Thiophene-fused polyaromatics: synthesis, columnar liquid

crystal, fluorescent and electrochemical properties

Yifan Li, Alberto Concellón, Che-jen Lin, Nathan A. Romero, Sibo Lin, Timothy, M. Swager^{*} Department of Chemistry, Massachusetts Institute of Technology, Cambridge, 02139, United States

Table of Content:

1. General Methods	S 1
2. Experimental Section	S2
3. Liquid Crystal Properties	S15
4. Solid State Photoluminescence	S17
5. Calculation Details	S19
6. Electrochemical Methods	S25
7. Reference	S26
8. Spectra of New Compounds	S27

1. General Methods

All reactions were carried out in oven-dried glassware under an atmosphere of nitrogen, unless stated otherwise. For quantitative flash chromatography, technical grade solvents were used. THF, toluene, hexane and CH₂Cl₂ were dried by passage over activated alumina under nitrogen atmosphere (H₂O content < 10 ppm, Karl-Fischer titration). The solvents were degassed by Freeze-Pump-Thaw method when mentioned. All chemicals were purchased from Acros, Aldrich, Fluka or Merck and used as such unless stated otherwise. Chromatographic purification was performed as flash chromatography using Macherey-Nagel silica 40-63, 60 Å, using the solvents indicated as eluent with 0.1-0.5 bar pressure. TLC was performed on Merck silica gel 60 F₂₅₄ TLC glass plates or aluminium plates and visualized with UV light, permanganate stain, CAN stain or anisaldehyde stain. Melting points were measured on a Büchi B-540 melting point apparatus using open glass capillaries, the data is uncorrected. ¹H-NMR spectra were recorded on a Brucker DPX-400 400 MHz spectrometer in chloroform-d, o-DCB-d4, all signals are reported in ppm with the internal chloroform signal at 7.26 ppm or the internal o-DCB-d4 signal at 7.17 ppm and 7.40 as standard. The data is being reported as (s = singlet, d = doublet, t = triplet, q = quadruplet, p =pantaplet, m = multiplet or unresolved, br = broad signal, app = apparent, couplingconstant(s) in Hz, integration, interpretation).¹³C-NMR spectra were recorded with ¹Hdecoupling on a Bruker DPX-400 100 MHz spectrometer in chloroform-d, all signals are reported in ppm with the internal chloroform signal at 77.0 ppm as standard. High resolution mass spectrometric measurements were recorded with a high-resolution JEOL AccuTOF 4G LC-plus equipped with an ionSense DART (Direct Analysis in Real Time) source, on a MICROMASS (ESI) Q-TOF Ultima API (CH3CN as eluant) or high-resolution Bruker Autoflex LRF Speed mass spectrometer with a measurable mass range of up to 450 kDa (trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2propenylidene]malononitrile as matrix). For electrochemistry experiments, the solvents were dried over 3 Å MS and passed through activated alumina. Tetrabutylammonium hexafluorophosphate was recrystallized twice from ethanol prior to use. Absorption spectra were collected using Cary 60. Emission spectra were collected using Horiba Fluorolog-3. Fluorescence quantum yields were collected using Horiba Quanta- ϕ . Thermogravimetric analysis (TGA) was performed using a Q50 from TA instruments at heating rate of 10 °C min⁻¹ under a nitrogen atmosphere. Liquid crystal properties were investigated by polarized-light optical microscopy (POM) using a Leica DMRXP polarized-light microscope fitted with a Linkam TMS 94 hot stage. Thermal transitions were determined by differential scanning calorimetry (DSC) using a Discovery DSC from TA instruments with powdered samples (2–5 mg) sealed in aluminum pans. Glass

transition temperatures (T_g) were determined at the half height of the baseline jump, and first order transition temperatures were read at the maximum of the corresponding peak. X-ray diffraction (XRD) was performed with a SAXSLAB instrument equipped with a Rigaku 002 microfocus X-ray source (CuK_{a1} = 1.5409 Å) and a Dectris Pilatus 300K detector. The beam center and the *q* range were calibrated using the diffraction peaks of silver behenate. Powdered samples were placed in Lindemann glass capillaries (1 mm diameter).

2. Experimental Section.

2.1 Preparation of starting materials

1,2-bis(2-bromophenyl)ethyne (7),¹ 2,2'-((2,5-dibromo-1,4phenylene)bis(ethyne-2,1-diyl))bis(bromobenzene) (9),² 2-(5-hexylthiophen-2yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11),³ 2,2'-((4,6-dibromo-1,3phenylene)bis(ethyne-2,1-diyl))bis(bromobenzene) (12),⁴ 2,3-dibromo-1,4diiodobenzene (14),⁵ 2-(5-hexylthiophen-3-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (18),⁶ were synthesized according to literature.

1,2-bis(2-(5-hexylthiophen-2-yl)phenyl)ethyne (1a)

TMPMgCl·LiCl (18.8 mL, 1 M in THF/Toluene, 4.00 equiv.) was slowly added into **8** (3.40 mL, 18.8 mmol, 4.00 equiv.). The solution was kept stirring at room temperature during 20 mins. Then ZnCl₂ (0.5 M in THF, 37.6 mL, 4.00 equiv.) was added into the mixture. After 1 hour, **7** (1.53 g, 4.56 mmol, 1.00 equiv.) and G4 Pd Xphos (143 mg, 0.300 mol, 0.0400 equiv.) were added to the solution. The solution was kept stirring at 60 °C during 72 h before quenching with saturated NH₄Cl solution. The aqueous phase was extracted by DCM (3 x 30 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane/DCM: 30/1) to afford **1a** as pale solid (1.71 g, 3.36 mmol, 74%).

Melting point: 75-76 °C

¹H NMR (600 MHz, Chloroform-*d*) δ 7.67 (dd, J = 7.7, 1.4 Hz, 2H, *benzene H*), 7.62 (dd, J = 7.9, 1.2 Hz, 2H, *benzene H*), 7.53 (d, J = 3.6 Hz, 2H, *thiophene H*), 7.38 (td, J = 7.6, 1.4 Hz, 2H, *benzene H*), 7.29 (td, J = 7.5, 1.3 Hz, 1H, *benzene H*), 6.83 (d, J = 3.6 Hz, 1H,*thiophene H*). 2.95 (t, J = 7.7 Hz, 4H, *alkyl H*), 1.84 (p, J = 7.6 Hz, 4H. *alkyl H*), 1.69 – 1.31 (m, 16H, *alkyl H*), 1.16 – 0.93 (m, 6H, *alkyl H*). ¹³C NMR (151 MHz, Chloroform-*d*) δ 146.6, 139.3, 136.2, 133.5, 128.5, 128.5, 126.5, 126.5, 124.4, 120.5, 93.6 31.64, 31.60, 30.21, 28.9 22.56, 14.08. HRMS (ESI-MeOH) calcd for C₃₄H₃₉S₂⁺ [M+H]⁺ 511.2488; found 511.2519.

5,5'-(2,5-bis((2-(5-hexylthiophen-2-yl)phenyl)ethynyl)-1,4-phenylene)bis(2-hexylthiophene) (10a)

TMPMgCl·LiCl (7.85 mL, 1 M in THF/Toluene, 8.82 equiv.) was slowly added into **8** (1.42 mL, 7.85 mmol, 8.82 equiv.). The solution was kept stirring at room temperature during 20 mins. Then ZnCl₂ (0.5 M in THF, 15.6 mL, 8.82 equiv.) was added into the mixture. After 1 hour, **9** (0.53 g, 0.89 mmol, 1.00 equiv.) and G4 Pd Xphos (38 mg, 0.080 mol, 0.090 equiv.) were added to the solution. The solution was kept stirring at 60 °C during 72 h before quenching with saturated NH₄Cl solution. The aqueous phase was extracted by DCM (3 x 30 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane/DCM: 30/1) to afford **10a** as pale solid (0.27 g, 0.28 mmol, 44%).

Melting point: 136-137 °C

¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (s, 2H, *benzene H*), 7.70 (dd, J = 7.6, 1.4 Hz, 2H, *benzene H*), 7.66 (dd, J = 7.9, 1.2 Hz, 2H, *benzene H*), 7.59 (d, J = 3.6 Hz, 2H, *thiophene H*), 7.53 (d, J = 3.6 Hz, 2H, *thiophene H*), 7.44 (td, J = 7.6, 1.5 Hz, 2H, *benzene H*), 7.34 (td, J = 7.6, 1.5 Hz, 2H, *benzene H*), 6.88 (d, J = 3.6 Hz, 2H, *thiophene H*), 6.85 (d, J = 3.6 Hz, 2H, *thiophene H*), 2.95 (t, J = 7.7 Hz, 8H, *alkyl H*), 1.68-1.58 (m, 8H, *alkyl H*), 1.57 – 1.31 (m, 24H, *alkyl H*), 1.09 – 0.91 (m, 12H, *alkyl H*). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.9, 146.8, 139.1, 138.2, 136.4, 133.9, 133.4, 133.2, 128.7, 128.5, 126.7, 126.5, 124.5, 124.4, 120.3, 120.6, 95.3, 93.3, 31.7, 31.6, 31.6, 30.3, 30.3, 28.9, 28.9, 22.6, 22.6, 14.1, 14.1. *One aromatic carbon is not resolved*. HRMS (ESI-MeOH) calcd for C₆₂H₇₁S₄⁺ [M+H]⁺ 943.4433; found 943.4519.

5,5'-(4,6-bis((2-(5-hexylthiophen-2-yl)phenyl)ethynyl)-1,3-phenylene)bis(2-hexylthiophene) (13a)

A mixture of **11** (1.74 g, 4.92 mmol, 4.80 equiv.), **12** (733 mg, 1.23 mmol, 1.00 equiv.), G4 Pd Xphos (21 mg, 25 umol, 0.02 equiv.) and Cs_2CO_3 (7.70 g, 23.6 mmol, 19.2 equiv.) in THF (12 mL)/H₂O (5 mL) was degassed with liquid nitrogen. The mixture was kept stirring overnight in 80 °C before quenching with H₂O (30 mL). The aqueous phase was extracted by DCM (3 x 30 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane/DCM: 30/1-10/1) to afford **13a** as yellow oil (0.71 g, 0.75 mmol, 61%).

¹H NMR (600 MHz, Chloroform-*d*) δ 7.88 (s, 1H, *benzene H*), 7.79 (s, 1H, *benzene H*), 7.65 (dd, J = 7.7, 1.4 Hz, 2H, *benzene H*), 7.61 (dd, J = 7.9, 1.2 Hz, 2H, *benzene H*), 7.57 (d, J = 3.6 Hz, 2H, *thiophene H*), 7.50 (d, J = 3.6 Hz, 2H, *thiophene H*), 7.38 (td, J = 7.7, 1.4 Hz, 2H, *benzene H*), 7.28 (ddd, J = 8.8, 6.9, 1.2 Hz, 2H, *benzene H*), 6.80 (d, J = 3.7 Hz, 2H, *thiophene H*), 6.76 (d, J = 3.6 Hz, 2H, *thiophene H*), 2.88 (t, J = 7.7 Hz, 4H, *alkyl H*), 2.80 (t, J = 7.8 Hz, 4H, *alkyl H*), 1.77 (p, J = 7.6 Hz, 4H, *alkyl H*), 1.69 (p, J = 7.6 Hz, 4H, *alkyl H*), 1.49 – 1.42 (m, 4H, *alkyl H*), 1.41 – 1.23 (m, 20H, *alkyl H*), 0.98 – 0.92 (m, 6H, *alkyl H*), 0.92 – 0.84 (m, 6H, *alkyl H*). ¹³C NMR (151 MHz, Chloroform-*d*) δ 147.4, 146.9, 139.2, 138.7, 138.6, 136.3, 135.8, 133.5, 128.6, 128.5, 128.1, 127.1, 126.6, 126.5, 124.7, 124.4, 120.3, 118.6, 94.6, 92.9, 31.6, 31.5, 30.3, 30.2, 28.9, 28.8, 22.6, 14.1, 14.0. HRMS (Maldi) calcd for C₆₂H₇₀S4⁺ [M]⁺ 942.4355; found 942.4351.

5,5'-(3,6-bis((2-(5-hexylthiophen-2-yl)phenyl)ethynyl)-1,2-phenylene)bis(2-hexylthiophene) (17a)

16 (1.15 g, 6.30 mmol, 2.20 equiv.) was injected into a degassed solution of **14** (1.40 g, 2.86 mmol, 1.00 equiv.), $PdCl_2(PPh3)_2$ (40 mg, 57 umol, 0.02 equiv.) and CuI (54 mg, 0.29 mmol, 0.10 euqiv.) in toluene (10 mL)/Et₃N (4 mL) at room temperature. The reaction was quenched with H₂O (30 mL) after 4h. The aqueous phase was extracted

by DCM (3 x 30 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was recrystallized in acetone to afford **16** as yellow powder (1.57 g, 2.64 mmol, 93%, more than 90% purity from 1H NMR). **16** is used for reactions without further purification.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.65 – 7.63 (m, 2H, *benzene H*), 7.62 (dd, *J* = 7.7, 1.7 Hz, 2H, *benzene H*), 7.54 (s, 2H, *benzene H*), 7.33 (td, *J* = 7.6, 1.1 Hz, 2H, *benzene H*), 7.23 (td, *J* = 7.8, 1.7 Hz, 2H, *benzene H*).

A mixture of **11** (1.12 g, 3.80 mmol, 4.80 equiv.), **16** (0.47 g, 0.79 mmol, 1.00 equiv.), G4 Pd Xphos (14 mg, 25 umol, 0.02 equiv.) and Cs_2CO_3 (4.95 g, 15.2 mmol, 19.2 equiv.) in THF (10 mL)/H₂O (3 mL) was degassed with liquid nitrogen. The mixture was kept stirring overnight in 80 °C before quenching with H₂O (30 mL). The aqueous phase was extracted by DCM (3 x 30 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane/DCM: 30/1-10/1) to afford **17a** as brown oil (0.68 g, 0.75 mmol, 91%).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.55 – 7.48 (m, 4H, *benzene H*), 7.36 (d, *J* = 3.6 Hz, 2H, *benzene H*), 7.34 – 7.24 (m, 4H, *benzene H* + *thiophene H*), 7.16 (td, *J* = 7.6, 1.3 Hz, 2H), 6.85 (d, *J* = 3.5 Hz, 2H, *thiophene H*), 6.77 (d, *J* = 3.5 Hz, 2H, *thiophene H*), 6.64 (d, *J* = 3.5 Hz, 2H, *thiophene H*), 2.87 (t, *J* = 7.6 Hz, 4H, *alkyl H*), 2.77 (t, *J* = 7.6 Hz, 4H, *alkyl H*), 1.76 (p, *J* = 7.6 Hz, 4H, *alkyl H*), 1.65 (p, *J* = 7.4 Hz, 4H, *alkyl H*), 1.51 – 1.24 (m, 24H, *alkyl H*), 1.04 – 0.80 (m, 12H, *alkyl H*). ¹³C NMR (126 MHz, Chloroform-*d*) δ 147.2, 146.6, 139.3, 137.9, 137.0, 135.9, 134.1, 131.2, 128.9, 128.6, 128.3, 126.6, 126.4, 124.7, 124.6, 123.2, 120.2, 94.8, 93.3, 31.8, 31.7, 31.6, 31.6 30.3, 30.1, 28.9, 28.7, 22.7, 14.2. HRMS (Maldi) calcd for C₆₂H₇₀S₄⁺ [M]⁺ 942.4355; found 942.4347.

1,2-Bis(2-(5-hexylthiophen-3-yl)phenyl)ethyne (1b)

A mixture of **18** (0.76 g, 2.40 mmol, 2.4 equiv.), **7** (0.34 g, 1.00 mmol, 1.00 equiv.), G4 Pd Xphos (17 mg, 20 umol, 0.02 equiv.) and Cs_2CO_3 (2.9 g, 8.8 mmol, 19.2 equiv.) in THF (10 mL)/H₂O (3 mL) was degassed with liquid nitrogen. The mixture was kept stirring overnight in 80 °C before quenching with H₂O (30 mL). The aqueous phase was extracted by DCM (3 x 30 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane/DCM: 30/1) to afford **1b** as brown oil (0.45 g, 0.88 mmol, 88%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (dd, J = 7.8, 1.4 Hz, 2H, *benzene H*), 7.52 (dd, J = 7.8, 1.4 Hz, 2H, *benzene H*), 7.45 (d, J = 1.4 Hz, 2H, *thiophene H*), 7.38 (td, J = 7.6, 1.5 Hz, 2H, *benzene H*), 7.29 (ddd, J = 7.6, 6.8, 1.5 Hz, 2H, *benzene H*), 7.22 (d, J = 1.4 Hz, 2H. *thiophene H*), 2.88 (t, J = 7.7 Hz, 4H, *alkyl H*), 1.76 (p, J = 7.6 Hz, 4H, *alkyl H*), 1.53 – 1.26 (m, 12H, *alkyl H*), 0.99 – 0.86 (m, 6H, *alkyl H*). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.3, 140.3, 138.3, 133.3, 128.8, 128.5, 126.6, 125.6, 121.3, 121.2, 92.8, 31.7, 31.6, 30.3, 29.0, 22.6, 14.2. HRMS (AccuTof-dart) calcd for C₃₄H₃₉S₂⁺ [M]⁺ 511.2488; found 511.2473.

4,4'-(2,5-Bis((2-(5-hexylthiophen-3-yl)phenyl)ethynyl)-1,4-phenylene)bis(2-hexylthiophene) (10b)

A mixture of **18** (1.56 g, 5.28 mmol, 4.80 equiv.), **9** (0.65 g, 1.10 mmol, 1.00 equiv.), G4 Pd Xphos (19 mg, 22 umol, 0.02 equiv.) and Cs_2CO_3 (6.9 g, 21 mmol, 19.2 equiv.) in THF (12 mL)/H₂O (4 mL) was degassed with liquid nitrogen. The mixture was kept stirring overnight in 80 °C before quenching with H₂O (30 mL). The aqueous phase was extracted by DCM (3 x 30 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane/DCM: 30/1) to afford **10b** as brown powder (0.76 g, 0.81 mmol, 73%).

Melting point: 82-83°C

¹H NMR (600 MHz, Chloroform-*d*) δ 7.63 (s, 2H, *benzene H*), 7.56 (d, J = 7.7 Hz, 2H, *benzene H*), 7.50 (m, J = 8.3 Hz, 4H, *benzene H* + *thiohene H*), 7.43 (s, 2H, *thiophene H*), 7.38 (t, J = 7.6 Hz, 2H, *benzene H*), 7.29 (t, J = 7.6 Hz, 2H, *benzene H*), 7.22 (s, 2H, *thiohene H*), 7.20 (s, 2H, *thiohene H*), 2.89 (t, J = 7.8 Hz, 4H, *alkyl H*), 2.83 (t, J = 7.8 Hz, 4H, *alkyl H*), 1.77 (p, J = 7.7 Hz, 4H, *alkyl H*), 1.70 (p, J = 7.7 Hz, 4H, *alkyl H*), 1.49 – 1.23 (m, 24H, *alkyl H*), 0.97-0.90 (m, 12H, *alkyl H*). ¹³C NMR (151 MHz, Chloroform-*d*) δ 145.5, 145.4, 140.3, 139.1, 138.6, 136.1, 133.5, 133.1, 128.9, 128.6, 126.7, 125.6, 125.3, 121.5, 121.3, 121.1, 121.1, 94.3, 92.6, 31.8, 31.7, 31.7, 31.6, 30.3, 30.2, 29.0, 28.9, 22.6, 14.2, 14.1. HRMS (Maldi) calcd for C₆₂H₇₀S₄⁺ [M]⁺ 942.4355; found 942.4326.

4,4'-(4,6-Bis((2-(5-hexylthiophen-3-yl)phenyl)ethynyl)-1,3-phenylene)bis(2-hexylthiophene) (13b)

A mixture of **18** (1.40 g, 4.80 mmol, 4.80 equiv.), **10** (594 mg, 1.00 mmol, 1.00 equiv.), G4 Pd Xphos (18 mg, 20 umol, 0.02 equiv.) and Cs_2CO_3 (6.26 g, 19.2 mmol, 19.2 equiv.) in THF (10 mL)/H₂O (3 mL) was degassed with liquid nitrogen. The mixture was kept stirring overnight in 80 °C before quenching with H₂O (30 mL). The aqueous phase was extracted by DCM (3 x 30 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane/DCM: 30/1-10/1) to afford **13b** as brown oil (0.72 g, 0.76 mmol, 76%).

¹H NMR (600 MHz, Chloroform-*d*) δ 7.69 (s, 1H, *benzene H*), 7.58 (s, 1H, *benzene H*), 7.55 (dd, J = 7.7, 1.4 Hz, 2H, *benzene H*), 7.49 (dd, J = 7.7, 1.4 Hz, 2H, *benzene H*), 7.46 (d, J = 1.5 Hz, 2H, *thiophene H*), 7.40 (d, J = 1.5 Hz, 2H, *thiophene H*), 7.36 (td, J = 7.6, 1.4 Hz, 2H, *benzene H*), 7.28 (td, J = 7.6, 1.4 Hz, 2H, *benzene H*), 7.18 (m, 4H, *thiophene H*), 2.87-2.79 (m, 8H, *alkyl H*), 1.75-1.65 (m, 8H, *alkyl H*), 1.44 – 1.22 (m, 24H), 0.94-0.88 (m, 6H, *alkyl H*), 0.89 – 0.81 (m, 6H, *alkyl H*). ¹³C NMR (151 MHz, Chloroform-*d*) δ 145.6, 145.5, 140.3, 139.6, 138.5, 138.1, 137.9, 133.3, 129.1, 128.9, 128.6, 126.6, 125.5, 125.3, 121.8, 121.3, 121.1, 119.6, 93.4, 91.9, 31.7, 31.7, 31.6, 31.6, 30.2, 29.0, 28.9, 22.6, 14.1, 14.1. HRMS (Maldi) calcd for C₆₂H₇₀S4⁺ [M]⁺ 942.4355; found 942.4316.

4,4'-(3,6-Bis((2-(5-hexylthiophen-3-yl)phenyl)ethynyl)-1,2-phenylene)bis(2-hexylthiophene) (17b)

A mixture of **18** (1.56 g, 5.28 mmol, 4.80 equiv.), **16** (0.65 g, 1.10 mmol, 1.00 equiv.), G4 Pd Xphos (19 mg, 22 umol, 0.02 equiv.) and Cs_2CO_3 (6.9 g, 21 mmol, 19.2 equiv.) in THF (12 mL)/H₂O (4 mL) was degassed with liquid nitrogen. The mixture was kept stirring overnight in 80 °C before quenching with H₂O (30 mL). The aqueous phase was

extracted by DCM (3 x 30 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane/DCM: 30/1-10/1) to afford **17b** as brown powder (0.78 g, 0.83 mmol, 75%).

¹H NMR (600 MHz, Chloroform-*d*) δ 7.49 (d, J = 7.8 2H, *benzene* H), 7.47 (s, 2H, *thiophene* H), 7.41 (dd, J = 7.8, 1.4 Hz, 2H, *benzene* H), 7.37 – 7.33 (m, 4H, *benzene* H + *thiophene* H), 7.25 (t, J = 7.6, Hz, 2H, *benzene* H), 7.17 (s, 2H, *thiophene* H), 6.98 (d, J = 1.4 Hz, 2H, *thiophene* H), 6.59 (s, 2H, *thiophene* H), 2.91 (t, J = 7.7 Hz, 4H, *alkyl* H), 2.77 (t, J = 7.6 Hz, 4H, *alkyl* H), 1.80 (p, J = 7.7 Hz, 4H, *alkyl* H), 1.64 (p, J = 7.5 Hz, 4H, *alkyl* H), 1.52 – 1.31 (m, 24H, *alkyl* H), 1.00-0.94 (m, 12H, *alkyl* H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 145.2, 143.9, 140.1, 139.1, 138.6, 138.1, 133.6, 130.9, 128.7, 128.5, 126.9, 126.5, 125.5, 123.5, 122.7, 121.4, 121.0, 94.2, 92.6, 31.8, 31.8, 31.7, 30.3, 30.0, 29.0, 28.8, 22.7, 22.6, 14.2. HRMS (Maldi) calcd for C₆₂H₇₀S₄⁺ [M]⁺ 942.4355; found 942.4381.

2.2 Synthesis of thiophene-fused polyaromatic hydrocarbons.

2,9-dihexylchryseno[6,5-b:12,11-b']dithiophene (3a)

1a (76 mg, 0.15 mmol, 1 equiv.) wad added into a solution of InCl₃ (6 mg, 0.03 mmol, 0.2 equiv.) in toluene (3 mL). The mixture was kept stirring at 100 °C overnight. The mixture was concentrated and purified by a plug of silica gel to afford **2a** as transparent oil (67 mg, 0.13 mmol, 88%)

¹H NMR (600 MHz, Chloroform-*d*) δ 8.07 (d, J = 8.2 Hz, 1H, *benzene* H), 7.88 (d, J = 8.0 Hz, 1H, *benzene* H), 7.69 – 7.66 (m, 1H, *benzene* H), 7.63 (s, 1H, *benzene* H), 7.58 – 7.52 (m, 1H, *benzene* H), 7.49 – 7.44 (m, 3H, *benzene*H), 7.40 (td, J = 7.5, 1.3 Hz, 1H, *benzene* H), 6.71 (s, 1H, *thiophene* H), 6.41 (d, J = 3.6 Hz, 1H, *thiophene* H), 6.33 (d, J = 3.6 Hz, 1H, *thiophene* H), 2.82 (t, J = 7.6 Hz, 2H, *alkyl* H), 2.60 (t, J = 7.6 Hz, 2H, *alkyl* H), 1.67 (p, J = 7.4 Hz, 2H,), 1.50 (h, J = 7.3, 6.0 Hz, 2H, *alkyl* H), 1.41 – 1.15 (m, 12H, *alkyl* H), 0.89 (dt, J = 18.1, 7.0 Hz, 6H, *alkyl* H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 145.9, 145.2, 140.1, 138.7, 137.7, 136.0, 135.6, 134.2, 131.6, 130.6, 129.6, 128.9, 128.5, 127.9, 127.0, 126.3, 126.2, 125.8, 125.1, 124.1, 123.3, 121.6, 31.6, 31.5, 31.5, 31.4, 30.7, 29.9, 28.7, 28.6, 22.6, 22.5, 14.1. HRMS (AccuTof-Dart) calcd for C₃₄H₃₉S₂⁺ [M+H]⁺ 511.2488; found 511.2513.

A solution of FeCl₃ (63 mg, 0.39 mmol, 3.0 equiv.) in dry CH₃NO₂ (1 mL) was added dropwise into a solution of **2a** (67 mg, 0.13 mmol, 1.0 equiv.) in dry DCM (65 mL) at 0 °C. Dry MeOH was used to quench the reaction after 5 mins. The organic phase was washed with 1.0 M HCl (20 mL). The aqueous was extracted with DCM (3 X 15 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane) to afford **3a** as white powder (62 mg, 0.12 mmol, 94%).

Melting point: 63 °C

¹H NMR (400 MHz, Chloroform-*d*) δ 8.90 (d, J = 7.2 Hz, 2H, *benzene* H), 8.18 (dd, J = 7.2, 1.9 Hz, 2H, *benzene* H), 8.02 (s, 2H, *thiophene* H), 7.62 (m, 4H, *benzene* H), 3.05 (t, J = 7.6 Hz, 4H, *alkyl* H), 1.84 (p, J = 7.6 Hz, 4H, *alkyl* H), 1.65 – 1.19 (m, 12H, *alkyl* H), 0.91 (t, J = 6.9 Hz, 6H, *alkyl* H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.4, 135.6, 134.4, 128.5, 128.1, 128.0, 126.6, 125.1, 125.0, 124.2, 123.8, 31.7, 31.6, 31.0, 28.8, 22.6, 14.1. HRMS (AccuTof-Dart) calcd for C₃₄H₃₇S₂⁺ [M+H]⁺ 509.2331; found 509.2343.

InCl₃ (4 mg, 0.02 mmol, 0.4 equiv.) was added into a solution of **10a** (47 mg, 0.050 mmol, 1.0 equiv.) in toluene (1 mL). The solution was kept stirring at 100 °C overnight. The mixture was concentrated and purified by column chromatography (Hexane/DCM: 15/1) to afford a mixture of regioisomers a brown powder (37.0 mg, 0.0395 mmol, 79%).

A solution of FeCl₃ (97 mg, 0.60 mmol, 6.0 equiv.) in dry CH₃NO₂ (1.0 mL) was added dropwise into a solution of regioisomers (94 mg, 0.10 mmol, 1.0 equiv.) in dry DCM (50 mL) at 0 °C. Dry MeOH was added to quench the reaction after 10 mins. The organic phase was washed with 1.0 M HCl (20 mL). The aqueous was extracted with DCM (3 X 15 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane/DCM:5/1) to afford **4a** as brown powder (83 mg, 0.088 mmol, 70% over two steps).

Melting point: 72 °C

¹H NMR (400 MHz, Chloroform-*d*) δ 9.24 (s, 2H, *benzene H*), 8.71 (d, *J* = 8.3 Hz, 2H, *benzene H*), 8.10 (m, 4H, *benzene H* + *thiophene H*), 7.85 (s, 2H, *thiophene H*), 7.58 (t, *J* = 7.4 Hz, 2H, *benzene H*), 7.51 (t, *J* = 7.6 Hz, 2H, *benzene H*), 3.05 (t, *J* = 7.5 Hz, 4H, *alkyl H*), 2.99 (t, *J* = 7.7 Hz, 4H, *alkyl H*), 1.94 (p, *J* = 7.6 Hz, 4H, *alkyl H*), 1.83 (p, *J* = 7.5 Hz, 4H, *alkyl H*), 1.58 – 1.21 (m, 24H, *alkyl H*), 0.94 (td, *J* = 7.0, 2.8 Hz, 12H, *alkyl H*). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.4, 144.9, 135.9, 135.7, 134.6, 134.0, 128.6, 128.0, 127.8, 127.0, 126.5, 126.0, 125.2, 124.88, 124.5, 124.4, 123.8, 123.7, 122.2, 31.8, 31.7, 31.2, 31.0, 31.0, 29.0, 29.0, 22.7, 14.2, 14.1. HRMS (Maldi) calcd for C₆₂H₆₆S₄⁺ [M]⁺ 938.4042; found 938.4053.

InCl₃ (9 mg, 0.040 mmol, 0.4 equiv.) was added into a solution of **13a** (94 mg, 0.10 mmol, 1.0 equiv.) in toluene (2 mL). The solution was kept stirring at 100 °C overnight. The mixture was concentrated and purified by column chromatography (Hexane/DCM: 15/1) to afford a mixture of regioisomers a brown powder (67 mg, 0.071 mmol, 71%).

A solution of FeCl₃ (97 mg, 0.60 mmol, 6.0 equiv.) in dry CH₃NO₂ (1.0 mL) was added dropwise into a solution of regioisomers (94 mg, 0.10 mmol, 1.0 equiv.) in dry DCM (50 mL) at 0 °C. Dry MeOH was added to quench the reaction after 10 mins. The organic phase was washed with 1.0 M HCl (20 mL). The aqueous was extracted with DCM (3 X 15 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane/DCM:5/1) to afford **5a** as brown powder (84 mg, 0.090 mmol, 64% over two steps).

Melting point: 135 °C

¹H NMR (600 MHz, Chloroform-*d*) δ 10.43 (s, 1H, *benzene H*), 8.71 (d, *J* = 8.3 Hz, 2H, *benzene H*), 8.47 (s, 1H, *benzene H*), 8.16 (dd, *J* = 7.9, 1.3 Hz, 2H, *benzene H*), 7.96 (s, 2H, *thiophene H*), 7.70 (s, 2H, *thiophene H*), 7.62 (t, *J* = 7.3 Hz, 2H, *thiophene H*), 7.56 (ddd, *J* = 8.2, 6.7, 1.3 Hz, 2H, *benzene H*), 2.88 (t, *J* = 7.9 Hz, 4H, *alkyl H*), 2.83 (t, *J* = 7.8 Hz, 4H, *alkyl H*), 1.84-1.65 (m, 8H, *alkyl H*), 1.49 – 1.24 (m, 24H, *alkyl H*), 0.99 – 0.93 (m, 6H, *alkyl H*), 0.91 – 0.80 (m, 6H, *alkyl H*). ¹³C NMR (151 MHz, Chloroform-

d) δ 145.6, 145.4, 136.0, 134.7, 134.5, 134.2, 128.4, 128.1, 128.0, 126.7, 126.6, 126.4, 125.9, 125.3, 124.9, 124.8, 124.3, 123.8, 123.7, 116.0, 31.7, 31.7, 31.5, 31.0, 30.9, 29.1, 29.0, 22.7, 22.6, 14.2, 14.1. HRMS (Maldi) calcd for C₆₂H₆₆S₄⁺ [M]+ 938.4042; found 938.3994.

InCl₃ (15 mg, 0.068 mmol, 0.4 equiv.) was added into a solution of **17a** (160 mg, 0.17 mmol, 1.0 equiv.) in toluene (3.4 mL). The solution was kept stirring at 100 °C overnight. The mixture was concentrated and purified by column chromatography (Hexane/DCM: 15/1) to afford a mixture of regioisomers a brown powder (115 mg, 0.12 mmol, 72%).

A solution of FeCl₃ (92 mg, 0.57 mmol, 6.0 equiv.) in dry CH₃NO₂ (1.0 mL) was added dropwise into a solution of regioisomers (90 mg, 0.095 mmol, 1.0 equiv.) in dry DCM (50 mL) at 0 °C. Dry MeOH was added to quench the reaction after 10 mins. The organic phase was washed with 1.0 M HCl (20 mL). The aqueous was extracted with DCM (3 X 15 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane/DCM:5/1) to afford **6a** as brown powder (70 mg, 0.075 mmol, 57% over two steps).

Melting point: 75 °C

¹H NMR (600 MHz, Chloroform-*d*) δ 9.10 (dd, J = 6.2, 3.3 Hz, 2H, *benzene H*), 8.94 (s, 2H, *benzene H*), 8.32 (s, 2H, *thiophene H*), 8.24 (dd, J = 6.2, 3.3 Hz, 2H, *benzene H*), 8.03 (s, 2H, *thiophene H*), 7.71-7.67 (m, 4H, *benzene H*), 3.17 (t, J = 7.6 Hz, 4H, *alkyl H*), 3.01 (t, J = 7.6 Hz, 4H), 1.92 (p, J = 7.7 Hz, 4H), 1.76 (p, J = 7.6 Hz, 4H), 1.57 – 1.22 (m, 24H), 0.93 (t, J = 7.0 Hz, 6H), 0.86 (td, J = 5.8, 4.7, 2.3 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 145.7, 145.1, 137.1, 136.2, 134.6, 134.1, 129.2, 128.7, 128.3, 127.8, 127.0, 126.0, 125.3, 125.2, 124.6, 124.4, 124.1, 123.8, 123.7, 31.8, 31.7, 31.6, 31.5, 31.2, 30.7, 28.9, 28.8, 22.7, 22.6, 14.2, 14.1. HRMS (Maldi) calcd for C₆₂H₆₆S₄⁺ [M]+ 938.4042; found 938.4017.

2,9-dihexylchryseno[5,6-b:11,12-b']dithiophene (3b)

PtCl₂ (4.0 mg, 0.015 mmol, 0.1 equiv.) was added into a solution of **1b** (76 mg, 0.15 mmol, 1.0 equiv.) in toluene (3 mL). The solution was kept stirring at 100 °C overnight. The mixture was concentrated and purified by column chromatography (Hexane/DCM: 15/1) to afford **2b** as a brown oil (72 mg, 0.14 mmol, 95%).

¹H NMR (600 MHz, Chloroform-*d*) δ 8.28 (d, J = 8.2 Hz, 1H, *benzene H*), 7.85 (d, J = 8.0 Hz, 1H, *benzene H*), 7.67 (s, 1H, *benzene H*), 7.64 (dd, J = 7.8, 1.3 Hz, 1H, *benzene H*), 7.60 – 7.56 (m, 2H, *benzene H*), 7.54 – 7.47 (m, 3H, *benzene H* + *thiophene H*), 7.44 (td, J = 7.5, 1.3 Hz, 1H, *benzene H*), 6.76 (d, J = 1.3 Hz, 1H, *thiophene H*), 6.46 (s, 1H, *thiophene H*), 2.94 (t, J = 7.6 Hz, 2H, *alkyl H*), 2.51 (t, J = 7.5 Hz, 2H, *alkyl H*), 1.75 (p, J = 7.5 Hz, 2H, *alkyl H*), 1.44 – 1.26 (m, 8H, *alkyl H*), 1.25 – 1.02 (m, 6H, *alkyl H*), 0.95 – 0.90 (m, 3H, *alkyl H*), 0.87 (t, J = 7.2 Hz, 3H, *alkyl H*). ¹³C NMR (151 MHz, Chloroform-*d*) δ 147.3, 144.5, 140.9, 138.6, 137.8, 136.1, 136.1, 134.9, 131.5, 130.7, 129.7, 128.6, 128.3, 128.1, 127.0, 125.8, 125.5, 125.1, 124.6, 123.5, 120.3, 118.7, 31.6, 31.4, 31.4, 31.3, 31.0, 29.7, 28.8, 28.3, 22.6, 22.4, 14.1. HRMS (AccuTof-Dart) calcd for C₃₄H₃₉S₂⁺ [M+H]⁺ 511.2488; found 511.2489.

Melting point: 97 °C

A solution of FeCl₃ (61 mg, 0.38 mmol, 3.0 equiv.) in dry CH₃NO₂ (1.0 mL) was added dropwise into a solution of **2b** (64 mg, 0.13 mmol, 1.0 equiv.) in dry DCM (63 mL) at 0 °C. Dry MeOH was added to quench the reaction after 10 mins. The organic phase was washed with 1.0 M HCl (20 mL). The aqueous was extracted with DCM (3 X 15 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane/DCM:5/1) to afford **3b** as brown powder (58 mg, 0.11 mmol, 86% over two steps).

¹H NMR (600 MHz, Chloroform-*d*) δ 9.35 (dd, J = 8.1, 1.3 Hz, 2H, *benzene H*), 8.45 (dd, J = 7.7, 1.7 Hz, 2H, *benzene H*), 7.78 (s, 2H, *thiophene H*), 7.77-7.71 (m, 4H, *benzene H*), 3.06 (t, J = 7.7 Hz, 4H, *alkyl H*), 1.88 (p, J = 7.6 Hz, 4H, *alkyl H*), 1.51 – 1.24 (m, 12H, *alkyl H*), 0.92 (t, J = 7.0 Hz, 6H, *alkyl H*). ¹³C NMR (151 MHz, Chloroform-*d*) δ 146.4, 135.5, 133.6, 128.8, 128.5, 126.9, 126.7, 125.7, 124.3, 124.2, 119.2, 31.7,31.5, 30.5, 28.3, 22.6, 14.1. HRMS (AccuTof-Dart) calcd for C₃₄H₃₉S₂⁺ [M+H]⁺ 509.2331; found 511.2309.

PtCl₂ (3.4 mg, 0.013 mmol, 0.1 equiv.) was added into a solution of **10b** (120 mg, 0.13 mmol, 1.0 equiv.) in toluene (3.5 mL). The solution was kept stirring at 100 °C overnight. The mixture was concentrated and purified by column chromatography (Hexane/DCM: 15/1) to afford a mixture of regioisomers a brown powder (102 mg, 0.11 mmol, 85%).

A solution of FeCl₃ (97 mg, 0.60 mmol, 6.0 equiv.) in dry CH₃NO₂ (1.0 mL) was added dropwise into a solution of regioisomers (94 mg, 0.10 mmol, 1.0 equiv.) in dry DCM (50 mL) at 0 °C. Dry MeOH was added to quench the reaction after 10 mins. The organic phase was washed with 1.0 M HCl (20 mL). The aqueous was extracted with DCM (3 X 15 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane/DCM:5/1) to afford **4b** as yellow powder (78 mg, 0.083 mmol, 71% over two steps).

Melting point: 110 °C

¹H NMR (600 MHz, dichlorobenzene-*d*₄) δ 10.44 (s, 2H, *benzene H*), 9.51 (d, *J* = 8.4 Hz, 2H, *benzene H*), 8.42 (d, *J* = 8.0 Hz, 2H, *benzene H*), 8.24 (s, 2H, *thiophene H*), 7.81-7.76 (m, 4H, *benzene H* + *thiophene H*), 7.70 (t, *J* = 7.4 Hz, 2H, *benzene H*), 3.11 (td, *J* = 7.8, 3.0 Hz, 8H, *alkyl H*), 1.92 (q, *J* = 7.8 Hz, 8H), 1.47 (q, *J* = 7.4 Hz, 8H, *alkyl H*), 1.36 – 1.15 (m, 24H, *alkyl H*), 0.89 (t, *J* = 6.8 Hz, 12H, *alkyl H*). HRMS (Maldi) calcd for C₆₂H₆₆S₄⁺ [M]+ 938.4042; found 938.3997.

Due to low solubility of **4b** in common D-solvents, ¹³C NMR spectra was not able to acquire.

PtCl₂ (3.4 mg, 0.013 mmol, 0.1 equiv.) was added into a solution of **13b** (120 mg, 0.13 mmol, 1.0 equiv.) in toluene (3.5 mL). The solution was kept stirring at 100 °C overnight. The mixture was concentrated and purified by column chromatography (Hexane/DCM: 15/1) to afford a mixture of regioisomers a brown powder (80 mg, 0.085 mmol, 67%).

A solution of FeCl₃ (64 mg, 0.39 mmol, 6.0 equiv.) in dry CH₃NO₂ (1.0 mL) was added dropwise into a solution of regioisomers (62 mg, 0.066 mmol, 1.0 equiv.) in dry DCM (33 mL) at 0 °C. Dry MeOH was added to quench the reaction after 10 mins. The organic phase was washed with 1.0 M HCl (20 mL). The aqueous was extracted with DCM (3 X 15 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane/DCM:5/1) to afford **5b** as yellow powder (59 mg, 0.063 mmol, 64% over two steps).

Melting point: 194 °C

¹H NMR (500 MHz, Chloroform-*d*) δ 11.05 (s, 1H, *benzene H*), 9.08 (dd, J = 6.2, 3.3 Hz, 2H, *benzene H*), 8.43 – 8.31 (m, 4H, *benzene H*), 7.74 (dd, J = 6.2, 3.2 Hz, 4H, *benzene H*), 7.46 (s, 2H, *thiophene H*), 7.40 (s, 2H, *thiophene H*), 2.80 (dt, J = 16.1, 7.8 Hz, 8H, *alkyl H*), 1.87 – 1.75 (m, 4H, *alkyl H*), 1.75 – 1.68 (m, 4H, *alkyl H*), 1.50 – 1.23 (m, 22H, *alkyl H*), 1.02 – 0.95 (m, 6H), 0.94 – 0.80 (m, 6H, *alkyl H*). ¹³C NMR (126 MHz, Chloroform-*d*) δ 146.1, 145.2, 134.9, 134.4, 133.5, 133.2, 128.6, 128.6, 127.1, 126.4, 126.1, 125.9, 125.2, 124.2, 124.1 123.8, 123.4, 118.9, 118.4, 117.0, 31.8, 31.7, 31.5, 31.4, 30.4, 30.4, 29.4, 29.2, 22.8, 22.7, 14.2, 14.1.). HRMS (Maldi) calcd for C_{62H66S4}⁺ [M]+ 938.4042; found 938.4034.

PtCl₂ (3.4 mg, 0.013 mmol, 0.1 equiv.) was added into a solution of **17b** (120 mg, 0.13 mmol, 1.0 equiv.) in toluene (3.5 mL). The solution was kept stirring at 100 °C overnight. The mixture was concentrated and purified by column chromatography (Hexane/DCM: 15/1) to afford a mixture of regioisomers a brown powder (102 mg, 0.085 mmol, 85%).

A solution of FeCl₃ (165 mg, 1.02 mmol, 6.0 equiv.) in dry $CH_3NO_2(1.0 \text{ mL})$ was added dropwise into a solution of regioisomers (160 mg, 0.17 mmol, 1.0 equiv.) in dry DCM (85 mL) at 0 °C. Dry MeOH was added to quench the reaction after 10 mins. The

organic phase was washed with 1.0 M HCl (20 mL). The aqueous was extracted with DCM (3 X 15 mL). The combined organic phase was washed with brine and dried over MgSO₄. The crude product was purified by column chromatography (Hexane/DCM:5/1) to afford **10** as yellow powder (110 mg, 0.12 mmol, 58% over two steps).

Melting point: 202 °C

¹H NMR (500 MHz, Chloroform-*d*) δ 9.53 (dd, J = 8.3, 1.2 Hz, 2H, *benzene H*), 9.33 (s, 2H, *benzene H*), 8.42 (dd, J = 8.0, 1.5 Hz, 2H, *benzene H*), 7.78 (ddd, J = 8.3, 6.8, 1.5 Hz, 2H, *benzene H*), 7.75 – 7.71 (m, 4H, *benzene H* +*thiophene H*), 7.68 (s, 2H, *thiophene H*), 3.06 (t, J = 7.7 Hz, 4H, *alkyl H*), 2.93 (td, J = 7.3, 2.0 Hz, 4H, *alkyl H*), 1.91 (p, J = 7.7 Hz, 4H, *alkyl H*), 1.79 (p, J = 7.7, Hz, 4H, *alkyl H*), 1.56 – 1.18 (m, 24H, *alkyl H*), 0.94 (t, J = 7.0 Hz, 6H, *alkyl H*), 0.92 – 0.83 (m, 6H, *alkyl H*). ¹³C NMR (126 MHz, Chloroform-*d*) δ 146.4, 144.4, 136.2, 135.9, 134.3, 133.3, 129.3, 128.3, 127.7, 126.9, 126.8, 125.7, 125.6, 125.1, 124.9, 124.2, 123.8, 123.7, 119.1, 31.8, 31.7, 31.5, 30.6, 30.4, 29.1, 29.0, 22.7, 22.6, 14.2, 14.2.). HRMS (Maldi) calcd for C₆₂H₆₆S₄⁺ [M]+ 938.4042; found 938.4095.

3. Liquid crystal properties

Figure S2. 1D XRD profiles of the hexagonal columnar mesophases.

^a d_{obs} : d value calculated according to Bragg's equation. d_{calc} : calculated d spacings. ^bMiller indices. ^c $a = (2/\sqrt{3}) \cdot (d_{10} + \sqrt{3} \cdot d_{11} + \sqrt{4} \cdot d_{20} + \sqrt{7} \cdot d_{21} + ...)/n_{reflections}$; c: mean stacking distance; ρ : calculated density value.

 $0\ 0\ 1$

4.1

4. Solid state photoluminescence

Figure S3. Comparison of the normalized fluorescence spectra of 3-10 in DCM and thin film at different temperatures (Cr: crystal, I: isotropic liquid, Col_h: hexagonal columnar mesophase, G: glass).

5. Calculation Details

DFT calculations were performed with *Orca version 4.0.1*,⁷ using the *B3LYP* functional ^{8,9} and *def2-SVP* basis set ¹⁰ with the *RIJCOSX* approximation¹¹ and *D3BJ* dispersion correction¹², and the *TIGHTSCF* convergence criteria. Previous calculations on polycyclic aromatic hydrocarbons have accurately predicted structures, ionization energies, and optical absorption spectra using *B3LYP* and similar split valence basis sets.^{13,14} After geometry optimizations, the structures were then submitted to TD-DFT calculations to calculate UV-Vis absorption spectra. These calculations used the same parameters as the geometry optimizations, along with a tighter integration grid (*FinalGrid6*) and the following TD-DFT-specific parameters: determine 50 roots (*nroots 50*), allow triplet excitations (*triplets true*), and allow up to 5 expansion vectors in the iterative solution of the CI equations (*maxdim 5*). Simulated UV-Vis absorption spectra were plotted with 2000 cm⁻¹ broadening. Molecular orbital images were generated with *Jmol.*¹⁵

Figure S4: Frontier molecular orbitals of 3a'-6a' and 3b' -6b

Compd	Excited state	ΔE (nm)	ſ	description ^a	percentage ^b
3 a'	\mathbf{S}_1	363	0.012	H-1→L	28%
				H-1→H+1 H→L	7%
				$H \rightarrow L+1$	31%
				H→L	33%
	\mathbf{S}_2	344	0.034	H-1→L	17%
				$H-1 \rightarrow L+1$	11%
				H→L	48%
				$H \rightarrow L+1$	21%
	S_5	299	0.298	H-3→L	6%
				H-2→L+2	22%
				H-1→L	38%
				$H \rightarrow L+1$	29%
4a'	\mathbf{S}_1	440	0.078	H-1→L	7%
				H→L	81%
	S_6	354	1.278	H-3→L	6%
				H-1→L	33%
				$H \rightarrow L+1$	38%
				H->L+3	12%
5a'	\mathbf{S}_1	430	0.039	H→L	91%
	S_5	363	0.573	H-1→L	18%
				$H \rightarrow L+1$	20%
				$H \rightarrow L+2$	55%
	S_6	346	0.980	H-4→L	6%
				H-2→L	18%
				H-1→L	18%
				$H \rightarrow L+1$	25%
				$H \rightarrow L+2$	19%
6a'	\mathbf{S}_1	426	0.016	H-1→L+1	24%
				H→L	72%
	\mathbf{S}_5	358	0.960	H-3→L+1	10%
				H-2→L+1	9%
				H-1→L	44%
				H→L+1	27%
3b'	\mathbf{S}_1	368	0.287	H→L	93%
	\mathbf{S}_4	298	0.349	H-4→L	7%
				H-2→L	48%
				$H \rightarrow L+2$	29%
	S_6	279	0.420	H-4→L	34%

Table S2. TD-DFT-calculated electronic transition energy (ΔE), oscillator strength (*f*), and description and percentage of configuration interactions

				H-2→L	14%
				$H \rightarrow L+4$	28%
4b'	\mathbf{S}_1	451	0.205	H→L	92%
	S_5	346	0.808	H-3→L	26%
				H-2→L	25%
				$H \rightarrow L+2$	28%
				$H \rightarrow L+3$	14%
5b'	\mathbf{S}_1	451	0.179	H→L	93%
	S_6	341	1.280	H-2→L	42%
				$H \rightarrow L+2$	36%
6b'	\mathbf{S}_1	427	0.010	H-1→L+1	27%
				H→L	63%
	\mathbf{S}_2	401	0.108	H-1→L	22%
				$H \rightarrow L+1$	69%
	S_3	382	0.375	H-2→L	6%
				H-1→L	63%
				H→L+1	21%
	\mathbf{S}_4	366	0.412	H-2→L+1	6%
				H-1→L+1	59%
				H→L	21%
	S_5	357	0.179	H-2→L	41%
				H-1→L+2	33%
				H→L+3	8%

 $^{\rm a}$ H and L denotes HOMO and LUMO, respectively. $^{\rm b}$ Percentage listed if greater than 5%

Figure S5: Optimized geometry of 3a'-6a' and 3b' -6b

Top view

Side view

3a'

3b'

6. Electrochemical Methods

Cyclic voltammetry was performed using a Biologic VSP potentiostat, and the cell consisted of a glassy carbon working electrode, a platinum wire counter electrode, and a Ag/AgNO₃ pseudo-reference electrode contained in a solution of 0.1 M [Bu₄N][PF₆] in DCM. Prior to each experiment, the glassy carbon electrode was polished with an aqueous suspension of alumina $(0.3 \ \mu m)$ on a felt pad, and the platinum electrode was cleaned by heating to glowing with a propane torch. Voltammetric studies were conducted under Ar with Ar-sparged solutions. For compounds **3a**, **3b**, **4a**, **5a**, **5b**, **6a**, and **6b** solutions of 5 mM analyte in DCM with 0.1 M [Bu₄N][PF₆] as a supporting electrolyte were used. For compound 4b, which was poorly soluble in DCM, studies were performed using a ca. 2 mM solution of 4b in 1,2-dichlorobenzene (DCB) with 80 mM [Bu₄N][PF₆] as a supporting electrolyte. All potentials were referenced versus the ferrocene/ferrocenium couple ($Fc^{+/0} = 0$ V) using Fc as an external standard, measured as $E_{1/2}(Fc^{+/0}) = +0.43 \text{ V in } 0.1 \text{ M } [Bu_4N][PF_6]/DCM \text{ and } +0.49 \text{ V in } 80 \text{ mM}$ [Bu₄N][PF₆]/DCB versus the Ag/AgNO₃ pseudo-reference electrode. At least 3 scans were performed to confirm stability over repeated cycling in the potential range of -1to +1.6 V. Scanning to more oxidizing potentials leads to large, irreversible oxidative events. Peak potentials were extracted from the forward (anodic) sweep using EC-Lab software, and half wave potentials $(E_{1/2})$ for pseudo-reversible couples were determined as the midpoint between peaks of forward and reverse waves.

compound	$E_{\mathrm{p1}}{}^a$	$E_{\mathrm{p2}}{}^a$	$E_{p3}{}^a$	$E_{\mathrm{p4}}{}^a$
3 a	$+0.84(+0.80^{b})$	$+1.38(+1.32^{b})$		
3b	+0.79	+1.55		
4a	+0.49	+0.71	+1.06	
4b	+0.45	+0.61	+0.94	
5a	+0.57	+0.76	+1.12	
5b	+0.36	+0.59	+1.00	+1.55
6a	+0.74	+1.20		
6b	+0.71	+0.98	+1.33	

Table S3. Redox potentials for compounds 3-6 determined by cyclic voltammetry

^{*a*}Potentials in volts (V) referenced to Fc⁺/Fc; reported values are peak potentials determined from the forward sweep using ^{*b*}Half wave potential ($E_{1/2}$) for a pseudo-reversible couple determined as the midpoint between peaks of forward and reverse waves

7. References:

- 1. S. M. Waybright, K. McAlpine, M. Laskoski, M. D. Smith and U. H. F. Bunz, *J. Am. Chem. Soc.* **2002**, *124*, 8661.
- 2. S. Yamaguchi, C. Xu and K. Tamao, J. Am. Chem. Soc. 2003, 125, 13662.
- 3. C. Lee and K. N. Plunkett, Org. Lett. 2013, 15, 1202.
- D. Bong, E. W. Chan, E. W. L. Chan, R. Diercks, P. I. Dosa, M. M. Haley, A. J. Matzger. O. Š. Miljanić, K. Peter, C. Vollhardt, A. D. Bond, S. J. Teat and A. Stanger, *Org. Lett.* 2004, *6*, 2249.
- 5. V. Diemer, F. R. Leroux and F. Colobert, Eur. J. Org. Chem. 2011, 327.
- 6. X. Yang, F. Rominger and M. Mastalerz, Org. Lett. 2018, 20, 7270.
- 7. F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73.
- 8. A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- 9. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 1988, 37, 785.
- 10. F. Weigend and R. Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
- 11. F. Neese, F. Wennmohs, A. Hansen, and U. Becker, Chem. Phys. 2009, 356, 98.
- 12. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 13. M. Parac and S. Grimme, Chem. Phys. 2003, 292, 11.
- 14. R. M. Richard and J. M. Herbert, J. Chem. Theory Comp. 2011, 7, 1296.
- 15. Jmol: an open-source Java viewer for chemical structures in 3D. <u>http://www.jmol.org/</u>

Spectra of New Compounds:

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹H NMR

(400 MHz, CDCl₃)

0.80

112

2882

8 3

m

2

11120

5 1111 / S

¹H NMR

¹H NMR

¹H NMR

S

C₆H₁₃

2a

¹H NMR

¹³ C NMR	
(101 MHz, CD	Cl ₃)
	135.68 134.40 128.53 126.67 126.67 125.15 125.15 125.15 125.15 123.77

	C ₆ H ₁₃
	∫_S
Ĭ I	Ĩ
s	
C_6H_{13}	\checkmark

31.64 31.64 28.85 --22.63 --14.13

¹H NMR

S50

S52

S57

