659
36	1	0	0.055388	2.119415	-1.204734
37	6	0	1.354428	4.434206	-3.325952
38	1	0	3.453040	4.858633	-3.555044
39	1	0	-0.646737	3.776372	-2.882131
40	1	0	1.040852	5.158525	-4.070844
41	6	Õ	0.012283	-1.829590	-2.570045
42	6	0	1.884406	-2.928886	-1.381070
43	6	0	-0.846455	-3.071883	-2.382280
44	1	0	0.587547	-1.870061	-3.501998
45	1	0	-0.583510	-0.915805	-2.534287
46	6	0	1.056272	-4.193922	-1.202015
47	1	0	2.454263	-2.951494	-2.317399
48	1	0	2.577002	-2.767289	-0.555304

49	6	0	0.013256	-4.334461	-2.310942
50	1	0	-1.558947	-3.128067	-3.211089
51	1	Õ	-1.419026	-2.953141	-1.454089
52	1	0	1.742706	-5.045182	-1.197394
53	1	Ő	0.564117	-4.161923	-0.225320
54	1	Ő	-0.614015	-5.211465	-2.131690
55	1	Ő	0.515996	-4.487047	-3.275067
56	7	ŏ	1.005797	-1.713760	-1.454969
57	1	Ő	4.526161	3,208347	3.467250
58	1	Ő	5.897002	0.476606	4.053967
59	1	ŏ	5 744108	-2.449436	-2.100036
60	1	ŏ	5.815756	-3.432162	-0.619682
61	1	Ő	6.201706	0.833027	-0.300328
62	1	ŏ	0.453198	-1 712053	-0 554074
63	6	٥ ٥	-6 142697	-0.065973	-2.493116
64	6	Ő	-5 039891	-0.823325	-2.901004
65	6	Ő	-3 787395	-0.608668	-2.329779
66	6	Õ	-3 669802	0.371986	-1 350523
67	6	0	-4 770606	1 125662	-0.933846
68	6	0	-6 017719	0.911805	-1 504640
69	1	Ő	-7 111405	-0 246718	-2 948435
70	1	0	-5 165884	-1 582925	-3 666119
70	1	0	-2 920029	-1.189199	-2 629791
72	1	0	-6.88/213	1 479057	-1 177196
73	6	0	-2 9/7136	1 628893	0 456472
73	6	0	-4 362085	2 065384	0.430472
75	6	0	-2 469407	0 762844	-0 572306
76	8	0	-1 315528	0.314089	-0 742768
70	1	0	-4 381945	3 111800	-0 155868
78	1	0	-5 026843	1 984848	1 042707
79 79	7	Ő	-2 184076	2 477496	1 272145
80	7	0	-0.962623	2 308554	1 367800
81	7	Ő	0 149703	2.200551	1.507000
82	, 6	Ő	-3 120880	-0.312567	1 816371
83	6	Ő	-4 574884	-0.417124	1 959383
84	6	Ő	-5 364865	-1 199107	1 103320
85	6	Ő	-5 207918	0.306182	2 982094
86	6	Ő	-6 742068	-1 266045	1 279190
87	1	Ő	-4 904389	-1 730515	0.275108
88	6	Ő	-6 584730	0 235460	3 158618
89	6	Ő	-7 356602	-0 553695	2 307155
90	1	Ő	-7 338923	-1 867571	0.601124
91	1	Ő	-7.055739	0 796404	3 959250
92	6	Ő	-2 360247	-1 347905	1 288783
93	1	Ő	-2 741401	-2 174972	0 709393
94	1	0	-2 609902	0 339634	2 518223
95	7	0	-1 001977	-1 318749	1 387298
96	8	Õ	-0 408379	-0.438103	2 038360
97	8	Ő	_0 335382	-2 248090	0.823690
98	1	Ő	-4 603903	0 925492	3 640020
99	1	Ő	-8 432104	-0 608784	2 440919
	±	~	0. +3210-	0.000204	

Sum of electronic and thermal Free Energies = -2558.925462Imaginary frequency -167.7270 cm⁻¹

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Type	Х	Ŷ	ŹŹ	
1	7	0	1 212412	0 854009	0.054290	
$\frac{1}{2}$	1	Ő	0 203691	0.750151	0.133675	
3	5	ŏ	1 801504	2 373297	0.236566	
4	8	ŏ	3.030720	2.148668	1.249147	
5	8	Ő	0.756717	3.330007	0.668329	
6	8	Ő	2.612402	2.792089	-1.083166	
7	6	Ő	1.934393	2.791989	-2.371226	
8	1	Ŏ	1.330060	1.876910	-2.428272	
9	6	Ō	3.033770	2.745971	-3.414824	
10	1	Ō	3.659056	3.641017	-3.340649	
11	1	Ō	3.664510	1.864772	-3.275775	
12	6	Ō	1.057263	4.026605	-2.499275	
13	1	0	0.564904	4.027504	-3.475476	
14	1	0	0.296908	4.051031	-1.716248	
15	6	0	4.021554	3.194386	1.422672	
16	1	Ō	3.618915	4.129706	1.016833	
17	6	Ō	5.274003	2.795329	0.663098	
18	1	Ō	6.054009	3.550275	0.793339	
19	1	Ō	5.648787	1.839796	1.045073	
20	6	Ō	4.246467	3.338675	2.915808	
21	1	Ō	4.992924	4.111864	3.113978	
$\frac{1}{22}$	6	Ō	1.953883	-0.392304	-0.092100	
23	1	0	1.255978	-1.108918	-0.536833	
24	6	Ō	2.410128	-0.957675	1.258286	
25	1	0	2.851210	-1.944813	1.105555	
26	1	0	3.145604	-0.298526	1.727940	
27	6	0	3.157499	-0.278130	-1.037972	
28	1	0	2.777672	0.143670	-1.971356	
29	1	0	3.894537	0.415337	-0.616340	
30	6	0	3.786544	-1.626460	-1.298055	
31	6	0	5.070289	-1.923809	-0.836657	
32	6	0	3.063199	-2.611495	-1.982538	
33	6	0	5.631596	-3.181508	-1.051974	
34	1	0	5.636289	-1.159711	-0.307917	
35	6	0	3.623536	-3.868065	-2.192693	
36	1	0	2.064449	-2.383837	-2.352899	
37	6	0	4.906823	-4.157584	-1.729594	
38	1	0	6.633121	-3.396169	-0.691902	
39	1	0	3.055157	-4.623989	-2.725525	
40	1	0	5.339888	-5.138403	-1.899292	
41	6	0	1.298155	-2.424759	2.943305	
42	6	0	1.157326	0.029761	3.185240	
43	6	0	0.040294	-2.593822	3.782831	
44	1	0	2.201493	-2.410721	3.562688	
45	1	0	1.392186	-3.206341	2.189010	
46	6	0	-0.077543	-0.108817	4.065016	
47	1	0	2.080334	0.006586	3.775071	
48	1	0	1.140165	0.945587	2.596177	

Table S5. TSI2B (in toluene solvent)

49	6	0	-0.102181	-1.453534	4.791089
50	1	0	0.087099	-3.564843	4.282574
51	1	0	-0.830508	-2.615828	3.113855
52	1	0	-0.077572	0.722949	4.774685
53	1	0	-0.966956	-0.003441	3.434680
54	1	0	-1.030280	-1.560937	5.357879
55	1	0	0.724880	-1.501909	5.510835
56	7	0	1.257785	-1.115644	2.213218
57	1	0	2.595717	2.705826	-4.414914
58	1	0	1.670456	4.928979	-2.415735
59	1	Õ	4.608541	2.392631	3.330310
60	1	0	3.315437	3.610322	3.417825
61	1	0	5.053245	2.692461	-0.401428
62	1	Õ	0.373076	-1.090010	1.658882
63	6	0	-5.901640	1.204575	1.868126
64	6	Õ	-4.718513	1.868253	2.213346
65	6	Õ	-3.482380	1.292126	1.938718
66	6	Õ	-3.470460	0.043080	1.323725
67	6	Õ	-4.649562	-0.635932	0.992682
68	6	Õ	-5.879369	-0.048940	1.253528
69	1	Õ	-6.855799	1.677506	2.078810
70	1	Õ	-4.770570	2.845020	2.683089
71	1	Õ	-2.549535	1.803733	2.159783
72	1	Ő	-6.804893	-0.544983	0.977156
73	6	Ő	-2.840651	-1.810948	0.048676
74	6	Ő	-4.323728	-1.951468	0.325348
75	6	Õ	-2.322101	-0.741651	0.850523
76	8	Õ	-1.111910	-0.469913	1.027138
77	1	Õ	-4.494307	-2.792432	1.008389
78	1	Õ	-4.929159	-2.125846	-0.568633
79	7	Õ	-2.136834	-3.035746	-0.118790
80	7	Õ	-0.910386	-3.040315	-0.035523
81	7	Õ	0.207765	-3.221318	0.012282
82	6	Õ	-2.631052	-0.858581	-1.795125
83	6	Õ	-3.813073	0.032576	-1.888190
84	6	Õ	-3.781748	1.355924	-1.423727
85	6	Õ	-5.002899	-0.446502	-2.447741
86	6	Õ	-4.911438	2.159746	-1.490470
87	1	Õ	-2.873327	1.749350	-0.976504
88	6	Õ	-6.136230	0.359946	-2.520793
89	6	Õ	-6.096120	1.662826	-2.034552
90	1	Õ	-4.870330	3.174615	-1.108132
91	1	0	-7.048100	-0.031373	-2.960571
92	6	0	-1.358205	-0.283942	-1.983365
93	1	Õ	-1.154355	0.774514	-1.928899
94	1	0	-2.749983	-1.835461	-2.261677
95	7	0	-0.317498	-1.011604	-2.502190
96	8	0	-0.391783	-2.253277	-2.609590
97	8	0	0.712191	-0.398114	-2.873194
98	1	Ō	-5.034181	-1.460986	-2.837138
99	1	0	-6.979400	2.291505	-2.083660

Sum of electronic and thermal Free Energies = -2558.919407Imaginary frequency -165.3223 cm⁻¹

Center Number	er Atomic Atomic ber Number Type		Coor X	rdinates (Angs Y	stroms) Z
	7	0	1 618897	-0 382681	-0 660365
2	1	0	0 747908	-0 202046	-1 168581
$\frac{2}{3}$	15	0	2.816735	-1 171164	-1 456032
4	8	Ő	4 129589	-0.361568	-1 014053
5	8	Ő	2 547774	-1 316219	-2.903705
6	8	Ő	3 115619	-2.568403	-0.706723
7	6	Ő	2.231595	-3.680951	-0.996277
8	1	Õ	1.236497	-3.283285	-1.238676
9	6	Ő	2.148412	-4.510459	0.270687
10	1	Ő	3.142233	-4.875926	0.545027
11	1	Ő	1.756401	-3.917816	1.101524
12	6	Õ	2.781685	-4.458517	-2.178862
13	1	Ŏ	3.779001	-4.839349	-1.937652
14	1	Ŏ	2.130756	-5.306448	-2.408374
15	6	Õ	5.428460	-0.836511	-1.457439
16	1	Õ	5.373405	-1.926085	-1.564543
17	6	Õ	6.411668	-0.479260	-0.360178
18	1	0	7.416858	-0.811077	-0.631656
19	1	0	6.431818	0.605038	-0.214965
20	6	0	5.751451	-0.191425	-2.793530
21	1	0	6.724069	-0.536505	-3.154262
22	6	0	1.651632	0.223288	0.665685
23	1	0	0.598826	0.414799	0.911268
24	6	0	2.380839	1.573822	0.698303
25	1	0	2.513211	1.879154	1.738378
26	1	0	3.358810	1.501971	0.215323
27	6	0	2.250584	-0.726368	1.712431
28	1	0	1.718706	-1.681305	1.618916
29	1	0	3.293505	-0.939497	1.450236
30	6	0	2.178570	-0.243759	3.145800
31	6	0	1.118137	0.537722	3.619594
32	6	0	3.186805	-0.613070	4.040797
33	6	0	1.071086	0.928750	4.956261
34	1	0	0.330723	0.871574	2.947530
35	6	0	3.136482	-0.229400	5.377708
36	1	0	4.020002	-1.212251	3.681937
37	6	0	2.075114	0.544191	5.840851
38	1	0	0.243946	1.539666	5.303911
39	1	0	3.929330	-0.529880	6.055467
40	1	0	2.034283	0.849963	6.881255
41	6	0	1.909975	4.004764	0.624310
42	6	0	1.742758	2.686317	-1.458923
43	6	0	0.977900	5.060944	0.047181
44	1	0	2.964151	4.214128	0.410329
45	1	0	1.774019	3.907158	1.703432
46	6	0	0.807203	3.726725	-2.049563
47	1	0	2.797607	2.907639	-1.660805
48	1	0	1.513417	1.690223	-1.829750

Table S6. TSI2C (in toluene solvent)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	6	0	1.080702	5.115420	-1.476401
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	l	0	1.225/14	6.023529	0.503164
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51	1	0	-0.046606	4.798998	0.336170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	1	0	0.914832	3.710143	-3.137458
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53	1	0	-0.219339	3.425859	-1.815979
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	1	0	0.362024	5.835654	-1.875574
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	1	0	2.082765	5.453782	-1.772298
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	7	0	1.598262	2.661611	0.033443
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	1	0	1.491087	-5.369709	0.113207
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58	1	0	2.845459	-3.809751	-3.053893
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59	1	0	5.786641	0.896349	-2.681371
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	1	0	4.986001	-0.446746	-3.529269
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61	1	0	6.126483	-0.955473	0.580817
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62	1	0	0.589086	2.507584	0.312062
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63	6	0	-2.717079	-4.087210	-0.035742
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64	6	0	-1.501120	-3.529738	0.370974
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65	6	0	-1.147326	-2.239143	-0.020233
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66	6	0	-2.033459	-1.525705	-0.824448
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67	6	0	-3.258443	-2.075108	-1.216204
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68	6	0	-3.607459	-3.361195	-0.827799
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69	1	0	-2.975621	-5.093489	0.278759
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	1	0	-0.831872	-4.106697	1.002224
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71	1	0	-0.203475	-1.798237	0.287035
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72	1	0	-4.564085	-3.787337	-1.116036
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73	6	0	-3.213105	0.180735	-1.855977
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74	6	0	-4.052905	-1.061438	-2.001440
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75	6	0	-1.923503	-0.135693	-1.338763
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76	8	0	-0.931035	0.618962	-1.218749
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77	1	0	-4.135551	-1.343575	-3.058892
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78	1	0	-5.071324	-0.952174	-1.610973
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79	7	0	-3.558451	1.262502	-2.677343
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80	7	0	-2.770173	2.207549	-2.813574
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81	7	0	-2.190849	3.146302	-3.056626
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82	6	0	-3.701404	1.066816	0.292882
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83	6	0	-4.741546	0.131851	0.727472
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	6	0	-4.458944	-1.014813	1.484754
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85	6	0	-6.072160	0.380062	0.356210
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86	6	0	-5.481151	-1.873997	1.871442
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87	1	0	-3.431120	-1.254567	1.743296
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	88	6	0	-7.093143	-0.477945	0.747051
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	89	6	0	-6.800049	-1.608377	1.508838
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	1	0	-5.243051	-2.762167	2.447965
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91	1	0	-8.116975	-0.266377	0.456237
9310-2.1691570.6169371.8058049410-4.0256161.905311-0.3163429570-1.7204202.3171090.7406939680-2.0008923.162954-0.1220829780-0.6423312.4300241.4221339810-6.2957721.257535-0.2448009910-7.594975-2.2817821.812478	92	6	0	-2.544381	1.270553	1.032664
9410-4.0256161.905311-0.3163429570-1.7204202.3171090.7406939680-2.0008923.162954-0.1220829780-0.6423312.4300241.4221339810-6.2957721.257535-0.2448009910-7.594975-2.2817821.812478	93	1	0	-2.169157	0.616937	1.805804
9570-1.7204202.3171090.7406939680-2.0008923.162954-0.1220829780-0.6423312.4300241.4221339810-6.2957721.257535-0.2448009910-7.594975-2.2817821.812478	94	1	0	-4.025616	1.905311	-0.316342
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95	7	0	-1.720420	2.317109	0.740693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96	8	0	-2.000892	3.162954	-0.122082
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97	8	0	-0.642331	2.430024	1.422133
99 1 0 -7.594975 -2.281782 1.812478	98	1	Õ	-6.295772	1.257535	-0.244800
	99	1	0	-7.594975	-2.281782	1.812478

Sum of electronic and thermal Free Energies = -2558.922075Imaginary frequency -370.0126 cm⁻¹

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms) X X 7		
1	7	0	-2.176507	-0.604466	-0.951212
2	1	0	-1.346975	-1.044678	-1.358368
3	5	0	-3.290360	-1.648618	-0.346969
4	8	0	-3.152518	-1.508939	1.249502
5	8	0	-3.167702	-3.018151	-0.895237
6	8	0	-4.745166	-0.980347	-0.527786
7	6	0	-5.440253	-1.143920	-1.791225
8	1	0	-4.698400	-1.084806	-2.598968
9	6	0	-6.418021	0.012163	-1.896318
10	1	0	-7.116060	-0.019756	-1.054636
11	1	0	-5.903046	0.974774	-1.886156
12	6	0	-6.141184	-2.492044	-1.819009
13	1	0	-6.858593	-2.547951	-0.994112
14	1	0	-6.685973	-2.607990	-2.760017
15	6	0	-4.032772	-2.265408	2.119196
16	1	0	-5.012983	-2.334436	1.631433
17	6	0	-4.148862	-1.462256	3.400155
18	1	0	-4.807505	-1.971565	4.108027
19	1	0	-3.161883	-1.353805	3.860242
20	6	0	-3.447232	-3.650387	2.332746
21	1	0	-4.063886	-4.216394	3.036366
22	6	0	-2.015814	0.817410	-0.654580
23	1	0	-1.197342	1.127600	-1.301225
24	6	0	-1.648252	1.115384	0.823292
25	1	0	-2.373170	1.818877	1.241939
26	1	0	-1.702027	0.198181	1.409966
27	6	0	-3.260051	1.635533	-1.066440
28	1	0	-3.551424	1.301201	-2.067925
29	1	0	-4.093243	1.416025	-0.390793
30	6	0	-2.949961	3.111449	-1.069050
31	6	0	-2.169842	3.659226	-2.092995
32	6	0	-3.345549	3.940633	-0.016462
33	6	0	-1.771178	4.991174	-2.051695
34	1	0	-1.862028	3.027517	-2.923401
35	6	0	-2.946257	5.275931	0.032164
36	1	0	-3.973083	3.536042	0.774524
37	6	0	-2.150540	5.801912	-0.981762
38	1	0	-1.162267	5.398306	-2.852704
39	1	0	-3.259647	5.903626	0.860396
40	1	0	-1.835928	6.839850	-0.945993
41	6	0	0.177080	2.775370	0.190830
42	6	0	-0.344110	2.241832	2.536085
43	6	0	1.553613	3.265250	0.619898
44	1	0	-0.564284	3.582821	0.210975
45	1	0	0.220771	2.343465	-0.806976
46	6	0	0.987893	2.816719	3.001060
47	1	0	-1.125079	3.012130	2.539288
48	1	0	-0.661641	1.410034	3.169348

Table S7. TSI2D (in toluene solvent)

49	6	0	1.513327	3.864666	2.022518
50	1	0	1.902420	3.992580	-0.118517
51	1	0	2.246108	2.414273	0.608899
52	1	0	0.828807	3.248126	3.994025
53	1	0	1.713273	2.005545	3.095175
54	1	0	2.511610	4.190037	2.326399
55	1	0	0.860696	4.748140	2.023250
56	7	0	-0.297622	1.709995	1.127878
57	1	0	-6.989974	-0.067188	-2.824198
58	1	0	-5.416988	-3.301536	-1.722109
59	1	0	-2.435346	-3.563830	2.741141
60	1	0	-3.398921	-4.191857	1.385919
61	1	0	-4.554220	-0.468587	3.195249
62	1	0	0.432591	0.936061	1.158990
63	6	Õ	0.752586	-4.582600	-0.139320
64	6	Ō	-0.214924	-3.673278	0.310697
65	6	Ő	0.169832	-2.450968	0.846746
66	6	Õ	1.530013	-2.153661	0.915849
67	6	Ő	2.496838	-3.071404	0.492858
68	6	Ő	2.111525	-4.294573	-0.046206
69	1	Õ	0.432504	-5.526861	-0.568888
70	1	Ő	-1.268793	-3.907549	0.201460
71	1	Ő	-0.572016	-1.732563	1.185146
72	1	Ő	2.853703	-5.008772	-0.391905
73	6	Ő	3 580587	-1 091295	1 086123
74	6	Ő	3 883716	-2.517036	0.720852
75	6	Õ	2 198289	-0.917782	1 362328
76	8	õ	1 662411	0.106722	1.869090
70	1	Õ	4 385198	-3.042002	1 544002
78	1	Ő	4 526630	-2 616212	-0.162361
79	7	Õ	4 591352	-0.309971	1 685498
80	, 7	Õ	4 331213	0.852354	1 998484
81	7	Ő	4 266368	1 942476	2 312041
82	6	Ő	3 407818	-0.217554	-1 079550
83	6	Ő	4 849789	-0.156118	-1 348352
84	6	0	5 528657	-1 155116	-2 062774
85	6	0	5 578305	0.949897	-0 889984
86	6	0	6 893315	-1.050663	-2 301639
87	1	0	A 987349	-2 019344	-2 /35967
88	6	0	6 942253	1 056966	-1 133855
89	6	0	7 604994	0.054719	-1 838206
90	1	0	7.004224	-1 833344	-2 853775
91	1	0	7.488101	1 973771	-0.774209
92	6	0	2 552964	-0.997618	-1 838/179
03	1	0	2.332704	-1.78/1820	-2 523370
94	1	0	2.02+075	0.658654	-0.612408
95	7	0	1 1005/15	-0.807506	_1 721220
96	2 2		0.7586/7	0.007316	-1.721337
97	0 8		0.750047	-1 /96665	-0.755625
98	0	0	5 062516	1 728/50	-2. 4 00000
90	1		8 670500	0 12/582	-2 027502
,, 	1				

Sum of electronic and thermal Free Energies = -2558.916137Imaginary frequency -260.4669 cm⁻¹

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms) X Y Z		
1	7	0	-2.266019	0.908919	1.165100
2	1	Ŏ	-1.583310	0.155220	1.310778
3	6	0	-3.617526	0.661302	1.653969
4	1	Ō	-3.675520	-0.430203	1.759252
5	6	0	-4.649150	1.100511	0.617033
6	1	0	-5.658158	0.883192	0.963707
7	1	0	-4.571887	2.170564	0.413417
8	6	0	-3.860026	1.254813	3.070130
9	6	0	-5.107852	-0.975179	-0.695723
10	6	0	-4.815394	1.188349	-1.881364
11	6	0	-6.620929	-0.859624	-0.830000
12	1	0	-4.677044	-1.501054	-1.551072
13	1	0	-4.818593	-1.492239	0.223246
14	6	0	-6.323622	1.346621	-1.988018
15	1	0	-4.301416	2.146612	-1.780623
16	1	0	-4.401172	0.643722	-2.733810
17	6	0	-7.006182	-0.020316	-2.049123
18	1	0	-7.060345	-0.428784	0.076849
19	1	0	-7.016721	-1.875303	-0.913033
20	1	0	-6.536575	1.931408	-2.886457
21	1	0	-6.703041	1.924771	-1.136514
22	1	0	-8.091563	0.095903	-2.098357
23	1	0	-6.691420	-0.539975	-2.962300
24	7	0	-4.434039	0.371499	-0.675336
25	6	0	-1.808039	2.014886	0.577289
26	6	0	-2.320067	3.291216	0.019919
27	6	0	-0.493379	2.345306	0.208803
28	6	0	-0.895121	3.640668	-0.359347
29	8	0	-3.399041	3.842680	-0.099952
30	8	0	-0.364507	4.590125	-0.902945
31	7	0	0.620092	1.620645	0.431196
32	1	0	0.475630	0.726846	0.916186
33	6	0	1.949440	1.956561	0.201502
34	6	0	2.910088	1.065482	0.690284
35	6	0	2.357411	3.113210	-0.470634
36	6	0	4.259331	1.326574	0.507843
37	1	0	2.584818	0.171598	1.215790
38	6	0	3.718186	3.347125	-0.633914
39	l	0	1.624825	3.817096	-0.856264
40	6	0	4.688055	2.470262	-0.155689
41	l	0	5.742571	2.672443	-0.297/020
42	6	0	4.150361	4.625025	-1.298651
43	6	0	5.245660	0.312693	1.011348
44	9	0	4.239309	5.632313	-0.4148/2
45	9	0	5.284958	5.012274	-2.245213
40	9	0	5.354883	4.504254	-1.8/4953
4/	9	0	6.488897	0.799600	1.0/3626
48	9	0	5.282194	-0.771245	0.213823

Table S8. TSII2A (in dichloromethane solvent)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	9	0	4.918968	-0.130454	2.236981
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	1	0	-3.404994	0.197505	-0.804517
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51	6	0	3.448023	-4.580102	1.733907
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	6	0	3.603578	-3.302052	2.281139
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53	6	0	2.558752	-2.383666	2.231544
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	6	0	1.373443	-2.769290	1.610632
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	6	0	1.205973	-4.056145	1.083534
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	6	0	2.247417	-4.970483	1.135889
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	1	0	4.275853	-5.280956	1.775184
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58	1	0	4.546041	-3.021705	2.739950
	59	1	0	2.661315	-1.394786	2.667845
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	1	0	2.139856	-5.963581	0.710324
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61	6	0	-0.657941	-2.765424	0.487667
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62	6	0	-0.172062	-4.196009	0.481876
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63	6	0	0.171973	-1.962620	1.324719
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64	8	0	-0.018141	-0.777537	1.702539
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65	7	0	-2.017121	-2.422013	0.351074
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66	7	0	-2.693523	-3.174839	-0.363508
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67	7	0	-3.428814	-3.803319	-0.953825
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68	1	0	-0.148065	-4.655347	-0.512562
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69	1	0	-0.813855	-4.821906	1.116461
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	6	0	0.230688	-1.894724	-1.452220
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71	6	0	-0.876807	-1.992362	-2.293643
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72	6	0	1.430280	-2.708423	-1.685326
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73	6	0	1.376181	-3.936430	-2.365714
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74	6	0	2.672558	-2.268590	-1.202948
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75	6	0	2.521087	-4.704956	-2.537770
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76	1	0	0.432068	-4.302552	-2.757595
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77	6	0	3.817783	-3.034953	-1.378709
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78	1	0	2.737729	-1.315277	-0.685556
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79	6	0	3.744063	-4.259290	-2.039898
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80	1	0	2.457549	-5.653489	-3.060813
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81	1	0	4.765408	-2.680532	-0.990633
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82	7	0	-1.889560	-1.083126	-2.222390
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83	8	0	-1.798175	-0.076423	-1.460977
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	8	0	-2.916133	-1.258650	-2.918411
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85	1	0	0.372388	-0.933468	-0.964162
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86	6	0	-5.286964	0.923201	3.528143
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87	1	0	-5.388860	1.139209	4.595413
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	88	1	0	-6.038558	1.519278	3.002190
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	89	1	0	-5.517109	-0.138068	3.378048
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	6	0	-3.647521	2.772293	3.089640
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91	1	0	-2.601928	3.030478	2.894333
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92	1	0	-4.270916	3.290913	2.354712
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93	1	0	-3.901778	3.161160	4.080311
9510-2.9770141.0067435.0336099610-3.038694-0.4903404.0871989710-1.8318890.7516413.70551498104.636877-4.862232-2.1701859910-1.068843-2.791749-2.992342	94	6	0	-2.864364	0.589647	4.028676
9610-3.038694-0.4903404.0871989710-1.8318890.7516413.70551498104.636877-4.862232-2.1701859910-1.068843-2.791749-2.992342	95	1	0	-2.977014	1.006743	5.033609
9710-1.8318890.7516413.70551498104.636877-4.862232-2.1701859910-1.068843-2.791749-2.992342	96	1	0	-3.038694	-0.490340	4.087198
98 1 0 4.636877 -4.862232 -2.170185 99 1 0 -1.068843 -2.791749 -2.992342	97	1	0	-1.831889	0.751641	3.705514
99 1 0 -1.068843 -2.791749 -2.992342	98	1	0	4.636877	-4.862232	-2.170185
	99	1	0	-1.068843	-2.791749	-2.992342

Sum of electronic and thermal Free Energies = -2905.461293Imaginary frequency -252.9204 cm⁻¹

Center Number	Atomic Number	Atomic Type	Coo: X	rdinates (Angs Y	stroms) Z
1	7	0	-0.013186	-1.766230	0.881633
2	1	0	0.084422	-0.755512	1.048782
3	6	0	1.158046	-2.524414	1.318025
4	1	0	1.957330	-1.771853	1.307124
5	6	0	1.530667	-3.605665	0.300638
6	1	0	2.402443	-4.156687	0.655892
7	1	0	0.713133	-4.313063	0.144729
8	6	0	1.064949	-3.027139	2.786807
9	6	0	3.174516	-3.528084	-1.589671
10	6	0	0.814190	-2.998547	-2.047260
11	6	0	2.978959	-4.948103	-2.100769
12	1	0	3.456045	-2.853697	-2.404842
13	1	0	3.940561	-3.463962	-0.814072
14	6	0	0.580026	-4.398042	-2.597481
15	1	0	-0.078284	-2.574156	-1.588940
16	1	0	1.144052	-2.314336	-2.834886
17	6	0	1.872956	-4.993997	-3.156273
18	1	0	2.731390	-5.612947	-1.264281
19	1	0	3.930333	-5.295296	-2.511593
20	1	0	-0.183908	-4.322539	-3.375978
21	1	0	0.164870	-5.041316	-1.813866
22	1	0	1.704992	-6.022383	-3.484854
23	1	0	2.189506	-4.419352	-4.035589
24	7	0	1.905248	-2.973577	-1.011959
25	6	0	-1.222530	-2.252673	0.596139
26	6	0	-1.820998	-3.564044	0.266180
27	6	0	-2.445025	-1.592647	0.379816
28	6	0	-3.155569	-2.862474	0.117768
29	8	0	-1.427685	-4.708136	0.131807
30	8	0	-4.287852	-3.231737	-0.122620
31	7	0	-2.689486	-0.268342	0.437734
32	1	0	-1.870554	0.347320	0.525031
33	6	0	-3.901320	0.397857	0.254807
34	6	0	-3.868143	1.799426	0.254583
35	6	0	-5.119620	-0.266469	0.089306
36	6	0	-5.044985	2.513536	0.090410
37	1	0	-2.919453	2.314697	0.372070
38	6	0	-6.279986	0.482291	-0.075856
39	1	0	-5.165475	-1.351277	0.083717
40	6	0	-6.268573	1.871383	-0.077603
41	1	0	-7.183438	2.437676	-0.206623
42	6	0	-7.574133	-0.241237	-0.322651
43	6	0	-5.013137	4.014307	0.153302
44	9	0	-7.610652	-1.427811	0.299278
45	9	0	-7.762805	-0.480817	-1.630917
46	9	0	-8.630633	0.469568	0.098746
47	9	0	-5.919868	4.562668	-0.669150
48	9	0	-3.812860	4.507269	-0.180279

Table S9. TSII2B (in dichloromethane solvent)

49	9	0	-5.291220	4.461765	1.389073
50	1	Õ	2.091881	-1.934717	-0.835104
51	6	Õ	7.159240	-0.335455	0.832843
52	6	Õ	6.176587	-1.257445	1.205372
53	6	Ŏ	4.882581	-1.149194	0.700979
54	6	Ŏ	4.601044	-0.111312	-0.182554
55	6	Ŏ	5,586559	0.809700	-0.565692
56	6	Ő	6.871415	0.707409	-0.051130
57	1	Ő	8 160271	-0 430164	1 240748
58	1	Ő	6.422105	-2.054179	1.899659
59	1	Ő	4.108714	-1.849297	1.004193
60	1	Ő	7.639024	1.423514	-0.328902
61	6	Ő	3.540163	1.520914	-1.452233
62	6	Ő	5 013538	1 819540	-1 532797
63	6	0 0	3 326818	0.253835	-0.840734
6 <u>4</u>	8	0 0	2 242698	-0 385378	-0.849304
65	7	0	2.212090	2 090287	-2 409711
66	7	0	1 540063	1 634252	-2 521214
67	7	0	0.481400	1 339627	-2 782622
68	1	0	5 281796	2 850601	-1 283950
60	1	0	5 373081	1 62/371	-2.551214
70	6	0	2 766110	2 1/8/31	0 /02/03
70	6	0	1 /08881	2.440451	0.492495
71 72	1	0	0 077772	3 305033	-0.130333
72	1	0	3 680737	3.505055	-0.473721
73	6	0	3.069252	1710082	0.403283
74 75	6	0	1 860306	3 522808	1 231724
75	6	0	4.800300	5 743260	0.380215
	1	0	4.393704 2 577771	J.745200 1766011	-0.380213
78	1	0	2.377771 5 787604	4.700941	1 1066/17
70	1	0	5.787004	4.500522	1.190047
80	1	0	5 558210	2.049770	0.200271
80	0	0	1 215624	5.072017	1.011471
87	1	0	4.213024	1 408715	1 702012
02 83	1 7	0	0.000090	4.490/13	0.608242
83	/ Q	0	0.316063	0.702756	1 502662
0 4 85	8	0	0.610100	1 630278	0.11/202
85	0	0	2 000762	1.039278	1 207216
80	1	0	2 204258	2 687215	2 182206
07	0	0	2.394230	-3.067313	J.162200 4 265340
80	1	0	2.419403	-3.030474	4.203349
09 00	1	0	2.320001	-4.000402	2.717170
90	1	0	5.250592	-5.050722	2.913037
91	0	0	-0.078080	-4.024372	2.993024
92	1	0	-0.054280	-4.414322	4.01/308
93	1	0	-1.033423	-3.340090	2.872441
7 4 0 5	1	0	-0.023132 0.941725	-4.0/239/	2.300302
7J 06	U 1	0	0.041/03	-1.001314	3.082234
90 0 7	1 1	0	0.784033	-2.112031	4./29002
ン/ 00	1 1	0	1.002999	-1.085/98	3.379431
70 00	1 1	0	-0.009229	-1.200434	5.429212 0.260200
77 	1	U	0.200019	0.402134	0.300200

Sum of electronic and thermal Free Energies = -2905.449428Imaginary frequency -260.0278 cm⁻¹

Center Number	Atomic Number	Atomic Type	Coo: X	rdinates (Angs Y	stroms) Z
1	7	0	2.628446	-0.949341	1.050188
2	1	0	1.915335	-0.277808	1.338669
3	6	0	4.006905	-0.608883	1.392849
4	1	0	3.965337	0.445927	1.693314
5	6	0	4.900099	-0.722949	0.158508
6	1	0	5.915613	-0.404904	0.388425
7	1	0	4.928661	-1.751438	-0.208185
8	6	0	4.537644	-1.385326	2.630394
9	6	0	4.849580	1.576362	-0.841077
10	6	0	4.693318	-0.425372	-2.315791
1	6	0	6.325785	1.725121	-1.184695
12	1	0	4.222337	2.138765	-1.535515
13	1	0	4.629031	1.907053	0.176145
4	6	0	6.176988	-0.320844	-2.631030
15	1	0	4.339995	-1.458862	-2.306179
6	1	Õ	4.090605	0.156588	-3.016828
7	6	Õ	6.640655	1.134481	-2.559739
8	1	Õ	6.952031	1.252253	-0.420154
9	1	Ő	6 557551	2 793014	-1 155830
20	1	Ő	6 334519	-0.734129	-3 630305
1	1	Ő	6 756287	-0.941486	-1 936787
27	1	Ő	7 712053	1 203863	-2 761795
22	1	0	6 124250	1 716085	-3 332937
23	7	0	4 383550	0 144807	-0.954370
24	6	0	2 202850	-1 983582	0.3178/0
26	6	0	2.202030	-3 12/299	-0.437210
20 97	6	0	0.807238	-3.12+277 -2.349452	-0.437210 -0.042000
27) Q	6	0	1 356758	-3 560648	-0.0+2770
20	8	0	3 882185	3 527082	0.735783
29	8	0	0.868456	-5.527962	-0.755785
21	0 7	0	0.000430	-4.303041	-1.330173 0.246521
20	/ 1	0	-0.240/4/	-1.090332	0.240331
22	1	0	-0.120207	-0.751545	0.012027 0.124507
55 24	6	0	-1.200290	-2.140310	0.124307
25	6	0	-2.J02070 1 005007	-1.310472	0.03400/
1J 26	0	0	-1.00300/	-3.303207	-0.400323
	0	0	-3.902920	-1./38080	0.555822
) /) (0	-2.333/23	-0.330/03	1.1014/4
00	0	0	-3.218421	-3./33013	-0.338990
19	l	0	-1.108/03	-4.003/34	-0.8/608/
	0	0	-4.242641	-2.936963	-0.045094
1	l	0	-5.277419	-5.2/2801	-0.111/12
12	0	0	-3.547220	-5.102323	-1.116464
5	6	0	-5.015681	-0.848571	1.013989
14	9	0	-3.521253	-6.059133	-0.174567
15	9	0	-2.674187	-5.465328	-2.065756
16	9	0	-4.772115	-5.124332	-1.661076
17	9	0	-5.971719	-1.549356	1.641674
18	9	0	-5.615609	-0.233877	-0.027337

Table S10. TSII2C (in dichloromethane solvent)

49	9	0	-4.590760	0.104485	1.842084
50	1	Õ	3.343178	0.179706	-0.899992
51	6	Õ	-0.779571	6.621057	0.233561
52	6	Õ	-2.081118	6.278867	0.607373
53	6	Õ	-2.377010	4.983684	1.032472
54	6	Õ	-1.345452	4.056793	1.084503
55	6	Õ	-0.033947	4.397590	0.729827
56	6	Ő	0.254831	5.680050	0.286239
57	1	Ő	-0.566845	7.631592	-0.101376
58	1	Ő	-2.867418	7.025581	0.553515
59	1	Ő	-3.388270	4.687789	1.296173
60	1	Ő	1.264218	5,955915	-0.006771
61	6	Ő	-0.096605	2.123088	1.218056
62	6	Ő	0.886155	3 201359	0.890556
63	6	Ő	-1 402068	2.612080	1 440117
64	8	Ő	-2 399187	1 963195	1 827685
65	7	Ő	0 304777	0 847645	1 722619
66	7	Ő	-0 312560	0.450833	2 737606
67	7	Ő	-0.808280	-0.040118	3 622433
68	1	0	1 465988	3 026890	-0 027792
69	1	0	1 611512	3 361461	1 700253
70	6	0	_0.939390	1 767684	-1 283335
70	6	0	0 174621	2 123215	-2.001802
71 72	1	0	0.234630	2.125215	-2.001002
72	6	0	-2 203232	2.727700	-1 448300
73	6	0	-2.203232	3 762270	-2 021999
74 75	6	0	-3 394478	1 880627	-1.014845
76	6	0	-3 /81799	A A029A1	-2 188383
70	1	0	-1 350769	4 278307	-2.100303
78	6	0	-1.550707	2 528870	-2.302144 -1.17368/
70	1	0	-3 358625	0.807331	-0.561345
80	6	0	-4 662189	3 786882	-0.5013+3 -1.767782
81	1	0	-3 511398	5 394649	-2 627720
82	1	0	-5 523373	2 046445	-0.831376
83	7	0	1 359797	1 422433	-1 884268
84	8	0	1.3357777	0 539318	-1.00+200
85	8	0	2 300545	1 701278	-2 647697
86	1	0	-0.961267	0 798342	-0 796645
87	6	0	5 96/391	-0.917424	2 9/901/
88	1	0	6 262410	-1.295675	3 930758
89	1	0	6 692761	-1 289679	2 222671
90	1	0	6.028961	0.176406	2.222071
91	6	0	4 526288	-2 899879	2.970013
92	1	0	3 506363	-3 276136	2.402037
03	1	0	5 113524	-3.196385	1 528012
93 94	1	0	1 950906	-3 308/03	3 270002
05	6	0	3 626723	-1.046150	3 816966
96	1	0	3.020723	-1.572061	A 712187
97	1	0	3 638173	0.028514	4 020111
98	1	0	2 5035425	_1 3/0515	3 673681
99	1	0	-5 613713	4 293475	_1 893758
	1		-5.015/15	т. <i>273</i> т7Ј	1.075750

Sum of electronic and thermal Free Energies = -2905.435901Imaginary frequency -105.0512 cm⁻¹

8. X-ray crystallographic data of syn-5k, anti-5g, anti-14, 15a and 15c

8.1 X-ray crystallographic data of syn-5k¹⁸

Data intensity of *syn*-**5k** was collected using a 'Bruker APEX-II CCD' diffractometer at 296 K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for *syn*-**5k**: C₁₉H₁₅FN₄O₃, *T* = 296.15 K, orthorhombic, space group P2₁2₁2₁, *a* = 10.3148(2) Å, *b* = 11.9114(3) Å, *c* = 14.6673(3) Å, $\alpha = 90 \text{ deg}$, $\beta = 90 \text{ deg}$, $\gamma = 90 \text{ deg}$, $V = 1802.08(7) \text{ Å}^3$. Z = 4, $d_{calc} = 1.350 \text{ g/cm}^3$. 12680 reflections measured, 3229 [R(int) = 0.0405], R₁ = 0.0691, wR₂ = 0.2196, (*I* > 2 σ (*I*), final), R₁ = 0.0747, wR₂ = 0.2314 (all data), GOF = 1.048, and 245 parameters.

Table S11. Crystal data and structure refinement for *syn-*5k.

Identification code	syn-5k	
Empirical formula	$C_{19}H_{15}FN_4O_3$	
Formula weight	366.35	
Temperature	296.15 K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 10.3148(2) Å	a= 90°.
	b = 11.9114(3) Å	b= 90°.
	c = 14.6673(3) Å	$g = 90^{\circ}$.
Volume	1802.08(7) Å ³	

¹⁸ Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 1874281).

Z	4
Density (calculated)	1.350 Mg/m^3
Absorption coefficient	0.848 mm ⁻¹
F(000)	760
Crystal size	0.25 x 0.2 x 0.15 mm ³
Theta range for data collection	4.782 to 68.605°.
Index ranges	-12<=h<=12, -14<=k<=9, -17<=l<=16
Reflections collected	12680
Independent reflections	3229 [R(int) = 0.0405]
Completeness to theta = 67.679°	99.1 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7531 and 0.6639
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3229 / 0 / 245
Goodness-of-fit on F ²	1.048
Final R indices [I>2sigma(I)]	$R_1=0.0691,wR_2=0.2196$
R indices (all data)	$R_1 = 0.0747, wR_2 = 0.2314$
Absolute structure parameter	0.06(11)
Extinction coefficient	0.007(2)
Largest diff. peak and hole	0.846 and -0.323 e.Å ⁻³

Table S12. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for *syn*-**5**k. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)	
F(1)	8690(5)	2750(4)	4148(4)	150(2)	
O(1)	3852(4)	6665(3)	2589(3)	97(1)	
O(2)	7432(5)	5702(5)	1188(3)	120(2)	
O(3)	7578(5)	3984(5)	854(4)	133(2)	

N(1)	4770(5)	5284(5)	4185(3)	89(1)
N(2)	5193(6)	6254(5)	4263(3)	102(2)
N(3)	5593(10)	7108(6)	4442(5)	154(3)
N(4)	7063(4)	4748(5)	1240(3)	89(1)
C(1)	4662(4)	4901(4)	3232(3)	68(1)
C(2)	3682(4)	5672(4)	2724(3)	72(1)
C(3)	2580(4)	4984(4)	2443(3)	70(1)
C(4)	1475(5)	5299(5)	1951(3)	89(2)
C(5)	579(5)	4527(7)	1749(4)	106(2)
C(6)	747(6)	3427(7)	2043(4)	111(2)
C(7)	1829(6)	3103(5)	2518(5)	99(2)
C(8)	2767(4)	3892(4)	2721(3)	74(1)
C(9)	4001(4)	3745(4)	3244(4)	80(1)
C(10)	5986(4)	4978(4)	2744(2)	65(1)
C(11)	5864(4)	4494(5)	1784(3)	78(1)
C(12)	7059(4)	4419(4)	3259(3)	66(1)
C(13)	8051(4)	4980(4)	3597(3)	68(1)
C(14)	9205(4)	4585(4)	4101(3)	71(1)
C(15)	9491(6)	3530(5)	4349(3)	87(1)
C(16)	10604(8)	3202(7)	4809(4)	111(2)
C(17)	11471(6)	4039(9)	5027(4)	112(2)
C(18)	11264(6)	5091(8)	4802(4)	110(2)
C(19)	10144(5)	5449(9)	4329(4)	118(3)

Table S13.	Bond lengths	[Å] and	angles	[°] for	syn-5k

F(1)-C(15)	1.277(7)
O(1)-C(2)	1.211(6)
O(2)-N(4)	1.201(7)
O(3)-N(4)	1.196(7)
N(1)-N(2)	1.240(8)

N(1)-C(1)	1.475(6)
N(2)-N(3)	1.128(9)
N(4)-C(11)	1.503(6)
C(1)-C(2)	1.556(6)
C(1)-C(9)	1.537(6)
C(1)-C(10)	1.545(6)
C(2)-C(3)	1.461(6)
C(3)-C(4)	1.401(6)
C(3)-C(8)	1.376(7)
C(4)-H(4)	0.9300
C(4)-C(5)	1.337(9)
C(5)-H(5)	0.9300
C(5)-C(6)	1.390(10)
C(6)-H(6)	0.9300
C(6)-C(7)	1.371(10)
C(7)-H(7)	0.9300
C(7)-C(8)	1.382(7)
C(8)-C(9)	1.497(7)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(10)-H(10)	0.9800
C(10)-C(11)	1.526(6)
C(10)-C(12)	1.496(6)
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700
C(12)-H(12)	0.9300
C(12)-C(13)	1.318(6)
C(13)-H(13)	0.9300
C(13)-C(14)	1.478(6)
C(14)-C(15)	1.341(7)
C(14)-C(19)	1.453(9)

C(15)-C(16)	1.388(9)
C(16)-H(16)	0.9300
C(16)-C(17)	1.377(11)
C(17)-H(17)	0.9300
C(17)-C(18)	1.313(11)
C(18)-H(18)	0.9300
C(18)-C(19)	1.414(9)
C(19)-H(19)	0.9300
N(2)-N(1)-C(1)	113.7(4)
N(3)-N(2)-N(1)	171.7(7)
O(2)-N(4)-C(11)	119.0(5)
O(3)-N(4)-O(2)	123.3(6)
O(3)-N(4)-C(11)	117.7(6)
N(1)-C(1)-C(2)	108.7(4)
N(1)-C(1)-C(9)	107.4(4)
N(1)-C(1)-C(10)	110.8(3)
C(9)-C(1)-C(2)	104.3(3)
C(9)-C(1)-C(10)	116.8(4)
C(10)-C(1)-C(2)	108.5(3)
O(1)-C(2)-C(1)	124.1(4)
O(1)-C(2)-C(3)	127.9(4)
C(3)-C(2)-C(1)	108.0(4)
C(4)-C(3)-C(2)	128.9(5)
C(8)-C(3)-C(2)	109.8(4)
C(8)-C(3)-C(4)	121.3(5)
C(3)-C(4)-H(4)	120.3
C(5)-C(4)-C(3)	119.5(6)
C(5)-C(4)-H(4)	120.3
C(4)-C(5)-H(5)	120.2
C(4)-C(5)-C(6)	119.6(6)
C(6)-C(5)-H(5)	120.2

C(5)-C(6)-H(6)	119.2
C(7)-C(6)-C(5)	121.6(6)
C(7)-C(6)-H(6)	119.2
C(6)-C(7)-H(7)	120.4
C(6)-C(7)-C(8)	119.2(6)
C(8)-C(7)-H(7)	120.4
C(3)-C(8)-C(7)	118.8(5)
C(3)-C(8)-C(9)	112.4(4)
C(7)-C(8)-C(9)	128.8(5)
C(1)-C(9)-H(9A)	110.7
C(1)-C(9)-H(9B)	110.7
C(8)-C(9)-C(1)	105.4(4)
C(8)-C(9)-H(9A)	110.7
C(8)-C(9)-H(9B)	110.7
H(9A)-C(9)-H(9B)	108.8
C(1)-C(10)-H(10)	107.7
C(11)-C(10)-C(1)	109.4(3)
C(11)-C(10)-H(10)	107.7
C(12)-C(10)-C(1)	113.2(3)
C(12)-C(10)-H(10)	107.7
C(12)-C(10)-C(11)	111.0(4)
N(4)-C(11)-C(10)	110.2(3)
N(4)-C(11)-H(11A)	109.6
N(4)-C(11)-H(11B)	109.6
C(10)-C(11)-H(11A)	109.6
C(10)-C(11)-H(11B)	109.6
H(11A)-C(11)-H(11B)	108.1
C(10)-C(12)-H(12)	118.7
C(13)-C(12)-C(10)	122.5(4)
C(13)-C(12)-H(12)	118.7
C(12)-C(13)-H(13)	114.7

130.6(4)
114.7
127.7(5)
117.0(5)
115.3(5)
118.5(5)
116.2(6)
125.3(6)
121.8
116.5(6)
121.8
119.1
121.9(6)
119.1
118.5
122.9(8)
118.5
121.8
116.4(8)
121.8

Symmetry transformations used to generate equivalent atoms:

Table S14. Anisotropic displacement parameters ($Å^2 \ge 10^3$) for *syn*-**5k**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
F(1)	142(4)	114(3)	195(5)	11(3)	-60(4)	2(3)	
O(1)	82(2)	82(2)	126(3)	11(2)	-13(2)	9(2)	
O(2)	115(4)	154(4)	92(3)	16(3)	11(3)	-33(3)	
O(3)	92(3)	178(5)	127(4)	-49(4)	25(3)	7(3)	

N(1)	85(3)	121(3)	61(2)	-8(2)	2(2)	15(2)
N(2)	113(4)	111(4)	80(3)	-23(3)	-16(3)	32(3)
N(3)	206(8)	124(4)	134(5)	-51(4)	-67(6)	38(5)
N(4)	65(2)	139(4)	63(2)	-8(2)	-7(2)	0(2)
C(1)	58(2)	84(2)	62(2)	2(2)	-1(2)	8(2)
C(2)	61(2)	83(2)	72(2)	1(2)	-2(2)	10(2)
C(3)	53(2)	99(3)	60(2)	4(2)	4(2)	4(2)
C(4)	60(2)	134(4)	73(3)	8(3)	2(2)	14(3)
C(5)	60(3)	177(6)	79(3)	-1(4)	-7(3)	-6(3)
C(6)	71(3)	162(6)	102(4)	-28(4)	-3(3)	-24(4)
C(7)	80(3)	109(3)	107(4)	-19(3)	15(3)	-15(3)
C(8)	58(2)	95(3)	69(2)	-5(2)	10(2)	0(2)
C(9)	61(2)	87(3)	94(3)	9(2)	2(2)	9(2)
C(10)	57(2)	80(2)	57(2)	-4(2)	-7(2)	1(2)
C(11)	57(2)	115(3)	61(2)	-11(2)	-5(2)	-6(2)
C(12)	57(2)	75(2)	67(2)	2(2)	-5(2)	3(2)
C(13)	61(2)	83(2)	61(2)	-2(2)	-9(2)	1(2)
C(14)	58(2)	101(3)	53(2)	-2(2)	2(2)	12(2)
C(15)	87(3)	96(3)	78(3)	-3(2)	-10(2)	14(3)
C(16)	127(5)	131(5)	74(3)	13(3)	2(3)	49(4)
C(17)	77(4)	185(7)	74(3)	-20(4)	-6(3)	36(4)
C(18)	64(3)	184(7)	83(3)	-16(4)	-11(3)	4(4)
C(19)	51(2)	233(8)	70(3)	-42(4)	-16(2)	-6(4)

Table S15. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å² $x \ 10^3$) for *syn-***5**k.

	х	у	Z	U(eq)	
H(4)	1366	6040	1766	107	
H(5)	-152	4725	1414	127	

H(6)	109	2899	1914	134
H(7)	1930	2360	2700	119
H(9A)	4549	3185	2957	97
H(9B)	3822	3511	3865	97
H(10)	6207	5775	2685	78
H(11A)	5740	3688	1819	93
H(11B)	5114	4817	1484	93
H(12)	7025	3646	3344	80
H(13)	8018	5752	3503	82
H(16)	10756	2456	4963	133
H(17)	12223	3854	5342	134
H(18)	11883	5624	4961	132
H(19)	10015	6198	4174	141

 Table S16. Torsion angles [°] for syn-5k.

F(1)-C(15)-C(16)-C(17)	180.0(6)
O(1)-C(2)-C(3)-C(4)	0.6(8)
O(1)-C(2)-C(3)-C(8)	179.3(5)
O(2)-N(4)-C(11)-C(10)	-53.1(6)
O(3)-N(4)-C(11)-C(10)	129.3(5)
N(1)-C(1)-C(2)-O(1)	64.5(6)
N(1)-C(1)-C(2)-C(3)	-116.3(4)
N(1)-C(1)-C(9)-C(8)	118.1(4)
N(1)-C(1)-C(10)-C(11)	175.8(4)
N(1)-C(1)-C(10)-C(12)	51.4(5)
N(2)-N(1)-C(1)-C(2)	-62.2(6)
N(2)-N(1)-C(1)-C(9)	-174.4(4)
N(2)-N(1)-C(1)-C(10)	57.0(6)
C(1)-C(2)-C(3)-C(4)	-178.5(4)
C(1)-C(2)-C(3)-C(8)	0.2(5)

C(1)-C(10)-C(11)-N(4)	169.7(4)
C(1)-C(10)-C(12)-C(13)	-115.2(5)
C(2)-C(1)-C(9)-C(8)	2.9(5)
C(2)-C(1)-C(10)-C(11)	-65.0(5)
C(2)-C(1)-C(10)-C(12)	170.6(3)
C(2)-C(3)-C(4)-C(5)	178.9(5)
C(2)-C(3)-C(8)-C(7)	-179.8(4)
C(2)-C(3)-C(8)-C(9)	1.8(5)
C(3)-C(4)-C(5)-C(6)	1.0(9)
C(3)-C(8)-C(9)-C(1)	-3.0(5)
C(4)-C(3)-C(8)-C(7)	-1.0(7)
C(4)-C(3)-C(8)-C(9)	-179.4(4)
C(4)-C(5)-C(6)-C(7)	-1.7(10)
C(5)-C(6)-C(7)-C(8)	1.0(9)
C(6)-C(7)-C(8)-C(3)	0.3(8)
C(6)-C(7)-C(8)-C(9)	178.5(5)
C(7)-C(8)-C(9)-C(1)	178.7(5)
C(8)-C(3)-C(4)-C(5)	0.3(7)
C(9)-C(1)-C(2)-O(1)	178.8(5)
C(9)-C(1)-C(2)-C(3)	-2.0(5)
C(9)-C(1)-C(10)-C(11)	52.4(5)
C(9)-C(1)-C(10)-C(12)	-72.0(5)
C(10)-C(1)-C(2)-O(1)	-56.1(6)
C(10)-C(1)-C(2)-C(3)	123.1(4)
C(10)-C(1)-C(9)-C(8)	-116.8(4)
C(10)-C(12)-C(13)-C(14)	-178.4(4)
C(11)-C(10)-C(12)-C(13)	121.3(5)
C(12)-C(10)-C(11)-N(4)	-64.6(5)
C(12)-C(13)-C(14)-C(15)	-1.5(8)
C(12)-C(13)-C(14)-C(19)	176.9(5)
C(13)-C(14)-C(15)-F(1)	-0.8(8)

C(13)-C(14)-C(15)-C(16)	178.8(5)
C(13)-C(14)-C(19)-C(18)	-179.3(4)
C(14)-C(15)-C(16)-C(17)	0.3(9)
C(15)-C(14)-C(19)-C(18)	-0.7(7)
C(15)-C(16)-C(17)-C(18)	-0.8(10)
C(16)-C(17)-C(18)-C(19)	0.5(10)
C(17)-C(18)-C(19)-C(14)	0.2(9)
C(19)-C(14)-C(15)-F(1)	-179.3(6)
C(19)-C(14)-C(15)-C(16)	0.4(8)

Symmetry transformations used to generate equivalent atoms:

8.2 X-ray crystallographic data of anti-5g¹⁹

Data intensity of *anti*-**5g** was collected using a 'Bruker APEX-II CCD' diffractometer at 296(2) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for *anti*-**5g**: C₁₅H₁₂N₄O₃S, T = 296(2) K, Orthorhombic, P2(1)2(1)2(1), a = 6.4901(2) Å, b = 13.5853(4) Å, c = 17.2054(6) Å, a = 90 deg, $\beta = 90 \text{ deg}$, $\gamma = 90 \text{ deg}$, V = 1517.00(8) Å³. Z = 4, $d_{calc} = 1.438 \text{ Mg/m}^3$. 17672 reflections measured, 2673 unique [R(int) = 0.0316], R₁ = 0.0332, wR₂ = 0.0885 ($I > 2\sigma(I)$, final), R₁ = 0.0369, wR₂ = 0.0922 (all data), GOF = 1.055, and 208 parameters.

Table S17. Crystal data and structure refinement for *anti*-5g.Identification code*anti*-5g

¹⁹ Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 1874277).

Empirical formula	$C_{15}H_{12}N_4O_3S$
Formula weight	328.35
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system, space group	Orthorhombic, $P2(1)2(1)2(1)$
Unit cell dimensions	a = 6.4901(2) Å alpha = 90 deg.
	b = 13.5853(4) Å beta = 90 deg.
	c = 17.2054(6) Å gamma = 90 deg.
Volume	1517.00(8) Å ³
Z, Calculated density	4, 1.438 Mg/m ³
Absorption coefficient	0.234 mm ⁻¹
F(000)	680
Crystal size	0.36 x 0.24 x 0.18 mm
Theta range for data collection	1.91 to 25.01 deg.
Limiting indices	-7<=h<=7, -14<=k<=16, -20<=l<=20
Reflections collected / unique	17672 / 2673 [R(int) = 0.0316]
Completeness to theta $= 25.01$	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9591 and 0.9205
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2673 / 0 / 208
Goodness-of-fit on F^2	1.055
Final R indices [I>2sigma(I)]	R1 = 0.0332, $wR2 = 0.0885$
R indices (all data)	R1 = 0.0369, wR2 = 0.0922
Absolute structure parameter	0.01(9)
Largest diff. peak and hole	0.221 and -0.243 e. $Å^{-3}$

Table S18. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($A^2 \ x \ 10^3$) for *anti*-**5g**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

 Х	У	Z	U(eq)

S (1)	9720(1)	4073(1)	9990(1)	69(1)
O (1)	11846(4)	2423(2)	11872(2)	104(1)
O(2)	14873(4)	2708(2)	12272(1)	108(1)
O(3)	7033(2)	5342(1)	11192(1)	52(1)
N(1)	13182(4)	2969(2)	12065(1)	60(1)
N(2)	10029(3)	5549(1)	12560(1)	48(1)
N(3)	8274(3)	5299(1)	12757(1)	46(1)
N(4)	6732(4)	5117(2)	13022(1)	68(1)
C(1)	8972(3)	6847(1)	11073(1)	38(1)
C(2)	7593(3)	7536(2)	10779(1)	48(1)
C(3)	8295(4)	8486(2)	10665(1)	56(1)
C(4)	10305(4)	8728(2)	10841(1)	56(1)
C(5)	11672(4)	8045(2)	11136(1)	48(1)
C(6)	10999(3)	7093(1)	11250(1)	38(1)
C(7)	12184(3)	6210(1)	11546(1)	41(1)
C(8)	10520(3)	5443(1)	11712(1)	36(1)
C(9)	8588(3)	5819(2)	11277(1)	38(1)
C(10)	12805(3)	4054(2)	12070(1)	46(1)
C(11)	11057(3)	4354(1)	11535(1)	36(1)
C(12)	11585(3)	4157(1)	10695(1)	38(1)
C(13)	13477(3)	3959(2)	10373(1)	47(1)
C(14)	13370(5)	3728(2)	9571(1)	61(1)
C(15)	11456(5)	3763(2)	9298(1)	70(1)

 Table S19.
 Bond lengths [A] and angles [deg] for anti-5g.

S(1)-C(15)	1.692(3)
S(1)-C(12)	1.7173(19)
O(1)-N(1)	1.189(3)
O(2)-N(1)	1.207(3)
O(3)-C(9)	1.208(2)

N(1)-C(10)	1.494(3)
N(2)-N(3)	1.236(3)
N(2)-C(8)	1.500(3)
N(3)-N(4)	1.127(3)
C(1)-C(2)	1.390(3)
C(1)-C(6)	1.391(3)
C(1)-C(9)	1.462(3)
C(2)-C(3)	1.382(3)
C(2)-H(2A)	0.9300
C(3)-C(4)	1.379(4)
C(3)-H(3A)	0.9300
C(4)-C(5)	1.381(3)
C(4)-H(4A)	0.9300
C(5)-C(6)	1.378(3)
C(5)-H(5A)	0.9300
C(6)-C(7)	1.513(3)
C(7)-C(8)	1.528(3)
C(7)-H(7A)	0.9700
C(7)-H(7B)	0.9700
C(8)-C(9)	1.547(3)
C(8)-C(11)	1.550(3)
C(10)-C(11)	1.516(3)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(11)-C(12)	1.509(3)
C(11)-H(11A)	0.9800
C(12)-C(13)	1.374(3)
C(13)-C(14)	1.417(3)
C(13)-H(13A)	0.9300
C(14)-C(15)	1.329(4)
C(14)-H(14A)	0.9300
C(15)-H(15B)	0.9300
------------------	------------
C(15)-S(1)-C(12)	92.53(12)
O(1)-N(1)-O(2)	124.2(2)
O(1)-N(1)-C(10)	119.8(2)
O(2)-N(1)-C(10)	115.9(2)
N(3)-N(2)-C(8)	115.90(17)
N(4)-N(3)-N(2)	171.8(2)
C(2)-C(1)-C(6)	121.80(19)
C(2)-C(1)-C(9)	128.37(19)
C(6)-C(1)-C(9)	109.77(17)
C(3)-C(2)-C(1)	117.9(2)
C(3)-C(2)-H(2A)	121.1
C(1)-C(2)-H(2A)	121.1
C(4)-C(3)-C(2)	120.2(2)
C(4)-C(3)-H(3A)	119.9
C(2)-C(3)-H(3A)	119.9
C(3)-C(4)-C(5)	121.9(2)
C(3)-C(4)-H(4A)	119.1
C(5)-C(4)-H(4A)	119.1
C(6)-C(5)-C(4)	118.6(2)
C(6)-C(5)-H(5A)	120.7
C(4)-C(5)-H(5A)	120.7
C(5)-C(6)-C(1)	119.61(19)
C(5)-C(6)-C(7)	129.06(19)
C(1)-C(6)-C(7)	111.33(17)
C(6)-C(7)-C(8)	104.17(15)
C(6)-C(7)-H(7A)	110.9
C(8)-C(7)-H(7A)	110.9
C(6)-C(7)-H(7B)	110.9
C(8)-C(7)-H(7B)	110.9
H(7A)-C(7)-H(7B)	108.9

N(2)-C(8)-C(7)	105.49(16)
N(2)-C(8)-C(9)	105.47(15)
C(7)-C(8)-C(9)	104.88(15)
N(2)-C(8)-C(11)	109.29(15)
C(7)-C(8)-C(11)	117.06(16)
C(9)-C(8)-C(11)	113.75(15)
O(3)-C(9)-C(1)	128.75(18)
O(3)-C(9)-C(8)	123.93(18)
C(1)-C(9)-C(8)	107.09(15)
N(1)-C(10)-C(11)	112.65(18)
N(1)-C(10)-H(10A)	109.1
C(11)-C(10)-H(10A)	109.1
N(1)-C(10)-H(10B)	109.1
C(11)-C(10)-H(10B)	109.1
H(10A)-C(10)-H(10B)	107.8
C(12)-C(11)-C(10)	111.31(16)
C(12)-C(11)-C(8)	114.13(15)
C(10)-C(11)-C(8)	107.83(15)
C(12)-C(11)-H(11A)	107.8
C(10)-C(11)-H(11A)	107.8
C(8)-C(11)-H(11A)	107.8
C(13)-C(12)-C(11)	128.60(18)
C(13)-C(12)-S(1)	109.40(15)
C(11)-C(12)-S(1)	121.87(15)
C(12)-C(13)-C(14)	113.1(2)
C(12)-C(13)-H(13A)	123.5
C(14)-C(13)-H(13A)	123.5
C(15)-C(14)-C(13)	112.4(2)
C(15)-C(14)-H(14A)	123.8
C(13)-C(14)-H(14A)	123.8
C(14)-C(15)-S(1)	112.53(19)

C(14)-C(15)-H(15B)	123.7
S(1)-C(15)-H(15B)	123.7

Table S20. Anisotropic displacement parameters (A² x 10³) for *anti*-**5g**. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*2} U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U11	U22	U33	U23	U13	U12
S (1)	61(1)	91(1)	55(1)	-18(1)	-19(1)	9(1)
O(1)	109(2)	42(1)	159(2)	24(1)	-11(2)	-10(1)
O(2)	127(2)	86(2)	113(2)	-15(1)	-52(2)	64(2)
O(3)	36(1)	50(1)	70(1)	-2(1)	-9(1)	-4(1)
N(1)	82(2)	49(1)	50(1)	9(1)	-3(1)	22(1)
N(2)	46(1)	54(1)	44(1)	-8(1)	-1(1)	3(1)
N(3)	57(1)	39(1)	44(1)	-1(1)	6(1)	9(1)
N(4)	68(1)	71(1)	66(1)	4(1)	17(1)	-2(1)
C(1)	41(1)	39(1)	35(1)	-4(1)	-2(1)	4(1)
C(2)	48(1)	52(1)	43(1)	-3(1)	-8(1)	12(1)
C(3)	73(2)	46(1)	48(1)	3(1)	-6(1)	19(1)
C(4)	81(2)	36(1)	52(1)	-1(1)	-2(1)	5(1)
C(5)	54(1)	39(1)	53(1)	-2(1)	0(1)	-3(1)
C(6)	40(1)	35(1)	38(1)	-6(1)	-1(1)	2(1)
C(7)	34(1)	35(1)	54(1)	-4(1)	-6(1)	1(1)
C(8)	35(1)	34(1)	39(1)	-2(1)	-5(1)	2(1)
C(9)	32(1)	40(1)	42(1)	-4(1)	-3(1)	2(1)
C(10)	54(1)	39(1)	43(1)	0(1)	-7(1)	9(1)
C(11)	36(1)	32(1)	40(1)	2(1)	-2(1)	-2(1)
C(12)	45(1)	28(1)	42(1)	-1(1)	-7(1)	-4(1)
C(13)	47(1)	51(1)	43(1)	-5(1)	1(1)	-5(1)
C(14)	77(2)	56(1)	50(1)	-6(1)	15(1)	0(1)

C(15)	101(2)	68(2)	43(1)	-11(1)	-7(1)	10(2)
· · ·	· · ·				· · ·	

		X	У	Z	U(eq)
H(2A)	6241	7363	10662	57	
H(3A)	7409	8963	10469	67	
H(4A)	10753	9370	10758	68	
H(5A)	13019	8223	11256	58	
H(7A)	12941	6372	12015	49	
H(7B)	13144	5973	11156	49	
H(10A)	14053	4390	11911	55	
H(10B)	12483	4261	12596	55	
H(11A)	9853	3953	11668	43	
H(13A)	14703	3975	10653	57	
H(14A)	14511	3569	9269	74	
H(15B)	11109	3633	8784	85	
H(15B)	11109	3633	8784	85	

Table S21. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($A^2 \ x \ 10^3$) for *anti*-5g.

Table S22. Torsion	angles [de	eg] for <i>anti-</i> 5g.
--------------------	------------	--------------------------

C(8)-N(2)-N(3)-N(4)	-172.6(15)
C(6)-C(1)-C(2)-C(3)	0.0(3)
C(9)-C(1)-C(2)-C(3)	176.86(19)
C(1)-C(2)-C(3)-C(4)	0.0(3)
C(2)-C(3)-C(4)-C(5)	-0.3(4)
C(3)-C(4)-C(5)-C(6)	0.6(3)
C(4)-C(5)-C(6)-C(1)	-0.6(3)
C(4)-C(5)-C(6)-C(7)	178.6(2)
C(2)-C(1)-C(6)-C(5)	0.3(3)

C(9)-C(1)-C(6)-C(5)	-177.08(17)
C(2)-C(1)-C(6)-C(7)	-178.99(18)
C(9)-C(1)-C(6)-C(7)	3.6(2)
C(5)-C(6)-C(7)-C(8)	167.9(2)
C(1)-C(6)-C(7)-C(8)	-12.9(2)
N(3)-N(2)-C(8)-C(7)	153.11(17)
N(3)-N(2)-C(8)-C(9)	42.4(2)
N(3)-N(2)-C(8)-C(11)	-80.2(2)
C(6)-C(7)-C(8)-N(2)	-94.79(17)
C(6)-C(7)-C(8)-C(9)	16.3(2)
C(6)-C(7)-C(8)-C(11)	143.44(16)
C(2)-C(1)-C(9)-O(3)	4.7(3)
C(6)-C(1)-C(9)-O(3)	-178.1(2)
C(2)-C(1)-C(9)-C(8)	-169.93(19)
C(6)-C(1)-C(9)-C(8)	7.2(2)
N(2)-C(8)-C(9)-O(3)	-78.7(2)
C(7)-C(8)-C(9)-O(3)	170.21(18)
C(11)-C(8)-C(9)-O(3)	41.1(3)
N(2)-C(8)-C(9)-C(1)	96.26(17)
C(7)-C(8)-C(9)-C(1)	-14.9(2)
C(11)-C(8)-C(9)-C(1)	-143.99(16)
O(1)-N(1)-C(10)-C(11)	-22.7(3)
O(2)-N(1)-C(10)-C(11)	158.0(2)
N(1)-C(10)-C(11)-C(12)	-65.4(2)
N(1)-C(10)-C(11)-C(8)	168.68(18)
N(2)-C(8)-C(11)-C(12)	-179.89(16)
C(7)-C(8)-C(11)-C(12)	-60.1(2)
C(9)-C(8)-C(11)-C(12)	62.5(2)
N(2)-C(8)-C(11)-C(10)	-55.7(2)
C(7)-C(8)-C(11)-C(10)	64.1(2)
C(9)-C(8)-C(11)-C(10)	-173.24(16)

C(10)-C(11)-C(12)-C(13)	-15.0(3)
C(8)-C(11)-C(12)-C(13)	107.3(2)
C(10)-C(11)-C(12)-S(1)	160.51(14)
C(8)-C(11)-C(12)-S(1)	-77.2(2)
C(15)-S(1)-C(12)-C(13)	0.88(18)
C(15)-S(1)-C(12)-C(11)	-175.42(17)
C(11)-C(12)-C(13)-C(14)	174.90(19)
S(1)-C(12)-C(13)-C(14)	-1.1(2)
C(12)-C(13)-C(14)-C(15)	0.8(3)
C(13)-C(14)-C(15)-S(1)	-0.1(3)
C(12)-S(1)-C(15)-C(14)	-0.5(2)

8.3 Single-Crystal X-ray Crystallography of anti-14²⁰

Data intensity of *anti*-14 was collected using a 'Bruker APEX-II CCD' diffractometer at 293(2) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for *anti*-14: C₁₈H₁₄N₄O₃Br₂, T = 293(2) K, monoclinic, P2₁, a = 7.63640(10) Å, b = 11.6851(2) Å, c = 11.5473(2) Å, a = 90 deg, $\beta = 104.259(2)$ deg, $\gamma = 90$ deg, V = 998.65(3) Å³. Z = 2, $d_{calc} = 1.643$ g/cm³. 21816 reflections measured, 4011 [R_{int} = 0.0726, R_{sigma} = 0.0335], R₁ = 0.0383, wR₂ = 0.1042 ($I > 2\sigma(I)$, final), R₁ = 0.0402, wR₂ = 0.1062 (all data), GOF = 1.059, and 245 parameters.

²⁰ Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 1874283).

code	anti-14
nula	$C_{18}H_{14}N_4O_3Br_2\\$
nt	494.15
Z	293(2)
l	Monoclinic
	P21
	7.63640(10)
	11.6851(2)
	11.5473(2)
	90
	104.259(2)
	90
	998.65(3)
	2
	1.643
	5.374
	488.0
m ³	$0.32\times0.26\times0.18$
	$CuK\alpha (\lambda = 1.54184)$
ata collection/	° 7.9 to 148.916
	$-9 \le h \le 9, -14 \le k \le 14, -14 \le l \le 14$
llected	21816
eflections	4011 [$R_{int} = 0.0726$, $R_{sigma} = 0.0335$]
/parameters	4011/1/245
it on F ²	1.059
es [I>=2σ (I)]	$R_1 = 0.0383, wR_2 = 0.1042$
es [all data]	$R_1 = 0.0402, wR_2 = 0.1062$
eak/hole / e Å-	³ 0.56/-0.55
	code nula nt (1)

 Table S23. Crystal data and structure refinement for anti-14.

Flack parameter	-0.015(12)
-----------------	------------

Atom x y Ζ U(eq) Br1 1419.5(9) 2318.3(8) -304.8(4)87.2(3) Br2 3767.4(17) 9648.1(8) 9030.8(9) 115.2(4) **O**1 1169(6) 340(3) 5204(4) 72.0(10) O2 6661(6) 3077(4) 6254(4)76.4(11) O3 6852(7)2949(6) 8130(5) 97.6(16) N1 6083(6) 2766(4) 7092(4) 62.9(11) N2 683(6) 1893(5) 6852(4) 64.2(11) N3 -588(6)1218(4) 6746(4) 62.5(10)N4 -1720(8)608(5) 6796(6) 84.7(15) C1 57.9(11) 1556(6) 717(5) 2900(4) C2 1646(7)933(6) 1743(5) 64.5(13) C3 1401(6) 63.0(13) 2031(6) 1304(4)C4 1066(7)2925(5) 2005(5) 61.4(12) C5 986(7) 2703(5) 3162(4) 58.3(12) C6 1244(6) 1609(4) 3618(4) 51.3(10) C7 1144(6) 1313(5) 4864(4) 53.0(10) C8 1056(5)2304(5) 5727(3) 50.8(9) C9 2863(6) 2949(4) 6092(4)49.2(9) C10 2773(6) 4031(4) 6764(4)50.7(10) C11 3391(6) 5017(4) 6481(4) 51.2(10) C12 3476(6) 6111(4) 7111(4) 49.7(9) C13 7108(5) 3778(7) 6544(4)60.4(11)

Table S24. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å²×10³) for *anti*-14. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ}tensor.

C14	3869(9)	8171(5)	7099(6)	70.8(15)
C15	3691(9)	8212(5)	8246(6)	67.8(14)
C16	3406(7)	7234(5)	8850(4)	62.8(11)
C17	3294(7)	6198(4)	8288(4)	55.7(11)

Table S25. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for *anti*-14. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U23	U 13	U12
Br1	103.3(4)	118.8(6)	40.7(3)	2.4(3)	19.7(2)	16.7(4)
Br2	190.9(10)	57.2(4)	102.9(6)	-24.6(4)	46.6(6)	-12.6(5)
01	108(3)	54(2)	57(2)	-1.9(17)	24.3(19)	3(2)
O2	76(2)	78(3)	80(3)	-5(2)	28(2)	-4(2)
O3	84(3)	129(5)	67(3)	-14(3)	-7(2)	-11(3)
N1	59(2)	65(3)	60(2)	-10.1(19)	5.6(18)	7.4(17)
N2	71(2)	79(3)	46(2)	-7.8(19)	20.0(17)	-14(2)
N3	79(3)	57(3)	57(2)	3.5(19)	27(2)	6(2)
N4	104(4)	60(3)	99(4)	3(3)	42(3)	-9(3)
C1	64(2)	59(3)	50(2)	-8(2)	13.9(19)	9(2)
C2	70(3)	72(3)	52(3)	-13(2)	17(2)	11(2)
C3	60(2)	85(4)	40(2)	-8(2)	6.6(17)	8(2)
C4	75(3)	61(3)	46(2)	5(2)	11(2)	6(2)
C5	72(3)	58(3)	42(2)	-7.4(19)	9.8(19)	1(2)
C6	58(2)	57(3)	38(2)	-8.5(18)	10.4(17)	-0.2(19)
C7	59(2)	57(3)	42(2)	-3(2)	8.7(17)	1(2)
C8	56.3(19)	57(3)	39.2(17)	-6(2)	11.5(14)	1(2)
C9	56(2)	53(3)	38(2)	-5.8(17)	12.1(16)	2.6(18)
C10	58(2)	56(3)	39(2)	-6.1(18)	12.7(17)	3.3(19)
C11	62(2)	51(2)	38(2)	-2.1(17)	8.8(17)	7.1(18)

C12	56(2)	46(2)	44(2)	-0.2(17)	7.4(17)	4.4(17)
C13	76(3)	55(3)	53(2)	0(2)	22(2)	-1(2)
C14	95(4)	49(3)	74(4)	2(3)	33(3)	-6(3)
C15	86(4)	53(3)	64(3)	-11(2)	17(3)	-1(3)
C16	80(3)	61(3)	46(2)	-3(2)	12.9(19)	0(3)
C17	73(3)	54(3)	40(2)	3.6(19)	12.7(19)	3(2)
C18	61(2)	55(3)	62(2)	4(2)	7.7(19)	0(2)

 Table S26. Bond Lengths for anti-14.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C3	1.892(5)	C5	C6	1.378(7)
Br2	C15	1.902(6)	C6	C7	1.500(6)
01	C7	1.201(7)	C7	C8	1.540(7)
O2	N1	1.214(7)	C8	C9	1.537(6)
03	N1	1.217(6)	C9	C10	1.494(6)
N1	C18	1.478(7)	C9	C18	1.538(6)
N2	N3	1.234(7)	C10	C11	1.317(7)
N2	C8	1.477(6)	C11	C12	1.464(7)
N3	N4	1.132(7)	C12	C13	1.383(8)
C1	C2	1.379(8)	C12	C17	1.404(7)
C1	C6	1.388(7)	C13	C14	1.392(9)
C2	C3	1.376(9)	C14	C15	1.364(10)
C3	C4	1.384(8)	C15	C16	1.383(9)
C4	C5	1.377(7)	C16	C17	1.367(8)

Table S27. Bond Angles for anti-14.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O2	N1	03	123.4(5)	N2	C8	C9	105.8(3)
O2	N1	C18	118.1(4)	C9	C8	C7	111.5(3)

03	N1	C18	118.4(5)	C8	C9	C18	109.9(4)
N3	N2	C8	116.0(4)	C10	C9	C8	113.8(4)
N4	N3	N2	171.6(6)	C10	C9	C18	109.7(4)
C2	C1	C6	119.9(5)	C11	C10	C9	123.1(4)
C3	C2	C1	119.5(5)	C10	C11	C12	128.0(4)
C2	C3	Br1	119.6(4)	C13	C12	C11	119.5(4)
C2	C3	C4	121.2(5)	C13	C12	C17	117.7(4)
C4	C3	Br1	119.2(5)	C17	C12	C11	122.8(4)
C5	C4	C3	118.9(5)	C12	C13	C14	121.9(5)
C4	C5	C6	120.7(5)	C15	C14	C13	118.2(5)
C1	C6	C7	117.2(5)	C14	C15	Br2	119.6(5)
C5	C6	C1	119.8(4)	C14	C15	C16	121.8(5)
C5	C6	C7	123.0(4)	C16	C15	Br2	118.6(5)
01	C7	C6	122.1(5)	C17	C16	C15	119.4(5)
01	C7	C8	120.0(4)	C16	C17	C12	120.9(5)
C6	C7	C8	117.9(4)	N1	C18	C9	109.0(4)
N2	C8	C7	111.9(4)				

Table S28. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for *anti*-14.

Atom	X	У	Z	U(eq)
H1	1704.5	-24.74	3199.84	69
H2	1871.73	340.01	1261.53	77
H4	897.16	3664.87	1700.16	74
H5	755.97	3296.13	3640.27	70
H8	103.32	2838.91	5337.84	61
H9	3222.71	3150.06	5358.99	59
H10	2256.89	4005.88	7413.96	61
H11	3826.52	5019.62	5796.7	61

H13	3925.94	7066.34	5769.66	73
H14	4045.52	8835.79	6699.82	85
H16	3291.31	7282.46	9631.66	75
H17	3095.7	5540.57	8691.97	67
H18A	4027.46	1957.51	7575.77	73
H18B	4405.4	1463.41	6394.06	73

8.4 Single-Crystal X-ray Crystallography of 15a²¹

Data intensity of **15a** was collected using a 'Bruker APEX-II CCD' diffractometer at 296(2) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for **15a**: C₂₅H₂₁ClN₂O₃, *T* = 296(2) K, Orthorhombic, P2(1)2(1)2(1), *a* = 6.2023(2) Å, *b* = 15.1707(4) Å, *c* = 23.3424(7) Å, *a* = 90 deg, β = 90 deg, γ = 90 deg, *V* = 2196.36(11) Å³. Z = 4, *d*_{calc} = 1.309 Mg/m³. 25874 reflections measured, 3885 unique [R(int) = 0.0399], R₁ = 0.0391, wR₂ = 0.1005 (*I* > 2 σ (*I*), final), R₁ = 0.0508, wR₂ = 0.1092 (all data), GOF = 1.046, and 280 parameters.

Table S29. Crystal data and structure refinement for 15a.

Identification code	15 a
Empirical formula	$C_{25}H_{21}ClN_2O_3$
Formula weight	432.89
Temperature	296(2) K
Wavelength	0.71073 Å

²¹ Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 1874278).

Crystal system, space group	Orthorhombic, $P2(1)2(1)2(1)$
Unit cell dimensions	a = 6.2023(2) Å alpha = 90 deg.
	b = 15.1707(4) Å beta = 90 deg.
	c = 23.3424(7) Å gamma = 90 deg.
Volume	2196.36(11) Å ³
Z, Calculated density	4, 1.309 Mg/m ³
Absorption coefficient	0.203 mm ⁻¹
F(000)	904
Crystal size	0.35 x 0.33 x 0.17 mm
Theta range for data collection	1.60 to 25.01 deg.
Limiting indices	-7<=h<=7, -18<=k<=18, -27<=l<=26
Reflections collected / unique	25874 / 3885 [R(int) = 0.0399]
Completeness to theta $= 25.01$	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9663 and 0.9323
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3885 / 0 / 280
Goodness-of-fit on F ²	1.046
Final R indices [I>2sigma(I)]	$R_1 = 0.0391, wR_2 = 0.1005$
R indices (all data)	$R_1 = 0.0508, wR_2 = 0.1092$
Absolute structure parameter	0.01(9)
Largest diff. peak and hole	0.226 and -0.287 e. Å ⁻³

Table S30. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($A^2 \ x \ 10^3$) for **15a**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	у	Z	U(eq)
Cl(1)	9940(2)	8404(1)	8881(1)	88(1)
O (1)	5563(3)	4438(1)	9645(1)	58(1)
O(2)	12797(4)	4627(2)	11007(1)	84(1)
O(3)	10281(6)	5206(2)	11520(1)	109(1)

N(2)	9200(3)	3386(1)	10118(1)	45(1)
N(1)	10947(5)	4883(1)	11080(1)	62(1)
C(1)	7688(4)	4500(2)	8785(1)	44(1)
C(2)	6349(5)	4885(2)	8373(1)	58(1)
C(3)	7116(6)	4975(2)	7826(1)	73(1)
C(4)	9184(6)	4675(2)	7694(1)	75(1)
C(5)	10491(5)	4282(2)	8094(1)	60(1)
C(6)	9732(4)	4195(2)	8652(1)	45(1)
C(7)	10778(4)	3774(2)	9163(1)	46(1)
C(8)	9394(3)	4054(1)	9672(1)	37(1)
C(9)	7257(4)	4345(1)	9390(1)	41(1)
C(10)	10195(4)	5746(1)	9745(1)	38(1)
C(11)	8365(4)	6267(2)	9775(1)	47(1)
C(12)	8285(4)	7079(2)	9507(1)	52(1)
C(13)	10034(4)	7371(2)	9209(1)	53(1)
C(14)	11869(4)	6874(2)	9166(1)	60(1)
C(15)	11939(4)	6066(2)	9439(1)	50(1)
C(16)	8298(4)	3810(1)	10630(1)	44(1)
C(17)	9302(4)	4750(1)	10607(1)	45(1)
C(18)	10347(4)	4840(1)	10020(1)	37(1)
C(19)	8652(4)	3312(1)	11184(1)	42(1)
C(20)	10554(5)	2871(2)	11298(1)	53(1)
C(21)	10878(5)	2499(2)	11833(1)	62(1)
C(22)	9358(6)	2558(2)	12259(1)	63(1)
C(23)	7470(5)	2976(2)	12136(1)	61(1)
C(24)	7108(4)	3351(2)	11603(1)	54(1)
C(25)	9764(7)	2168(2)	12847(1)	102(1)

 Table S31. Bond lengths [A] and angles [deg] for 15a.

Cl(1)-C(13)	1.746(2)
O(1)-C(9)	1.217(3)
O(2)-N(1)	1.224(3)
O(3)-N(1)	1.210(3)
N(2)-C(8)	1.457(3)
N(2)-C(16)	1.469(3)
N(2)-H(2B)	0.8600
N(1)-C(17)	1.515(4)
C(1)-C(6)	1.385(3)
C(1)-C(2)	1.398(3)
C(1)-C(9)	1.455(3)
C(2)-C(3)	1.370(4)
C(2)-H(2A)	0.9300
C(3)-C(4)	1.396(5)
C(3)-H(3A)	0.9300
C(4)-C(5)	1.372(4)
C(4)-H(4A)	0.9300
C(5)-C(6)	1.392(4)
C(5)-H(5A)	0.9300
C(6)-C(7)	1.500(3)
C(7)-C(8)	1.527(3)
C(7)-H(7A)	0.9700
C(7)-H(7B)	0.9700
C(8)-C(9)	1.545(3)
C(8)-C(18)	1.559(3)
C(10)-C(15)	1.384(3)
C(10)-C(11)	1.385(3)
C(10)-C(18)	1.520(3)
C(11)-C(12)	1.381(3)
C(11)-H(11A)	0.9300
C(12)-C(13)	1.364(4)

C(12)-H(12A)	0.9300
C(13)-C(14)	1.368(4)
C(14)-C(15)	1.383(4)
C(14)-H(14A)	0.9300
C(15)-H(15A)	0.9300
C(16)-C(19)	1.514(3)
C(16)-C(17)	1.557(3)
C(16)-H(16A)	0.9800
C(17)-C(18)	1.522(3)
C(17)-H(17A)	0.9800
C(18)-H(18A)	0.9800
C(19)-C(24)	1.370(3)
C(19)-C(20)	1.382(4)
C(20)-C(21)	1.385(4)
C(20)-H(20A)	0.9300
C(21)-C(22)	1.372(4)
C(21)-H(21A)	0.9300
C(22)-C(23)	1.362(4)
C(22)-C(25)	1.517(4)
C(23)-C(24)	1.387(4)
C(23)-H(23A)	0.9300
C(24)-H(24A)	0.9300
C(25)-H(25A)	0.9600
C(25)-H(25B)	0.9600
C(25)-H(25C)	0.9600
C(8)-N(2)-C(16)	107.89(16)
C(8)-N(2)-H(2B)	126.1
C(16)-N(2)-H(2B)	126.1
O(3)-N(1)-O(2)	124.5(3)
O(3)-N(1)-C(17)	116.2(3)
O(2)-N(1)-C(17)	119.2(2)

C(6)-C(1)-C(2)	122.0(2)
C(6)-C(1)-C(9)	109.3(2)
C(2)-C(1)-C(9)	128.7(2)
C(3)-C(2)-C(1)	118.5(3)
C(3)-C(2)-H(2A)	120.8
C(1)-C(2)-H(2A)	120.8
C(2)-C(3)-C(4)	119.5(3)
C(2)-C(3)-H(3A)	120.3
C(4)-C(3)-H(3A)	120.3
C(5)-C(4)-C(3)	122.4(3)
C(5)-C(4)-H(4A)	118.8
C(3)-C(4)-H(4A)	118.8
C(4)-C(5)-C(6)	118.5(3)
C(4)-C(5)-H(5A)	120.7
C(6)-C(5)-H(5A)	120.7
C(1)-C(6)-C(5)	119.2(2)
C(1)-C(6)-C(7)	111.1(2)
C(5)-C(6)-C(7)	129.7(2)
C(6)-C(7)-C(8)	104.94(18)
C(6)-C(7)-H(7A)	110.8
C(8)-C(7)-H(7A)	110.8
C(6)-C(7)-H(7B)	110.8
C(8)-C(7)-H(7B)	110.8
H(7A)-C(7)-H(7B)	108.8
N(2)-C(8)-C(7)	114.09(18)
N(2)-C(8)-C(9)	115.59(18)
C(7)-C(8)-C(9)	103.23(17)
N(2)-C(8)-C(18)	101.09(16)
C(7)-C(8)-C(18)	113.94(19)
C(9)-C(8)-C(18)	109.26(17)
O(1)-C(9)-C(1)	128.0(2)

O(1)-C(9)-C(8)	124.4(2)
C(1)-C(9)-C(8)	107.64(19)
C(15)-C(10)-C(11)	117.8(2)
C(15)-C(10)-C(18)	119.13(19)
C(11)-C(10)-C(18)	123.0(2)
C(12)-C(11)-C(10)	121.0(2)
C(12)-C(11)-H(11A)	119.5
C(10)-C(11)-H(11A)	119.5
C(13)-C(12)-C(11)	119.5(2)
C(13)-C(12)-H(12A)	120.3
C(11)-C(12)-H(12A)	120.3
C(12)-C(13)-C(14)	121.3(2)
C(12)-C(13)-Cl(1)	119.3(2)
C(14)-C(13)-Cl(1)	119.4(2)
C(13)-C(14)-C(15)	118.7(2)
C(13)-C(14)-H(14A)	120.6
C(15)-C(14)-H(14A)	120.6
C(14)-C(15)-C(10)	121.6(2)
C(14)-C(15)-H(15A)	119.2
C(10)-C(15)-H(15A)	119.2
N(2)-C(16)-C(19)	114.94(18)
N(2)-C(16)-C(17)	102.80(18)
C(19)-C(16)-C(17)	115.32(19)
N(2)-C(16)-H(16A)	107.8
C(19)-C(16)-H(16A)	107.8
C(17)-C(16)-H(16A)	107.8
N(1)-C(17)-C(18)	110.9(2)
N(1)-C(17)-C(16)	111.48(18)
C(18)-C(17)-C(16)	106.40(17)
N(1)-C(17)-H(17A)	109.3
C(18)-C(17)-H(17A)	109.3

C(16)-C(17)-H(17A)	109.3
C(10)-C(18)-C(17)	115.79(17)
C(10)-C(18)-C(8)	116.63(17)
C(17)-C(18)-C(8)	103.85(18)
C(10)-C(18)-H(18A)	106.6
C(17)-C(18)-H(18A)	106.6
C(8)-C(18)-H(18A)	106.6
C(24)-C(19)-C(20)	118.6(2)
C(24)-C(19)-C(16)	119.2(2)
C(20)-C(19)-C(16)	122.1(2)
C(19)-C(20)-C(21)	119.7(3)
C(19)-C(20)-H(20A)	120.1
C(21)-C(20)-H(20A)	120.1
C(22)-C(21)-C(20)	121.8(3)
C(22)-C(21)-H(21A)	119.1
C(20)-C(21)-H(21A)	119.1
C(23)-C(22)-C(21)	118.0(2)
C(23)-C(22)-C(25)	121.0(3)
C(21)-C(22)-C(25)	121.1(3)
C(22)-C(23)-C(24)	121.2(3)
C(22)-C(23)-H(23A)	119.4
C(24)-C(23)-H(23A)	119.4
C(19)-C(24)-C(23)	120.7(3)
C(19)-C(24)-H(24A)	119.7
C(23)-C(24)-H(24A)	119.7
C(22)-C(25)-H(25A)	109.5
C(22)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(22)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5

U11 U22 U33 U23 U13 U12 Cl(1)108(1)57(1) 100(1)33(1) -26(1)-8(1) O(1) 36(1) 82(1) 54(1) 5(1) 2(1)9(1) O(2) 89(2) 89(2) 13(1)-35(1)-17(1)73(2) O(3) 11(2) 193(3) 88(2) 46(1) -24(1)-32(2)N(2) 56(1) -3(1) 36(1) 42(1)-1(1)5(1) N(1) 105(2)42(1)40(1)-3(1)-5(1)-18(1)C(1) 47(1) -2(1)-8(1)46(1)40(1)0(1)C(2) 64(2)57(2) 3(1)-13(1)5(1) 52(2) C(3) 98(3) 75(2) 45(2) 9(1) -16(2)4(2)C(4) 104(3)77(2) 42(2) 4(1)5(2) -7(2)C(5) 67(2) 65(2)49(2) -9(1) 8(1) -1(2)-9(1) C(6)-1(1) -3(1)52(1) 46(1)37(1) C(7) 45(1) 50(1) 43(1) -11(1) 0(1)8(1) C(8) 36(1) 38(1) 38(1) -1(1)-3(1) 6(1) C(9) 37(1) 43(1)43(1)-4(1)-2(1)0(1)C(10) 0(1)41(1) 38(1) 34(1) -1(1)2(1)C(11) 43(1)48(1) 49(2) 2(1)4(1)5(1) C(12) 55(2) 59(2) 1(1)-7(1)42(1)12(1)C(13) 64(2)42(1)52(2) 8(1) -12(1)-3(1) C(14) 58(2) 65(2) 58(2) 17(1)3(1)-8(1)C(15) 43(1)55(1) 51(2) 8(1) 2(1)6(1) C(16) 4(1) 44(1) 46(1)41(1)-2(1)2(1)C(17) 0(1)58(2) 38(1) 38(1) 4(1)10(1)C(18) 37(1) 39(1) 37(1) -4(1)-2(1)6(1)

Table S32. Anisotropic displacement parameters ($A^2 \times 10^3$) for **15a**. The anisotropic displacement factor exponent takes the form: -2 pi² [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12$]

C(19)	47(1)	36(1)	44(1)	3(1)	-4(1)	-3(1)
C(20)	63(2)	45(1)	51(2)	2(1)	2(1)	5(1)
C(21)	77(2)	49(1)	59(2)	4(1)	-15(2)	10(1)
C(22)	97(2)	44(1)	47(2)	5(1)	-8(2)	-8(2)
C(23)	76(2)	58(2)	50(2)	5(1)	8(2)	-10(2)
C(24)	55(2)	54(1)	52(2)	3(1)	2(1)	-5(1)
C(25)	156(4)	100(2)	50(2)	25(2)	-17(2)	6(3)

Table S33. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($A^2 \ x \ 10^3$) for **15a**.

	Х	у	Z	U(eq)
H(2B)	9551	2840	10086	54
H(2A)	4971	5076	8469	69
H(3A)	6264	5234	7545	87
H(4A)	9695	4744	7322	89
H(5A)	11854	4077	7993	73
H(7A)	12248	3980	9208	55
H(7B)	10792	3137	9125	55
H(11A)	7172	6068	9978	56
H(12A)	7047	7423	9531	62
H(14A)	13046	7077	8957	73
H(15A)	13188	5729	9416	60
H(16A)	6739	3870	10573	52
H(17A)	8156	5191	10646	54
H(18A)	11885	4716	10072	45
H(20A)	11611	2825	11018	63
H(21A)	12160	2202	11906	74
H(23A)	6404	3011	12415	73
H(24A)	5803	3631	11529	64
H(25A)	8527	2266	13086	153

H(25B)	11002	2445	13016	153
H(25C)	10019	1546	12812	153

Table S34. Torsion angles [deg] for 15a.

C(6)-C(1)-C(2)-C(3)	-1.2(4)
C(9)-C(1)-C(2)-C(3)	179.1(3)
C(1)-C(2)-C(3)-C(4)	0.6(4)
C(2)-C(3)-C(4)-C(5)	0.6(5)
C(3)-C(4)-C(5)-C(6)	-1.2(4)
C(2)-C(1)-C(6)-C(5)	0.6(4)
C(9)-C(1)-C(6)-C(5)	-179.6(2)
C(2)-C(1)-C(6)-C(7)	-177.3(2)
C(9)-C(1)-C(6)-C(7)	2.5(3)
C(4)-C(5)-C(6)-C(1)	0.5(4)
C(4)-C(5)-C(6)-C(7)	178.0(3)
C(1)-C(6)-C(7)-C(8)	-14.0(3)
C(5)-C(6)-C(7)-C(8)	168.4(2)
C(16)-N(2)-C(8)-C(7)	166.53(19)
C(16)-N(2)-C(8)-C(9)	-74.0(2)
C(16)-N(2)-C(8)-C(18)	43.8(2)
C(6)-C(7)-C(8)-N(2)	144.96(19)
C(6)-C(7)-C(8)-C(9)	18.7(2)
C(6)-C(7)-C(8)-C(18)	-99.6(2)
C(6)-C(1)-C(9)-O(1)	-171.5(2)
C(2)-C(1)-C(9)-O(1)	8.2(4)
C(6)-C(1)-C(9)-C(8)	10.0(2)
C(2)-C(1)-C(9)-C(8)	-170.2(2)
N(2)-C(8)-C(9)-O(1)	38.3(3)
C(7)-C(8)-C(9)-O(1)	163.6(2)
C(18)-C(8)-C(9)-O(1)	-74.8(3)

N(2)-C(8)-C(9)-C(1)	-143.21(18)
C(7)-C(8)-C(9)-C(1)	-17.9(2)
C(18)-C(8)-C(9)-C(1)	103.6(2)
C(15)-C(10)-C(11)-C(12)	0.0(4)
C(18)-C(10)-C(11)-C(12)	-178.6(2)
C(10)-C(11)-C(12)-C(13)	0.0(4)
C(11)-C(12)-C(13)-C(14)	0.3(4)
C(11)-C(12)-C(13)-Cl(1)	-179.0(2)
C(12)-C(13)-C(14)-C(15)	-0.8(4)
Cl(1)-C(13)-C(14)-C(15)	178.6(2)
C(13)-C(14)-C(15)-C(10)	0.9(4)
C(11)-C(10)-C(15)-C(14)	-0.5(4)
C(18)-C(10)-C(15)-C(14)	178.1(2)
C(8)-N(2)-C(16)-C(19)	-160.83(18)
C(8)-N(2)-C(16)-C(17)	-34.7(2)
O(3)-N(1)-C(17)-C(18)	148.6(2)
O(2)-N(1)-C(17)-C(18)	-34.7(3)
O(3)-N(1)-C(17)-C(16)	-93.0(2)
O(2)-N(1)-C(17)-C(16)	83.7(3)
N(2)-C(16)-C(17)-N(1)	-110.2(2)
C(19)-C(16)-C(17)-N(1)	15.7(3)
N(2)-C(16)-C(17)-C(18)	10.9(2)
C(19)-C(16)-C(17)-C(18)	136.7(2)
C(15)-C(10)-C(18)-C(17)	141.7(2)
C(11)-C(10)-C(18)-C(17)	-39.7(3)
C(15)-C(10)-C(18)-C(8)	-95.7(2)
C(11)-C(10)-C(18)-C(8)	82.9(3)
N(1)-C(17)-C(18)-C(10)	-95.0(2)
C(16)-C(17)-C(18)-C(10)	143.55(19)
N(1)-C(17)-C(18)-C(8)	135.78(18)
C(16)-C(17)-C(18)-C(8)	14.4(2)

-163.10(18)
74.1(2)
-40.8(2)
-34.4(2)
-157.26(18)
87.9(2)
-146.5(2)
94.1(3)
38.3(3)
-81.1(3)
-1.5(4)
173.7(2)
-0.2(4)
1.7(4)
-178.3(3)
-1.5(4)
178.6(3)
1.8(4)
-173.6(2)
-0.3(4)

8.5 Single-Crystal X-ray Crystallography of 15c²²

Data intensity of **15c** was collected using a 'Bruker APEX-II CCD' diffractometer at 296(2) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for **15c**: C₂₅H₂₁ClN₂O₃, *T* = 296(2) K, Orthorhombic, P2(1)2(1)2(1), *a* = 6.6447(5) Å, *b* = 14.3101(11) Å, *c* = 22.5008(17) Å, *a* =

²² Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 1874279).

90 deg, $\beta = 90$ deg, $\gamma = 90$ deg, V = 2139.5(3) Å³. Z = 4, $d_{calc} = 1.344$ Mg/m³. 24886 reflections measured, 3762 unique [R(int) = 0.0587], R₁ = 0.0430, wR₂ = 0.0935 ($I > 2\sigma(I)$, final), R₁ = 0.0682, wR₂ = 0.1084 (all data), GOF = 0.996, and 280 parameters.

Table S35. Crystal data and structure refinement for 15c.

Identification code	15c
Empirical formula	$C_{25}H_{21}ClN_2O_3$
Formula weight	432.89
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system, space group	Orthorhombic, P2(1)2(1)2(1)
Unit cell dimensions	a = 6.6447(5) Å alpha = 90 deg.
	b = 14.3101(11) Å beta = 90 deg.
	c = 22.5008(17) Å gamma = 90 deg.
Volume	2139.5(3) Å ³
Z, Calculated density	4, 1.344 Mg/m ³
Absorption coefficient	0.209 mm ⁻¹
F(000)	904
Crystal size	0.49 x 0.23 x 0.19 mm
Theta range for data collection	1.69 to 25.00 deg.
Limiting indices	-7<=h<=7, -17<=k<=17, -26<=l<=23
Reflections collected / unique	24886 / 3762 [R(int) = 0.0587]
Completeness to theta $= 25.00$	99.9 %
Absorption correction	Semi-empirical from equivalents

Max. and min. transmission	0.9615 and 0.9047
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3762 / 0 / 280
Goodness-of-fit on F ²	0.996
Final R indices [I>2sigma(I)]	R1 = 0.0430, wR2 = 0.0935
R indices (all data)	R1 = 0.0682, wR2 = 0.1084
Absolute structure parameter	-0.14(10)
Largest diff. peak and hole	0.227 and -0.246 e. $Å^{-3}$

Table S36. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($A^2 \ x \ 10^3$) for **15c**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	у	Z	U(eq)
Cl(1)	3049(2)	8332(1)	8836(1)	99(1)
O(1)	8832(3)	4038(2)	9776(1)	54(1)
O(2)	3883(5)	5440(2)	11283(1)	98(1)
O(3)	1074(4)	4738(2)	11356(1)	86(1)
N(1)	5146(4)	3137(2)	10200(1)	48(1)
N(2)	2650(4)	4901(2)	11105(1)	54(1)
C(1)	7260(4)	4055(2)	9498(1)	40(1)
C(2)	7007(4)	4254(2)	8865(1)	43(1)
C(3)	8442(5)	4543(2)	8455(1)	58(1)
C(4)	7850(7)	4656(3)	7874(2)	75(1)
C(5)	5875(7)	4491(3)	7712(2)	76(1)
C(6)	4450(6)	4204(2)	8118(1)	64(1)
C(7)	5016(4)	4084(2)	8707(1)	45(1)
C(8)	3808(4)	3754(2)	9223(1)	46(1)
C(9)	5180(4)	3892(2)	9768(1)	37(1)
C(10)	4653(4)	4757(2)	10160(1)	37(1)
C(11)	3040(4)	4348(2)	10556(1)	40(1)
C(12)	3799(4)	3340(2)	10706(1)	42(1)

C(13)	4801(4)	3221(2)	11299(1)	44(1)
C(14)	3735(5)	2860(2)	11773(1)	58(1)
C(15)	4617(6)	2732(2)	12321(2)	70(1)
C(16)	6622(6)	2955(2)	12411(2)	65(1)
C(17)	7673(5)	3329(2)	11942(2)	62(1)
C(18)	6793(5)	3459(2)	11391(1)	53(1)
C(19)	7602(7)	2789(3)	13003(2)	100(2)
C(20)	4188(4)	5650(2)	9834(1)	39(1)
C(21)	5712(5)	6286(2)	9732(1)	49(1)
C(22)	5384(6)	7107(2)	9424(1)	58(1)
C(23)	3484(6)	7292(2)	9215(1)	62(1)
C(24)	1946(6)	6687(2)	9312(2)	67(1)
C(25)	2286(5)	5869(2)	9626(1)	54(1)

 Table S37. Bond lengths [A] and angles [deg] for 15c.

1.738(3)
1.218(3)
1.195(3)
1.213(3)
1.454(3)
1.476(3)
0.8600
1.489(3)
1.463(4)
1.528(4)
1.389(4)
1.391(4)
1.375(5)
0.9300

C(4)-C(5)	1.382(5)
C(4)-H(4A)	0.9300
C(5)-C(6)	1.377(5)
C(5)-H(5A)	0.9300
C(6)-C(7)	1.390(4)
C(6)-H(6A)	0.9300
C(7)-C(8)	1.487(4)
C(8)-C(9)	1.542(4)
C(8)-H(8A)	0.9700
C(8)-H(8B)	0.9700
C(9)-C(10)	1.560(4)
C(10)-C(20)	1.506(4)
C(10)-C(11)	1.511(4)
C(10)-H(10A)	0.9800
C(11)-C(12)	1.566(4)
C(11)-H(11A)	0.9800
C(12)-C(13)	1.501(4)
C(12)-H(12A)	0.9800
C(13)-C(14)	1.381(4)
C(13)-C(18)	1.382(4)
C(14)-C(15)	1.377(5)
C(14)-H(14A)	0.9300
C(15)-C(16)	1.385(5)
C(15)-H(15A)	0.9300
C(16)-C(17)	1.373(5)
C(16)-C(19)	1.502(5)
C(17)-C(18)	1.384(4)
C(17)-H(17A)	0.9300
C(18)-H(18A)	0.9300
C(19)-H(19A)	0.9600
C(19)-H(19B)	0.9600

C(19)-H(19C)	0.9600
C(20)-C(21)	1.381(4)
C(20)-C(25)	1.383(4)
C(21)-C(22)	1.382(4)
C(21)-H(21A)	0.9300
C(22)-C(23)	1.373(5)
C(22)-H(22A)	0.9300
C(23)-C(24)	1.358(5)
C(24)-C(25)	1.386(4)
C(24)-H(24A)	0.9300
C(25)-H(25A)	0.9300
C(9)-N(1)-C(12)	112.3(2)
C(9)-N(1)-H(1A)	123.9
C(12)-N(1)-H(1A)	123.9
O(2)-N(2)-O(3)	124.0(3)
O(2)-N(2)-C(11)	120.2(3)
O(3)-N(2)-C(11)	115.8(3)
O(1)-C(1)-C(2)	127.1(3)
O(1)-C(1)-C(9)	124.6(2)
C(2)-C(1)-C(9)	108.3(2)
C(3)-C(2)-C(7)	122.4(3)
C(3)-C(2)-C(1)	128.7(3)
C(7)-C(2)-C(1)	108.8(3)
C(4)-C(3)-C(2)	118.0(3)
C(4)-C(3)-H(3A)	121.0
C(2)-C(3)-H(3A)	121.0
C(3)-C(4)-C(5)	120.2(3)
C(3)-C(4)-H(4A)	119.9
C(5)-C(4)-H(4A)	119.9
C(6)-C(5)-C(4)	122.0(3)
C(6)-C(5)-H(5A)	119.0

C(4)-C(5)-H(5A)	119.0
C(5)-C(6)-C(7)	118.9(3)
C(5)-C(6)-H(6A)	120.6
C(7)-C(6)-H(6A)	120.6
C(6)-C(7)-C(2)	118.6(3)
C(6)-C(7)-C(8)	129.6(3)
C(2)-C(7)-C(8)	111.8(2)
C(7)-C(8)-C(9)	105.1(2)
C(7)-C(8)-H(8A)	110.7
C(9)-C(8)-H(8A)	110.7
C(7)-C(8)-H(8B)	110.7
C(9)-C(8)-H(8B)	110.7
H(8A)-C(8)-H(8B)	108.8
N(1)-C(9)-C(1)	113.2(2)
N(1)-C(9)-C(8)	115.4(2)
C(1)-C(9)-C(8)	103.8(2)
N(1)-C(9)-C(10)	102.0(2)
C(1)-C(9)-C(10)	107.8(2)
C(8)-C(9)-C(10)	114.8(2)
C(20)-C(10)-C(11)	118.1(2)
C(20)-C(10)-C(9)	116.4(2)
C(11)-C(10)-C(9)	100.7(2)
C(20)-C(10)-H(10A)	107.0
C(11)-C(10)-H(10A)	107.0
C(9)-C(10)-H(10A)	107.0
N(2)-C(11)-C(10)	114.0(2)
N(2)-C(11)-C(12)	111.5(2)
C(10)-C(11)-C(12)	104.8(2)
N(2)-C(11)-H(11A)	108.8
C(10)-C(11)-H(11A)	108.8
C(12)-C(11)-H(11A)	108.8

N(1)-C(12)-C(13)	113.2(2)
N(1)-C(12)-C(11)	102.1(2)
C(13)-C(12)-C(11)	116.0(2)
N(1)-C(12)-H(12A)	108.4
C(13)-C(12)-H(12A)	108.4
C(11)-C(12)-H(12A)	108.4
C(14)-C(13)-C(18)	117.9(3)
C(14)-C(13)-C(12)	120.1(3)
C(18)-C(13)-C(12)	122.0(3)
C(15)-C(14)-C(13)	121.5(3)
C(15)-C(14)-H(14A)	119.2
C(13)-C(14)-H(14A)	119.2
C(14)-C(15)-C(16)	120.7(3)
C(14)-C(15)-H(15A)	119.7
C(16)-C(15)-H(15A)	119.7
C(17)-C(16)-C(15)	117.8(3)
C(17)-C(16)-C(19)	121.5(4)
C(15)-C(16)-C(19)	120.7(4)
C(16)-C(17)-C(18)	121.7(3)
C(16)-C(17)-H(17A)	119.2
C(18)-C(17)-H(17A)	119.2
C(13)-C(18)-C(17)	120.4(3)
C(13)-C(18)-H(18A)	119.8
C(17)-C(18)-H(18A)	119.8
C(16)-C(19)-H(19A)	109.5
C(16)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(16)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(21)-C(20)-C(25)	117.7(3)

C(21)-C(20)-C(10)	119.3(2)
C(25)-C(20)-C(10)	123.0(2)
C(20)-C(21)-C(22)	121.9(3)
C(20)-C(21)-H(21A)	119.1
C(22)-C(21)-H(21A)	119.1
C(23)-C(22)-C(21)	118.8(3)
C(23)-C(22)-H(22A)	120.6
C(21)-C(22)-H(22A)	120.6
C(24)-C(23)-C(22)	121.0(3)
C(24)-C(23)-Cl(1)	120.0(3)
C(22)-C(23)-Cl(1)	119.1(3)
C(23)-C(24)-C(25)	119.9(3)
C(23)-C(24)-H(24A)	120.1
C(25)-C(24)-H(24A)	120.1
C(20)-C(25)-C(24)	120.8(3)
C(20)-C(25)-H(25A)	119.6
C(24)-C(25)-H(25A)	119.6

Table S38. Anisotropic displacement parameters ($A^2 \times 10^3$) for **15c**. The anisotropic displacement factor exponent takes the form: -2 pi² [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12$]

		U11	U22	U33	U23	U13	U12
Cl(1)	149(1)	69(1)	80(1)	32(1)	34(1)	41(1)	
O(1)	38(1)	75(1)	51(1)	0(1)	-7(1)	3(1)	
O(2)	116(2)	98(2)	80(2)	-46(2)	30(2)	-40(2)	
O(3)	82(2)	98(2)	78(2)	-8(2)	41(2)	5(2)	
N(1)	56(2)	42(1)	46(1)	3(1)	10(1)	11(1)	
N(2)	62(2)	53(2)	46(2)	0(1)	17(1)	4(1)	

C(1)	35(2)	41(1)	42(2)	-5(1)	-1(1)	2(1)
C(2)	46(2)	43(2)	40(2)	0(1)	4(1)	8(1)
C(3)	61(2)	62(2)	52(2)	7(2)	12(2)	8(2)
C(4)	91(3)	84(3)	49(2)	19(2)	19(2)	12(2)
C(5)	107(3)	83(3)	37(2)	6(2)	-7(2)	18(2)
C(6)	71(2)	77(2)	45(2)	-6(2)	-12(2)	11(2)
C(7)	50(2)	47(2)	37(2)	-8(1)	-6(1)	9(1)
C(8)	39(2)	56(2)	44(2)	-11(1)	-5(1)	-2(1)
C(9)	36(1)	42(1)	35(2)	-4(1)	-1(1)	-1(1)
C(10)	33(1)	44(1)	34(1)	-5(1)	-1(1)	0(1)
C(11)	37(1)	46(2)	37(2)	-4(1)	-1(1)	1(1)
C(12)	40(2)	41(2)	45(2)	-2(1)	3(1)	-7(1)
C(13)	46(2)	41(2)	44(2)	-1(1)	2(1)	-1(1)
C(14)	62(2)	61(2)	52(2)	8(2)	7(2)	-7(2)
C(15)	94(3)	68(2)	48(2)	14(2)	7(2)	-5(2)
C(16)	84(3)	62(2)	49(2)	3(2)	-8(2)	10(2)
C(17)	59(2)	66(2)	61(2)	-6(2)	-10(2)	7(2)
C(18)	54(2)	57(2)	47(2)	1(2)	3(2)	2(2)
C(19)	131(4)	107(3)	61(2)	9(2)	-25(3)	26(3)
C(20)	42(2)	42(2)	34(1)	-4(1)	3(1)	0(1)
C(21)	54(2)	48(2)	45(2)	-1(1)	2(2)	-2(1)
C(22)	79(3)	50(2)	46(2)	0(2)	14(2)	-6(2)
C(23)	90(3)	52(2)	43(2)	6(2)	20(2)	17(2)
C(24)	59(2)	74(2)	69(2)	14(2)	-1(2)	20(2)
C(25)	46(2)	57(2)	61(2)	6(2)	4(2)	4(2)

Table S39. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($A^2 \ x \ 10^3$) for **15c**.

	Х	У	Z	U(eq)
H(1A)	5833	2630	10166	58

H(3A)	9763	4657	8571	70
H(4A)	8780	4844	7590	90
H(5A)	5498	4576	7318	91
H(6A)	3131	4092	7999	77
H(8A)	3451	3101	9176	55
H(8B)	2584	4118	9262	55
H(10A)	5826	4880	10412	44
H(11A)	1787	4300	10329	48
H(12A)	2650	2912	10687	50
H(14A)	2390	2700	11722	70
H(15A)	3860	2494	12634	84
H(17A)	9011	3500	11997	74
H(18A)	7546	3708	11081	63
H(19A)	8989	2975	12985	149
H(19B)	7521	2137	13101	149
H(19C)	6923	3148	13302	149
H(21A)	6996	6158	9875	59
H(22A)	6430	7527	9360	70
H(24A)	666	6821	9167	81
H(25A)	1222	5463	9699	65

Table S40. Torsion angles [deg] for 15c.

O(1)-C(1)-C(2)-C(3)	-6.2(5)
C(9)-C(1)-C(2)-C(3)	172.3(3)
O(1)-C(1)-C(2)-C(7)	172.3(3)
C(9)-C(1)-C(2)-C(7)	-9.1(3)
C(7)-C(2)-C(3)-C(4)	-0.5(5)
C(1)-C(2)-C(3)-C(4)	177.9(3)
C(2)-C(3)-C(4)-C(5)	0.5(5)
C(3)-C(4)-C(5)-C(6)	-0.6(6)

C(4)-C(5)-C(6)-C(7)	0.5(6)
C(5)-C(6)-C(7)-C(2)	-0.4(5)
C(5)-C(6)-C(7)-C(8)	-177.7(3)
C(3)-C(2)-C(7)-C(6)	0.4(4)
C(1)-C(2)-C(7)-C(6)	-178.3(3)
C(3)-C(2)-C(7)-C(8)	178.2(3)
C(1)-C(2)-C(7)-C(8)	-0.5(3)
C(6)-C(7)-C(8)-C(9)	-172.9(3)
C(2)-C(7)-C(8)-C(9)	9.6(3)
C(12)-N(1)-C(9)-C(1)	142.6(2)
C(12)-N(1)-C(9)-C(8)	-98.1(3)
C(12)-N(1)-C(9)-C(10)	27.0(3)
O(1)-C(1)-C(9)-N(1)	-41.2(4)
C(2)-C(1)-C(9)-N(1)	140.2(2)
O(1)-C(1)-C(9)-C(8)	-167.0(3)
C(2)-C(1)-C(9)-C(8)	14.4(3)
O(1)-C(1)-C(9)-C(10)	70.9(3)
C(2)-C(1)-C(9)-C(10)	-107.7(2)
C(7)-C(8)-C(9)-N(1)	-138.6(2)
C(7)-C(8)-C(9)-C(1)	-14.2(3)
C(7)-C(8)-C(9)-C(10)	103.2(3)
N(1)-C(9)-C(10)-C(20)	-169.3(2)
C(1)-C(9)-C(10)-C(20)	71.3(3)
C(8)-C(9)-C(10)-C(20)	-43.8(3)
N(1)-C(9)-C(10)-C(11)	-40.5(2)
C(1)-C(9)-C(10)-C(11)	-159.9(2)
C(8)-C(9)-C(10)-C(11)	85.0(3)
O(2)-N(2)-C(11)-C(10)	-20.0(4)
O(3)-N(2)-C(11)-C(10)	162.5(3)
O(2)-N(2)-C(11)-C(12)	98.4(3)
O(3)-N(2)-C(11)-C(12)	-79.0(3)

C(20)-C(10)-C(11)-N(2)	-70.2(3)
C(9)-C(10)-C(11)-N(2)	162.1(2)
C(20)-C(10)-C(11)-C(12)	167.6(2)
C(9)-C(10)-C(11)-C(12)	39.9(2)
C(9)-N(1)-C(12)-C(13)	-127.9(3)
C(9)-N(1)-C(12)-C(11)	-2.4(3)
N(2)-C(11)-C(12)-N(1)	-148.1(2)
C(10)-C(11)-C(12)-N(1)	-24.3(2)
N(2)-C(11)-C(12)-C(13)	-24.4(3)
C(10)-C(11)-C(12)-C(13)	99.4(3)
N(1)-C(12)-C(13)-C(14)	-143.0(3)
C(11)-C(12)-C(13)-C(14)	99.3(3)
N(1)-C(12)-C(13)-C(18)	36.6(4)
C(11)-C(12)-C(13)-C(18)	-81.0(3)
C(18)-C(13)-C(14)-C(15)	-0.5(5)
C(12)-C(13)-C(14)-C(15)	179.2(3)
C(13)-C(14)-C(15)-C(16)	-0.7(5)
C(14)-C(15)-C(16)-C(17)	1.8(5)
C(14)-C(15)-C(16)-C(19)	-178.2(3)
C(15)-C(16)-C(17)-C(18)	-1.8(5)
C(19)-C(16)-C(17)-C(18)	178.2(3)
C(14)-C(13)-C(18)-C(17)	0.5(4)
C(12)-C(13)-C(18)-C(17)	-179.2(3)
C(16)-C(17)-C(18)-C(13)	0.7(5)
C(11)-C(10)-C(20)-C(21)	146.6(3)
C(9)-C(10)-C(20)-C(21)	-93.5(3)
C(11)-C(10)-C(20)-C(25)	-33.5(4)
C(9)-C(10)-C(20)-C(25)	86.4(3)
C(25)-C(20)-C(21)-C(22)	-1.3(4)
C(10)-C(20)-C(21)-C(22)	178.6(3)
C(20)-C(21)-C(22)-C(23)	0.0(4)
C(21)-C(22)-C(23)-C(24)	0.6(5)
-------------------------	-----------
C(21)-C(22)-C(23)-Cl(1)	179.1(2)
C(22)-C(23)-C(24)-C(25)	0.0(5)
Cl(1)-C(23)-C(24)-C(25)	-178.4(2)
C(21)-C(20)-C(25)-C(24)	1.9(4)
C(10)-C(20)-C(25)-C(24)	-177.9(3)
C(23)-C(24)-C(25)-C(20)	-1.3(5)

Symmetry transformations used to generate equivalent atom