Electronic Supplementary Information

A Polycyclic Aromatic Hydrocarbon Diradical with pH-Responsive

Magnetic Properties

Xiangyu Fu,[†] Han Han,[†] Di Zhang, Han Yu, Qilin He and Dahui Zhao^{*}

Beijing National Laboratory for Molecular Sciences, Centre for the Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871 (China)

E-mail: dhzhao@pku.edu.cn

Table of Contents

I.	Materials and general methods	S2
II.	Synthesis details	S2
III.	Acid/base response experiments	S7
IV.	DFT calculations	S10
v.	X-ray crystallographic analysis	S14
VI.	References	S17
VII.	Copies of ¹ H- and ¹³ C-NMR spectra	S19
VIII.	Cartesian coordinates of the optimized geometry	S27

I. Materials and general methods

Materials. Chemicals were used as received unless otherwise indicated. THF and toluene were distilled over appropriate drying reagents under N_2 . Superdry dichloromethane (DCM) were purchased from J & K. Compounds **3**, **S1** and trimethyl(phenylethynyl)silane were synthesized according to previously described procedures.¹⁻³

General Methods. Chemicals were used as received unless otherwise indicated. ¹H and ¹³C NMR spectra were recorded on Bruker Avance 400 (400 MHz) in CDCl₃ or benzene- d_6 . Chemical shifts (δ) are reported in parts per million (ppm) with TMS (0 ppm) as the reference for the ¹H NMR spectra and CDCl₃ (77.0 ppm) as the reference for the ¹³C NMR spectra. MALDI-TOF mass spectra were recorded on an Ab Sciex 5800 time-of-flight (TOF) mass spectrometer, and ESI mass spectra were recorded on a Bruker Apex IV Fourier transformation mass spectrometer. Elemental analyses were performed using a German Vario EL III elemental analyzer. THF and toluene were distilled over appropriate drying reagents under N₂. Continuous wave (cw) EPR measurements were performed on a Bruker E580 spectrometer using ER 4122 SHQE high sensitive EPR cavity. Oxford ESR900 cryostat was used for temperature control. The fitting of *IT* (*I* is the double integral of the observed ESR spectra) versus *T* of **BCHF1** using modified Bleaney-Bowers equation (1).⁴

$$IT = \frac{C}{3 + \exp(-\frac{2J}{k_B T})}$$
(1)

II. Synthesis details

Synthesis of S2: A mixture of diethyl 4,6-dibromoisophthalate (S1, 5.0 g, 13 mmol), trimethyl(phenylethynyl)silane (2.3 g, 13 mmol), Pd(PPh₃)₂Cl₂ (0.19 g, 0.27 mmol), CuI (0.13 g, 0.68 mmol), and KF·2H₂O (2.7 g, 29 mmol) in a mixed solvent of THF (20 mL), Et₃N (20 mL) and CH₃CN (15 mL) was heated at 80 °C for 24 h under nitrogen atmosphere. The mixture was then diluted with dichloromethane and washed with saturated aqueous solution ammonium chloride. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The crude product was purified with column chromatography of silica gel (dichloromethane/petroleum ether = 1/1) to afford a mixture of S1, S2 and S3 as light yellow oil (5.1 g), which was used in the next step without further separation.

Characterization data of **S2**. ¹H-NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.95 (s, 1H), 7.67 – 7.47 (m, 2H), 7.38 (m, 3H), 4.44 (m, 4H), 1.42 (m, 6H). ¹³C-NMR (100 MHz, CDCl₃) δ 164.9, 164.8, 139.3, 133.2, 131.8, 131.22, 130.7, 129.2, 128.4, 127.6, 125.2, 122.4, 97.9, 86.5, 62.0, 61.6, 14.3, 14.2. HRMS: Calcd. for C₂₀H₁₈O₄Br⁺ [M⁺]: 401.038; Found: 401.038.

Synthesis of S5: A mixture of **S1**, **S2** and **S3** (5.0 g), phenylboronic acid (3.1 g, 25 mmol), Pd(PPh₃)₄ (0.29 g, 0.25 mmol), and K₂CO₃ (8.6 g, 62 mmol) in THF (25 mL) and H₂O (25 mL) was heated at 80 °C for 24 h under nitrogen atmosphere. The reaction mixture was then diluted with dichloromethane and washed with saturated aqueous solution ammonium chloride. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The crude product was purified with column chromatography of silica gel (dichloromethane/petroleum ether = 1/1) to afford a mixture of **S3**, **S4** and **S5** as light yellow oil (4.9 g), which was used in the next step without further separation.

Characterization data of **S5**. ¹H-NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.66 (s, 1H), 7.60–7.53 (m, 2H), 7.46–7.30 (m, 8H), 4.46 (q, *J* = 7.1 Hz, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 1.43 (t, *J* = 7.1 Hz, 3H), 1.03 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 167.4, 165.3, 145.5, 139.8, 136.3, 132.3, 131.8, 130.6, 130.3, 128.9, 128.4, 128.2, 128.1, 127.9, 126.3, 122.9, 96.6, 87.8, 61.5, 61.3, 14.4, 13.6. HRMS: Calcd. for C₂₆H₂₃O₄⁺ ([M+H]⁺): 399.159; Found: 399.159.

Synthesis of S6: A mixture of S3, S4, S5 (4.9 g) and 5% Pd/C (0.50 g) in ethyl acetate (100 mL) and methanol (50 mL) was heated to reflux overnight under hydrogen atmosphere. Then the mixture was filtered and the filtrate was evaporated under reduced pressure. The crude product was purified with column chromatography of silica gel (dichloromethane/petroleum ether = 1/1) to afford S6 as light yellow oil (2.80 g, 60% three steps). ¹H-NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.41 – 7.35 (m, 3H), 7.28 (m, 2H), 7.25–7.18 (m, 5H), 7.15 (s, 1H), 4.41 (q, *J* = 7.1 Hz, 2H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.33 (m, 2H), 2.94 (m, 2H), 1.42 (t, *J* = 7.1 Hz, 3H), 1.01 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 167.8, 166.5, 146.7, 145.5, 141.5, 140.6, 133.8, 132.6, 129.0, 128.6, 128.4,

128.2, 128.0, 127.6, 126.0, 61.2, 61.0, 37.8, 36.6, 14.3, 13.6. HRMS: Calcd. for $C_{26}H_{26}O_4^+$ [M⁺]: 402.182; Found: 402.182.

Synthesis of S7: To a solution of S6 (1.51 g, 3.76 mmol) in ethanol (50 mL), a saturated aqueous solution of KOH (4.22 g, 75.2 mmol) was added slowly. The resultant mixture was heated at reflux overnight, cooled to room temperature and then evaporated under reduced pressure. HCI (1 M) was added until pH = 1, and the formed precipitate was filtered and washed with water. The solid was dried at 110 °C, and this crude diacid was dissolved in SOCl₂ (50 mL) and heated to reflux for 5 h. Upon removal of the excess SOCI₂, the resultant mixture was dissolved in CH₂CI₂ (50 mL), to which AlCl₃ (5.01 g, 37.6 mmol) was added slowly at 0 °C. The resultant solution was then stirred at room temperature overnight and then 1 M HCl was added at 0 °C to quench the reaction. The reaction mixture was extracted with dichloromethane 3 times, and the organic layers were combined and washed with saturated brine. The solution was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The crude product was purified with column chromatography of silica gel (dichloromethane) to afford S7 as a yellow solid (782 mg, 67%). ¹H-NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 8.06 (dd, J = 7.9, 1.3 Hz, 1H), 7.71 (d, J = 7.4 Hz, 1H), 7.60 (d, J = 7.4 Hz, 1H), 7.54 (td, J = 7.4, 1.0 Hz, 1H), 7.46 (m, 1H), 7.40 (s, 1H), 7.37 (td, J = 7.6, 1.0 Hz, 2H), 7.25 (d, J = 8.7 Hz, 1H), 3.33 – 3.21 (m, 4H). ¹³C-NMR (100 MHz, CDCl₃) δ 193.8, 192.3, 149.4, 147.2, 143.0, 141.6, 139.3, 137.8, 135.1, 134.7, 132.6, 132.6, 130.8, 130.0, 129.3, 126.9, 126.8, 124.4, 121.2, 121.0, 35.6, 34.4. MALDI-TOF-MS: Calcd. for C₂₂H₁₅O⁺ ([M+H]⁺): 311.1; Found: 311.1. Elem. Anal.: Calcd. for C₂₂H₁₄O: C, 85.14; H, 4.55. Found: C, 84.80; H, 4.59.

Synthesis of 1: A mixture of **S7** (300 mg, 0.97 mmol) and BPO (12 mg, 0.050 mmol) in CCl₄ (40 mL) was heated to reflux, to which NBS (147 mg, 1.07 mmol) was added slowly. The mixture was heated at reflux for 5 h. Upon removal of CCl₄, the resultant mixture was dissolved in DMF (20 mL), and DBN (144 mg, 1.16 mmol) was added slowly to it before the mixture was heated at 80 °C for 6 h. Then the mixture was cooled to room temperature, quenched with diluted HCl and extracted in dichloromethane. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The crude product was purified with column chromatography of silica gel (dichloromethane) to afford **1** as a yellow solid (242 mg, 81%). ¹H-NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.22 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.75 (d, *J* = 7.4 Hz, 1H), 7.68 (d, *J* = 7.4 Hz, 1H), 7.64 (s, 1H), 7.66–7.54 (m, 4H), 7.41 (td, *J* = 7.4, 0.9 Hz, 1H), 7.19 (d, *J* = 12.1 Hz, 1H), 7.10 (d, *J* = 12.1 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃) δ 192.0, 191.8, 146.3, 143.0, 140.5, 139.4, 138.6, 135.5, 134.9, 134.5, 134.4, 134.0, 132.2, 131.2, 130.9, 130.3, 130.3, 129.8, 127.1,

124.7, 122.1, 121.3. HRMS: Calcd. for C₂₂H₁₃O₂⁺ ([M+H]⁺): 309.091; Found: 309.091. Elem. Anal.: Calcd. for C₂₂H₁₂O₂: C, 85.70; H, 3.92. Found: C, 85.76; H, 3.85.

Synthesis of 2: To a solution of 2-bromo-1,3,5-trimethylbenzene (MesBr, 399 mg, 2.00 mmol) in THF (10 mL) under nitrogen atmosphere at -78 °C was added dropwise n-BuLi (2.4 M in hexanes, 0.70 mL, 1.7 mmol), and the mixture was kept at -78 °C for another 1 hour. The lithiate was transferred via syringe to a solution of **1** (103 mg, 0.334 mmol) in THF (15 mL) cooled at -78 °C under nitrogen atmosphere. The reaction mixture was allowed to react at room temperature for 3 h, before quenched with diluted HCl and extracted in Et₂O. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The crude product was purified with column chromatography over silica gel (dichloromethane/petroleum ether = 2/1) to afford **2** (two diastereomers) as a white solid.

Characterization data of diastereomer I (17 mg, 9.3%). ¹H-NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.0 Hz, 1H), 8.08 (s, 1H), 7.60 (d, *J* = 7.5 Hz, 1H), 7.51 (s, 1H), 7.42 (m, 1H), 7.31 (m, 1H), 7.24 – 7.16 (m, 4H), 7.01 (s, 1H), 6.78 (q, *J* = 11.4 Hz, 2H), 6.65 (s, 1H), 6.49 (d, *J* = 6.9 Hz, 2H), 2.96 (s, 3H), 2.37 (s, 1H), 2.28 (s, 3H), 2.12 (s, 3H), 1.96 (s, 1H), 1.42 (s, 3H), 1.39 (s, 3H), 1.32 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 152.0, 150.9, 145.8, 144.5, 139.0, 138.9, 137.7, 137.5, 137.4, 137.3, 136.4, 136.2, 135.9, 135.3, 133.0, 132.3, 132.0, 131.5, 131.2, 130.6, 130.1, 128.7, 128.5, 128.3, 127.6, 125.7, 124.0, 123.6, 120.2, 119.5, 119.1, 86.6, 79.2, 29.7, 25.9, 23.1, 22.2, 20.9, 20.6, 20.4. HRMS: Calcd. for C₄₀H₃₆NaO₂⁺ ([M+Na]⁺): 571.261; Found: 571.261.

Characterization data of diastereomer II (128 mg, 70%).¹H-NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 8.07 (d, *J* = 7.9 Hz, 1H), 7.61 (d, *J* = 7.5 Hz, 1H), 7.51 (s, 1H), 7.37 (m, 1H), 7.32 (m, 1H), 7.28 (d, *J* = 7.7 Hz, 1H), 7.23 – 7.16 (m, 3H), 6.99 (s, 1H), 6.83 – 6.68 (m, 2H), 6.51 (s, 3H), 3.02 (s, 3H), 2.47 (s, 1H), 2.23 (s, 3H), 2.18 (s, 1H), 2.13 (s, 3H), 1.49 (s, 3H), 1.32 (s, 3H), 0.98 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 151.6, 151.1, 146.2, 144.4, 139.2, 138.8, 137.7, 137.6, 137.5, 136.9, 136.4, 136.3, 135.9, 135.1, 132.7, 132.2, 132.1, 131.4, 131.4, 130.7, 130.7, 130.0, 128.8, 128.4, 128.2, 127.5, 125.6, 124.4, 123.7, 120.1, 119.5, 119.5, 86.4, 79.1, 25.8, 22.7, 22.1, 21.8, 20.5, 20.4. HRMS: Calcd. for C₄₀H₃₆NaO₂⁺ ([M+Na]⁺): 571.261; Found: 571.261.

Synthesis of BCHF1+H⁺: To a solution of **2** (30 mg, 0.055 mmol) and Et₃SiH (87 μ L, 0.55 mmol) in dichloromethane (5 mL) was added Et₂O·BF₃ (69 μ L, 0.55 mmol) at 0 °C, and the mixture was kept at 0 °C for 1 h. The reaction mixture was then diluted with dichloromethane and washed with saturated NaHCO₃, water and saturated brine. The organic layer was then dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to afford **BCHF1+H⁺** as a red solid (28 mg, counter ion was unknown). ¹H-NMR (400 MHz, CDCl₃) δ 9.56 (d, *J* = 11.4 Hz, 1H), 9.36 (s, 1H), 9.21 (d, *J* = 11.4 Hz, 1H), 8.75 (d, *J* = 8.1 Hz, 1H), 8.51 (d, *J* = 6.5 Hz, 1H), 8.46 (t, *J* = 7.4 Hz, 1H), 8.31 (d,

 $J = 8.8 \text{ Hz}, 1\text{H}, 8.04 \text{ (t, } J = 7.7 \text{ Hz}, 1\text{H}), 7.65 \text{ (s, } 1\text{H}), 7.63 - 7.59 \text{ (m, } 2\text{H}), 7.43 \text{ (d, } J = 6.8 \text{ Hz}, 1\text{H}), 7.10 \text{ (s, } 1\text{H}), 6.95 \text{ (s, } 1\text{H}), 6.79 \text{ (s, } 1\text{H}), 6.62 \text{ (s, } 1\text{H}), 5.66 \text{ (s, } 1\text{H}), 2.44 \text{ (s, } 6\text{H}), 2.32 \text{ (s, } 3\text{H}), 1.63 \text{ (s, } 3\text{H}), 1.32 \text{ (s, } 3\text{H}), 0.95 \text{ (s, } 3\text{H}). ¹³C-NMR (100 MHz, CDCl₃) & 179.2, 155.0, 153.5, 152.4, 147.8, 145.1, 144.8, 144.0, 140.0, 139.4, 137.8, 137.6, 137.4, 137.4, 137.3, 136.6, 136.5, 136.3, 134.9, 134.6, 133.8, 133.1, 131.0, 130.9, 130.5, 129.0, 128.6, 126.8, 126.00, 125.0, 49.9, 29.6, 21.3, 21.0, 20.8, 19.9, 19.4, 19.3. HRMS (ESI): Calcd. for <math>C_{40}H_{35}^+$ ([M⁺]): 515.273; Found: 515.272.

Synthesis of BCHF2: To a solution of 2-bromo-1,3,5-trimethylbenzene (MesBr, 213 mg, 1.07 mmol) in THF (10 mL) under nitrogen atmosphere at -78 °C was added 2.4 M n-BuLi in hexanes (0.37 mL, 0.89 mmol), and the mixture was kept at -78 °C for another 1 hour. The lithiate was transferred via cannula to a solution of 3 (55 mg, 0.18 mmol) in THF (15 mL) cooled at -78 °C under nitrogen atmosphere. The reaction mixture was allowed to react at room temperature for 3 h, before quenched with diluted HCl and extracted in Et₂O. The organic layer was dried over anhydrous Na2SO4 and evaporated under reduced pressure. The residue was transferred into a Schlenk tube along with SnCl₂ (135 mg, 0.712 mmol) and ethyl acetate (20 mL) and heated at 80 °C under nitrogen atmosphere for 5 h. The reaction mixture was then diluted with dichloromethane and washed with diluted HCI. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The crude product was purified with column chromatography over silica gel (dichloromethane/petroleum ether = 1/5) to afford BCHF2 as a green solid (44 mg, 50%). ¹H-NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 7.3 Hz, 1H), 7.29 – 7.27 (m, 2H), 7.23 - 7.14 (m, 3H), 7.09 - 6.94 (m, 6H), 6.88 (d, J = 8.2 Hz, 1H), 6.60 (d, J = 12.0 Hz, 2H), 6.40 (d, J = 12.4 Hz, 1H), 2.46 (s, 3H), 2.39 (s, 3H), 2.06 (s, 6H), 2.04 (s, 6H). ¹H-NMR (400 MHz, Benzene-*d*₆) δ 7.73 (s, 1H), 7.55 (d, J = 7.4 Hz, 1H), 7.14 (m, 2H), 7.05 (dd, J = 8.4, 1.2 Hz, 1H), 6.97 – 6.82 (m, 8H), 6.64 (ddd, J = 8.6, 7.1, 1.6 Hz, 1H), 6.36 (d, J = 12.3 Hz, 1H), 6.18 (d, J = 12.3 Hz, 1H), 2.26 (s, 3H), 2.25 (s, 3H), 2.14 (s, 6H), 2.01 (s, 6H). EI HR-MS: Calcd. for C₄₀H₃₄⁺ (M⁺): 514.2661; Found: 514.2666.

III. Acid/base response experiments

The absorption and emission spectra of **BCHF1+H⁺/ BCHF1** were recorded using a sealed quartz cell due to the unstability of **BCHF1.** The DBU/TFA vapor-responsive absorption experiments with thin films were performed using a sealed quartz cell connected to a branch tube for storing DBU or TFA droplets. A dilute solution (0.2 mL) of **BCHF1+H⁺** in CH₂Cl₂ (10^{-4} M) was injected to the cell and evaporated under vacuum to obtain a dark red film of **BCHF1+H⁺**. Degassed DBU (50 µL) was added to the branched tube cooled with liquid nitrogen. The entire apparatus was pumped under vacuum and then warmed to room temperature such as to introduce DBU vapor to the film. The film turned green gradually in 10 minutes and the absorption spectrum was collected. Then degassed TFA vapor was introduced in a similar fashion. The film turned back to dark red in only 1 minute, due to the higher vapor pressure of TFA.

Fig. S1 (a) The absorption and (b) emission spectra of **BCHF1** (**BCHF1+H**⁺ treated with DBU) and **BCHF2** in comparison to **BCHF1+H**⁺ and **BCHF2+H**⁺ (**BCHF2** treated with TFA) in CH_2Cl_2 solution.

Fig. S2 (a) Absorption spectra of **BCHF1+H**⁺ in CH_2Cl_2 with sequential additions of excess pyridine- d_5 (Py, 1000 equiv.) and TFA. (b) Absorption spectra of **BCHF1+H**⁺ in CH_2Cl_2 with sequential additions of excess Et_3N (500 equiv.) and TFA.

Fig. S3 Absorption spectra of **BCHF1+H**⁺ in CH_2Cl_2 upon sequential additions of DBU (B, 2 equiv. for each addition) and TsOH (A, 2 equiv. for each addition).

Fig. S4 Absorption (a) and emission (b) spectra of **BCHF2** in CH_2CI_2 with sequential additions of excess TFA (500 equiv.) and Et_3N (TEA).

Fig. S5 Emission spectra of **BCHF1+H**⁺ in CH₂Cl₂ with sequential additions of DBU (a, 2 equiv.) or Et₃N (b, 500 equiv.) followed by excessive TFA.

Fig. S6 (a) The absorption decay of **BCHF1** (**BCHF1+H**⁺ treated with DBU) in CH_2Cl_2 under N_2 atmosphere; (b) data fitting with the first-order kinetics, offering a decomposition rate constant of $k = -0.020 \text{ h}^{-1}$ corresponding to a half-life time of $\tau_{1/2} = 35 \text{ h}$.

Fig. S7 EPR spectra of **BCHF1+H**⁺ in CH₂Cl₂ upon sequential additions of DBU (2 equiv.), TFA (20 equiv.), and then DBU (20 equiv.) again.

Fig. S8 Normalized absorptions of **BCHF1+H**⁺ and **BCHF1** in the thin film state (obtained from a DBU-treated solution of **BCHF1+H**⁺ in CH_2Cl_2 by evaporation).

Fig. S9 (a) Absorption and (b) EPR spectra of **BCHF1+H**⁺ films upon exposure to DBU vapor followed by TFA vapor.

IV. DFT calculations

Theoretical calculations were performed with the Gaussian09 program suite.⁵ The molecular geometry optimization were carried out using (U)B3LYP method at 6-311G(d) level. Frequency analysis verified that all optimized geometries do not contain any negative frequencies. And the singlet-triplet energy gap (ΔE_{S-T}) was calculated according to the following equation proposed by Yamaguchi:⁶⁻⁸

$$\Delta E_{S-T} = 2J = \frac{2(E_{BS} - E_T)}{\langle S^2 \rangle_T - \langle S^2 \rangle_{BS}}$$

where J represents the intramolecular exchange interaction in the diradicals, E_{BS} and E_T represent the total energy of the calculated broken-symmetry singlet state and triplet state, $\langle S^2 \rangle_T$ and $\langle S^2 \rangle_{BS}$ represent the total spin angular momentum of the calculated broken-symmetry triplet and singlet states.

The open-shell character of the molecules was characterized with the spin-projected unrestricted Hartree-Fock (PUHF) method, which proves to be an effective way to display the diradical character of molecules.⁹ The diradical character (y_0) was calculated according to Yamaguchi's scheme:¹⁰

$$y_0 = 1 - \frac{2T}{1 + T^2}$$
$$T = \frac{n_{HONO} - n_{LUNO}}{2}$$

where n_{HONO} is the occupation number of the highest occupied natural orbital (HONO), and n_{LUNO} is the occupation number of the lowest unoccupied natural orbital (LUNO).

Time-dependent DFT (TD-DFT) calculations are performed at the B3LYP/6-311G(d) level of theory. The UV-Vis spectrum calculation and the transition orbital analysis were performed using a multifunctional wavefunction analyser (Multiwfn).¹¹

 Table S1 Summary of calculation results.

	BCHF1	BCHF2	$BCHF1+H^+$	BCHF2+H ⁺
E _{BS} (Hartree)	-846.905527	-846.924823	_	-
E_{T} (Hartree)	-846.902516	-846.894816	-	-
<s<sup>2>_{BS}</s<sup>	0.0000	0.0000	-	-
⟨S²⟩ _T	2.0502	2.0365	-	-
ΔE _{s-τ} (kcal/mol)	-1.84	-18.49	-	-
Уo	0.44	0.28	-	-
Dipole (Debye)	4.75	2.76	3.57	4.71

Fig. S11 Spin density of BCHF1 optimized at UB3LYP/6-311G(d) level.

Fig. S12 Calculated UV-Vis spectra of (a) **BCHF1**, (b) **BCHF1+H**⁺, (c) **BCHF2** and (d) **BCHF2+H**⁺ at B3LYP/6-311G(d) level.

Table S2 Selected TD-DFT calculated wavelength, oscillator strength and compositions of majorelectronic transitions of **BCHF1**.

Wavelength (nm)	Oscillator strength	Major contributions
561.42	0.0817	HOMO \rightarrow LUMO+1 (67%), HOMO-1 \rightarrow LUMO (30%)
418.50	1.2627	HOMO-1 \rightarrow LUMO (41%), HOMO \rightarrow LUMO+2 (35%)
396.81	0.9620	HOMO \rightarrow LUMO+2 (61%), HOMO-1 \rightarrow LUMO (26%)
330.05	0.1396	HOMO-1 \rightarrow LUMO+1 (41%), HOMO \rightarrow LUMO+3 (35%)
329.18	0.1782	HOMO \rightarrow LUMO+3 (48%), HOMO-1 \rightarrow LUMO+1 (30%)

Table S3 Selected TD-DFT calculated wavelength, oscillator strength and compositions of major electronic transitions of **BCHF1+H**⁺.

Wavelength (nm)	Oscillator strength	Major contributions	
496.95	0.2272	HOMO → LUMO (88%)	
442.14	0.5102	HOMO-1 → LUMO (83%)	
347.44	0.7006	HOMO → LUMO+1 (86%)	
337.79	0.0693	HOMO-3 → LUMO (70%), HOMO-1 → LUMO+1 (27%)	
326.87	0.0957	HOMO-1 → LUMO+1 (44%), HOMO-4 → LUMO (37%)	

Table S4 Selected TD-DFT calculated wavelength, oscillator strength and compositions of majorelectronic transitions of BCHF2.

Wavelength (nm)	Oscillator strength	Major contributions			
669.51	0.1679	HOMO → LUMO (91%), HOMO → LUMO+1 (7%)			
466.63	0.1174	HOMO $ ightarrow$ LUMO+1 (70%), HOMO-1 $ ightarrow$ LUMO (27%)			
386.04	1.2537	HOMO-1 $ ightarrow$ LUMO (67%), HOMO $ ightarrow$ LUMO+1 (21%)			
321.60	0.7994	HOMO-1 → LUMO+1 (78%)			
317.91	0.3480	HOMO-3 → LUMO (59%), HOMO → LUMO+3 (25%)			

Table S5 Selected TD-DFT calculated wavelength, oscillator strength and compositions of major electronic transitions of **BCHF2+H**⁺.

Wavelength (nm)	Oscillator strength	Major contributions
--------------------	------------------------	---------------------

545.45	0.0488	HOMO → LUMO (98%)			
466.63	0.1174	HOMO $ ightarrow$ LUMO+1 (70%), HOMO-1 $ ightarrow$ LUMO (27%)			
382.78	0.2622	HOMO-3 → LUMO (41%), HOMO → LUMO+1 (34%)			
341.40	1.5534	HOMO-3 → LUMO (44%), HOMO → LUMO+1 (32%)			
307.24	0.0710	HOMO-2 → LUMO+1 (50%), HOMO-4 → LUMO (46%)			

V. X-ray crystallographic analysis

The single crystal of $[BCHF1+H^+][BF_4^-]$ was obtained by slow diffusion of hexane into the DCM solution. The data of single crystal of $[BCHF1+H^+][BF_4^-]$ were collected on a XtaLAB Synergy R, HyPix diffractometer. The crystal was kept at 170.00(10) K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation.

Fig. S13 Front view (a), side view (b) and unit cell (c) of single crystal of **[BCHF1+H⁺][BF**₄].

```
Table S6 Crystal data and structure refinement for [BCHF1+H<sup>+</sup>][BF<sub>4</sub><sup>-</sup>].
Identification code [BCHF1+H<sup>+</sup>][BF<sub>4</sub>]
Empirical formula C<sub>40</sub>H<sub>35</sub>BF<sub>4</sub>
Formula weight
                        602.49
Temperature/K
                        170.00(10)
Crystal system monoclinic
Space group P21/c
a/Å 11.99110(10)
b/Å 34.2594(3)
c/Å 15.9758(2)
α/° 90
β/° 107.6140(10)
γ/° 90
Volume/Å<sup>3</sup>
                  6255.29(11)
Ζ
      8
\rho_{\rm calc} {\rm g/cm}^3 1.280
\mu/\text{mm}^{-1} 0.723
F(000) 2528.0
Crystal size/mm<sup>3</sup> 0.3 \times 0.15 \times 0.05
Radiation CuK\alpha (\lambda = 1.54184)
20 range for data collection/°5.158 to 151.13
Index ranges -15 \le h \le 13, -38 \le k \le 42, -17 \le l \le 20
Reflections collected
                              46687
Independent reflections 12449 [R<sub>int</sub> = 0.0322, R<sub>sigma</sub> = 0.0298]
Data/restraints/parameters 12449/0/823
Goodness-of-fit on F<sup>2</sup> 1.066
Final R indexes [I \ge 2\sigma(I)]
                                    R_1 = 0.0892, wR_2 = 0.2649
Final R indexes [all data] R<sub>1</sub> = 0.1045, wR<sub>2</sub> = 0.2848
Largest diff. peak/hole / e Å<sup>-3</sup> 1.02/-0.81
```

Table S7 Fractional atomic coordinates (×10 ⁴) a	nd equivalent isotropic displacement parameters
$(\text{\AA}^2 \times 10^3)$ for [BCHF1+H ⁺][BF ₄ ⁻]. U _{eq} is defined as	1/3 of the trace of the orthogonalised UIJ tensor.

Aton	n x	У	Z	U(eq)
F1	8826(4)	5746.4(13)	6505(2)	137.0(15)
F2	9570(5)	5364.8(17)	7552(7)	285(5)
F3	7763(5)	5260.0(16)	6880(3)	196(3)
F4	8239(4)	5777.0(9)	7651(2)	118.1(12)
B1	8582(5)	5532.4(13)	7131(4)	76.1(14)
F1A	8977(5)	7291.3(18)	6253(3)	182(2)
F2A	7189(4)	7392.2(13)	5820(3)	141.8(15)
F3A	7871(7)	7011.6(15)	5013(3)	246(4)
F4A	8195(4)	7624.8(16)	5034(3)	159.3(18)
B1A	8090(4)	7303.9(19)	5524(3)	77.2(14)
C1	11704(2)	5873.9(8)	5657.9(1	8) 42.6(6)

C2	11726(3)	6252.9(9)	5356(2) 49.	7(7)
C3	11685(3)	6310.9(9)	4486(2) 54.	7(8)
C4	11645(3)	5993.5(10)	3930(2) 54.	5(8)
C5	11612(3)	5615.5(9)	4216.5(19)	49.9(7)
C6	11635(3)	5559.6(8)	5089.7(18)	42.3(6)
C7	11616(2)	5200.8(8)	5573.9(17)	40.2(6)
C8	11506(3)	4817.9(8)	5305.1(17)	41.6(6)
C9	11503(2)	4514.2(8)	5896.6(17)	38.7(6)
C10	11298(3)	4139.9(8)	5503.1(18)	44.6(6)
C11	11219(3)	3783.7(8)	5853.2(18)	45.5(6)
C12	11454(2)	3664.6(8)	6739.2(18)	39.8(6)
C13	11350(3)	3259.5(8)	6858(2) 47.	6(7)
C14	11677(3)	3089.5(8)	7672(2) 49.4	4(7)
C15	12137(3)	3323.2(9)	8410.3(19)	48.0(7)
C16	12193(3)	3718.3(8)	8325.5(19)	45.7(6)
C17	11828(2)	3913.5(7)	7498.7(17)	37.2(5)
C18	11825(2)	4332.3(7)	7510.7(16)	35.6(5)
C19	11666(2)	4604.9(7)	6816.9(16)	36.5(5)
C20	11719(2)	5011.5(8)	7050.3(17)	37.9(5)
C21	11704(2)	5298.5(8)	6457.0(17)	38.5(6)
C22	11730(3)	5738.2(8)	6568.3(17)	41.0(6)
C23	12716(3)	5916.4(8)	7311.9(18)	42.3(6)
C24	12437(3)	6203.3(9)	7847.3(19)	49.2(7)
C25	13336(3)	6374.7(10)	8516(2) 60.	0(8)
C26	14481(3)	6266.1(11)	8676(2) 63.2	2(9)
C27	14747(3)	5990.9(11)	8134(2) 59.	5(8)
C28	13889(3)	5811.6(9)	7449(2) 48.9	9(7)
C29	11199(3)	6338.1(10)	7722(3) 61.	1(9)
C30	15450(5)	6439.9(15)	9436(3) 93.	0(15)
C31	14274(3)	5522.0(10)	6890(2) 58.3	1(8)
C32	12048(2)	4500.8(7)	8420.2(16)	36.6(5)
C33	11116(2)	4531.1(7)	8777.7(17)	39.2(6)
C34	11365(3)	4643.8(8)	9649.7(19)	45.4(6)
C35	12508(3)	4717.7(9)	10177.0(19)	48.4(7)
C36	13395(3)	4694.0(9)	9800.5(19)	46.9(7)
C37	13188(2)	4590.6(8)	8922.8(17)	41.5(6)
C38	9881(3)	4442.2(10)	8242(2) 49.9	9(7)
C39	12750(4)	4812.7(12)	11133(2) 67.3	2(10)
C40	14191(3)	4562.7(13)	8539(2) 64.4	4(9)
C1A	4069(3)	8996.6(9)	7477(2) 52.2	2(7)
C2A	3711(3)	9358.0(10)	7688(2) 56.	3(8)
C3A	4322(4)	9529.5(11)	8474(3) 63.	0(9)
C4A	5271(4)	9339.9(12)	9059(3) 67.2	2(9)
C5A	5592(3)	8968.6(11)	8862(2) 61.	3(8)

C6A 4985	6(3) 8797	7.4(10)	8075	(2)	50.2	(7)	
C7A 5104	4(3) 8412	2.6(9)	7706	(2)	48.8	(7)	
C8A 5808	3(3) 8102	2.5(9)	8048	(2)	47.9	(7)	
C9A 5711	L(3) 7745	5.1(10)	7572	(2)	49.2	(7)	
C10A653	5(3) 7455	5.9(10)	7985	(2)	56.9	(8)	
C11A673	4(3) 7096	5.9(11)	7710	(2)	61.0	(9)	
C12A6114	4(3) 6875	5.6(10)	6969	(2)	56.3	(8)	
C13A658	8(4) 6504	4.4(11)	6890	(3)	70.7	(10)	
C14A6022	2(4) 6243	3.4(12)	6270	(3)	74.0	(11)	
C15A	4924(4)	6333.9(12	1)	5686	(3)	69.9	(10)
C16A	4457(3)	6694.1(10	D)	5717	(2)	56.5	(8)
C17A	5029(3)	6987.5(9))	6332	(2)	48.7	(7)
C18A	4479(3)	7359.5(9))	6236	.7(19	Ð)	44.9(6)
C19A	4815(2)	7710.4(9))	6724	(2)	44.9	(6)
C20A	4159(3)	8053.1(9))	6386	(2)	47.4	(7)
C21A	4298(3)	8391.0(9))	6855	(2)	48.8	(7)
C22A	3642(3)	8774.9(9))	6603	(2)	50.6	(7)
C23A	2350(3)	8747.7(9))	6119	(2)	49.7	(7)
C24A	1893(3)	8958.4(9))	5342	(2)	52.3	(7)
C25A	735(3)	8916.8(10	D)	4851	(2)	59.9	(8)
C26A	-7(3)	8663.5(12	1)	5096	(2)	61.3	(9)
C27A	446(3)	8460.4(10	D)	5883	(3)	59.0	(8)
C28A	1593(3)	8500.8(9))	6412	(2)	52.1	(7)
C29A	2626(4)	9247.7(12	2)	5008	(3)	68.0	(9)
C30A	-1255(4)	8617.9(14	4)	4557	(3)	80.3	(12)
C31A	1993(3)	8285.2(12	1)	7265	(3)	62.2	(9)
C32A	3334(2)	7395.7(8))	5505	.9(19	Ð)	43.3(6)
C33A	3304(3)	7494.8(10	D)	4653	(2)	51.1	(7)
C34A	2220(3)	7582.6(10	D)	4050	(2)	52.5	(7)
C35A	1188(3)	7573.5(9))	4268	(2)	49.8	(7)
C36A	1240(3)	7448.6(9))	5100	(2)	46.3	(6)
C37A	2293(2)	7358.3(8))	5729	.3(19	Ð)	42.5(6)
C38A	4404(4)	7509.5(1	5)	4385	(3)	77.4	(12)
C39A	52(3)	7711.6(1	1)	3638	(3)	64.1	(9)
C40A	2313(3)	7228.1(10	D)	6633	(2)	51.6	(7)

VI. References

- 1 M. Romain, M. Chevrier, S. Bebiche, M. Mohammed-Brahim, J. Rault-Berthelot, E. Jacques and C.Poriel, *J. Mater. Chem. C*, 2015, **3**, 5742-5753.
- 2 X. Yang, X. Shi, N. Aratani, T. P. Goncalves, K. -W. Huang, H. Yamada, C. Chi and Q. Miao, *Chem. Sci.*, 2016, **7**, 6176-6181.
- 3 S. M. Baghbanian, H. Yadollahy, M. Tajbakhsh, M. Farhang and P. Biparva, *RSC Adv.*, 2014, **4**, 62532-62543.

- 4 Y. Matsuta, D. Sakamaki, R. Kurata, A. Ito and S. Seki, *Chem. Asian J.*, 2017, **12**, 1889-1894.
- *Gaussian 09; Revision A.2*; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc., Wallingford CT, 2009.
- 6 K. Yamaguchi, H. Fukui and T. Fueno, *Chem. Lett.*, 1986, **15**, 625-628.
- 7 K. Yamaguchi, Y. Takahara, T. Fueno and K. N. Houk, *Theor. Chim. Acta.*, 1988, **73**, 337-364.
- 8 S. Yamanaka, T. Kawakami, H. Nagao and K. Yamaguchi, *Chem. Phys. Lett.*, 1994, 231, 25-33.
- G. E. Rudebusch, J. L. Zafra, K. Jorner, K. Fukuda, J. L. Marshall, I. Arrechea-Marcos, G. L. Espejo, R. P. Ortiz, C. J. Gómez-García, L. N. Zakharov, M. Nakano, H. Ottosson, J. Casado and M. M. Haley, *Nat. Chem.*, 2016, 8, 753-759.
- 10 K. Yamaguchi, *Chem. Phys. Lett.*, 1975, **33**, 330-335.
- 11 T. Lu and F. Chen, J. Comput. Chem., 2012, **33**, 580-592.

VII. Copies of ¹H- and ¹³C-NMR spectra

S20

S23

In CDCl₃

In Benzene-d₆

VIII. Cartesian coordinates of the optimized geometry

Cartesian Coordinates of BCHF1 (closed-shell).

С	-1.62959200	-1.16034400	0.00097000
С	-1.94322400	0.28756600	0.00022400
С	-0.92502800	1.22097500	0.00026000
С	0.43182300	0.85070400	0.00073200
С	0.75828100	-0.59509000	0.00107900
С	-0.29701500	-1.54174500	0.00139500
С	-2.83140800	-1.88021400	0.00091300
С	-3.89561800	-0.94562800	0.00016500
С	-3.35923800	0.39928200	-0.00028500
С	1.38731900	1.88597600	0.00138400
С	2.76651600	1.88791700	0.00149700
С	3.69492900	0.81605000	0.00041000
С	3.35460200	-0.58317600	-0.00004200
С	2.04561300	-1.12644600	0.00081500
С	-5.29982800	-1.12004600	-0.00026300
С	-6.11634300	-0.00985800	-0.00111400
С	-5.58589600	1.30744800	-0.00157400
С	-4.22228700	1.51192600	-0.00116600
С	5.07737500	1.15312500	-0.00026600
С	6.06831800	0.20167900	-0.00146800
С	5.73757500	-1.17014500	-0.00197200
С	4.41589300	-1.53722700	-0.00119000
Н	-1.16387300	2.28117900	-0.00000200
Н	-0.03729200	-2.59675400	0.00178800
Н	-2.93082100	-2.95768300	0.00151200
Н	0.94529900	2.88031900	0.00182500
Н	3.22189400	2.87440500	0.00219400
Н	2.05012600	-2.21454200	0.00110100
Н	-5.72757600	-2.11815600	0.00008500
Н	-7.19476300	-0.13943600	-0.00145500
Н	-6.26473000	2.15391800	-0.00226300
Н	-3.82041300	2.52135200	-0.00152700
Н	5.34458100	2.20499100	0.00012900
Н	7.10971500	0.50726100	-0.00202100
Н	6.51810900	-1.92272300	-0.00291300
Н	4.15314400	-2.59050200	-0.00149400
Cartesian	Coordinates of BCHF1 (oper	n-shell singlet).	
С	-1.62958400	-1.16028400	0.00039800
С	-1.94320700	0.28757700	0.00006400
С	-0.92499000	1.22101700	0.00007900
С	0.43181600	0.85077300	0.00029400
С	0.75829600	-0.59504900	0.00044800
С	-0.29708100	-1.54171900	0.00058400
С	-2.83144200	-1.88022300	0.00039500

С	-3.89559500	-0.94569700	0.00007700
С	-3.35919100	0.39930500	-0.00014200
С	1.38737300	1.88605600	0.00058800
С	2.76651300	1.88796100	0.00065800
С	3.69494600	0.81602900	0.00018900
С	3.35459500	-0.58318900	-0.00002200
С	2.04554200	-1.12644200	0.00033500
С	-5.29984700	-1.12007300	-0.00007800
С	-6.11631300	-0.00989700	-0.00043800
С	-5.58584500	1.30744600	-0.00066300
С	-4.22226600	1.51193400	-0.00051900
С	5.07736100	1.15306500	-0.00008600
С	6.06830800	0.20159300	-0.00060600
С	5.73754800	-1.17019400	-0.00084100
С	4.41583600	-1.53723900	-0.00051900
н	-1.16387000	2.28121600	-0.00004000
н	-0.03736700	-2.59673300	0.00075500
Н	-2.93078100	-2.95769800	0.00067200
н	0.94534900	2.88040400	0.00077600
Н	3.22195100	2.87442900	0.00097300
Н	2.05005600	-2.21454200	0.00045300
н	-5.72760900	-2.11818200	0.0008800
Н	-7.19474300	-0.13943700	-0.00056000
н	-6.26470400	2.15389800	-0.00095700
н	-3.82039600	2.52136700	-0.00070000
Н	5.34461000	2.20492400	0.00009900
н	7.10971500	0.50715700	-0.00083200
Н	6.51807100	-1.92279100	-0.00124800
Н	4.15307700	-2.59051500	-0.00066200

Cartesian Coordinates of BCHF1 (triplet).

с	-1.63405300	-1.12363500	0.00018900
С	-1.94717400	0.27989700	0.00015700
С	-0.92268500	1.20139800	0.00005700
С	0.43499600	0.80696400	0.00002400
С	0.76870000	-0.60105400	0.00003800
С	-0.30307700	-1.53418600	0.00012600
С	-2.84997100	-1.85448400	0.00011300
С	-3.94106500	-0.92176300	0.00003800
С	-3.40344400	0.40543000	0.00007100
С	1.40591900	1.87469800	-0.00002300
С	2.76087200	1.87382400	-0.00002700
С	3.72858800	0.79369300	-0.00000100
С	3.39038200	-0.59789500	-0.00008400
С	2.07442800	-1.15220100	-0.00008600

С	-5.32560100	-1.11813500	-0.00009600
С	-6.16629500	-0.00496700	-0.00017400
С	-5.63740300	1.28906600	-0.00011500
С	-4.25221000	1.50181900	0.00001200
С	5.08374900	1.16086100	0.00006700
С	6.11161300	0.22630700	0.00003600
С	5.79026800	-1.13285000	-0.00008500
С	4.46379000	-1.52597600	-0.00014500
Н	-1.14413400	2.26508100	0.00001600
Н	-0.06556800	-2.59379000	0.00014400
Н	-2.94267100	-2.93353400	0.00019200
Н	0.95558800	2.86499600	-0.00004900
Н	3.21660700	2.86143500	-0.00005500
Н	2.07603500	-2.23930500	-0.00014300
Н	-5.74179800	-2.12102300	-0.00013200
Н	-7.24260000	-0.14332700	-0.00028100
Н	-6.30896200	2.14156100	-0.00017100
Н	-3.85975900	2.51430900	0.00006300
Н	5.32892200	2.21889700	0.00014000
Н	7.14647600	0.55108800	0.00010000
Н	6.57529300	-1.88232000	-0.00013300
н	4.22460800	-2.58493300	-0.00023400

Cartesian Coordinates of BCHF2 (closed-shell).

-6.00027500	-0.74663200	0.00017400
-5.21895200	-1.90694000	-0.00015400
-3.82461400	-1.82170300	-0.00027500
-3.22678500	-0.56762900	-0.00006700
-4.01962400	0.61716000	0.00028400
-5.41232700	0.51846800	0.00039600
-1.82987000	-0.14006700	-0.00012100
-1.83398500	1.32684500	0.00021100
-3.13558400	1.76847600	0.00044500
-0.66090800	-0.82121900	-0.00042900
0.62329300	-0.14334800	-0.00034500
0.61585000	1.33070800	-0.00015700
-0.58488100	2.00316500	0.00012000
1.72538200	-0.96244500	-0.00037500
3.15256500	-0.74419200	-0.00010000
3.80795800	0.52087200	-0.00012100
3.13459900	1.80411300	-0.00044600
1.82199700	2.12935300	-0.00042500
3.95217700	-1.90845000	0.00019600
5.33597200	-1.85920800	0.00050000
5.97479500	-0.61841300	0.00048400
	-6.00027500 -5.21895200 -3.82461400 -3.22678500 -4.01962400 -5.41232700 -1.82987000 -1.83398500 -3.13558400 -0.66090800 0.62329300 0.61585000 -0.58488100 1.72538200 3.15256500 3.80795800 3.13459900 1.82199700 5.33597200 5.97479500	-6.00027500-0.74663200-5.21895200-1.90694000-3.82461400-1.82170300-3.22678500-0.56762900-4.019624000.61716000-5.412327000.51846800-1.82987000-0.14006700-1.833985001.32684500-3.135584001.76847600-0.66090800-0.821219000.62329300-0.143348000.615850001.33070800-0.584881002.003165001.72538200-0.962445003.15256500-0.744192003.807958000.520872003.134599001.804113001.821997002.129353003.95217700-1.908450005.33597200-0.61841300

С	5.21490400	0.54155600	0.00016400
Н	-7.08253700	-0.83322100	0.00026000
Н	-5.70006200	-2.87954500	-0.00031700
Н	-3.22438600	-2.72716500	-0.00052600
Н	-6.03193600	1.41026000	0.00065600
Н	-3.46153200	2.80144000	0.00072600
Н	-0.65255300	-1.90765500	-0.00067800
Н	-0.57583100	3.08963400	0.00022300
Н	1.47751400	-2.02163100	-0.00054200
Н	3.81721400	2.65048500	-0.00068300
Н	1.62075700	3.19861900	-0.00063800
Н	3.45597800	-2.87408600	0.00019400
Н	5.91362900	-2.77738000	0.00073900
н	7.05808900	-0.55744600	0.00071100
Н	5.71552900	1.50487200	0.00013200

Cartesian Coordinates of BCHF2 (open-shell singlet).

C	-6 00027500	-0 7/663200	0 00017/00
	-0.00027500	-0.74003200	0.00017400
C	-5.21895200	-1.90694000	-0.00015500
C	-3.82461400	-1.821/0300	-0.00027600
C	-3.22678400	-0.56762900	-0.00006700
С	-4.01962400	0.61716000	0.00028400
С	-5.41232600	0.51846800	0.00039600
С	-1.82987000	-0.14006700	-0.00012100
С	-1.83398500	1.32684500	0.00021200
С	-3.13558400	1.76847600	0.00044500
С	-0.66090800	-0.82121900	-0.00043000
С	0.62329300	-0.14334800	-0.00034500
С	0.61585000	1.33070800	-0.00015800
С	-0.58488100	2.00316500	0.00012000
С	1.72538200	-0.96244500	-0.00037500
С	3.15256500	-0.74419200	-0.00010000
С	3.80795700	0.52087200	-0.00012100
С	3.13459900	1.80411300	-0.00044600
С	1.82199700	2.12935300	-0.00042500
С	3.95217700	-1.90845000	0.00019600
С	5.33597200	-1.85920800	0.00050100
С	5.97479400	-0.61841300	0.00048500
С	5.21490400	0.54155600	0.00016400
Н	-7.08253700	-0.83322100	0.00026000
Н	-5.70006200	-2.87954500	-0.00031700
Н	-3.22438500	-2.72716500	-0.00052600
Н	-6.03193600	1.41026000	0.00065700
н	-3.46153200	2.80144000	0.00072600

Н	-0.65255300	-1.90765500	-0.00067900
Н	-0.57583100	3.08963400	0.00022300
Н	1.47751400	-2.02163100	-0.00054300
Н	3.81721400	2.65048400	-0.00068400
Н	1.62075700	3.19861900	-0.00063900
Н	3.45597800	-2.87408600	0.00019400
Н	5.91362900	-2.77738000	0.00073900
Н	7.05808800	-0.55744600	0.00071100
Н	5.71552900	1.50487200	0.00013200

Cartesian Coordinates of BCHF2 (triplet).

С	-6.02704700	-0.74000700	0.00011900
С	-5.22711700	-1.89629300	0.00023000
С	-3.83220300	-1.81069500	0.00021800
С	-3.23222600	-0.55806300	0.00008300
С	-4.04549900	0.63047100	-0.00001400
С	-5.44975400	0.52069500	0.00000000
С	-1.83667300	-0.13375700	0.00004600
С	-1.82861400	1.29189500	-0.00005100
С	-3.19535800	1.76166600	-0.00009600
С	-0.64082000	-0.82651700	-0.00005200
С	0.61038100	-0.15769400	-0.00017700
С	0.61227300	1.27516300	-0.00016600
С	-0.61849900	1.96814000	-0.00015000
С	1.77699900	-1.00027900	-0.00042500
С	3.16609100	-0.75552600	-0.00021100
С	3.81582600	0.53035000	0.00013800
С	3.11984200	1.79481000	0.00009000
С	1.80025000	2.10307200	-0.00009900
С	4.01578200	-1.90492200	-0.00033300
С	5.38939000	-1.81407200	-0.00003600
С	6.01216700	-0.55568600	0.00038800
С	5.22178500	0.58218400	0.00044800
н	-7.10753600	-0.83977000	0.00013100
Н	-5.70243700	-2.87190500	0.00033000
н	-3.23373800	-2.71669500	0.00031800
Н	-6.07031400	1.41169200	-0.00007300
Н	-3.50906000	2.79791300	-0.00013100
Н	-0.64009400	-1.91260900	-0.00003400
Н	-0.60176300	3.05422200	-0.00019700
Н	1.52837100	-2.05851100	-0.00071700
н	3.78608200	2.65497400	0.00020600
н	1.58263800	3.16864800	-0.00012200
н	3.54638500	-2.88378000	-0.00065200

н	5.98915500	-2.71891900	-0.00013300
н	7.09350400	-0.47378000	0.00064400
н	5.69695700	1.55891000	0.00073200
Cartesian C	Coordinates of BCHF1+H ⁺ (c	losed-shell).	
С	6.10408900	0.10333800	-0.00044800
С	5.53289400	1.38384000	-0.00048200
С	4.15460600	1.54000200	-0.00024400
С	3.35180100	0.39168500	0.00005000
С	3.92972600	-0.89739800	0.00011300
С	5.30920800	-1.04372400	-0.00015500
С	1.90913300	0.25169400	0.00017400
С	1.58466500	-1.14156100	0.00032100
С	2.85403600	-1.96028000	0.00043400
С	0.90096000	1.20474800	0.00015800
С	-0.45347700	0.83129500	0.00019100
С	-0.78886800	-0.58188500	0.00023200
С	0.28233700	-1.53935000	0.00038800
С	-1.40889100	1.89398900	0.00022500
С	-2.77390100	1.88963300	0.00022000
С	-3.71737700	0.81795100	0.00009000
С	-3.38119000	-0.58064700	-0.00013900
С	-2.07633100	-1.12351000	0.00000600
С	-5.08513400	1.17377700	0.00014300
С	-6.08497000	0.22373300	-0.00015300
С	-5.76198900	-1.14598100	-0.00054700
С	-4.44344600	-1.53109800	-0.00049300
н	7.18410600	0.00397700	-0.00066200
н	6.17635000	2.25627900	-0.00071300
н	3.71625600	2.53233000	-0.00028100
н	5.76875100	-2.02648500	-0.00015300
н	2.91580100	-2.61238400	0.87886800
н	2.91573400	-2.61300000	-0.87753500
н	1.14842400	2.26054000	0.00018100
н	0.02796800	-2.59446800	0.00052200
Н	-0.96102100	2.88358700	0.00026700
Н	-3.22895100	2.87596100	0.00029400
н	-2.07793700	-2.21059300	-0.00006000
н	-5.34704600	2.22594900	0.00044100
Н	-7.12383400	0.53421200	-0.00004200
Н	-6.54888600	-1.89112400	-0.00092900
Н	-4.19300400	-2.58627800	-0.00069400

Cartesian Coordinates of **BCHF2+H**⁺ (closed-shell).

С	5.95015900	-0.84425200	0.00014400
С	5.12815800	-1.97750300	0.00056700
С	3.74483400	-1.84687500	0.00056400
С	3.19521100	-0.56157600	0.00007400
С	4.02386500	0.57792500	-0.00023800
С	5.40472300	0.44023400	-0.00023100
С	1.80428300	-0.12289900	0.00003000
С	1.77855600	1.30649400	-0.00011200
С	3.18860300	1.84004600	-0.00051200
С	0.61953600	-0.82206800	-0.00038200
С	-0.63517200	-0.14554600	-0.00026800
С	-0.65097500	1.30515900	0.00005200
С	0.58966500	1.99087300	-0.00000500
С	-1.77029600	-0.97545200	-0.00038600
С	-3.15754100	-0.75163800	-0.00021300
С	-3.81437400	0.53372500	0.00017900
С	-3.15244100	1.79025000	0.00048800
С	-1.81915300	2.11192400	0.00042600
С	-3.97274900	-1.92664100	-0.00034300
С	-5.34122700	-1.85861100	-0.00010000
С	-5.97723200	-0.59864400	0.00009700
С	-5.23093000	0.55748700	0.00023600
Н	7.02763800	-0.96756400	0.00015600
Н	5.57686800	-2.96448000	0.00093600
Н	3.11340000	-2.72938000	0.00102100
Н	6.05432300	1.30935900	-0.00045900
н	3.37753700	2.47009700	0.87648400
н	3.37706700	2.46922800	-0.87825700
Н	0.62083900	-1.90663400	-0.00079700
Н	0.58261600	3.07592100	-0.00010100
Н	-1.51628700	-2.03240200	-0.00062800
Н	-3.82295000	2.64469600	0.00082100
Н	-1.61595200	3.17904900	0.00071200
Н	-3.48239100	-2.89384300	-0.00073500
Н	-5.93387200	-2.76592600	0.00005700
Н	-7.06000700	-0.54162100	0.00002200
н	-5.73185500	1.51902100	0.00037300