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Supporting Information Text

Details of all-atom MD simulations. Both systems of dsDNA and dsRNA are solvated in dodecahedron boxes of explicit water
molecules with at least 10Å between any nucleic atom and box edges. K+ and Cl− ions are added to achieve charge neutrality
and ionic strength of 0.15 M. For the system of dsDNA, there are 60 K+ and 30 Cl−, and there are 56 K+ and 26 Cl− in the
system of dsRNA. The resulting dsRNA system has 28555 atoms and the dsDNA system contains 32467 atoms. The cut-off
radius for van dar Waals interactions and real-space particle-mesh Ewald terms of electrostatics1 is 12Å with a switching func-
tion effective at 10Å. During the all-atom MD simulations, all bond lengths involving the hydrogen atom are constrained at the
equilibrium values via LINCS2. After initial minimization and 12 ns equilibration period, the production run of 1 µs is conducted
at constant temperature (310K) and pressure (1.013 bar) via the Langevin thermostat and the Parrinello-Rahman barostat3.
A snapshot is saved every 100 ps for structural analysis and computing mechanical properties. To compute the order param-
eters Zp

4 and χ-δ contour that indicate the A- and B-form contents in a nucleic acid structure, the 3DNA program4 is employed.

Calculations of mechanical properties from all-atom MD simulations. The bending angle between tangent vectors along the
chain is calculated to determine the persistence length. For each basepair i in dsDNA and dsRNA, the center position ~ri is
defined as the midpoint of the C6-C8 line5. Consecutive positions of ~ri are thus a discrete representation of a worm-like chain.
The vector for the ith segment along the chain is ~li = ~ri − ~ri−1. The angle θij between ~li and ~lj (j > i) is a metric of bending
deformation. For each configuration sampled in all-atom MD, the angle can be expressed as θij = θij + δθij , where θij is the
ensemble average and δθij is the instantaneous angle fluctuation. Persistence length Lp is defined6 as:

〈cos(δθij)〉 = exp
(
−(j − i)l

2Lp

)
. (1)

Here, l is the averaged length between neighboring basepairs. For the 16-basepair dsDNA and dsRNA systems simulated here,
the persistence lengths are calculated with i = 4 and j = 13. That is, the top and bottom three basepairs are excluded in
calculating mechanical properties to avoid the fraying effects7 that tend to occur at the ends. The values of persistence length
calculated by using shorter base steps are shown in Figure S14.

To compute the local coordinate systems of bases and basepairs as well as to define the global helical axises for computing
helical rises and twist angles between basepairs, the 3DNA program4 is used. For the configurations sampled in all-atom
simulations, the stretching deformation is measured via the contour length L, which is the sum of helical rises. The global twist
Ω is the sum of helical twists between basepairs and is used to measure the twisting deformation. The two-by-two covariance
matrix C of L and Ω is then calculated to determine the stretching modulus (ηs), twisting modulus (ηs), and twisting-stretching
coupling (ηts)8. The two-by-two modulus matrix M with ηs and ηs being the diagonal terms and ηts being the off-diagonal
term is inversely relate to C as M = L0kBTC−1. Here, L0 is the total contour length averaged over the trajectory; kB
is the Boltzmann constant; and T is temperature. Calculations of L and Ω are conducted from i = 4 to 13 basepairs in
our dsDNA and dsRNA systems. The values of stretching and twisting moduli by using shorter base pairs are shown in Figure S14.

Orthonormal expansion of order parameters for global deformations. The atomic coordinates sampled in a MD trajectory are
aligned to obtain an averaged structure for computing the 3N × 3N covariance matrix of positional fluctuations, where N is
the number of heavy atoms. The quasi-harmonic analysis9 considers the covariance of positional fluctuations in the Cartesian
coordinate space and computes the eigenvalues λi and eigenvectors ei via matrix diagonalization. The 3N QHA modes form a
complete basis set in the Cartesian coordinate system, and six of which correspond to rigid-body translation and rotation with
a zero eigenvalue. The rest 3N − 6 vibrational modes can be used to express changes in molecular structures. The orthonormal
basis can also be obtained by normal mode analysis9 of the Hessian matrix of the heavy-atom elastic network model.

An order parameter Φ for measuring a deformation of nucleic acid can be expressed with vibrational modes in a linear
approximation as:

Φ(rj) = Φ(R) +
3N−6∑

i=1

cjiΦ′i. (2)

In this equation, R is the averaged coordinate of aligned structures and rj is the jth snapshot in an all-atom MD trajectory. The
displacement with respect to the averaged structure represented using the orthonormal basis is calculated with cji = (rj−R) ·ei

and the first derivative is Φ′i = ∇Φ · ei. Here, ∇Φ is the gradient vector of Φ in the Cartesian coordinate system. In this work,
the explored order parameter included bending angle (θ), contour length (L), and global twist (Ω).

The variance of Φ in the trajectory data can be expressed by squaring eq 2 and averaging over the configurations to obtain
contributions from each mode and mode couplings:

σ2
Φ =

3N−6∑
i=1

(
Φ′i
)2 〈

c2i
〉

+ 2
3N−6∑

i=1

3N−6∑
j>i

(
Φ′iΦ′j

)
〈cicj〉 . (3)
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Ensemble averaged quantities are in angle brackets in the equation. Similarly, the covariance of two order parameters can be
represented with vibrational modes. For twist-stretch coupling, the expression is:

σ2
ΩL =

3N−6∑
i=1

(
Ω′iL′i

) 〈
c2i
〉

+ 2
3N−6∑

i=1

3N−6∑
j>i

(
Ω′iL′j

)
〈cicj〉 . (4)

Computation of mode couplings terms from all-atom MD trajectories indicates that their values are orders of magnitudes
smaller than the

〈
c2i
〉
terms and hence are negligible. The gradient of an order parameter in the Cartesian coordinate space

can be calculated analytically, if possible, to perform dot-product with vibrational modes for the Φ′i terms. Alternatively, order
parameter derivatives can be calculated numerically by taking the snapshots from the MD data, projecting along each mode,
computing the order parameter from the projected coordinates, and calculating the variance of the order parameter along each
mode. |Φ′i| is then the square-root of the ratio of the order parameter variance to the valance of the projected displacement
along each mode, and the sign of the derivative can be determined from the averaged values of the order parameter and its
displacement along the mode. For bending angle θ, agreement of numerical and analytical calculations was observed. For
contour length and global twist, the 3DNA procedure4 involved numerical optimization, making analytical derivatives difficult
to obtain. Therefore, the projection scheme desctibed above was used to numerically calculate the Φ′i terms for L and Ω.

Heavy-atom elastic network model and its parametrization based on all-atom MD simulations. The probabilistic density func-
tion given by an elastic network model10 of heavy atoms, haENM, at the temperature of MD simulation is employed to
represent the mechanical coupling network in nucleic acids. All heavy atoms in dsDNA and dsRNA are incorporated to
represent the structural topologies, and the potential energy function of haENM is:

V = 1
2

M∑
m=1

km(bm − b0m)2. (5)

Here, b0m and km are the equilibrium bond lengths and spring constants of the mth harmonic bond. The average bond lengths
calculated from the trajectory data are taken as the equilibrium bond lengths of haENM. The vibrational partition function
of haENM can be calculated via normal mode analysis (NMA) to determine the fluctuation of each spring, i.e.,

〈
δb2m
〉

NMA
9.

The same quantity can also be calculated from the structures sampled in an all-atom MD trajectory,
〈
δb2m
〉

AA
. The harmonic

spring constants are then calculated via an iterative scheme of fluctuation matching11,12:

k(n+1)
m = k(n)

m + η

(
1

〈δb2m〉(n)
NMA

− 1
〈δb2m〉AA

)
. (6)

The iterative step is (n) and η is a numerical learning factor. Bond length fluctuations
〈
δb2m
〉

AA
were calculated from of the 1

µs trajectory data. A non-negative inequality constraint was imposed for each spring during fluctuation matching. Therefore,
the list of non-zero km springs upon convergence define the mechanical coupling network in a nucleic acid structure.

Another key parameter in haENM is the cutoff distance Rc for including inter-atomic distances shorter than the cutoff in
the list of springs. To determine Rc, a range of values (4-10 Å) is tested, and fluctuation-matching is applied to converge the
list of spring constants for each Rc value. The variance of order parameter fluctuations at the temperature are then calculated
using eq S3 and eq S4 to compare with the values calculated from all-atom MD simulations. Furthermore, mode by mode
resemblance of the eigenvalues and eigenvectors of the fluctuation-matched haENM with those from quasi-harmonic analysis
(QHA) of all-atom MD trajectories is also conducted for low-frequency modes 1-5 that contributed most to overall fluctuations.

The results are shown in Figure S12 and Figure S13. With the self-consistent iteration of fluctuation matching, consistent
results are observed over the tested range of Rc values. The haENM is a simplified potential energy function and thus has
limited capabilities in reproducing the quantitative values for all observables in all-atom MD simulations. The majored features
for the flexibilities of global deformations, though, are robustly captured by the structural-mechanics with haENM, such as
dsDNA is easier to bend and harder to stretch than dsRNA is, similarly flexible twist deformation, and the respective signs of
twist-stretch couplings. Quantitative agreement can also be observed, albeit to different extents, in the flexibilities of different
global deformations. Similar consistencies are also observed over the range of Rc values for comparing the eigenvalues and
eigenvectors of vibrational modes calculated from haENM with those from all-atom MD. For haENM and all-atom MD, mode
1 similarities in both dsDNA and dsRNA exceeded 0.97 and the differences in the lowest eigenvalues are within 10 % for both
biopolymers. Given similar performances in capturing the observables at the finer-grained scale, a smaller Rc is preferred as a
few number of parameters are involved in the structural-mechanics statistical learning. As shown in Figure S12 and Figure S13,
Rc = 4.7Å is opted considering the performances over different observables. The insensitivity of haENM parameterization to
the initial condition and the result of obtaining consistent behaviors with different Rc values highlight the robustness of our
structural-mechanics statistical learning.

Yi-Tsao Chena, Haw Yangb, and Jhih-Wei Chuc‡ 3 of 20



Profiling the compositions of local rigidities in structural changes. For a structural topology of N heavy atoms in haENM, the
3N × 3N Hessian matrix H with spring constants converged after fluctuation matching can be represented via the 3N ×M
Wilson’s B matrix B13 and the diagonal M ×M matrix K that contains the M non-zero spring constants learned from the
all-atom MD data as H = BKBT . Furthermore, NMA of the haENM allows diagonalization of H into 3N × 3N diagonal
eigenvalue matrix Λ and 3N × 3N orthogonal matrix Q of eigenvectors, i.e., H = QΛQT . Therefore, eigenvalues of the ENM
Hessian can be expressed as Λ = QT BKBT Q. The matrix components of B for the mth spring are a vector containing partial
derivatives of the inter-atomic distance with respect to the Cartesian coordinates of the two atoms a and b. Therefore, an
eigenvalue λi of haENM comes from the combined effects of springs as:

λi =
M∑

m=1

km

(
~sm

ab · ~q i
ab

)2
. (7)

Here, ~q i
ab = ~q i

b − ~q i
a comes from the vector components of eigenvector i that are associated with atoms a and b that spring m

connects. The unit inter-atomic vector for spring m, ~sm
ab , arrives from the position vectors ~ra and ~rb of the two atoms:

~sm
ab = ~rb − ~ra

|~rb − ~ra|
. (8)

Along the particular mode in the 3N -dimension, the level by which spring m that links atoms a and b is perturbed can thus be
quantified as

(
~sm

ab · ~q i
ab

)2. Contributions from different spring groups to an eigenvalue discussed in the main text are calculated
based on eq S7 by summing over the springs in each group.
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eLU
i · ehaENM

i i = 1 i = 2 i = 3 i = 4 i = 5

dsDNA 0.834 0.834 0.959 0.142 0.133
dsRNA 0.940 0.963 0.688 0.672 0.226

Table S1. Comparison of locally uniform haENM with fluctuation-matched haENM to illustrate the resilience of vibrational modes to chemical
details.
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Fig. S1. The structural characterization of dsRNA and dsDNA in all-atom MD simulations. To avoid the fraying effect of the two ends along a nucleic acid strand, only the 10
central basepairs were used to compute the Zp histograms and χ-δ contour 4,14. The top panels show the histograms of Zp in dsDNA and dsRNA simulations. The A-form
structure is characterized by the value of Zp in the range 1.5 Å ≤ Zp ≤ 3 Å, as indicated by the red region. The range of Zp for the B-form structure is −1.5 Å ≤ Zp ≤
0.5 Å, as indicated by the blue region. In the bottom panels, the χ-δ contours for dsRNA and dsDNA simulations are shown. Red points are representative of A-form structures,
and blue points are representative of B-form structures.
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Fig. S2. The spring constant km in (kcal/mol/Å2) versus equilibrium length b0m in (Å) of a spring m in the haENM after fluctuation matching calculations for (a) dsDNA and (b)
dsRNA. The sub-groups of springs are described as in Figure 2 of the main-text. The averaged number of springs per nucleotide for each sub-group is also labeled.
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Fig. S3. Orthonormal expansion of bending-angle flexibility σ2
θ in the all-atom MD simulations of dsDNA and dsRNA for all of the vibrational modes.
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Fig. S7. Orthonormal expansion of bending-angle flexibility σ2
θ in the haENM of dsDNA and dsRNA for (a) first five vibrational modes and (b) all of the vibrational modes.
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Fig. S8. Orthonormal expansion of contour-length flexibility σ2
L in the haENM of dsDNA and dsRNA for (a) first five vibrational modes and (b) all of the vibrational modes.
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Fig. S9. Orthonormal expansion of twist-angle flexibility σ2
Ω in the haENM of dsDNA and dsRNA for (a) first five vibrational modes and (b) all of the vibrational modes.
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Fig. S12. Comparison of order parameter fluctuations of global shapes between the results from normal mode analysis (NMA) of fluctuation-matched haENM and those from
quasi-harmonic analysis (QHA) of all-atom MD trajectories. The ratios of haENM flexibilities to those from QHA of different order parameters are shown for both dsDNA and
dsRNA as a function of the cutoff radius Rc in (Å) for including an inter-atomic restraint in the haENM.
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Fig. S13. Comparison of the eigenvalues and eigenvectors from NMA of fluctuation-matched haENM with those from QHA of all-atom MD trajectories. The ratios of haENM
eigenvalues to those from QHA and dot-products of their eigenvectors are shown for both dsDNA and dsRNA as a function of the cutoff radius Rc in (Å) for including an
inter-atomic restraint in the haENM.
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