Electronic Supplementary Information

Iron porphyrin catalysed light driven C-H bond amination and alkene aziridination with organic azides

Yi-Dan Du, ^a Cong-Ying Zhou, ^{ac} Wai-Pong To, ^a Hai-Xu Wang^a and Chi-Ming Che*^{ab}

^{*a*} State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China

^b HKU Shenzhen Institute of Research & Innovation, Shenzhen, China

^c College of Chemistry and Materials Science, Jinan University, Guangzhou, China

Table of Contents

General information	S3
Synthesis and characterizations of substrates	S4
Reaction conditions optimization	S10
Mechanistic study	. S 11
General procedure for C-H amination and alkene aziridination	S20
Characterization of products	S22
References	S 47
NMR spectra of substrates and products	. S48

General information

All reactions were performed using the standard Schlenk technique under an argon atmosphere. Reagents obtained commercially were used without further purification unless indicated otherwise. The substrates,^{1,2,3} aryl azides,^{4,5,6} alkyl azides,⁷ and Fe^{III}(TF₄DMAP)Cl⁸ were prepared following literature procedures or were obtained commercially. All solvents used in the reaction were dried and freshly distilled. Flash chromatography was performed using Merck silica gel 60 and a gradient solvent system (Et₂O / *n*-hexane or EtOAc / *n*-hexane as eluent). ¹H. ¹⁹F and ¹³C NMR spectra were measured on a Bruker DPX-500, DPX-400 or DPX-300 spectrometer. ¹H NMR chemical shifts (δ ppm) were determined with tetramethylsilane (TMS) as internal reference. ¹³C NMR chemical shifts were determined relative to CDCl₃ at δ 77.16. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, br = broad), coupling constant (Hz), integration. 13 C NMR spectra were reported as chemical shifts in ppm and multiplicity where appropriate. GC-MS analysis was performed by Agilent Technologies 7890B GC system with 5977A MS detector. Positive-ion mode electron-impact (EI) mass spectra were recorded on a Thermo Scientific DFS high resolution magnetic sector MS. Low-resolution and high-resolution ESI-MS (positive-ion mode) measurements were recorded on a Finnigan LCQ quadrupole ion trap mass spectrometer and a Waters Micromass Q-Tof Premier quadrupole time-of-flight tandem mass spectrometer, respectively. All absorption spectra were recorded on a Hewlett-Packard 8453 diode array spectrophotometer. Nanosecond time-resolved emission measurements were performed on a LP920-KS Laser Flash Photolysis Spectrometer (Edinburgh Instruments Ltd., Livingston, UK). The excitation source was the 355 nm output (third harmonic) of a Nd:YAG laser (Spectra-Physics Quanta-Ray Lab-130 Pulsed Nd: YAG Laser). The signals were processed by a PC plugin controller with L900 software. The blue LED used for photochemical reaction has an emission maximum at 469 nm with full width at half maximum (FWHM) of 25 nm. The power of the blue LED is 16 W. Upon light irradiation, the temperature of the reaction mixture was found to increase from 25 to 35 °C. A 300 W Xe lamp (Asahi Spectra) with a band-pass filter at 420 nm (FWHM at 420 nm = 10 nm) was used for photochemical quantum yield measurements.

Synthesis and characterizations of substrates

Scheme S1 Synthesis of alkyl azides.

N₃OTs

The azide was synthesized according to literature.⁹

¹H NMR (400 MHz, CDCl₃): δ 7.85 – 7.78 (m, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 4.17 (t, *J* = 5.1 Hz, 2H), 3.49 (t, *J* = 5.1 Hz, 2H), 2.46 (s, 3H). For detailed characterizations, see ref. 9.

N₃OTs

The azide was synthesized according to literature.⁹

¹H NMR (400 MHz, CDCl₃): δ 7.82 – 7.76 (m, 2H), 7.36 (d, J = 8.0 Hz, 2H), 4.10 (t, J = 5.9 Hz, 2H), 3.38 (t, J = 6.5 Hz, 2H), 2.45 (s, 3H), 1.88 (p, J = 6.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 145.2, 132.8, 130.1, 128.0, 67.1, 47.4, 28.6, 21.8.

General procedure for the synthesis of alkyl azides: ¹⁰

To a solution of 2-azidoethyl 4-methylbenzenesulfonate (0.615 g, 2.55 mmol) in acetonitrile (15.0 mL) was added benzylamine (6.0 mmol). The stirred mixture was heated at reflux temperature for 16 h. After cooling to room temperature, solvent was removed under vacuum and the crude product was purified by silica gel column chromatography.

¹H NMR (400 MHz, CDCl₃): δ 7.38 – 7.32 (m, 2H), 7.28 – 7.21 (m, 2H), 3.78 (s, 2H), 3.42 (t, *J* = 4.0 Hz, 2H), 2.82 (t, *J* = 4.0 Hz, 2H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 150.1, 137.0, 127.9, 125.5, 53.3, 51.6, 48.1, 34.6, 31.5; EI-MS: *m/z* 232 (M⁺); EI-HRMS for [C₁₃H₂₀N₄]⁺

(M⁺): *m/z* Calcd. 232.1682, Found: 232.1677.

7b

ÓMe

¹H NMR (400 MHz, CDCl₃): δ 7.27 – 7.21 (m, 1H), 6.92 – 6.87 (m, 2H), 6.82 – 6.79 (m 1H), 3.81 (s, 3H), 3.80 (s, 2H), 3.43 (td, *J* = 5.6, 1.1 Hz, 2H), 2.82 (td, *J* = 5.6, 1.1 Hz, 2H), 1.61 (br, s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 141.7, 129.6, 120.4, 113.6, 112.8, 55.3, 53.6, 51.6, 48.1; EI-MS: *m*/*z* 206 (M⁺); EI-HRMS for [C₁₀H₁₄N₄O]⁺ (M⁺): *m*/*z* Calcd. 206.1162, Found: 206.1154.

¹H NMR (400 MHz, CDCl₃): δ 7.40 – 7.35 (m, 4H), 7.35 – 7.29 (m, 4H), 7.28 – 7.21 (m, 2H), 3.63 (s, 4H), 3.24 (t, *J* = 6.1 Hz, 2H), 2.70 (t, *J* = 6.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 139.1, 128.9, 128.5, 127.3, 59.0, 53.1, 49.4; EI-MS: *m/z* 266 (M⁺); EI-HRMS for [C₁₆H₁₈N₄]⁺ (M⁺): *m/z* Calcd. 266.1526, Found: 266.1534.

¹H NMR (400 MHz, CDCl₃): δ 7.37 – 7.28 (m, 4H), 7.27 – 7.21 (m, 1H), 3.63 (s, 2H), 3.23 (t, *J* = 6.1 Hz, 2H), 2.69 (t, *J* = 6.1 Hz, 2H), 2.58 (q, *J* = 7.1 Hz, 2H), 1.07 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.5, 128.9, 128.4, 127.1, 58.6, 52.9, 49.5, 48.0, 11.9; EI-MS: *m/z* 204 (M⁺); EI-HRMS for [C₁₁H₁₆N₄]⁺ (M⁺): *m/z* Calcd. 204.1369, Found: 204.1374.

¹H NMR (400 MHz, CDCl₃): δ 7.16 – 7.06 (m, 3H), 7.05 – 6.97 (m, 1H), 3.70 (s, 2H), 3.46 (td, *J* = 6.2, 1.3 Hz, 2H), 2.91 (t, *J* = 5.9 Hz, 2H), 2.83 – 2.79 (m, 2H), 2.77 (td, *J* = 6.2, 1.3 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃): δ 134.4, 134.3, 128.8, 126.6, 126.3, 125.8, 56.9, 56.2, 51.0, 48.9, 29.1; EI-MS: m/z 202 (M⁺); EI-HRMS for $[C_{11}H_{14}N_4]^+$ (M⁺): m/z Calcd. 202.1213, Found: 202.1208.

¹H NMR (400 MHz, CDCl₃): δ 7.07 (t, J = 7.8 Hz, 1H), 6.98 (d, J = 7.3 Hz, 1H), 6.62 (t, J = 7.4 Hz, 1H), 6.58 (d, J = 8.2 Hz, 1H), 3.52 – 3.45 (m, 4H), 3.37 (t, J = 4.0 Hz, 2H), 2.78 (t, J = 6.4 Hz, 2H), 2.03 – 1.94 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 144.7, 129.6, 127.3, 122.9, 116.5, 110.4, 51.0, 50.5, 48.6, 28.2, 22.3; EI-MS: m/z 202 (M⁺); EI-HRMS for [C₁₁H₁₄N₄]⁺ (M⁺): m/z Calcd. 202.1213, Found: 202.1220.

¹H NMR (400 MHz, CDCl₃): δ 7.09 – 7.05 (m, 2H), 6.68 (td, J = 7.4, 1.0 Hz, 1H), 6.49 (d, J = 7.8 Hz, 1H), 3.47 (t, J = 6.1 Hz, 2H), 3.43 (t, J = 8.3 Hz, 2H), 3.29 (t, J = 6.1 Hz, 2H), 3.00 (t, J = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 151.9, 129.9, 127.5, 124.7, 118.1, 106.8, 53.8, 49.5, 49.2, 28.8; EI-MS: m/z 188 (M⁺); EI-HRMS for [C₁₀H₁₂N₄]⁺ (M⁺): m/z Calcd. 188.1056, Found: 188.1051.

¹H NMR (400 MHz, CDCl₃): δ 5.35 (td, J = 6.9, 1.5 Hz, 1H), 5.13 – 5.06 (m, 1H), 3.95 (dd, J = 7.0, 1.1 Hz, 2H), 3.49 (t, J = 6.1 Hz, 2H), 3.39 (t, J = 6.7 Hz, 2H), 2.11 – 2.02 (m, 4H), 1.85 (p, J = 6.4 Hz, 2H), 1.76 (d, J = 1.1 Hz, 3H), 1.69 (s, 3H), 1.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.8, 132.1, 123.9, 121.8, 67.3, 66.8, 48.7, 32.4, 29.5, 26.8, 25.8, 23.6, 17.8; EI-MS: m/z 209 [M-N₂]⁺; EI-HRMS for [C₁₃H₂₃NO]⁺ ([M-N₂]⁺): m/z Calcd. 209.1774, Found: 209.1768.

Scheme 2 Synthesis of α -azidoketones.

General procedure for the synthesis of α-azidoketones:

Step 1: To a solution of cycloheptanone (5.0 g, 44.6 mmol, 1.0 eq) in CH_2Cl_2 (50 mL) was added *p*-toluenesulfonic acid monohydrate (84 mg, 0.446 mmol, 0.1 eq). The reaction was cooled down with an ice bath and NBS (8.7 g, 49.1 mmol, 1.1 eq) was added. The reaction was stirred for 16 h and quenched with 20 mL of aqueous saturated solution of Na₂S₂O₃. The organic phase was extracted with CH_2Cl_2 and washed with aqueous saturated solution of NaHCO₃ and brine. The solvent was removed under vacuum. The pure product was obtained as yellow oil by silica gel column chromatography. The characterization data of the compound are consistent with literature.⁷

Step 2: A mixture of α -bromo cycloheptanone (9.8 g, 44.6 mmol) and sodium azide (4.35 g, 66.9 mmol) in DMF (120 mL) was stirred at room temperature for 24 h; the mixture was poured into water and extracted with diethyl ether. The combined organic layers were dried over MgSO₄, After filtration, the solvent was removed under vacuum. The crude product was purified using silica gel column chromatography. The characterization data of the compound are consistent with literature.⁷

¹H NMR (400 MHz, CDCl₃): δ 4.27 (dd, J = 11.2, 4.1 Hz, 1H), 2.87 (td, J = 12.1, 3.7 Hz, 1H), 2.44 – 2.24 (m, 3H), 1.92 (ddq, J = 13.8, 6.7, 4.1, 3.3 Hz, 1H), 1.82 – 1.62 (m, 3H), 1.62 – 1.50 (m, 2H), 1.46 – 1.35 (m, 1H), 1.22 – 1.10 (m, 1H).

¹H NMR (400 MHz, CDCl₃): δ 4.02 (dd, J = 8.3, 3.5 Hz, 1H), 2.58 (ddd, J = 13.5, 9.5, 4.0 Hz, 1H), 2.43 (ddd, J = 13.2, 7.9, 4.0 Hz, 1H), 2.28 (ddt, J = 14.6, 9.9, 3.6 Hz, 1H), 2.01 – 1.84 (m, 3H), 1.84 – 1.72 (m, 1H), 1.71 – 1.56 (m, 2H), 1.53 – 1.40 (m, 2H), 1.23 – 1.09 (m, 1H); EI-MS: m/z 167 (M⁺); EI-HRMS for [C₈H₁₃N₃O]⁺ (M⁺): m/z Calcd. 167.1053, Found: 167.1046.

¹H NMR (400 MHz, CDCl₃): δ 4.58 (dd, J = 11.7, 3.8 Hz, 1H), 2.85 – 2.69 (m, 2H), 2.43 (dddt, J = 15.2, 11.5, 7.6, 3.6 Hz, 1H), 2.13 (ddt, J = 13.2, 8.4, 3.9 Hz, 1H), 2.02 – 1.90 (m, 1H), 1.84 – 1.72 (m, 1H), 1.71 – 1.60 (m, 1H), 1.57 – 1.41 (m, 4H), 1.40 – 1.21 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 206.5, 51.9, 37.2, 33.9, 25.4, 24.9, 24.63, 24.57, 24.48, 23.4.

¹H NMR (400 MHz, CDCl₃): δ 4.00 (dd, J = 8.1, 3.6 Hz, 1H), 2.71 (ddd, J = 17.2, 9.5, 3.7 Hz, 1H), 2.56 (ddd, J = 17.3, 7.8, 3.9 Hz, 1H), 2.14 – 2.04 (m, 1H), 1.93 (ddtt, J = 28.5, 14.3, 7.4, 3.7 Hz, 2H), 1.72 (dtt, J = 14.9, 8.1, 3.7 Hz, 1H), 1.60 (tp, J = 10.6, 5.6, 5.1 Hz, 1H), 1.49 (dt, J = 8.6, 3.8 Hz, 1H), 1.46 – 1.14 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ 209.0, 67.6, 37.7, 29.1, 25.1, 24.6, 24.2, 23.6, 22.6, 21.5; EI-MS: m/z 195 (M⁺); EI-HRMS for [C₁₀H₁₇N₃O]⁺ (M⁺): m/z Calcd. 195.1367, Found: 195.1365.

¹H NMR (500 MHz, CDCl₃): δ 3.97 (dd, J = 7.4, 4.2 Hz, 1H), 2.67 (ddd, J = 17.4, 8.6, 3.4 Hz, 1H), 2.60 (ddd, J = 17.4, 8.6, 3.4 Hz, 1H), 2.05 – 1.98 (m, 2H), 1.85 – 1.78 (m, 1H), 1.76 – 1.69 (m, 1H), 1.57 – 1.37 (m, 5H), 1.36 – 1.27 (m, 7H); ¹³C NMR (125 MHz, CDCl₃): δ 209.2, 68.0, 39.0, 28.7, 26.1, 26.0, 25.6, 25.3, 23.9, 22.6, 22.0; EI-MS: *m/z* 209 (M⁺); EI-HRMS for [C₁₁H₁₉N₃O]⁺ (M⁺): *m/z* Calcd. 209.1523, Found: 209.1515.

¹H NMR (400 MHz, CDCl₃): δ 4.38 (dd, J = 11.7, 3.7 Hz, 1H), 2.80 (ddd, J = 16.4, 6.5, 3.7 Hz, 1H), 2.71 (ddd, J = 16.5, 11.0, 3.5 Hz, 1H), 2.31 (dddd, J = 13.9, 11.8, 8.3, 4.0 Hz, 1H), 2.03 – 1.83 (m, 2H), 1.63 – 1.47 (m, 1H, overlapped with signal of H₂O), 1.45 – 1.18 (m, 14H).

¹H NMR (400 MHz, CDCl₃): δ 4.07 (dd, J = 7.8, 4.0 Hz, 1H), 2.70 (ddd, J = 17.8, 9.2, 3.4 Hz, 1H), 2.48 (ddd, J = 17.8, 8.1, 3.5 Hz, 1H), 2.00 – 1.80 (m, 3H), 1.71 – 1.59 (m, 1H), 1.48 – 1.13 (m, 14H); ¹³C NMR (100 MHz, CDCl₃): δ 207.3, 68.1, 35.6, 29.0, 26.02, 26.00, 23.8, 23.0, 22.5, 22.2, 21.4, 20.4; EI-MS: m/z 223 (M⁺); EI-HRMS for [C₁₂H₂₁N₃O]⁺ (M⁺): m/z Calcd. 223.1679, Found: 223.1678.

¹H NMR (400 MHz, CDCl₃): δ 3.90 (t, J = 6.2 Hz, 1H), 2.52 (t, J = 6.9 Hz, 2H), 1.82 (dpd, J = 13.8, 8.7, 4.2 Hz, 2H), 1.66 (dh, J = 13.6, 6.8 Hz, 2H), 1.45 – 1.19 (m, 20H); ¹³C NMR (101 MHz, CDCl₃): δ 208.1, 67.6, 39.0, 30.5, 27.4, 27.0, 26.70, 26.65, 26.56, 26.52, 26.36, 26.26, 26.1, 23.9, 22.4; EI-MS: m/z 265 (M⁺); EI-HRMS for [C₁₅H₂₇N₃O]⁺ (M⁺): m/z Calcd. 265.2149, Found: 265.2146.

Table S1. Reaction conditions optimization^{*a*}

					CF ₃	
6	F ₃ C	N ₃	nol% cat.	HN	F ₃ C	NH ₂
Į	+	4 Å	MS, DCE		CF ₃ +	یا
	1a 2	Сг ₃ В 2a 2	lue LED 25-35°C	3a	CF 4a	3
Entry	Catalyst		Time (h)	Conversion (%)	3a (%)	4a (%)
1	Fe(TTP)CI		24	50	12	35
2	Fe(p-CI-TPP)CI		24	35	20	10
3	Fe(p-F-TPP)Cl		24	100	93	trace
4	Fe(TMP)CI		24	80	70	8
5	Fe(TDCPP)CI		24	100	92	trace
6	Fe(TDCDMAP)C		24	100	92	trace
7	Fe(F20TPP)CI		24	100	99	trace
8	Fe(TF₄DMAP)Cl		24	100	99	trace
9	Fe(TF₄DMAP)Cl		15	100	93	trace
10	Ru(F20TPP)CO		24	92	80	10
11	Ru(TF4DMAP)C	0	24	90	77	8
12	Mn(F20TPP)Cl		24	50	15	30
13	Co(F20TPP)		24	100	43	55
14	Ir(TTP)Me		24	100	42	50
15	Co(Pc)		24	trace	trace	trace
16 ^b	Fe ^{II} (BQCN)(OTf)2	24	trace	trace	N.D.
17 ^b	Fe ^{II} (Qp)(H ₂ O) ₂ (C	CIO ₄) ₂	36	trace	trace	N.D.
18 ^b	Fe ^{II} (qpy)(CH ₃ CN	1) ₂ (ClO ₄) ₂	36	trace	trace	N.D.
19	-		24	trace	N.D.	N.D.
20 ^c	Fe(TF4DMAP)CI		24	trace	N.D.	N.D.
21	H_2TF_4DMAP		24	20	10	10
22	$H_2F_{20}TPP$		24	42	trace	32
23	Rh ₂ (OAc) ₄		24	trace	N.D.	N.D.
24 ^b	[Ru(bpy) ₃]Cl ₂ •6H	H ₂ O	24	50	15	30
25 ^d	Fe(TF4DMAP)CI		18	100	90	trace
26 ^e	Fe(TF4DMAP)CI		36	40	25	10
27 ^f	Fe ^{II} (F ₂₀ TPP)(Ad)	24	100	98	trace
28	[Fe(F ₂₀ TPP)] ₂ (μ-	O)	24	100	96	trace

 $\frac{28 \quad [Fe(F_{20}TPP)]_2(\mu-O)}{124 \quad 100 \quad 96 \quad trace}$ ^{*a*} Reactions were performed under argon with 0.5 mmol of the azide and 5.0 mmol of indane, 5×10^{-3} mmol of the catalyst (1 mol% with respect to the azide) and 120 mg 4Å MS in 2.0 mL of anhydrous ClCH₂CH₂Cl in 10.0 mL sealed tube. The tube was irradiated with blue LED (469 nm) at 25-35°C for 18-36 h. The yield was determined by ¹H NMR spectroscopy with PhTMS as internal standard. BQCN = N¹,N²-dimethyl-N¹,N²-bis(2-methylquinolin-8-yl)cyclohexane-1,2-diamine; Qp = 2,2':6',2'''-quaterpyridine; qpy = 2,2':6',2'''-G'',2''''-quinquepyridine. ^{*b*} 2 mol% catalyst was used. ^{*c*} No light, room temperature. ^{*d*} Reaction temperature = 120 °C. ^{*e*} Green LED. ^{*f*} Ad stands for 2-adamantylidene.

Mechanistic study

Photo-stability of iron porphyrin complexes

Deaerated DCE solutions of Fe(TF₄DMAP)Cl, Fe(F₂₀TPP)Cl (both at a concentration of 2.5×10^{-5} M) and [Fe(F₂₀TPP)]₂(μ -O) (concentration at 1.5×10^{-5} M) were subjected to blue LED (469 nm) irradiation and their UV-vis absorption spectra were recorded at indicated time intervals as shown in Fig. S1, Fig. S2 and Fig. S3 respectively.

Fig. S1. UV-vis absorption spectral change of Fe(TF₄DMAP)Cl in DCE upon blue LED irradiation at room temperature.

Fig. S2. UV-vis absorption spectral change of $Fe(F_{20}TPP)Cl$ in DCE upon blue LED irradiation at room temperature.

Fig. S3. UV-vis absorption spectral change of $[Fe(F_{20}TPP)]_2(\mu-O)$ in DCE upon blue LED irradiation at room temperature. The spectrum recorded after 21 hours of light irradiation is identical to that of Fe(F₂₀TPP)Cl.

KIE experiment

An oven-dried 10-mL sealed tube was charged with 3,5-bis-(trifluoromethyl)phenyl azide (127.6 mg, 0.5 mmol), ethylbenzene (5 eq., 2.5 mmol), d_{10} -ethylbenzene (5 eq., 2.5 mmol), catalyst (1 mol%), 4Å molecular sieves (120 mg) and dry ClCH₂CH₂Cl (2.0 mL) under argon. The tube was irradiated with blue LED at 25-35°C for 16 h. Then the reaction mixture was filtered through a short pad of celite and washed with CH₂Cl₂, the filtrate was concentrated, and the crude residue was analyzed by ¹H NMR with PhTMS as internal standard (KIE = 6.5).

Determination of quantum yield

The quantum yield was calculated using eq 1.

$$\Phi = \frac{\text{mol product}}{\text{flux} \cdot t \cdot f}$$
(1)

Determination of fraction of light absorbed at 420 nm for the reaction mixture was measured, f = 1.

An oven-dried 10-mL sealed tube was charged with 3,5-bis-(trifluoromethyl)phenyl azide (51.0 mg, 0.2 mmol), styrene (3 eq., 0.6 mmol), Fe(TF₄DMAP)Cl (1 mol%), 4Å molecular sieves (60 mg) and dry DCE (1.0 mL) under argon. The tube was then irradiated with a commercial 420 nm laser (intensity: $1.83*10^{-8}$ einstein s⁻¹) for 4 h. ¹H NMR analysis revealed that the yield was 15.72%.

$$\Phi = (0.1572 \times 0.2 \times 10^{-3} \text{ mol})/(1.83 \times 10^{-8} \text{ einstein s}^{-1} \cdot 4 \times 60 \times 60 \text{ s} \cdot 1) = 12\%$$

An oven-dried 10-mL sealed tube was charged with 3,5-bis-(trifluoromethyl)phenyl azide (127.6 mg, 0.5 mmol), indane (10 eq., 5.0 mmol), catalyst (1 mol%), 4Å molecular sieves (120 mg) and dry DCE (2.0 mL) under argon. The tube was then irradiated with a commercial 420 nm laser (intensity: $1.83*10^{-8}$ einstein s⁻¹) for 5 h for Fe(TF₄DMAP)Cl for which ¹H NMR analysis revealed that the yield was 3.63% while for Fe(3,5-Di'Bu-Chenphyrin)Cl for 6 h with a yield of 2.77%.

$$\Phi = (0.0363 \times 0.5 \times 10^{-3} \text{ mol})/(1.83 \times 10^{-8} \text{ einstein s}^{-1} \times 5 \times 60 \times 60 \text{ s} \times 1) = 5.5\%$$
 for Fe(TF₄DMAP)Cl.

 Φ = (0.0277*0.5*10⁻³ mol)/(1.83*10⁻⁸ einstein s⁻¹•6*60*60 s•1) = 3.5% for Fe(3,5-Di^tBu-Chenphyrin)Cl

Crossover experiment

An oven-dried 10-mL sealed tube was charged with aryl azide **2a** (0.5 mmol), 2,3,4,5,6pentafluoroaniline **4c** (0.5 mmol), indane (10 equiv, 5.0 mmol), Fe(TF₄DMAP)Cl (1 mol%), 4 Å molecular sieves (120 mg) and dry ClCH₂CH₂Cl (2.0 mL). The tube was irradiated with blue LED at 25-35°C for 16 h. Then the reaction mixture was filtered through a short pad of celite and washed with CH₂Cl₂, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to give the corresponding products.

Enantioselective photo-induced C-H amination and alkene aziridination catalysed Fe(TF₄DMAP)Cl

Signal 2: DAD1 B, Sig=254,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.915	MM	0.1191	640.01202	89.57922	49.9319
2	6.356	VB	0.1177	641.75885	83.51464	50.0681

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.768	VV R	0.1067	1500.15967	216.13806	59.9984
2	6.225	VV R	0.1165	1000.17297	131.84363	40.0016

Acq. Operator	:	wei	Seq.	Line	:	1
Acq. Instrument	:	Instrument 1	Loca	ation	:	1
Injection Date	:	8/8/2017 8:54:55 PM		Inj	:	1
			Inj Vo	olume	:	7.0 µl
Acq. Method	:	e:\Chem32\1\DATA\DYD\SA 2017-	08-08	20-43-	49	WEIJH.M
Last changed	:	8/8/2017 8:43:59 PM by wei				
		(modified after loading)				
Analysis Method	:	C:\Chem32\1\Methods\DEF_LC.M				
Last changed	:	12/28/2018 4:14:43 PM by SYST	EM			
		(modified after loading)				
Sample Info	:	AS-H, Hex:IPA=90/10, 1ml/min				

Additional Info : Peak(s) manually integrated

Signal 4: DAD1 D, Sig=230,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.838	MM	1.0184	1.52602e4	249.73022	49.6910
2	32.814	MM	1.2686	1.54500e4	202.98251	50.3090

Acq. Operator	:	wei	Seq. Line : 1
Acq. Instrument	:	Instrument 1	Location : 1
Injection Date	:	8/8/2017 9:32:22 PM	Inj: 1
			Inj Volume : 7.0 μl
Acq. Method	:	e:\Chem32\1\DATA\DYD\SA 2017-	08-08 21-31-12\WEIJH.M
Last changed	:	8/8/2017 9:31:26 PM by wei	
		(modified after loading)	
Analysis Method	:	C:\Chem32\1\Methods\DEF_LC.M	
Last changed	:	12/28/2018 4:20:35 PM by SYST	EM
		(modified after loading)	
Sample Info	:	AS-H, Hex:IPA=90/10, 1ml/min	
Additional Info	:	Peak(s) manually integrated	

Signal 4: DAD1 D, Sig=230,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.313	VV R	0.6495	1.04547e4	204.67041	71.1253
2	32.015	VV R	0.6976	4244.28174	72.22841	28.8747

Fig. S4. MALDI-MS analysis of stoichiometric reaction of Fe(TF₄DMAP)Cl and azide 2a.

Typical procedure of screening catalyst for C-H amination of indane under photocatalytic condition (Table S1)

An oven-dried 10-mL sealed tube was charged with 3,5-bis-(trifluoromethyl)phenyl azide (127.6 mg, 0.5 mmol), indane (10 eq., 5.0 mmol), catalyst (1 mol%), 4Å molecular sieves (120 mg) and dry ClCH₂CH₂Cl (2.0 mL) under argon. The tube was irradiated with blue LED at 25-35°C for 18-36 h. The conversion of the azide and product yield were determined by ¹H NMR with PhTMS as internal standard.

General procedure for Fe(TF₄DMAP)Cl-catalysed intermolecular C-H amination with organic azide under photocatalytic condition (Table 1-2)

An oven-dried 10-ml sealed tube was charged with organic azide (0.5 mmol), C–H substrate (5.0 mmol), Fe(TF₄DMAP)Cl (1 mol%), 4 Å molecular sieves (120 mg) and dry ClCH₂CH₂Cl (2.0 mL). The tube was irradiated with blue LED at 25-35°C for 16-24 h (monitor the reaction by GC-MS until azide was consumed completely). Then the reaction mixture was filtered through a short pad of celite and washed with CH₂Cl₂, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to give the corresponding products.

General procedure for Fe(TF₄DMAP)Cl-catalysed intramolecular C-H amination of Ncontaining alkyl azides under photocatalytic condition (Table 3)

An oven-dried Schlenk tube was charged with alkyl azide (0.3 mmol), Boc_2O (0.36 mmol), $Fe(TF_4DMAP)Cl$ (1 mol%), 4 Å molecular sieves (120 mg) and dry $ClCH_2CH_2Cl$ (2.0 mL). The tube was irradiated with blue LED at 25-35°C for 10 h (monitor the reaction by GC-MS until azide was consumed completely). The reaction mixture was filtered through a short pad of celite and washed with CH_2Cl_2 , the filtrate was concentrated, and the residue was purified by silica gel column chromatography to give the corresponding products.

General procedure for Fe(TF₄DMAP)Cl-catalysed intramolecular C-H amination of αazidoketones under photocatalytic condition (Table 4)

An oven-dried Schlenk tube was charged with α -azidoketone (0.3 mmol), Boc₂O (0.36 mmol), Fe(TF₄DMAP)Cl (3 mol%), 4 Å molecular sieves (120 mg) and dry ClCH₂CH₂Cl (2.0 mL). The tube was irradiated with blue LED at 25-35°C for 10 h (monitor the reaction by GC-MS until

azide was consumed completely). The reaction mixture was filtered through a short pad of celite and washed with CH₂Cl₂, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to give the corresponding products.

General procedure for Fe(TF₄DMAP)Cl-catalysed alkene aziridination with organic azides under photocatalytic condition

An oven-dried Schlenk tube was charged with azide (0.2 mmol), alkene (0.6 mmol), $Fe(TF_4DMAP)Cl (1 mol\%)$, 4 Å molecular sieves (60 mg) and dry $ClCH_2CH_2Cl (1.0 mL)$. The tube was irradiated with blue LED at 25-35°C for 4 - 10 h (monitor the reaction by GC-MS until azide was consumed completely). The reaction mixture was filtered through a short pad of celite and washed with CH_2Cl_2 , the filtrate was concentrated, and the residue was purified by silica gel column chromatography to give the corresponding products.

General procedure for Fe(TF₄DMAP)Cl-catalysed C-H amination of natural products under photocatalytic condition (Scheme 6)

An oven-dried Schlenk tube was charged with aryl azide (0.30 mmol, 1.5 equiv), natural product (0.2 mmol), Fe(TF₄DMAP)Cl (2 mol%), 4 Å molecular sieves (120 mg) and dry ClCH₂CH₂Cl (1.0 mL). The tube was irradiated with blue LED at 25-35°C for 24 h (monitored by TLC). The reaction mixture was filtered and washed with CH₂Cl₂, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to give the corresponding products.

Characterization of products

¹H NMR (400 MHz, CDCl₃): δ 7.53 – 7.52 (m, 3H), 7.29 – 7.27 (m, 4H), 7.24 – 7.17 (m, 6H), 3.77 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ -62.89; ¹³C NMR (100 MHz, CDCl₃): δ 156.1, 134.5, 132.79 (q, *J* = 33.0 Hz), 128.2, 127.8, 127.7, 123.32 (q, *J* = 271.0 Hz), 120.27 – 120.19 (m), 116.48 – 116.33 (m), 49.7; ESI-MS: *m/z* 408 [M+H]⁺; ESI-HRMS for [C₂₂H₁₆F₆N]⁺ ([M+H]⁺): *m/z* Calcd. 408.1181, Found: 408.1163.

¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.29 (m, 7H), 7.20 – 7.16 (m, 4H), 7.05– 7.02 (m, 2H), 3.75 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.10; ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 134.9, 132.01 (q, *J* = 33.0 Hz), 128.7, 128.4, 127.4, 123.28 (q, *J* = 271.0 Hz), 121.02 – 120.91 (m), 115.43 – 115.27 (m), 50.4; ESI-MS: *m/z* 408 [M+H]⁺; ESI-HRMS for [C₂₂H₁₆F₆N]⁺ ([M+H]⁺): *m/z* Calcd. 408.1181, Found: 408.1163.

¹H NMR (400 MHz, CDCl₃): δ 7.33 – 7.14 (m, 4H), 6.65 (t, *J* = 1.8 Hz, 1H), 6.51 (d, *J* = 1.7 Hz, 2H), 4.89 (q, *J* = 7.0 Hz, 1H), 4.02 (d, *J* = 7.6 Hz, 1H), 3.00 (ddd, *J* = 16.1, 8.6, 4.4 Hz, 1H), 2.87 (dt, *J* = 15.9, 7.8 Hz, 1H), 2.54 (dddd, *J* = 12.8, 8.2, 7.0, 4.5 Hz, 1H), 1.84 (dddd, *J* = 12.9, 8.7, 7.4, 6.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 149.4, 143.6, 143.5, 135.6, 128.4, 126.9, 125.1, 124.2, 117.0, 111.2, 58.5, 33.7, 30.3; ESI-MS: *m/z* 278 [M+H]⁺; ESI-HRMS for [C₁₅H₁₄Cl₂N]⁺ ([M+H]⁺): *m/z* Calcd. 278.0497, Found: 278.0481.

¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, J = 7.1 Hz, 1H), 7.29 – 7.17 (m, 3H), 6.46 – 6.32 (m, 1H), 5.28 (q, J = 7.8 Hz, 1H), 3.97 (d, J = 9.3 Hz, 1H), 3.02 (ddd, J = 16.5, 8.7, 4.5 Hz, 1H), 2.86 (dt, J = 16.0, 7.9 Hz, 1H), 2.56 (dt, J = 11.5, 4.0 Hz, 1H), 1.90 (dd, J = 13.6, 7.0 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃): δ -140.90 – -141.15 (m, 2F), -159.19 (m, 2F). ; ¹³C NMR (100 MHz, CDCl₃): δ 146.8 (ddt, J = 242, 12.8, 3.4 Hz), 144.0, 143.45, 137.5 (dtd, J = 238, 15.9, 4.2 Hz), 128.4, 128.23 (m), 127.0, 125.1, 124.3, 93.6 (t, J = 23.0 Hz), 60.89 (t, J = 5.0 Hz), 35.3, 30.1; ESI-MS: m/z 282 [M+H]⁺; ESI-HRMS for [C₁₅H₁₂F₄N]⁺ ([M+H]⁺): m/z Calcd. 282.0900, Found: 282.0886.

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 7.2 Hz, 1H), 7.30 – 7.18 (m, 3H), 7.05 – 6.94 (m, 2H), 6.88 (td, J = 8.4, 1.6 Hz, 1H), 6.63 (tdd, J = 7.8, 4.9, 1.6 Hz, 1H), 5.02 (d, J = 7.1 Hz, 1H), 4.15 (s, 1H), 3.03 (ddd, J = 15.9, 8.7, 4.3 Hz, 1H), 2.89 (dt, J = 15.9, 7.9 Hz, 1H), 2.59 (dddd, J = 12.6, 8.1, 7.0, 4.3 Hz, 1H), 1.91 (dtd, J = 12.7, 8.3, 6.8 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ = -136.09 – -136.15 (m); ¹³C NMR (100 MHz, CDCl₃) δ 151.7 (d, J = 237 Hz), 144.2, 143.7, 136.4 (d, J = 11.4 Hz), 128.2, 126.9, 125.0, 124.7 (d, J = 3.5 Hz), 124.3, 116.7 (d, J = 6.9 Hz), 114.7 (d, J = 18 Hz), 112.7 (d, J = 3.1 Hz) 58.5, 34.1, 30.4; ESI-MS: m/z 228 [M+H]⁺; ESI-HRMS for [C₁₅H₁₅FN]⁺ ([M+H]⁺): m/z Calcd. 228.1183, Found: 228.1178.

¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, J = 7.2 Hz, 1H), 7.29 – 7.16 (m, 3H), 6.94 – 6.87 (m,

2H), 6.67 – 6.61 (m, 2H), 4.94 (t, J = 6.7 Hz, 1H), 3.76 (br, s, 1H), 3.01 (ddd, J = 16.1, 8.7, 4.4 Hz, 1H), 2.89 (dt, J = 15.9, 7.8 Hz, 1H), 2.62 – 2.51 (m, 1H), 1.94 – 1.82 (m, 1H); ¹⁹F NMR (376 MHz, CDCl₃): δ -128.00; ¹³C NMR (100 MHz, CDCl₃): δ 155.90 (d, J = 233.0 Hz), 144.5, 144.2, 143.7, 128.1, 126.8, 125.0, 124.3, 115.88 (d, J = 22.0 Hz), 114.14 (d, J = 7.0 Hz), 59.4, 33.9, 30.3; EI-MS: m/z 227 (M⁺); EI-HRMS for [C₁₅H₁₄FN]⁺: m/z Calcd. 227.1110, Found: 227.1105.

¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 7.3 Hz, 1H), 7.30 – 7.24 (m, 2H), 7.23 – 7.17 (m, 1H), 6.69 (d, J = 8.5 Hz, 2H), 5.02 (q, J = 7.1 Hz, 1H), 4.22 (d, J = 7.6 Hz, 1H), 3.03 (ddd, J = 16.1, 8.7, 4.4 Hz, 1H), 2.91 (dt, J = 15.9, 7.8 Hz, 1H), 2.59 (dtd, J = 12.5, 7.6, 4.4 Hz, 1H), 1.90 (dtd, J = 13.0, 8.4, 6.8 Hz, 1H)); ¹⁹F NMR (376 MHz, CDCl₃): δ -60.85; ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 143.8, 143.7, 128.3, 126.9, 126.85 (q, J = 4.0 Hz), 125.15, 125.13 (q, J = 268.0 Hz), 124.3, 118.92 (q, J = 32.0 Hz), 112.3, 58.4, 33.8, 30.4; EI-MS: m/z 277 (M⁺); EI-HRMS for [C₁₆H₁₄F₃N]⁺: m/z Calcd. 277.1078, Found: 277.1074.

3h

¹H NMR (400 MHz, CDCl₃): δ 7.27 – 7.20 (m, 3H), 7.20 – 7.15 (m, 1H), 7.13 (s, 2H), 4.74 (t, *J* = 6.7 Hz, 1H), 3.21 (s, 1H), 3.02 (ddd, *J* = 15.9, 8.4, 4.8 Hz, 1H), 2.81 (dt, J = 15.8, 7.6 Hz, 1H), 2.46 – 2.34 (m, 2H), 2.21 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 144.4, 143.1, 131.5, 131.2, 127.9, 126.7, 125.0, 124.3, 113.8, 62.4, 34.9, 30.2, 18.9; ESI-MS: *m/z* 316 [M+H]⁺; ESI-HRMS for [C₁₇H₁₉BrN]⁺ ([M+H]⁺): *m/z* Calcd. 316.0695, Found: 316.0682.

¹H NMR (400 MHz, CDCl₃): δ 7.32 – 7.30 (m, 1H), 7.27 – 7.16 (m, 3H), 5.29-5.25 (m, 1H), 5.25 – 5.20 (m, 1H), 4.80 – 4.71 (m, 2H), 2.98 (ddd, J = 16.0, 8.8, 3.9 Hz, 1H), 2.85 (dt, J = 16.0, 8.1 Hz, 1H), 2.59 (dtd, J = 15.7, 7.7, 3.8 Hz, 1H), 1.91 – 1.79 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 154.5, 143.3, 142.6, 128.3, 126.9, 125.0, 124.1, 95.8, 74.6, 56.8, 34.1, 30.2.

¹H NMR (400 MHz, CDCl₃): δ 7.89 (s, 2H), 7.55 (s, 1H), 7.49 (d, J = 7.5 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.28 – 7.23 (m, 1H), 6.88 (br, s, 1H), 6.25 (dd, J = 6.9, 3.3 Hz, 1H), 3.14 (ddd, J = 15.4, 8.3, 6.7 Hz, 1H), 2.93 (ddd, J = 16.2, 8.6, 4.3 Hz, 1H), 2.56 (ddt, J = 13.7, 8.7, 6.8 Hz, 1H), 2.21 (dddd, J = 14.2, 8.1, 4.4, 3.3 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.04; ¹³C NMR (100 MHz, CDCl₃): δ 153.1, 144.7, 140.4, 139.6, 132.61 (q, J = 33.0 Hz), 129.6, 127.0, 125.7, 125.1, 123.22 (q, J = 271.0 Hz), 118.3, 116.88 – 116.73 (m), 80.4, 32.5, 30.3; EI-MS: m/z 373 (M⁺); EI-HRMS for [C₁₈H₁₃F₆NO]⁺ (M⁺): m/z Calcd. 373.0896, Found: 373.0854.

¹H NMR (400 MHz, CDCl₃): δ 7.30 (dd, J = 7.4, 1.7 Hz, 1H), 7.24 – 7.11 (m, 3H), 7.14 (s, 1H), 6.97 (s, 2H), 4.66 (dt, J = 7.8, 5.0 Hz, 1H), 4.30 (d, J = 7.8 Hz, 1H), 2.90 – 2.71 (m, 2H), 2.01 – 1.95 (m, 2H), 1.91 – 1.79 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.16; ¹³C NMR (100 MHz, CDCl₃): δ 148.0, 137.8, 136.7, 132.76 (q, J = 32.0 Hz), 129.5, 129.2, 127.8, 126.5, 123.78 (q, J = 271.0 Hz), 111.94 – 111.87 (m), 110.16 – 109.94 (m), 51.2, 29.3, 28.5, 19.4. For detailed characterizations, see Table S2.

¹H NMR (400 MHz, CDCl₃): δ 7.45 – 7.41 (m, 1H), 7.39 – 7.37 (m, 2H), 7.32 – 7.30 (m, 2H), 7.24 (s, 2H), 6.63 (dd, J = 9.4, 2.4 Hz, 1H), 5.20 – 5.08 (m, 2H), 4.90 (d, J = 9.5 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.11; ¹³C NMR (100 MHz, CDCl₃) δ = 146.7, 140.3, 137.5, 132.71 (q, J = 33.0 Hz), 129.7, 128.2, 123.58 (q, J = 271.0 Hz), 122.7, 121.6, 114.17 – 114.10 (m), 112.65 – 112.49 (m), 88.7, 71.8; ¹³C-dept-135 NMR (100 MHz, CDCl₃): δ 129.5 (CH), 128.0 (CH), 122.6 (CH), 121.5 (CH), 113.98 – 113.94 (m, CH), 112.48 – 112.33 (m, CH), 88.6 (CH), 71.7 (CH₂); ESI-MS: m/z 348 [M+H]⁺; ESI-HRMS for [C₁₆H₁₂F₆NO]⁺ ([M+H]⁺): m/z Calcd. 348.0817, Found: 348.0803.

¹H NMR (400 MHz, CDCl₃): δ 7.27 – 7.23 (m, 2H), 7.09 (s, 1H), 6.89 – 6.86 (m, 1H), 6.87 – 6.85 (m, 3H), 4.51 – 4.44 (m, 2H), 3.78 (s, 3H), 1.52 (d, J = 8.0 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.21; ¹³C NMR (100 MHz, CDCl₃): δ 159.0, 147.9, 135.5, 132.32 (q, J = 33.0 Hz), 127.0, 123.68 (q, J = 271.0 Hz), 114.4, 112.61 – 112.49 (m), 110.27 – 110.11 (m), 55.4, 52.9, 24.6; ESI-MS: m/z 364 [M+H]⁺; ESI-HRMS for [C₁₇H₁₆F₆NO]⁺ ([M+H]⁺): m/z Calcd. 364.1130, Found: 364.1113.

¹H NMR (400 MHz, CDCl₃): δ 7.24 – 7.19 (m, 2H), 7.14 (d, J = 8.0 Hz, 2H), 7.08 (s, 1H), 6.86

(s, 2H), 4.50 - 4.43 (m, 2H), 2.31 (s, 3H), 1.52 (d, J = 6.5 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.20; ¹³C NMR (100 MHz, CDCl₃): δ 148.0, 140.5, 137.3, 132.35 (q, J = 33.0 Hz), 129.8, 125.8, 123.71 (q, J = 271.0 Hz), 112.57 – 112.53 (m), 110.29 – 110.14 (m), 53.3, 24.6, 21.1; ESI-MS: m/z 348 [M+H]⁺; ESI-HRMS for [C₁₇H₁₆F₆N]⁺ ([M+H]⁺): m/z Calcd. 348.1181, Found: 348.1166.

¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.27 (m, 4H), 7.11 (s, 1H), 6.83 (s, 2H), 4.53 – 4.46 (m, 2H), 1.55 (d, J = 6.5 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.25; ¹³C NMR (100 MHz, CDCl₃): δ 147.6, 142.1, 133.2, 132.43 (q, J = 33.0 Hz), 129.2, 127.2, 123.60 (q, J = 271.0 Hz), 112.59 – 112.55 (m), 110.68 – 110.50 (m), 53.0, 24.6. For detailed characterizations, see Table S2.

¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.29 (m, 4H), 7.26 – 7.21 (m, 1H), 7.08 (s, 1H), 6.87 (s, 2H), 4.47 (d, *J* = 5.9 Hz, 1H), 4.39 (q, *J* = 6.6 Hz, 1H), 1.74 – 1.61 (m, 3H), 0.99 (d, *J* = 8.0 Hz, 3H), 0.93 (d, *J* = 5.7 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.22; ¹³C NMR (100 MHz, CDCl₃): δ 148.1, 142.9, 132.38 (q, *J* = 33.0 Hz), 129.1, 127.6, 126.3, 123.72 (q, *J* = 271.0 Hz), 112.57 – 112.45 (m), 110.30 – 110.14 (m), 56.4, 48.2, 25.1, 22.9, 22.4; ESI-MS: *m/z* 376 [M+H]⁺; ESI-HRMS for [C₁₉H₂₀F₆N]⁺ ([M+H]⁺): *m/z* Calcd. 376.1494, Found: 376.1479.

¹H NMR (500 MHz, CDCl₃): δ 7.26 – 7.24 (m, 2H), 7.22 – 7.18 (m, 2H), 7.05 (s, 1H), 6.83 (s, 2H), 4.60 (d, J = 5.5 Hz, 1H), 4.11 (t, J = 6.2 Hz, 1H), 3.71 (q, J = 7.2 Hz, 1H), 3.64 (s, 3H), 2.04 (h, J = 6.7 Hz, 1H), 1.48 (dd, J = 7.2, 1.9 Hz, 3H), 1.02 (d, J = 6.7 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H); ¹⁹F NMR (470 MHz, CDCl₃): δ -63.32; ¹³C NMR (125 MHz, CDCl₃): δ 175.1, 148.3, 139.80, 139.75, 132.27 (q, J = 33.0 Hz), 127.8, 127.4, 123.65 (q, J = 271.0 Hz), 112.56 – 112.49 (m), 110.15 – 110.03(m), 63.7, 52.1, 45.2, 34.8, 19.7, 18.9, 18.6; ¹³C-dept-135 NMR (125 MHz, CDCl₃): δ 127.6, 127.3, 112.40 – 112.36 (m), 109.99 – 109.87(m), 63.5, 52.0, 45.0, 34.7, 19.6, 18.7, 18.4; EI-MS: m/z 447 (M⁺); EI-HRMS for [C₂₂H₂₃F₆NO₂]⁺: m/z Calcd. 447.1627, Found: 447.1623.

¹H NMR (400 MHz, CDCl₃): δ 7.38 – 7.34 (m, 4H), 7.33 – 7.29 (m, 1H), 7.15 (s, 1H), 6.94 (s, 2H), 6.06 – 5.98 (m, 1H), 5.33 – 5.28 (m, 2H), 4.96 (t, *J* = 5.5 Hz, 1H), 4.45 (d, *J* = 5.3 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.19; ¹³C NMR (100 MHz, CDCl₃): δ 147.8, 140.4, 137.4, 132.38 (q, *J* = 33.0 Hz), 129.2, 128.3, 127.3, 123.66 (q, *J* = 271.0 Hz), 117.1, 112.84 – 112.80 (m), 110.76 – 110.60 (m), 60.7; ESI-MS: *m/z* 346 [M+H]⁺; ESI-HRMS for [C₁₇H₁₄F₆N]⁺ ([M+H]⁺): *m/z* Calcd. 346.1024, Found: 346.1008.

¹H NMR (400 MHz, CDCl₃): δ 7. 39 – 7.31 (m, 4H), 7.28 – 7.24 (m, 1H), 7.17 (s, 1H), 6.99 (s,

2H), 6.64 (dt, J = 15.9, 1.5 Hz, 1H), 6.26 (dtd, J = 15.9, 5.8, 1.2 Hz, 1H), 4.31 (t, J = 5.9 Hz, 1H), 3.99 (td, J = 5.8, 1.6 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.15; ¹³C NMR (100 MHz, CDCl₃): δ 148.6, 136.5, 132.8, 132.56 (q, J = 33.0 Hz), 128.8, 128.1, 126.5, 125.0, 122.3, 112.22 - 112.18 (m), 110.63 - 110.48 (m), 45.9; ESI-MS: m/z 346 [M+H]⁺; ESI-HRMS for [C₁₇H₁₄F₆N]⁺ ([M+H]⁺): m/z Calcd. 346.1024, Found: 346.1006.

¹H NMR (500 MHz, CDCl₃): δ 7.40 – 7.34 (m, 2H), 7.15 (s, 1H), 6.94 (s, 2H), 6.93 – 6.89 (m, 2H), 6.06 (ddt, J = 17.2, 10.6, 5.3 Hz, 1H), 5.44 (d, J = 1.3 Hz, 1H), 5.41 (dq, J = 10.5, 1.4 Hz, 1H), 5.30 (dq, J = 10.5, 1.4 Hz, 1H), 5.24 (q, J = 1.2 Hz, 1H), 4.55 (dt, J = 5.3, 1.6 Hz, 2H), 4.30 (t, J = 5.5 Hz, 1H), 4.21 – 4.12 (m, 2H); ¹⁹F NMR (470 MHz, CDCl₃): δ -63.19; ¹³C NMR (125 MHz, CDCl₃): δ 158.8, 148.6, 142.8, 133.2, 132.52 (q, J = 32.5 Hz), 131.1, 127.4, 123.70 (q, J = 271.0 Hz), 118.0, 115.0, 113.2, 112.12 – 112.09 (m), 110.54 – 110.42 (m), 69.0, 48.0; ¹³C-dept-135 NMR (125 MHz, CDCl₃): δ 133.1, 127.2, 117.9 (CH₂), 114.8, 113.0 (CH₂), 111.97 – 111.95 (m), 110.40 – 110.27 (m), 68.9 (CH₂), 47.8 (CH₂); EI-MS: *m/z* 401 (M⁺); EI-HRMS for [C₂₀H₁₇F₆NO]⁺: *m/z* Calcd. 401.1214, Found: 401.1215.

¹H NMR (500 MHz, CDCl₃): δ 7.27 (s, 1H), 6.94 (s, 1H), 3.98 (br, s, 1H), 3.84 (s, 2H), 3.64 (s, 2H), 1.81 (s, 3H), 1.65 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -58.47 (3F), -63.02 (3F); ¹³C NMR (125 MHz, CDCl₃): δ 149.5, 131.6, 129.01, 129.00 (q, J = 30.0 Hz), 128.93 (q, J = 32.5 Hz), 125.9, 124.02 (q, J = 272.5 Hz), 123.70 (q, J = 270.0 Hz), 118.11 – 118.08 (m), 113.48 – 113.30 (m), 50.9, 33.0, 19.7, 18.5; ¹³C-dept-135 NMR (125 MHz, CDCl₃): δ 117.96 – 117.93 (m), 113.27 – 113.14 (m), 50.7 (CH₂), 32.8 (CH₂), 19.5 (CH₃), 18.3 (CH₃); EI-MS: m/z 309 (M⁺); EI-HRMS for [C₁₄H₁₃F₆N]⁺: m/z Calcd. 309.0952, Found: 309.0951.

¹H NMR (400 MHz, CDCl₃): δ 9.54 (s, 1H), 7.20 (s, 1H), 7.01 (s, 2H), 6.63 – 6.61 (m, 1H), 4.45 (dt, J = 9.2, 2.9 Hz, 1H), 4.32 (d, J = 9.1 Hz, 1H), 2.97 (t, J = 5.6 Hz, 1H), 2.50 (dt, J = 10.2, 5.5 Hz, 1H), 2.36 (tt, J = 5.6, 2.4 Hz, 1H), 1.44 (s, 3H), 1.15 (d, J = 9.8 Hz, 1H), 0.93 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.17; ¹³C NMR (100 MHz, CDCl₃): δ 191.4, 152.5, 147.2, 142.4, 132.88 (q, J = 33.0 Hz), 123.56 (q, J = 271.0 Hz), 112.41 – 112.38 (m), 111.12 – 111.00 (m), 52.9, 44.9, 44.5, 38.9, 28.8, 26.0, 20.7; EI-MS: m/z 377 (M⁺); EI-HRMS for [C₁₈H₁₇F₆NO]⁺: m/z Calcd. 377.1214, Found: 377.1205.

5r dr = 2.6:1

¹H NMR (500 MHz, CDCl₃): δ 7.13 (s, 1H), 6.97 (s, 0.50H), 6.94 (s, 1.38H), 6.65 (dd, J = 15.9, 9.5 Hz, 0.26H), 6.60 (dd, J = 15.8, 10.2 Hz, 0.70H), 6.17 – 6.13 (m, 0.69H), 6.11 (dd, J = 15.8, 0.8 Hz, 0.27H), 5.57 (tt, J = 3.0, 1.5 Hz, 1H), 4.19 (d, J = 8.5 Hz, 1H), 4.14 – 4.05 (m, 1H), 2.60 – 2.55 (m, 0.72H), 2.37 (d, J = 9.3 Hz, 0.26H), 2.30 (s, 2.02H), 2.28 (s, 0.77H), 1.93 – 1.87 (m, 1H), 1.75 (ddt, J = 13.2, 6.1, 1.3 Hz, 0.30H), 1.41 – 1.36 (m, 0.86H), 1.10 (s, 0.79H), 1.02 (s, 2.08H), 0.98 (s, 2.03H), 0.92 (s, 0.82H); ¹⁹F NMR (470 MHz, CDCl₃): δ -63.22; ¹³C NMR (125 MHz, CDCl₃): δ 198.3 (minor), 198.1, 148.1 (minor), 147.9, 147.3 (minor), 146.8, 136.47, 136.36 (minor), 134.1, 132.59 (q, J = 32.5 Hz), 123.68 (q, J = 271.0 Hz), 123.2 (minor), 122.95, 112.33 –112.30 (m, minor), 34.5 (minor), 34.0, 29.3, 29.0 (minor), 27.3 (minor), 27.2, 27.0 (minor), 24.1, 22.8, 22.6 (minor); ¹³C-dept-135 NMR (125 MHz, CDCl₃): δ 147.2 (minor), 146.8, 134.0, 132.6 (minor), 123.1 (minor), 122.8, 112.20 – 112.18 (m, minor), 112.03 – 111.99 (m), 109.97 – 109.82 (m), 54.2, 53.96 (minor), 48.1 (minor), 47.4, 41.3 (CH₂), 37.9 (CH₂, minor), 29.2, 28.9 (minor), 27.2 (minor), 27.1, 26.8 (minor), 23.95, 22.7, 22.5 (minor); EI-MS: m/z 419

 (M^+) ; EI-HRMS for $[C_{21}H_{23}F_6NO]^+$: *m/z* Calcd. 419.1684, Found: 419.1684.

¹H NMR (500 MHz, CDCl₃): δ 7.21 (d, *J* = 16.4 Hz, 1H), 7.12 (s, 1H), 6.97 (s, 2H), 6.14 (d, *J* = 16.4 Hz, 1H), 4.32 (t, *J* = 6.8 Hz, 1H), 3.89 (dt, *J* = 8.4, 4.1 Hz, 1H), 2.33 (s, 3H), 1.91 – 1.77 (m, 2H), 1.82 (s, 3H), 1.62 (td, *J* = 12.7, 12.0, 3.3 Hz, 1H), 1.50 (ddd, *J* = 13.6, 5.8, 3.2 Hz, 1H), 1.10 (d, *J* = 2.8 Hz, 6H); ¹⁹F NMR (470 MHz, CDCl₃): δ -63.24; ¹³C NMR (125 MHz, CDCl₃): δ 198.3, 148.3, 142.3, 141.2, 133.5, 132.68 (q, *J* = 32.5 Hz), 131.4, 123.70 (q, *J* = 271.0 Hz), 112.01 – 111.98 (m), 110.03 – 109.96 (m), 53.2, 34.8, 34.6, 29.3, 27.6, 27.3, 24.1, 19.6; ¹³C-dept-135 NMR (125 MHz, CDCl₃): δ 142.2 (CH), 133.4 (CH), 111.86 – 111.83 (m), 109.87 – 109.84 (m), 53.1, 34.6 (CH₂), 29.2, 27.5, 27.2, 23.9 (CH₂), 19.5; EI-MS: *m/z* 419 (M⁺); EI-HRMS for [C₂₁H₂₃F₆NO]⁺: *m/z* Calcd. 419.1684, Found: 419.1676.

5t, *endo*: *exo* = 3: 1

¹H NMR (500 MHz, CDCl₃): δ 7.09 (d, *J* = 4.1 Hz, 1H), 6.91 (d, *J* = 1.4 Hz, 1H), 6.84 (d, *J* = 1.5 Hz, 2H), 6.04 (td, *J* = 1.9, 0.9 Hz, 2H), 4.47 (d, *J* = 8.8 Hz, 0.79H), 4.22 (d, *J* = 6.5 Hz, 0.26H), 3.46 (dt, *J* = 8.8, 1.3 Hz, 0.83H), 3.37 (dt, *J* = 6.6, 1.7 Hz, 0.28H), 2.93 (h, *J* = 1.7 Hz, 2H), 2.11 – 2.07 (m, 0.27H), 1.92 – 1.82 (m, 1.74H), 1.58 – 1.52 (m, 0.5H), 1.39 (dt, *J* = 10.6, 1.6 Hz, 0.28H), 1.32 – 1.24 (m, 1H), 1.18 (tt, *J* = 5.3, 1.3 Hz, 0.30H), 1.12 – 1.00 (m, 1.75H); ¹⁹F NMR (470 MHz, CDCl₃): δ -63.21, -63.23; ¹³C NMR (125 MHz, CDCl₃): δ 149.1, 148.5 (minor), 132.9, 132.50 (q, *J* = 32.5 Hz), 132.46 (q, *J* = 32.5 Hz, minor), 123.76 (q, *J* = 271.2 Hz, minor), 123.74 (q, *J* = 271.2 Hz), 112.24 – 112.21, 111.97 – 111.95 (minor), 110.04 – 109.92 (m), 109.84 – 109.72 (m, minor), 70.0, 58.9, 45.5, 32.7, 31.9, 29.6, 23.4, 15.1, 12.2, 10.7; ¹³C-dept-135 NMR (125 MHz, CDCl₃): δ 132.74, 112.05-111.8, 109.9-109.6, 69.9, 58.7, 45.3, 32.6, 31.8 (CH₂), 29.4

(CH₂), 23.2 (CH₂), 15.0, 12.0, 10.5;. EI-MS: *m*/*z* 321 (M⁺); EI-HRMS for [C₁₅H₁₃F₆N]⁺: *m*/*z* Calcd. 321.0952, Found: 321.0951.

¹H NMR (500 MHz, CDCl₃): δ 7.66 (s, 2H), 7.48 (s, 1H), 4.70 (d, J = 9.0 Hz, 1H), 3.73 (dd, J = 9.0, 1.5 Hz, 1H), 2.88 – 2.81 (m, 1H), 2.63 (d, J = 3.5 Hz, 1H), 1.73 – 1.63 (m, 2H), 1.41 (tdd, J = 14.0, 11.3, 5.6 Hz, 2H), 1.27 – 1.20 (m, 1H), 1.12 – 1.05 (m, 1H); ¹⁹F NMR (470 MHz, CDCl₃): δ -63.10; ¹³C NMR (125 MHz, CDCl₃): δ 141.6, 132.94 (q, J = 33.0 Hz), 123.35 (q, J = 271.0 Hz), 114.91 – 114.79 (m), 113.46 – 113.42 (m), 87.8, 59.8, 41.1, 39.7, 32.2, 25.6, 24.9; ¹³C-dept-135 NMR (125 MHz, CDCl₃): δ 114.76 – 114.64 (m), 113.31 – 113.29 (m), 87.7, 59.7, 41.0, 39.5, 32.1 (CH₂), 25.4 (CH₂), 24.8 (CH₂); EI-MS: m/z 321 (M⁺); EI-HRMS for [C₁₅H₁₃F₆N]⁺: m/z Calcd. 321.0952, Found: 321.0951.

OAc **6h** (mixture with ratio of C7:C3=5.3:1)

¹H NMR (400 MHz, CDCl₃): δ 7.11 (s, 1H), 7.02 (s, 2H), 4.18–4.03 (m, 3H), 2.03 (s, 3H), 1.71– 1.59 (m, 3H), 1. 57–1.48 (m, 1H), 1.45–1.26 (m, 10H), 1.18–1.12 (m, 1H), 0.87 (d, *J* = 6.5 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.29; ¹³C NMR (100 MHz, CDCl₃): δ 171.4, 147.8, 147.5 (minor), 132.23 (q, *J* = 33.0 Hz), 123.74 (q, *J* =271.0 Hz), 114.12–114.05 (m), 109.82–109.67 (m), 63.0, 60.9 (minor), 55.7 (minor), 54.1, 41.4, 40.1 (minor), 39.2 (minor), 37.4 (minor), 37.2, 35.5, 29.7, 27.96 (d, *J* = 4.0 Hz), 27.8 (minor), 26.0 (minor), 22.54 (d, *J* = 8.0 Hz, minor), 21.25, 21.19 (minor), 21.0, 20.9 (minor), 19.4; ¹³C-dept-135 NMR (100 MHz, CDCl₃) δ 113.97–113.93 (CH, m), 109.66–109.51 (CH, m), 62.9 (CH₂), 60.7 (CH₂, minor), 41.3 (CH₂), 40.0 (CH₂, minor), 39.0 (CH₂, minor), 37.3 (CH₂, minor), 37.0 (CH₂), 35.3 (CH₂), 29.6, 27.81 (d, *J* = 4.0 Hz), 27.7 (minor), 19.2; ESI-MS: *m/z* 428 [M+H]⁺; ESI-HRMS for [C₂₀H₂₈F₆NO₂]⁺ ([M+H]⁺): *m/z* Calcd. 428.2019, Found: 428.2005.

¹H NMR (400 MHz, CDCl₃) δ 7.11 (s, 1H), 7.00 (s, 2H), 4.00 (br, s, 1H), 3.47 – 3.34 (m, 2H), 1.88 – 1.79 (m, 1H), 1.72 – 1.59 (m, 5H), 1.35 (s, 6H), 1.34 – 1.26 (m, 2H), 1.19 – 1.09 (m, 1H), 0.85 (d, J = 6.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.23; ¹³C NMR (100 MHz, CDCl₃): δ 147.7, 132.29 (q, J = 33.0 Hz), 123.73 (q, J = 271.0 Hz), 114.18-114.14 (m), 110.01-109.85 (m), 54.2, 41.4, 40.0, 36.8, 32.1, 31.5, 28.06 (d, J = 4.0 Hz), 21.3, 18.9; ¹³C-dept-135 NMR (100 MHz, CDCl₃) δ 114.01 – 113.97 (CH, m), 109.85 – 109.69 (CH, m), 41.2 (CH₂), 39.9 (CH₂), 36.7 (CH₂), 32.0 (CH₂), 31.4, 27.90 (d, J = 4.0 Hz), 27.9, 21.1 (CH₂), 18.7; ESI-MS: *m/z* 448 [M+H]⁺; ESI-HRMS for [C₁₈H₂₅BrF₆N]⁺ ([M+H]⁺): *m/z* Calcd. 448.1069, Found: 448.1052.

¹H NMR (400 MHz, CDCl₃): δ 7.43–7.37 (m, 4H), 7.36–7.32 (m, 1H), 7.09 (s, 1H), 6.90 (s, 2H), 6.04 (d, *J* = 4.5 Hz, 1H), 5.04 (d, *J* = 4.5 Hz, 1H), 2.47 (qd, *J* = 7.3, 4.1 Hz, 2H), 1.01 (t, *J* = 7.3 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.30; ¹³C NMR (100 MHz, CDCl₃): δ 205.7, 146.5, 136.8, 132.39 (q, *J* = 33.0 Hz), 129.7, 129.1, 127.8, 123.56 (q, *J* = 271.0 Hz), 112.75–112.72 (m), 110.73–110.58 (m), 66.8, 32.7, 8.0. ESI-MS: *m/z* 376 [M+H]⁺; ESI-HRMS for [C₁₈H₁₆F₆NO]⁺ ([M+H]⁺): *m/z* Calcd. 376.1130, Found: 376.1116.

¹H NMR (400 MHz, CDCl₃): δ 7.16 (s, 1H), 6.86 (s, 2H), 4.90 (s, 1H), 3.28 (p, J = 6.7 Hz, 1H), 1.54 (s, 6H), 1.06 (d, J = 6.6 Hz, 6H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.34; ¹³C NMR (100 MHz, CDCl₃): δ217.9, 146.5, 132.44 (q, J = 33.0 Hz), 123.53 (q, J = 271.0 Hz), 113.67–113.62

S33

(m), 110.80–110.65 (m), 62.4, 33.9, 24.1, 20.6; ESI-MS: m/z 342 [M+H]⁺; ESI-HRMS for $[C_{15}H_{18}F_6NO]^+$ ([M+H]⁺): m/z Calcd. 342.1287, Found: 342.1276.

¹H NMR (400 MHz, CDCl₃): δ 7.17 (s, 1H), 6.90 (s, 2H), 4.65 (d, J = 7.4 Hz, 1H), 4.09 (td, J = 7.9, 4.7 Hz, 1H), 2.23 (s, 3H), 1.78 (dq, J = 8.4, 6.3 Hz, 1H), 1.70 (ddd, J = 13.2, 8.2, 4.7 Hz, 1H), 1.60 – 1.53 (m, 1H), 0.98 (t, J = 6.4 Hz, 6H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.23; ¹³C NMR (100 MHz, CDCl₃): δ 208.9, 147.8, 132.80 (q, J = 33.0 Hz), 123.53 (q, J = 271.0 Hz), 112.35 – 112.23 (m), 111.25 – 111.10 (m), 61.7, 40.9, 26.6, 25.1, 23.3, 22.3; ESI-MS: m/z 342 [M+H]⁺; ESI-HRMS for [C₁₅H₁₈F₆NO]⁺ ([M+H]⁺): m/z Calcd. 342.1287, Found: 342.1268.

8a, two rotamers.

¹H NMR (400 MHz, CDCl₃): δ 7.44 – 7.12 (m, 4H), 6.21 (s, 0.53H), 5.96 (s, 0.28H), 3.83 (s, 2H), 3.65 (s, 2H), 1.63 – 1.17 (m, 27H); ¹³C NMR (101 MHz, CDCl₃): δ 153.0, 150.8, 137.9, 126.2, 125.0, 80.5, 72.3, 43.7, 34.6, 31.4, 28.3; EI-MS: *m/z* 404 (M⁺); EI-HRMS for [C₂₃H₃₆N₂O₄]⁺: *m/z* Calcd. 404.2670, Found: 404.2671.

ÓMe 8b

¹H NMR (400 MHz, CDCl₃): δ 7.24 (t, J = 7.9 Hz, 1H), 7.04 – 6.73 (m, 3H), 6.21 – 5.89 (m, 1H), 3.97 – 3.82 (m, 2H), 3.79 (s, 3H), 3.63 (br, 2H), 1.50 – 1.19 (m, 18H); ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 152.9, 142.8, 129.2, 118.9, 113.4, 80.7, 72.2, 55.3, 43.6, 28.5, 28.3; EI-MS: *m/z*

$$Ph$$

Boc-N Ph
8c, two rotamers.

¹H NMR (400 MHz, CDCl₃): δ 7.54–7.36 (m, 2H), 7.34–7.16 (m, 8H), 5.10 (s, 0.21H), 4.84 (s, 0.65H), 3.73 (d, *J* = 13.0 Hz, 2H), 3.61–3.46 (m, 1H), 3.44–3.30 (m, 1H), 3.07–3.02 (m, 1H), 2.70–2.55 (m, 1H), 1.43 (s, 2.33H), 1.18 (s, 6.79H); ¹³C NMR (100 MHz, CDCl₃): δ 153.9, 141.5, 138.3, 128.8, 128.3, 128.0, 128.0, 127.9, 127.2, 80.2, 79.9, 56.1, 49.9, 45.0, 28.5, 28.2; EI-MS: *m*/*z* 338 (M⁺); EI-HRMS for [C₂₁H₂₆N₂O₂]⁺: *m*/*z* Calcd. 338.1989, Found: 338.1993.

¹H NMR (400 MHz, CDCl₃): δ 7.40 – 7.25 (m, 5H), 4.97 – 4.65 (m, 1H), 3.80 – 3.50 (m, 2H), 3.30 – 3.24 (m, 2H), 2.63 – 2.54 (m, 2H), 2.36 – 2.29 (m, 1H), 1.49 (s, 3H), 1.14 (s, 6H), 1.02 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.7, 141.9, 128.0, 127.9, 127.6, 80.9, 79.8, 49.9, 46.0, 45.2, 28.52, 28.49, 28.2, 13.3; EI-MS: m/z 276 (M⁺); EI-HRMS for [C₁₆H₂₄N₂O₂]⁺: m/z Calcd. 276.1838, Found: 276.1843.

¹H NMR (400 MHz, CDCl₃): δ 7.08 (td, J = 7.8, 1.5 Hz, 1H), 7.01 (d, J = 7.4 Hz, 1H), 6.73 – 6.66 (m, 1H), 6.56 (d, J = 7.9 Hz, 1H), 4.68 (d, J = 10.1 Hz, 1H), 3.74 (s, 1H), 3.53 – 3.40 (m, 4H), 2.89 (ddd, J = 18.1, 12.8, 5.5 Hz, 1H), 2.78 (ddd, J = 16.8, 5.3, 2.4 Hz, 1H), 2.59 (s, 1H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 153.8, 143.8, 128.9, 127.1, 122.5, 117.8, 113.1, 80.1, 71.2, 46.2, 44.3, 28.6, 26.3, 26.03; EI-MS: m/z 274 (M⁺); EI-HRMS for [C₁₆H₂₂N₂O₂]⁺: m/z Calcd. 274.1681, Found: 274.1676.

¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 8.3 Hz, 1H), 7.19 (t, J = 7.4

Hz, 1H), 7.13 – 7.07 (m, 1H), 7.04 (d, J = 3.2 Hz, 1H), 6.49 (d, J = 3.1 Hz, 1H), 4.58 (t, J = 6.3 Hz, 1H), 4.22 (t, J = 6.0 Hz, 2H), 3.43 (q, J = 6.1 Hz, 2H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 156.0, 136.1, 128.7, 128.0, 121.8, 121.1, 119.6, 109.4, 101.7, 79.7, 45.9, 41.0, 28.4; ¹³C-dept-135 NMR (125 MHz, CDCl₃): δ 128.0 (CH), 121.7 (CH), 121.0 (CH), 119.6 (CH), 109.4 (CH), 101.7 (CH), 45.9 (CH₂), 40.9 (CH₂), 28.4 (CH₃); EI-MS: *m/z* 260 (M⁺); EI-HRMS for [C₁₅H₂₀N₂O₂]⁺: *m/z* Calcd. 260.1525, Found: 260.1525.

¹H NMR (400 MHz, CDCl₃): δ 6.17 (d, *J* = 6.5 Hz, 1H), 5.61 – 5.53 (m, 1H), 5.09 (tdd, *J* = 6.6, 3.3, 1.9 Hz, 1H), 4.06 – 3.90 (m, 2H), 3.73 – 3.66 (m, 1H), 3.18 (tdd, *J* = 13.1, 10.6, 3.3 Hz, 1H), 2.23 – 2.03 (m, 5H), 1.99 – 1.84 (m, 1H), 1.78 (t, *J* = 1.2 Hz, 1H), 1.73 (d, *J* = 1.3 Hz, 2H), 1.68 (s, 3H), 1.61 (s, 3H), 1.46 (d, *J* = 1.7 Hz, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 153.93, 153.91, 142.2, 132.0, 131.9, 124.1, 124.0, 123.9, 121.6, 120.3, 119.6, 80.24, 80.22, 79.1, 78.7, 67.5, 63.7, 60.3, 60.2, 44.1, 39.9, 37.84, 37.77, 32.6, 32.4, 28.55, 28.53, 26.8, 26.6, 26.4, 25.9, 25.8, 23.6, 17.9, 17.8, 16.9. EI-MS: *m*/*z* 309 (M⁺); EI-HRMS for [C₁₈H₃₁NO₃]⁺: *m*/*z* Calcd. 309.2304, Found: 309.2311.

¹H NMR (400 MHz, CDCl₃): δ 4.59 (s, 1H), 4.04 (s, 1H), 2.65 (dd, *J* = 18.0, 7.5 Hz, 1H), 2.20 (d, *J* = 18.0 Hz, 1H), 1.96 (s, 1H), 1.86 – 1.74 (m, 2H), 1.73 – 1.61 (m, 2H), 1.60 – 1.52 (m, 1H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 214.3, 153.3, 80.4, 61.5, 51.8, 42.9, 28.6, 28.2, 17.1; For detailed characterizations, see Table S2.

Boc N H T O 10b, two rotamers with a ratio of 3: 2

¹H NMR (400 MHz, CDCl₃): δ 4.70 (ddd, J = 9.0, 4.3, 1.9 Hz, 0.6H), 4.70 (ddd, J = 9.0, 4.3, 1.9 Hz, 0.4H), 4.13 (d, J = 8.4 Hz, 0.4H), 4.03 (d, J = 8.4 Hz, 0.6H), 2.77 (td, J = 17.3, 8.7 Hz, 1H),
2.45 – 2.32 (m, 0.4H), 2.30 – 2.20 (m, 0.6H), 2.14 (dt, J = 18.0, 1.7 Hz, 1H), 2.04 – 1.92 (m, 1H), 1.91 – 1.67 (m, 3H), 1.66 – 1.55 (m, 1H), 1.52 (s, 3.6H), 1.49 (s, 5.4H), 1.28 (dtd, J = 13.3, 11.5, 6.5 Hz, 1H), 1.04 (dtd, J = 15.2, 12.0, 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 217.0, 216.5 (minor), 153.8, 153.5 (minor), 79.90, 79.86 (minor), 61.4, 60.8 (minor), 53.3 (minor), 52.5, 42.8 (minor), 42.4, 34.7 (minor), 33.7, 31.0, 30.2 (minor), 28.50 (minor), 28.47, 24.4, 22.31 (minor), 22.27; ¹³C- dept-135 NMR (125 MHz, CDCl₃): δ 61.3 (CH), 60.8 (CH, minor), 53.2 (CH, minor), 52.4 (CH), 42.7 (CH₂, minor), 42.4 (CH₂), 34.6 (CH₂, minor), 33.6 (CH₂), 30.9 (CH₂), 30.1 (CH₂, minor), 28.41 (CH₃, minor), 28.38 (CH₃), 24.3 (CH₂), 22.22 (CH₂, minor), 22.18 (CH₂); EI-MS: m/z 239 (M⁺); EI-HRMS for [C₁₃H₂₁NO₃]⁺: m/z Calcd. 239.1521, Found: 239.1516.

10c, two rotamers with a ratio of 5: 4

¹H NMR (400 MHz, CDCl₃): δ 4.80 – 4.57 (m, 1H), 4.54 – 4.10 (m, 1H), 2.67 – 2.49 (m, 1H), 2.35 – 2.28 (m, 1H), 2.25 – 2.17 (m, 1H), 1.96 – 1.75 (m, 3H), 1.72 – 1.55 (m, 4H), 1.54 – 1.52 (m, 9H), 1.45 – 1.23 (m, 4H), ¹³C NMR (100 MHz, CDCl₃): δ 215.5, 215.2, 213.0, 156.0, 155.6, 155.3, 80.43, 80.39, 80.2, 67.7, 67.2, 59.6, 58.0, 57.6, 57.4, 51.7, 50.2, 40.7, 40.6, 40.23, 40.16, 31.6, 31.5, 31.1, 30.4, 30.2, 28.8, 28.7, 28.61, 28.58, 28.55, 28.4, 28.1, 27.62, 25.1, 24.60, 24.57, 24.2, 22.9, 22.4, 21.9, 21.8, 15.0; EI-MS: *m*/*z* 267 (M⁺); EI-HRMS for [C₁₅H₂₅NO₃]⁺: *m*/*z* Calcd. 267.1829, Found: 267.1825.

Boc N10d, two rotamers with a ratio of 5: 3

¹H NMR (500 MHz, CDCl₃): δ 4.53 – 4.35 (m, 1H), 4.23 – 4.07 (m, 1H), 3.18 – 3.05 (m, 1H), 2.50 – 2.41 (m, 1H), 2.05 (ddd, *J* = 14.3, 8.1, 4.1 Hz, 1H), 1.99 – 1.80 (m, 3H), 1.77 – 1.65 (m, 2H), 1.64 – 1.56 (m, 2H), 1.55 – 1.48 (m, 9H), 1.46 – 1.29 (m, 5H), 1.28 – 1.12 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 214.2, 156.25, 155.23, 80.5, 80.4, 67.6, 67.1, 58.6, 58.4, 35.3, 35.25, 30.20, 29.5, 29.0, 28.6, 26.0, 24.9, 24.4, 22.9, 21.7; EI-MS: *m/z* 281 (M⁺); EI-HRMS for [C₁₆H₂₇NO₃]⁺: *m/z* Calcd. 281.1985, Found: 281.1986.

10e, two rotamers with a ratio of 2: 1

¹H NMR (400 MHz, CDCl₃): δ 4.48 – 4.28 (m, 1H), 4.16 – 3.98 (m, 1H), 3.30 – 2.98 (m, 1H), 2.54 – 2.39 (m, 1H), 2.30 – 2.13 (m, 1H), 2.09 – 1.98 (m, 1H), 1.94 – 1.85 (m, 1H), 1.82 –1.65 (m, 3H), 1.61 – 1.44 (m, 1H), 1.52 – 1.50 (m, 9H), 1.46-1.42 (m, 2H), 1.42 – 1.15 (m, 7H); ¹³C NMR (100 MHz, CDCl₃): δ 210.6, 156.3, 80.3, 67.4, 66.2, 59.0, 37.1, 36.0, 30.1, 29.8, 29.4, 28.6, 27.3, 27.1, 24.2, 24.0, 23.5, 23.2, 22.2, 21.1; EI-MS: m/z 295 (M⁺); EI-HRMS for [C₁₇H₂₉NO₃]⁺: m/z Calcd. 295.2142, Found: 295.2144.

¹H NMR (500 MHz, CDCl₃): δ 4.21 – 4.01 (m, 2H), 2.78 – 2.66 (m, 1H), 2.44 – 2.35 (m, 1H), 2.15 – 2.03 (m, 1H), 1.97 – 1.84 (m, 2H), 1.66 – 1.57 (m, 2H), 1.51 – 1.37 (m, 15H), 1.34– 1.11 (m, 11H), ¹³C NMR (125 MHz, CDCl₃): δ 214.6, 212.6, 212.2, 156.1, 155.7, 155.2, 80.3, 80.2, 68.3, 67.3, 58.9, 43.7, 38.6, 36.6, 35.9, 35.7, 35.6, 33.4, 31.5, 30.9, 28.5, 28.4, 28.2, 27.6, 27.1, 27.0, 26.7, 26.4, 26.1, 26.0, 25.85, 25.4, 25.1, 25.0, 24.2, 23.78, 23.5, 22.5, 21.9; EI-MS: *m/z* 337 (M⁺); EI-HRMS for [C₂₀H₃₅NO₃]⁺: *m/z* Calcd. 337.2611, Found: 337.2617.

15, two isomers with a ratio of 5: 1

¹H NMR (400 MHz, CDCl₃): δ 7.08 (s, 1H), 6.96 (s, 0.34H), 6.86 (s, 1.66H), 5.58 (s, 0.17H), 5.26 (s, 0.83H), 4.67 - 4.59 (m, 1H), 3.89 - 3.65 (m, 2H), 2.31 (d, *J* = 7.6 Hz, 2H), 2.03 - 2.02 (m, 4H), 1.94 - 1.89 (m, 2H), 1.82 - 1.75 (m, 1H), 1.67 - 1.06 (m, 23H), 0.92 (d, *J* = 6.5 Hz, 3H),

0.85 (d, J = 6.5 Hz, 6H), 0.71 – 0.70 (m, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.11 (s, 4.84 F), -63.15 (s, 1.16 F); ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 148.5 (minor), 147.8, 143.2 (minor), 142.7, 132.69 (q, J = 33.0 Hz), 123.72 (q, J = 271.0 Hz), 123.2, 122.7 (minor), 111.88 – 111.86 (m), 109.75 – 109.67 (m), 73.4,73.3 (minor), 56.5, 56.0 (minor), 55.42 (d, J = 5.0 Hz), 50.6 (minor), 49.4, 48.5 (minor), 44.0 (minor), 43.3, 42.4 (minor), 39.6, 39.2 (minor), 38.7, 38.0 (minor), 37.7, 37.5 (minor), 37.0 (minor), 36.8, 36.5, 36.2, 35.9 (minor), 35.8, 28.6, 28.2 (minor), 28.1, 27.8, 27.6, 26.5, 24.4 (minor), 23.9, 22.9, 22.7, 21.5, 21.3, 21.0 (minor), 19.1, 18.92, 18.88 (minor), 18.6, 12.1, 11.9 (minor); ESI-MS: m/z 656 [M+H]⁺; ESI-HRMS for [C₃₇H₅₂F₆NO₂]⁺ [M+H]⁺: m/z Calcd. 656.3897, Found: 656.3857.

¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 8.5 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 2H), 6.63 (s, 1H), 6.49 (s, 2H), 5.59 (d, *J* = 4.7 Hz, 1H), 4.87 (tt, *J* = 10.9, 4.8 Hz, 1H), 4.35 (q, *J* = 7.5 Hz, 1H), 3.71 (dt, *J* = 10.8, 5.1 Hz, 1H), 3.44 (ddd, *J* = 12.2, 8.9, 2.9 Hz, 2H), 3.33 (td, *J* = 10.9, 1.6 Hz, 1H), 2.56 – 2.41 (m, 2H), 2.08 – 2.00 (m, 1H), 1.99 – 1.83 (m, 4H), 1.82 – 1.71 (m, 3H), 1.68 – 1.54 (m, 5H), 1.53 – 1.35 (m, 3H), 1.33 – 1.15 (m, 4H), 1.11 (s, 3H), 0.97 (d, *J* = 7.0 Hz, 3H), 0.82 (s, 3H), 0.77 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 149.4, 142.8, 135.8, 133.0, 130.70 129.7, 128.4, 123.4, 117.1, 111.3, 109.4, 80.7, 73.9, 67.0, 62.1, 50.3, 48.8, 44.0, 41.8, 40.3, 39.3, 38.1, 37.6, 37.1, 35.6, 32.0, 31.5, 30.4, 28.9, 27.8, 20.9, 18.7, 17.2, 16.4, 14.7; EI-MS: *m*/*z* 677 (M⁺); EI-HRMS for [C₄₀H₄₉Cl₂NO₄]⁺: *m*/*z* Calcd. 677.3039, Found: 677.3037.

¹H NMR (500 MHz, CDCl₃): δ 8.06 – 7.99 (m, 2H), 7.57 – 7.52 (m, 1H), 7.43 (t, *J* = 7.8 Hz, 2H), 6.61 (t, *J* = 1.8 Hz, 1H), 6.38 (d, *J* = 1.8 Hz, 2H), 5.32 (s, 1H), 4.87 (tdd, *J* = 10.8, 6.7, 4.5 Hz, 1H), 4.40 – 4.32 (m, 1H), 3.63 – 3.52 (m, 2H), 3.45 (ddd, *J* = 11.0, 4.5, 2.2 Hz, 1H), 3.32 (t, *J* = 11.0 Hz, 1H), 2.49 – 2.38 (m, 2H), 2.08 – 1.99 (m, 2H), 1.95 (dt, *J* = 13.5, 3.6 Hz, 1H), 1.87 (p, *J* = 6.9 Hz, 1H), 1.81 – 1.72 (m, 3H), 1.72 – 1.61 (m, 4H), 1.57 – 1.47 (m, 3H), 1.42 (ddd, *J* = 13.7, 8.7, 5.3 Hz, 2H), 1.34 (ddd, *J* = 13.4, 10.4, 5.3 Hz, 1H), 1.23 (dtd, *J* = 18.0, 9.5, 7.4, 4.2 Hz, 3H), 1.13 (s, 3H), 0.98 (d, *J* = 6.9 Hz, 3H), 0.82 (s, 3H), 0.76 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 148.5, 142.1, 135.8, 133.0, 130.7, 129.7, 128.4, 123.5, 116.7, 111.0, 109.4, 81.1, 74.0, 67.0, 61.6, 56.0, 54.8, 49.4, 41.9, 41.2, 39.8, 38.7, 37.9, 36.9, 36.7, 34.1, 31.5, 30.4, 28.9, 27.9, 21.2, 19.4, 17.2, 16.5, 14.7; EI-MS: *m*/*z* 677 (M⁺); EI-HRMS for [C₄₀H₄₉Cl₂NO₄]⁺: *m*/*z* Calcd. 677.3039, Found: 677.3037.

¹H NMR (400 MHz, CDCl₃): δ 8.05 – 7.98 (m, 2H), 7.58 – 7.51 (m, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.11 (s, 1H), 6.98 (s, 2H), 5.61 (d, *J* = 4.2 Hz, 1H), 4.88 (tt, *J* = 10.9, 5.2 Hz, 1H), 4.34 (q, *J* = 7.4 Hz, 1H), 3.90 – 3.75 (m, 2H), 3.45 – 3.37 (m, 1H), 3.31 (t, *J* = 10.9 Hz, 1H), 2.57 – 2.42 (m, 2H), 2.00 (dtd, *J* = 16.8, 9.8, 7.9, 4.7 Hz, 3H), 1.91 – 1.71 (m, 5H), 1.68 – 1.54 (m, 6H), 1.51 – 1.38 (m, 2H), 1.36 – 1.15 (m, 4H), 1.13 (s, 3H), 0.98 (d, *J* = 6.8 Hz, 3H), 0.83 (s, 3H), 0.76 (d, *J* = 6.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.13; ¹³C NMR (100 MHz, CDCl₃):) δ 166.1, 148.4, 143.3, 133.0, 132.78 (q, *J* = 33.0 Hz), 130.6, 129.7, 128.5, 123.69 (q, *J* = 271.0 Hz), 122.8, 112.08 – 112.05 (m), 110.31 – 110.20 (m), 109.4, 80.6, 73.8, 66.9, 62.2, 50.3, 48.6, 44.0, 41.8, 40.4, 39.3, 38.1, 37.7, 37.1, 35.5, 31.9, 31.5, 30.4, 28.9, 27.8, 20.9, 18.7, 17.2, 16.3, 14.7; EI-MS: *m*/*z* 745 (M⁺); EI-HRMS for [C₄₂H₄₉F₆NO₄]⁺: *m*/*z* Calcd. 745.3566, Found: 745.3560.

¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 7.7 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.02 (s, 1H), 6.86 (s, 2H), 5.26 (s, 1H), 4.95 – 4.82 (m, 1H), 4.38 (dt, J = 21.7, 8.5 Hz, 2H), 3.68 (t, J = 9.3 Hz, 1H), 3.43 (dd, J = 11.3, 4.3 Hz, 1H), 3.23 (t, J = 11.1 Hz, 1H), 2.49 – 2.37 (m, 2H), 2.11 – 1.92 (m, 3H), 1.91 – 1.72 (m, 4H), 1.71 – 1.61 (m, 3H), 1.60 – 1.45 (m, 5H), 1.42 – 1.19 (m, 5H), 1.14 (s, 3H), 0.99 (d, J = 6.7 Hz, 3H), 0.86 (s, 3H), 0.62 (d, J = 6.4 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.26; ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 147.6, 142.5, 133.0, 132.56 (q, J = 33.0 Hz), 130.7, 129.7, 128.5, 123.68 (q, J = 271.0 Hz), 123.4, 111.58 – 118.38 (m), 109.6, 109.54 – 109.46 (m), 81.0, 73.9, 66.8, 61.5, 56.0, 54.5, 49.2, 41.9, 41.2, 39.6, 38.8, 37.8, 36.9, 36.7, 33.8, 31.1, 30.1, 29.0, 27.9, 21.1, 19.2, 17.1, 16.8, 14.6; EI-MS: m/z 745 (M⁺); EI-HRMS for [C₄₂H₄₉F₆NO₄]⁺: m/z Calcd. 745.3566, Found: 745.3547.

¹H NMR (500 MHz, CDCl₃): δ 7.28 (d, *J* = 8.8 Hz, 1H), 7.15 (s, 1H), 7.00 (s, 2H), 6.97 (d, *J* = 2.8 Hz, 1H), 6.82 (dd, *J* = 8.6, 2.8 Hz, 1H), 4.82 (td, *J* = 10.1, 6.5 Hz, 1H), 4.69 (s, 2H), 4.34 (d, *J* = 9.1 Hz, 1H), 3.74 (s, 3H), 2.56 (ddd, *J* = 17.5, 10.1, 2.4 Hz, 1H), 2.43 – 2.24 (m, 4H), 1.81 – 1.76 (m, 1H), 1.66 (q, *J* = 11.2 Hz, 1H), 1.54 – 1.28 (m, 6H), 0.86 (s, 3H); ¹⁹F NMR (470 MHz, CDCl₃): δ -63.22; ¹³C NMR (125 MHz, CDCl₃): δ 161.3, 158.3, 148.6, 138.7, 133.2, 132.79 (q, *J* = 32.5 Hz), 127.0, 123.70 (q, *J* = 271.2 Hz), 113.5, 112.5, 112.07 – 112.05 (m), 110.29 – 110.17 (m), 101.3, 55.4, 53.3, 53.0, 44.4, 38.6, 35.8, 35.6, 29.9, 29.5, 26.8, 23.9, 18.7; EI-MS: *m*/*z* 509 (M⁺); EI-HRMS for [C₂₈H₂₉F₆NO]⁺: *m*/*z* Calcd. 509.2153, Found: 509.2147.

¹H NMR (500 MHz, CDCl₃): δ 7.21 (s, 1H), 7.13 (s, 1H), 7.03 (s, 2H), 6.94 (s, 2H), 5.57 (d, J = 6.3 Hz, 1H), 5.50 (t, J = 2.0 Hz, 1H), 4.25 (t, J = 5.5 Hz, 1H), 4.15 – 4.03 (m, 2H), 3.73 (t, J = 3.3 Hz, 2H), 2.53 (t, J = 9.1 Hz, 1H), 2.34 – 2.25 (m, 3H), 2.23 – 2.14 (m, 3H), 2.12 (s, 3H), 2.08 (s, 1H), 2.05 – 2.02 (m, 1H), 1.79 – 1.61 (m, 5H), 1.55 – 1.51 (m, 2H), 0.90 (s, 3H), 0.64 (s, 3H); ¹⁹F NMR (470 MHz, , CDCl₃): δ -63.21, -63.27; ¹³C NMR (125 MHz, , CDCl₃): δ 209.7, 149.0, 148.3, 147.5, 132.43 (q, J = 32.5 Hz), 132.40 (q, J = 32.5 Hz), 130.7, 123.74 (q, J = 271.2 Hz), 123.54 (q, J = 271.2 Hz), 119.8, 117.6, 114.31 – 114.29 (m), 112.16 – 112.14 (m), 111.75 – 111.63 (m), 110.23 – 110.12 (m), 63.9, 56.4, 54.9, 47.9, 44.2, 39.2, 38.3, 37.9, 36.4, 31.7, 31.54

(d, J = 3.7 Hz), 29.9, 24.7, 23.0, 21.8, 17.3, 13.5; EI-MS: m/z 766 (M⁺); EI-HRMS for $[C_{38}H_{38}F_{12}N_2O]^+: m/z$ Calcd. 766.2793, Found: 766.2787.

¹H NMR (400 MHz, CDCl₃): δ 7.56 (s, 0.25H), 7.52 (s, 0.86H), 7.45 (s, 1.60H), 7.27 (s, 0.39H), 2.66 (dd, *J* = 16.0, 14.4 Hz, 1H), 2.51 (dd, *J* = 16.0, 6.5 Hz, 1H), 2.04 (dt, J = 11.8, 3.3 Hz, 1H), 1.95 – 1.85 (m, 2H), 1.77 – 1.61 (m, 2H), 1. 51– 1.43 (m, 4H), 1.33 (s, 3H), 1.26 –1.03 (m, 3H, overlapped with hexane residue), 0.94 (s, 3H), 0.89 (s, 3H, overlapped with hexane residue), 0.85 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -62.83 (s, 1.28F), -62.88 (s, 4.72F); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 148.7, 131.8 (q, *J* = 33.0 Hz), 126.29 (q, *J* = 271.0 Hz), 123.33 – 123.30 (m), 117.04 – 116.97 (m), 89.0, 59.2 (minor), 58.9, 56.9, 42.4, 42.3, 39.7, 39.6 (minor), 38.9 (minor), 38.8, 36.4, 33.4, 33.2, 29.9 (minor), 29.8, 25.7 (minor), 21.81, 21.78 (minor), 21.1, 20.9, 20.8 (minor), 18.3, 18.2 (minor), 15.3; ESI-MS: *m/z* 462 [M+H]⁺; ESI-HRMS for [C₂₄H₃₀F₆NO]⁺ ([M+H]⁺): *m/z* Calcd. 462.2226, Found: 462.2210.

¹H NMR (500 MHz, CDCl₃): δ 7.45 (s, 1H), 7.21 (s, 2H), 5.81 (s, 1H), 2.57 – 2.44 (m, 2H), 2.43 (s, 1H), 2.35 – 2.22 (m, 2H), 2.12 – 1.98 (m, 4H), 1.97 (s, 1H), 1.69 – 1.64 (m, 1H), 1.48 (qd, J = 12.6, 4.6 Hz, 1H), 1.11 (s, 3H), 1.01 (d, J = 6.8 Hz, 3H), 0.94 (s, 3H); ¹⁹F NMR (470 MHz, CDCl₃): δ -63.02; ¹³C NMR (125 MHz, CDCl₃): δ 199.5, 169.6, 152.1, 132.40 (q, J = 32.5 Hz), 125.2, 123.40 (q, J = 271.0 Hz), 120.60 – 120.58 (m), 115.49 – 115.41 (m), 46.4, 42.2, 41.2, 40.9, 40.7, 39.9, 39.3, 32.6, 29.2, 17.0, 15.2, 15.1; ¹³C-dept-135 NMR (125 MHz, CDCl₃): δ 125.0 (CH), 120.46 – 120.44 (m), 115.33 – 115.30 (m), 42.0 (CH₂), 41.0 (CH₂), 40.8, 40.6, 39.8 (CH₂),

32.5 (CH₂), 29.0 (CH₂), 16.9, 15.05, 14.96; EI-MS: *m/z* 445 (M⁺); EI-HRMS for [C₂₃H₂₅F₆NO]⁺: *m/z* Calcd. 445.1835, Found: 445.1835.

Table S2 References for the characterization of known compounds

CF ₃	Ref. 14
5d	
CE.	Dof 11
	Kel. 11
5e	
J	
CEa	Ref 11
	IVI. 11
51	
51	
CEa	Ref 15
	Kel. 15
CI 5j	
CI 5j	Ref 11
CI 5j CF ₃	Ref. 11
CI 5j	Ref. 11
CI 5j	Ref. 11
CI 5j	Ref. 11
CI 5j CF_3 CF_3 CF_3 CF_3 CF_3 CF_3 CF_3	Ref. 11
$CI \qquad 5j$ $CF_3 \qquad CF_3 \qquad CF_3 \qquad Ga$	Ref. 11
CF_{3} CF_{3} CF_{3} CF_{3} CF_{3} CF_{3} CF_{3} CF_{3} CF_{3}	Ref. 11
CI CF_{3} CF_{3} CF_{3} CF_{3} CF_{2} CF_{2}	Ref. 11 Ref. 16
CF_{3} CF_{3} CF_{3} CF_{3} CF_{3} CF_{3} CF_{3}	Ref. 11 Ref. 16
$CI \qquad 5j$ $CF_3 \qquad CF_3 \qquad 6a$ $CF_3 \qquad CF_3 \qquad$	Ref. 11 Ref. 16
$CI \qquad 5j$ $CF_3 \qquad CF_3 \qquad 6a$ $CF_3 \qquad CF_3 \qquad$	Ref. 11 Ref. 16
$CI \qquad 5j$ $CF_3 \qquad 6a$ $CF_3 \qquad 6a$	Ref. 11 Ref. 16
$CI \qquad 5j$ $CF_3 \qquad 6a$ $CF_3 \qquad 6a$	Ref. 11 Ref. 16

CF ₃	Ref. 11
CF ₃ 6c	
Me CF ₃	Ref. 11
CF ₃ 6d	
CF ₃	Ref. 11
CF ₃ 6e	
CF ₃	Ref. 11
CF ₃ 6f	
F ₃ C CF ₃	Ref. 11
MeO ₂ C 6g	
CF ₃	Ref. 11
CF_3 6i	
,CF ₃	Ref. 11
$\begin{bmatrix} F_3C & N \\ H \\ H \end{bmatrix} \xrightarrow{CF_3} 6k$	
	Ref. 17
$\left \left(\right) \right\rangle - N_3$	
9a	

References

- 1 S. Mukherjee, B. Maji, A. Tlahuext-Aca and F. Glorius, *J. Am. Chem. Soc.*, 2016, **138**, 16200.
- 2 E. McNeill and J. Du Bois, *Chem. Sci.*, 2012, **3**, 1810.
- 3 L. Gómez, I. Garcia-Bosch, A. Company, J. Benet-Buchholz, A. Polo, X. Sala, X. Ribas and M. Costas, *Angew. Chem., Int. Ed.*, 2009, **48**, 5720.
- 4 S. Wiese, M. J. B. Aguila, E. Kogut and T. H. Warren, *Organometallics*, 2013, **32**, 2300.
- 5 L.-M. Jin, X. Xu, H. Lu, X. Cui, L. Wojtas and X. P. Zhang, *Angew. Chem., Int. Ed.*, 2013, **52**, 5309.
- S. W. Kwok, J. R. Fotsing, R. J. Fraser, V. O. Rodionov and V. V. Fokin, *Org. Lett.*, 2010, 12, 4217.
- K.-P. Shing, Y. Liu, B. Cao, X.-Y. Chang, T. You and C.-M. Che, *Angew. Chem., Int. Ed.*, 2018, 57, 11947.
- 8 (a) K. M. Kadish, B. C. Han, M. M. Franzen and C. Araullo-McAdams, *J. Am. Chem. Soc.*, 1990, **112**, 8364; (b) T. La, R. Richards and G. M. Miskelly, *Inorg. Chem.*, 1994, **33**, 3159.
- 9 Z. P. Demko and K. B. Sharpless, Org. Lett., 2001, 3, 4091.
- 10 P. F. Kuijpers, M. J. Tiekink, W. B. Breukelaar, D. L. J. Broere, N. P. van Leest, J. I. van der Vlugt, J. N. H. Reek and B. de Bruin, *Chem. Eur. J.*, 2017, 23, 7945.
- 11 Y.-D. Du, Z.-J. Xu, C.-Y. Zhou and C.-M. Che, Org. Lett., 2019, 21, 895.
- R. I. Storer, D. E. Carrera, Y. Ni and D. W. C. MacMillan, *J. Am. Chem. Soc.*, 2006, 128, 84.
- 13 P. Zardi, D. Intrieri, A. Caselli and E. Gallo, J. Organomet. Chem., 2012, 716, 269.
- 14 D. Intrieri, A. Caselli, F. Ragaini, S. Cenini and E. Gallo, J. Porphyrins Phthalocyanines,

2010, 14, 732.

- 15 L. T. Kaspar and L. Ackermann, Angew. Chem., Int. Ed., 2005, 44, 5972.
- 16 Y. Liu, G.-Q. Chen, C.-W. Tse, X. Guan, Z.-J. Xu, J.-S. Huang and C.-M. Che, *Chem. Asian J.*, 2015, **10**, 100.
- 17 S. Albrecht, M. Al-Lakkis-Wehbe, A. Orsini, A. Defoin, P. Pale, E. Salomon, C. Tarnus and J.-M. Weibel, *Bioorg. Med. Chem.*, 2011, **19**, 1434.
- 18 S. Rossi, A. Puglisi, M. Benaglia, D. M. Carminati, D. Intrieri and E. Gallo, *Catal. Sci. Technol.*, 2016, 6, 4700.

NMR spectra of substrates and products

7.81 7.81 7.81 7.79 7.79 7.79 7.78 7.78 7.78 7.73 7.37 7.35

CH,

S53

7e

— 0.00

7e

80 f1 (ppm)

1

- 28.79

0

-1

7g

4.4.02
2.2.14.01
2.2.56
2.2.56
2.2.57
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.2.56
2.

-136.09 -136.12 -136.15

 $\begin{array}{c} 7.89\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.53\\ 7.33\\ 7.53\\ 7.23\\ 7.23\\ 7.23\\ 7.25\\ 7.22\\$

— -63.32

- 63.53	- 51.98	 — 34.67	19.59 18.74 18.44

		1	

150	140	130	120	110	100	90	80 f1 (p	70 pm)	60	50	40	30	20	10	0
7.38 7.36 7.35 7.35 7.35 7.33	7.33 7.32 7.31 7.30	1 7.29 7.15	6.94 6.06 6.06 6.06	6.05 6.04 6.02	6.02 6.00 5.99	5.33 5.33	- 5.32 - 5.32 - 5.31	- 5.29 - 5.29 - 5.28	4.96 4.96 4.95	- 4.46 - 4.45		1.56 1.26		0.08 √ 0.00	00.0- \

7.27 7.23 7.19 7.12 6.97 ∑ 6.16 ∑ 6.13 4.3.3 4.3.3 4.3.3 4.3.3 4.4.32 4.3.3 4.4.32 4.4.32 4.4.32 4.4.32 4.4.32 4.4.32 4.4.32 4.4.32 4.4.42 4.4.42 4.4.42 4.4.42 4.4.42 4.4.42 4.4.42 4.4.42 4.4.42 4.4.42 4.4.44</li

7.7.26 6.6.91 6.6.91 6.6.04 6.6.04 6.6.04 6.6.04 6.6.04 6.6.04 6.6.04 4.4.48 6.6.04 4.4.48 6.6.04 7.108 6.6.03 3.3.47 1.1.88 7.3.3.47 1.1.88 7.3.3.47 1.1.88 7.3.3.47 1.1.88 7.3.3.47 1.1.88 1.1.88 1.1.88 1.1.88 1.1.88 1.1.88 1.1.88 1.1.88 1.1.88 1.1.1.88 1.1.1.88 1.1.1.88 1.1.1.28 1

~ 7.26 ~ 7.11 ~ 7.00

8.0

$$\begin{array}{c} -4.00\\ 3.34\\ 3.34\\ 3.334\\ 3.334\\ 3.334\\ 3.334\\ 3.334\\ 3.334\\ 3.334\\ 3.334\\ 3.334\\ 1.57\\ 1.56\\ 1.57\\ 1.56\\ 1.56\\ 1.56\\ 1.56\\ 1.56\\ 1.56\\ 1.56\\ 0.00\\ 0$$

				the second secon						
FO	F O	F C	FO	~~~	05	~~~	74	74	77	00
- 201	- 1 1		-74	-n/	-00	-08	- / 1	-/4	-//	-80
00	00	00	00	02	00	00				00
					± 1 (nnm)					

8 9 8 9 8 10 8

8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.05 <li

C

8.03 8.01 8.01 8.01 7.55 7.55 7.55 7.55 8.01 7.55

7.7.7.28 6.87.7.7.28 6.87.7.7.28 6.89.7.7.7.28 6.89.7.7.7.20 6.87.7.7.20 6.87.7.7.20 6.87.7.7.20 6.87.7.7.20 6.87.7.7.20 6.87.7.7.20 6.87.7.7.20 6.87.7.7.20 6.87.7.7.20 6.87.7.7.20 7.87.7

200	180	160	140	120	100	80	60	40	20	0			
f1 (ppm)													
45 27 21 81	52 53 54	51 48 49 50 50 50 50 50 50	844 745 35 35 45 45 45 85 85 85 85 85 85 85 85 85 85 85 85 85	22 28 28 28 28 28 28 28 28 28 28 28 28 2	5 C C C C C C C C C C C C C C C C C C C	05 05 05 05 05 05 05 05 05 05 05 05 05 0	3 3 4 4 8 8	000 000 000 000 000 000 000 000 000 00	4 9 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	44 11 002 002 002 000			
アブブち	0 0 0 0 0 0 0	0 0 0 0 0 0 0	מ מ מ מ מ מ	10 10 10 10 10 10 10 10 10 10 10 10 10 1	ממממממ	י ט ט ט ט ט ט	1 N N N N N 1	א א א א ל ל					
			1 1 1 1 1 1 1					<11-1-					

1.1.1.1.																
60	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
								f1 (p	pm)							