Supporting Information

A step-economic and one-pot access to chiral \mathbf{C}^{α}-tetrasubstituted α-amino acid derivatives via a bicyclic imidazole-catalyzed direct enantioselective C-acylation
Mo Wang, ${ }^{1,2}$ Muxing Zhou, ${ }^{2}$ Lu Zhang, ${ }^{2}$ Zhenfeng Zhang, ${ }^{2 *}$ and Wanbin Zhang ${ }^{1,2^{*}}$
${ }^{1}$ Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
${ }^{2}$ School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
*Email: wanbin@sjtu.edu.cn zhenfeng@sjtu.edu.cn

Table of Contents

1. General Details S2
2. Preparation of Catalysts S3
3. Preparation of Substrates S4
4. Optimization of Conditions S8
5. Asymmetric Reactions S9
6. Effect of N -Acylated Catalyst S27
7. Synthetic Applications S28
8. Reference S36
9. NMR Spectra S37
10. HPLC Charts S81

1. General Details

All air- and moisture-sensitive manipulations were carried out under a nitrogen atmosphere. The solvents used in the reactions were distilled under nitrogen after dehydration. All other chemicals and solvents were purchased from commercial company and used as received. The NMR spectra were recorded on a Bruker Avance III HD ($400 \mathrm{MHz},{ }^{1} \mathrm{H} ; 100 \mathrm{MHz},{ }^{13} \mathrm{C}$) spectrometer with chemical shifts reported in ppm relative to the residual deuterated solvents or the internal standard tetramethylsilane. Mass spectrometry analysis was carried out using a Waters Micromass Q-TOF Premier Mass Spectrometer at the Instrumental Analysis Center of Shanghai Jiao Tong University. Melting points were measured with SGW X-4 micro melting point apparatus. Optical rotations were measured on a Rudolph Research Analytical Autopol VI automatic polarimeter using a 50 mm path-length cell at 589 nm. Chiral HPLC analyses were performed using a Shimadzu LC-10Avp system using isopropanol-hexane mobile phase and UV detection.

2. Preparation of Catalysts

(R)-7-Benzyloxy-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole ((R)-OBn-DPI) ${ }^{1-4}$

A solution of racemic 6,7-dihydro-5H-pyrrolo[1,2-a]imidazol-7-ol ($620.7 \mathrm{mg}, 5$ mmol ,), isopropenyl acetate ($0.65 \mathrm{~mL}, 6 \mathrm{mmol}$) and NOV435 (620.7 mg) in 3.0 mL acetonitrile was stirred gently at $35^{\circ} \mathrm{C}$ for 3 h in a 10 mL two-necked flask. The reaction mixture was filtrated and MeCN was removed. The residue was purified by column chromatography ($\mathrm{EtOAc} / \mathrm{MeOH}=30 / 1, \mathrm{Rf}=0.38$) to give (R)-OAc-DPI ($340.7 \mathrm{mg}, 41 \%$ yield) as a colorless oil. HPLC analysis: 99.9% ee [Daicel CHIRALPAK OJ column; solvent system: 10% isopropanol/90\% hexane; $0.5 \mathrm{~mL} / \mathrm{min}$; retention times: 39.0 min (major), 41.6 min (minor)].

A solution of (R)-OAc-DPI ($830.9 \mathrm{mg}, 5 \mathrm{mmol}$) and $\mathrm{NaOH}(300.0 \mathrm{mg}, 7.5 \mathrm{mmol}$) in 30 mL MeOH was stirred gently at $25^{\circ} \mathrm{C}$ for 3 h in a 100 mL two-necked flask. The reaction mixture was filtrated and MeOH was removed. The residue was purified by column chromatography ($\mathrm{EtOAc} / \mathrm{MeOH}=4 / 1, \mathrm{Rf}=0.30$) to give (R)-OH-DPI ($505.0 \mathrm{mg}, 81 \%$ yield) as a white solid. HPLC analysis: 99.9% ee [Daicel CHIRALPAK OJ column; solvent system: 10% isopropanol $/ 90 \%$ hexane; $0.5 \mathrm{~mL} / \mathrm{min}$; retention times: 39.0 min (major), 41.6 min (minor)].

In a dry two-necked flask, a solution of (R)-OH-DPI ($100.0 \mathrm{mg}, 0.8 \mathrm{mmol}$) in THF $(15 \mathrm{~mL})$ was treated with $\mathrm{NaH}(48.0 \mathrm{mg}, 1.2 \mathrm{mmol})$ for 2 h at $0^{\circ} \mathrm{C}$, then $\mathrm{BnBr}(0.15$ $\mathrm{mL}, 1.3 \mathrm{mmol}$) was added dropwise and stirred for 16 h at $25^{\circ} \mathrm{C}$. The solvent was acidized with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ then basified with 2 M NaOH and extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The crude product was purified by flash chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{MeOH}=20 / 1, \mathrm{Rf}=0.38)$ to give 125.3 mg of (R)-OBn-DPI as yellow oil (73% yield). HPLC analysis: 99.9% ee [Daicel CHIRALPAK IE column; solvent system: 30% isopropanol $/ 70 \%$ hexane; $0.5 \mathrm{~mL} / \mathrm{min}$; retention times: 18.7 min (major)]. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{1 4}}=55.0(c 0.13, \mathbf{M e O H}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.41-7.27(\mathrm{~m}$, $5 \mathrm{H}), 7.16(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.81$ (dd, $J=67.6 \mathrm{~Hz}, 11.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.21-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.89(\mathrm{~m}, 1 \mathrm{H})$, 2.92-2.82 (m, 1 H$), 2.67-2.59(\mathrm{~m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 153.5,137.9$, 133.8, 128.4, 128.1, 127.7, 115.0, 71.1, 70.8, 43.1, 35.3. HRMS (ESI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$215.1179, found 215.1184.

3. Preparation of Substrates

1

General procedure A: ${ }^{5}$

(DL)-Alanine methyl ester hydrochloride (10 mmol) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) in a flask and $\mathrm{Et}_{3} \mathrm{~N}(25 \mathrm{mmol})$ were added. The resulting slurry was cooled to $0{ }^{\circ} \mathrm{C}$, and the corresponding benzoyl chloride (10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added by cannula over 15 minutes. After 75 minutes, the ice bath was removed, and the mixture was stirred at room temperature for 6 hours. The mixture was then washed with $1 \mathrm{M} \mathrm{HCI}(30 \mathrm{~mL} \times 2)$, saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL} \times 2)$, and saturated $\mathrm{NaCl}(30 \mathrm{~mL})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was dried over MgSO_{4}, and the solvent was removed by rotary evaporation, providing the N-acyl-(DL)-alanine methyl ester as a white solid. This solid was dissolved in methanol (30 mL), and 2 M aqueous NaOH $(6 \mathrm{~mL})$ was added. The resulting mixture was stirred for 20 minutes, and then the methanol was removed by rotary evaporation. Water was added until the aqueous solution was homogeneous, and then the aqueous solution was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($20 \mathrm{~mL} \times 2$). The aqueous layer was made acidic with $1 \mathrm{M} \mathrm{HC1}$, giving a white precipitate, which was filtered, washed with several portions of water, and dried with a flow of air through a filter.

General procedure B: ${ }^{6}$

The corresponding racemic amino acid (10 mmol) and $\mathrm{NaOH}(40 \mathrm{mmol})$ were dissolved in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\left(75 / 25,50 \mathrm{~mL}\right.$). After cooling to $0{ }^{\circ} \mathrm{C}$, benzoyl chloride (11 mmol) was added dropwise at this temperature. After the addition was complete, the mixture was stirred for additional 2 h at $0^{\circ} \mathrm{C}$. Subsequently, the mixture was allowed to warm to room temperature and was stirred for one additional hour. All volatiles were then removed under reduced pressure before conc. HCl was added to cause
precipitation. The mixture was filtered and the filter cake was washed with ice-cold diethyl ether and dried with a flow of air through a filter.

Substrates $\mathbf{1 a - 1 g}$ were prepared via general procedure A, while substrates $\mathbf{1 i} \mathbf{- 1 m}$ were prepared via general procedure B according to the literature's methods. Substrates $\mathbf{1 b}, \mathbf{1 h}, \mathbf{1 l}$ and $\mathbf{1 n}$ were commercially available. The following substrates $\mathbf{1 a - 1 m}$ are known compounds, and their characterization data were in agreement with reported values. ${ }^{5-9}$

(4-Methoxybenzoyl)alanine (1a) ${ }^{5}$
${ }^{1} \mathbf{H}$ NMR (DMSO, 400 MHz): $\delta 12.46$ (br s, 1H), $8.49(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.43-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

(2-Methoxybenzoyl)alanine (1c) ${ }^{7}$
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right): \delta 10.67(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=$ $7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.11-6.90(\mathrm{~m}, 2 \mathrm{H}), 4.87-4.78(\mathrm{~m}, 1 \mathrm{H}), 3.95$ ($\mathrm{s}, 3 \mathrm{H}$), $1.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

1d
(4-Methylbenzoyl)alanine (1d) ${ }^{8}$
${ }^{1} \mathbf{H}$ NMR (DMSO, 400 MHz$): \delta 8.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.39-4.36(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

(4-(tert-Butyl)benzoyl)alanine (1e) ${ }^{8}$
${ }^{1} \mathbf{H}$ NMR (DMSO, 400 MHz): $\delta 12.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.46-4.35(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, 1.30 ($\mathrm{s}, 9 \mathrm{H}$).

(4-Fluorobenzoyl)alanine (1f) ${ }^{8}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right): \delta 7.84-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.77(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H})$.

1 g
(4-Chlorobenzoyl)alanine (1g) ${ }^{8}$
${ }^{1} \mathbf{H}$ NMR (DMSO, 400 MHz): $\delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.39-4.33(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

2-Benzamidobutanoic acid (1i) ${ }^{9}$
${ }^{1} \mathbf{H}$ NMR (DMSO, 400 MHz): $\delta 12.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.43(\mathrm{~m}, 3 \mathrm{H}), 4.33-4.25(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.71(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

2-Benzamidopentanoic acid (1j) ${ }^{9}$
${ }^{1} \mathbf{H}$ NMR (DMSO, 400 MHz): $\delta 12.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.42(\mathrm{~m}, 3 \mathrm{H}), 4.42-4.33(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.49-$ $1.30(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

2-Benzamidohexanoic acid (1k) ${ }^{9}$
${ }^{1} \mathbf{H}$ NMR (DMSO, 400 MHz): $\delta 12.56$ (br s, 1 H), 8.57 (d, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.93-$ $7.85(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.43(\mathrm{~m}, 3 \mathrm{H}), 4.39-4.31(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.46-$ $1.24(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

Benzoylphenylalanine (1m) ${ }^{6}$

${ }^{1}$ H NMR (DMSO, 400 MHz$): \delta 8.69(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.56-$ $7.39(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.10(\mathrm{~m}, 5 \mathrm{H}), 4.65-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.03(\mathrm{~m}, 2 \mathrm{H})$.
The other analytical data are in accordance with the literature.

4. Optimization of Conditions

Table S1. The Effect of the Usage of Each Components

a) 1a (0.1 M), OBn-DPI ($20 \mathrm{~mol} \%$), toluene (2 mL), $-55^{\circ} \mathrm{C}, 72 \mathrm{~h}$, unless otherwise noted. b) Yields were calculated from ${ }^{1} \mathrm{H}$ NMR spectra. c) The ee values were calculated from HPLC spectra. d) OBn-DPI ($10 \mathrm{~mol} \%$).

The effect of reagent equivalents was investigated (Table S1). Changing the usage of benzyl chloroformate has almost no effect on results (entries 1-4). Only when the usage was increased to 4.0 equivalents, the ee value of product was slightly decreased to 98% (entry 4). Decreasing the usage of DIPEA to 3.5 equivalents will slightly reduce the yield (entry 5), while increasing the usage to 4.5 equivalents decreased the ee value to 98% (entry 6). Decreasing the loading of catalyst to $10 \mathrm{~mol} \%$ dramatically reduced the yield, though the enantioselectivity was remained at 99% ee (entry 7).

5. Asymmetric Reactions

Different Nucleophiles:

The steps to 1a': Under a N_{2} atmosphere, the substrate $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 44.7 \mathrm{mg})$, the catalyst OBn-DPI ($0.04 \mathrm{mmol}, 8.6 \mathrm{mg}$) and DIPEA ($0.8 \mathrm{mmol}, 132.2 \mu \mathrm{~L}$) were dissolved in anhydrous toluene (2 mL) and cooled to $-55^{\circ} \mathrm{C}$ in a dry two-necked flask. ClCOOallyl ($0.6 \mathrm{mmol}, 84.5 \mu \mathrm{~L}$) was then added and the vial was sealed with a septum. The reaction mixture was stirred at $-55^{\circ} \mathrm{C}$ for 72 h and then the temperature was gradually raised to $20^{\circ} \mathrm{C}$.

The step to $\mathbf{2 a} \sim \mathbf{2 e}$: Following the steps to $\mathbf{1 a}{ }^{\prime}$, the corresponding amines (0.3 mmol) was added to the vial and the reaction mixture was was stirred at $20^{\circ} \mathrm{C}$ for 36 h .

The step to $\mathbf{2 f}$: Following the steps to $\mathbf{1 a}$ ', 1 mL methanol was added to the vial and the reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 36 h .

The step to $\mathbf{2 g} \sim 2 r$: Following the steps to $1 \mathbf{1 a}^{\prime}$, the corresponding amino acid methyl ester hydrochloride (0.3 mmol) and DIPEA ($0.3 \mathrm{mmol}, 49.6 \mu \mathrm{~L}$) were dissolved in anhydrous toluene (1 mL) in another dry flask and stirred for 10 min . Then the mixture was transferred into the former reaction flask and the reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 36 h .

The reaction mixture was quenched with $0.2 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ and extracted with DCM ($5 \mathrm{~mL} \times 3$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the residue was purified by column chromatography (petroleum ether/ethyl acetate) to give the corresponding product 2 .

Benzyl (R)-3-(benzylamino)-2-(4-methoxybenzamido)-2-methyl-3-oxopropanoate (2a)

Purification by flash chromatography (petroleum ether/ethyl acetate $=3 / 1$) afforded the product as a white solid ($66.9 \mathrm{mg}, 75 \%$ yield). M.p.: $130.6-131.6^{\circ} \mathrm{C}$. HPLC analysis: 99% ee [Daicel CHIRALPAK OD-H column; solvent system: 20\% isopropanol $/ 80 \%$ hexane; $0.5 \mathrm{~mL} / \mathrm{min}$; retention times: 28.8 min (minor), 33.2 min (major)]. $[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=4.9\left(c 0.55, \mathbf{C H}_{2} \mathbf{C l}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.82-7.77$ $(\mathrm{m}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 2 \mathrm{H})$, $6.55(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{dd}, J=14.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=$
$14.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 170.7$, $167.9,165.8,162.5,137.1,135.0,129.0,128.8,128.5,128.3,128.1,127.7,127.4$, 125.8, 113.7, 68.1, 63.1, 55.4, 44.1, 22.3. IR (thin film): v 3715, 3647, 3482, 2923, 2848, 1743, 1646, 1486, 1384, 1258, 1179, 1118, 1029, 845, $697 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 447.1914$, found 447.1913.

2b

Benzyl (R)-2-(4-methoxybenzamido)-2-methyl-3-oxo-3-(propylamino)propanoate (2b)

Purification by flash chromatography (petroleum ether/ethyl acetate $=2 / 1$) afforded the product as a colorless oil ($62.0 \mathrm{mg}, 78 \%$ yield). HPLC analysis: 99% ee [Daicel CHIRALPAK OD-H column; solvent system: 35% isopropanol/65\% hexane; 0.3 $\mathrm{mL} / \mathrm{min}$; retention times: 19.0 min (major), $21.2 \mathrm{~min}($ minor $)] .[\boldsymbol{\alpha}]^{25}{ }_{\mathbf{D}}=12.8(c 0.55$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.83-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~s}, 5 \mathrm{H}), 6.95-$ $6.90(\mathrm{~m}, 2 \mathrm{H}), 6.17(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.10(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}$): $\delta 170.8,167.8,165.7,162.4,135.1$, 129.0, 128.4, 128.3, 128.2, 126.0, 113.7, 68.0, 63.0, 55.4, 41.8, 22.4, 22.4, 11.1. IR (thin film): $v 3736,3481,3420,2963,2923,2850,1740,1646,1607,1536,1483$, 1384, 1257, 1178, 1118, 1030, 845, 769, $602 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$399.1914, found 399.1914.

Benzyl (R)-3-(isopropylamino)-2-(4-methoxybenzamido)-2-methyl-3oxopropanoate (2c)

Purification by flash chromatography (petroleum ether/ethyl acetate $=3 / 1$) afforded the product as a light yellow oil ($51.5 \mathrm{mg}, 65 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK OD-H column; solvent system: 20\% isopropanol/80\% hexane; $0.1 \mathrm{~mL} / \mathrm{min}$; retention times: 92.7 min (minor), 99.6 min (major) $]$. $[\alpha]^{\mathbf{2 5}} \mathbf{D}=-10.4(c$ $0.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{\mathbf{3}}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.84-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.28(\mathrm{~m}$, $5 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}$,

3H), $0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 170.8,167.0,165.7$, $162.5,135.3,129.0,128.5,128.4,128.4,126.0,113.7,67.9,63.0,55.4,42.5,22.4$, 22.3, 22.0. IR (thin film): v 3714, 3648, 3481, 2920, 2854, 1748, 1647, 1558, 1384, 1261, $596 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$399.1914, found 399.1914.

2d

Benzyl (R)-2-(4-methoxybenzamido)-2-methyl-3-oxo-3-(phenylamino)propanoate (2d)

Purification by flash chromatography (petroleum ether/ethyl acetate $=3 / 1$) afforded the product as a yellow oil ($59.4 \mathrm{mg}, 69 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK OD-H column; solvent system: 10% isopropanol/90\% hexane; 0.5 $\mathrm{mL} / \mathrm{min}$; retention times: 44.8 min (minor), 49.4 min (major)]. $[\boldsymbol{\alpha}]^{25}{ }_{\mathbf{D}}=-2.0(c 0.40$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~s}$, $1 \mathrm{H}), 7.44-7.22(\mathrm{~m}, 9 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.26$ (s, 2H), 3.86 (s, 3H), $2.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}$): $\delta 170.8,166.3,166.1,162.7$, 137.0, 134.9, 129.1, $129.0128 .5,128.4,128.1,125.6,124.9,120.2,113.8,68.3,63.9$, 55.4, 22.2. IR (thin film): v 3363, 3063, 3034, 2961, 2921, 2851, 1738, 1689, 1635, $1605,1543,1500,1444,1380,1316,1259,1178,1123,1029,845,756,696,601 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 433.1758$, found 433.1760 .

2e
Benzyl (R)-3-((2-hydroxyethyl)amino)-2-(4-methoxybenzamido)-2-methyl-3oxopropanoate (2e)

Purification by flash chromatography (petroleum ether/ethyl acetate $=1 / 2$) afforded the product as a colorless oil ($61.5 \mathrm{mg}, 77 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK OD-H column; solvent system: 20% isopropanol/80\% hexane; 0.7 $\mathrm{mL} / \mathrm{min}$; retention times: 19.0 min (major), 25.0 min (minor)]. $[\boldsymbol{\alpha}]^{25}{ }_{\mathbf{D}}=20.7$ (c 0.45, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right): \delta 7.83-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.41-$ $7.30(\mathrm{~m}, 5 \mathrm{H}), 6.98-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.19(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.46-3.27(\mathrm{~m}, 2 \mathrm{H})$,
1.89 (s, 3H). ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 170.8,168.6,166.2,162.7,135.1$, 129.1, 128.5, 128.5, 128.3, 125.6, 113.8, 68.1, 63.2, 61.2, 55.5, 42.7, 21.9. IR (thin film): v 3481, 2960, 2923, 2851, 1744, 1643, 1607, 1537, 1485, 1384, 1259, 1177, 1121, 1029, $800 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 401.1707$, found 401.1707.

$2 f$

1-Benzyl 3-methyl (R)-2-(4-methoxybenzamido)-2-methylmalonate (2f)

Purification by flash chromatography (petroleum ether/ethyl acetate $=2 / 1$) afforded the product as a colorless oil ($53.6 \mathrm{mg}, 72 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK OD-H column; solvent system: 20% isopropanol $/ 80 \%$ hexane; 0.3 $\mathrm{mL} / \mathrm{min}$; retention times: 31.9 min (major), $36.9 \mathrm{~min}($ minor $)] .[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=18.1$ (c 0.30, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.83-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.37-$ $7.28(\mathrm{~m}, 5 \mathrm{H}), 6.98-6.89(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 100 \mathbf{M H z}\right): \delta 169.3$, 168.7, 165.5, 162.5, 135.0, 129.0, 128.5, 128.4, 128.0, 125.6, 113.8, 68.0, 63.2, 55.4, 53.4, 21.1. IR (thin film): v 3486, 3419, 2918, 2847, 1743, 1658, 1488, 1384, 1276, 1259, 1221, 1126, 1113, 1029, 843, 765, $750 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+} 372.1442$, found 372.1443 .

2 g
Benzyl (R)-3-((2-methoxy-2-oxoethyl)amino)-2-(4-methoxybenzamido)-2-methyl-3-oxopropanoate ($\mathbf{2 g}$)

Purification by flash chromatography (petroleum ether/ethyl acetate $=1 / 1$) afforded the product as a colorless oil ($67.1 \mathrm{mg}, 78 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK OD-H column; solvent system: 20% isopropanol/80\% hexane; 0.5 $\mathrm{mL} / \mathrm{min}$; retention times: 31.9 min (minor), 39.1 min (major) $] .[\boldsymbol{\alpha}]^{25}{ }_{\mathbf{D}}=8.4(c 0.30$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, 400 \mathbf{M H z}$): $\delta 7.82-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.32-$ $7.27(\mathrm{~m}, 5 \mathrm{H}), 6.95-6.86(\mathrm{~m}, 3 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{dd}, J=18.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (dd, $J=18.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, $100 \mathrm{MHz}): \delta 170.4,169.3,168.4,165.9,162.5,135.0,129.0,128.4,128.3,128.1$,

2h
Benzyl (R)-3-((1-methoxy-2-methyl-1-oxopropan-2-yl)amino)-2-(4-methoxybenzamido)-2-methyl-3-oxopropanoate (2h)

Purification by flash chromatography (petroleum ether/ethyl acetate $=2 / 1$) afforded the product as a colorless oil ($68.5 \mathrm{mg}, 75 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK OD-H column; solvent system: 20% isopropanol $/ 80 \%$ hexane; 0.5 $\mathrm{mL} / \mathrm{min}$; retention times: $21.7 \mathrm{~min}($ minor $), 25.2 \mathrm{~min}($ major $)] .[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=13.3(c 0.25$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.82-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.36-$ $7.27(\mathrm{~m}, 5 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 174.1,170.4,167.1,165.6,162.4,135.2,129.0,128.5$, 128.4, 128.3, 125.9, 113.7, 68.0, 63.0, 57.0, 55.4, 52.8, 24.5, 24.1, 22.2. IR (thin film): v 3481, 2920, 2847, 1743, 1639, 1484, 1385, 1260, 1123, 1030, 704, 625, 601 cm^{-1}. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} 457.1969$, found 457.1972.

$2 i$
Methyl (R)-1-(3-(benzyloxy)-2-(4-methoxybenzamido)-2-methyl-3-oxopropanamido)cyclopropane-1-carboxylate (2i)

Purification by flash chromatography (petroleum ether/ethyl acetate $=2 / 1$) afforded the product as a colorless oil ($60.7 \mathrm{mg}, 67 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK OD-H column; solvent system: 20% isopropanol/ 80% hexane; 0.5 $\mathrm{mL} / \mathrm{min}$; retention times: 23.5 min (minor), 28.6 min (major)]. $[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=8.8(c 0.30$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{M H z}\right): \delta 7.83-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}$, $5 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 1 \mathrm{H})$, $1.06-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.91-0.85(\mathrm{~m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 172.0$,

2j

Benzyl (R)-3-((3-methoxy-3-oxopropyl)amino)-2-(4-methoxybenzamido)-2-methyl-3-oxopropanoate (2j)

Purification by flash chromatography (petroleum ether/ethyl acetate $=1 / 1$) afforded the product as a colorless oil ($71.9 \mathrm{mg}, 81 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK OD-H column; solvent system: 10% isopropanol/90\% hexane; 0.5 $\mathrm{mL} / \mathrm{min}$; retention times: 32.4 min (major), $45.9 \mathrm{~min}($ minor $)] .[\boldsymbol{\alpha}]^{25} \mathbf{D}=-0.8(c 0.25$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right): \delta 7.83-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}$, $5 \mathrm{H}), 6.98-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.39(\mathrm{~m}, 2 \mathrm{H})$, $1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 172.3,170.4,167.9,165.7,162.5$, 135.1, 129.0, 128.4, 128.3, 128.1, 125.9, 113.7, 68.0, 63.1, 55.4, 51.8, 35.6, 33.2, 22.0. IR (thin film): v 3482, 3419, 2918, 2850, 1738, 1640, 1533, 1488, 1384, 1258, 1177, 1121, 1029, 845, 700, $588 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}$ 443.1813, found 443.1814.

2k
Methyl (R)-4-(3-(benzyloxy)-2-(4-methoxybenzamido)-2-methyl-3oxopropanamido)butanoate (2 k)

Purification by flash chromatography (petroleum ether/ethyl acetate $=1 / 1$) afforded the product as a colorless oil ($72.7 \mathrm{mg}, 80 \%$ yield). HPLC analysis: 97% ee [Daicel CHIRALPAK OD-H column; solvent system: 10% isopropanol/90\% hexane; 0.5 $\mathrm{mL} / \mathrm{min}$; retention times: 33.9 min (major), 39.8 min (minor) $] .[\boldsymbol{\alpha}]^{25}{ }_{\mathbf{D}}=7.8(c 0.35$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.82-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}$, $5 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}$,
$J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 173.4,170.6$, 168.1, 165.8, 162.5, 135.1, 129.0, 128.4, 128.3, 128.2, 125.9, 113.7, 68.0, 63.1, 55.4, 51.7, 39.5, 31.1, 24.2, 22.2. IR (thin film): v 3707, 3646, 3482, 2922, 2850, 1738, 1647, 1558, 1489, 1384, 1259, 1175, 1119, 1023, 851, 806, $602 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} 457.1969$, found 457.1970.

21
Benzyl (R)-3-(((S)-1-methoxy-1-oxopropan-2-yl)amino)-2-
(4-methoxybenzamido)-2-methyl-3-oxopropanoate (2l)
1 H NMR analysis of the crude mixture showed a dr of >99:1. Purification by flash chromatography (petroleum ether/ethyl acetate $=2 / 1$) afforded the product as a colorless oil ($69.8 \mathrm{mg}, 79 \%$ yield). $[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=3.2\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, 400 MHz): $\delta 7.82-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.95-6.90(\mathrm{~m}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.55-4.45(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 100 \mathrm{MHz}\right): \delta 172.3,170.3,167.6,165.9,162.5,135.1,129.0$, 128.4, 128.2, 128.1, 125.9, 113.7, 68.1, 63.2, 55.4, 52.5, 48.7, 22.1, 17.9. IR (thin film): v 3481, 3416, 2953, 2921, 2847, 1743, 1639, 1529, 1484, 1384, 1258, 1210, 1173, 1123, 603, $570 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} 443.1813$, found 443.1815.

2m
Benzyl (R)-3-(((R)-1-methoxy-1-oxopropan-2-yl)amino)-2-
(4-methoxybenzamido)-2-methyl-3-oxopropanoate (2 m)
1 H NMR analysis of the crude mixture showed a dr of $>99: 1$. Purification by flash chromatography (petroleum ether/ethyl acetate $=2 / 1$) afforded the product as a colorless oil ($71.0 \mathrm{mg}, 80 \%$ yield). $[\alpha]^{\mathbf{2 5}}{ }_{\mathbf{D}}=6.0\left(c 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, $400 \mathrm{MHz}): \delta 7.82-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.96-6.90(\mathrm{~m}$, $2 \mathrm{H}), 6.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.53-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 172.4,170.3,167.6,165.7,162.5,135.1,129.0$, 128.8, 128.5, 128.4, 125.8, 113.7, 68.0, 63.0, 55.4, 52.6, 48.6, 22.1, 17.6. IR (thin film): $v 3382,3065,3034,2958,2922,2851,1747,1647,1608,1526,1488,1455$, 1380, 1299, 1260, 1215, 1178, 1125, 1029, 846, 800, 770, 751, 699, $601 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} 443.1813$, found 443.1813.

2n
Methyl (S)-2-((R)-3-(benzyloxy)-2-(4-methoxybenzamido)-2-methyl-3oxopropanamido)butanoate (2n)

1 H NMR analysis of the crude mixture showed a dr of $>99: 1$. Purification by flash chromatography (petroleum ether/ethyl acetate $=2 / 1$) afforded the product as a colorless oil ($71.0 \mathrm{mg}, 78 \%$ yield). $[\alpha]^{\mathbf{2 5}}{ }_{\mathbf{D}}=2.8\left(c 0.50, \mathrm{CH}_{2} \mathbf{C l}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, 400 MHz): $\delta 7.82-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.95-6.90(\mathrm{~m}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{td}, J=7.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 171.7,170.4,167.9,165.9,162.5,135.1$, $129.0,128.5,128.3,128.1,125.9,113.8,68.2,63.4,55.4,53.9,52.5,25.3,22.3,9.4$. IR (thin film): v 3363, 3065, 3034, 2961, 2923, 2851, 1744, 1659, 1647, 1607, 1577, 1532, 1500, 1488, 1381, 1299, 1259, 1211, 1179, 1125, 1029, 846, 802, 770, 699, 596 cm^{-1}. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} 457.1969$, found 457.1971.

20
Methyl (S)-2-((R)-3-(benzyloxy)-2-(4-methoxybenzamido)-2-methyl-3oxopropanamido)pentanoate (20)

1 H NMR analysis of the crude mixture showed a dr of $>99: 1$. Purification by flash chromatography (petroleum ether/ethyl acetate $=5 / 2$) afforded the product as a colorless oil ($69.5 \mathrm{mg}, 74 \%$ yield). $[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=4.0\left(c 0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, 400 MHz): $\delta 7.82-7.75$ (m, 2H), 7.63 (s, 1H), $7.33-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.95-6.90(\mathrm{~m}$, $2 \mathrm{H}), 6.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$,
4.53 (td, $J=7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.77(\mathrm{~m}$, $1 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 171.9,170.3,167.9,165.9,162.5,135.0,129.0,128.4,128.2$, 128.1, 125.9, 113.7, 68.2, 63.3, 55.4, 52.7, 52.4, 34.1, 22.2, 18.5, 13.6. IR (thin film): v 3408, 3005, 2959, 2921, 2850, 1744, 1659, 1647, 1607, 1532, 1488, 1471, 1379, 1301, 1259, 1209, 1181, 1114, 1030, 801, 769, 739, $699 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} 471.2126$, found 471.2123.

2p
Methyl ((R)-3-(benzyloxy)-2-(4-methoxybenzamido)-2-methyl-3-oxopropanoyl)-L-valinate (2p)

1 H NMR analysis of the crude mixture showed a dr of $>99: 1$. Purification by flash chromatography (petroleum ether/ethyl acetate $=2 / 1$) afforded the product as a colorless oil ($74.0 \mathrm{mg}, 79 \%$ yield). $\left[\boldsymbol{\alpha} \boldsymbol{\mu}^{\mathbf{2 5}}{ }_{\mathbf{D}}=4.6\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.\right.$, 400 MHz): $\delta 7.84-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.97-6.87(\mathrm{~m}$, $3 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{dd}, J=8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.24-$ $2.13(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 171.3,170.4,168.1,166.0,162.5,135.0,129.0,128.4$, 128.2, 128.1, 125.9, 113.7, 68.2, 63.4, 57.7, 55.4, 52.2, 31.2, 22.3, 18.9, 17.5. IR (thin film): $v 3345,3064,3034,2963,2935,2875,2850,1743,1682,1607,1532$, $1504,1373,1302,1259,1210,1180,1124,1029,846,770,737,699,595 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} 471.2126$, found 471.2137.

2q
Methyl ((R)-3-(benzyloxy)-2-(4-methoxybenzamido)-2-methyl-3-oxopropanoyl)-L-leucinate (2q)

1 H NMR analysis of the crude mixture showed a dr of $>99: 1$. Purification by flash chromatography (petroleum ether/ethyl acetate $=3 / 1$) afforded the product as a colorless oil ($77.8 \mathrm{mg}, 80 \%$ yield). $[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=0.9\left(c 0.45, \mathrm{CH}_{2} \mathbf{C l}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, $400 \mathrm{MHz}): \delta 7.82-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.96-6.88(\mathrm{~m}$, $2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$,
4.57 (td, $J=8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.50(\mathrm{~m}$, $3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 172.3,170.4,168.0$, 166.0, 162.5, 135.1, 129.0, 128.5, 128.3, 128.1, 125.9, 113.8, 68.2, 63.3, 55.4, 52.4, 51.4, 41.1, 24.9, 22.8, 22.2, 21.8. IR (thin film): $v 3714,3647,3360,3065,3034$, 2958, 2925, 2871, 2853, 1747, 1688, 1660, 1607, 1577, 1532, 1488, 1441, 1372, 1258, 1208, 1122, 1029, 770, $698 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}$ 485.2282 , found 485.2285 .

Benzyl (R)-3-(((S)-2-methoxy-2-oxo-1-phenylethyl)amino)-2-(4-methoxybenzamido)-2-methyl-3-oxopropanoate (2r)

1 H NMR analysis of the crude mixture showed a dr of $>99: 1$. Purification by flash chromatography (petroleum ether/ethyl acetate $=5 / 2$) afforded the product as a colorless oil ($76.3 \mathrm{mg}, 76 \%$ yield). $[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=42.9\left(c 0.90, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, $400 \mathrm{MHz}): \delta 7.81-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27$ $(\mathrm{m}, 10 \mathrm{H}), 6.94-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.44(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.22(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, 100 MHz): $\delta 170.3,170.3,167.5,166.0,162.5,135.8,135.1,129.1,129.0,128.8$, 128.5, 128.3, 128.2, 127.0, 125.9, 113.7, 68.3, 63.2, 57.1, 55.4, 53.0, 22.1. IR (thin film): $\mathrm{v} 3390,3064,3033,3007,2955,2921,2849,1743,1680,1648,1607,1522$, $1499,1456,1439,1380,1320,1300,1259,1214,1176,1124,1029,769,736,698$ cm^{-1}. HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} 505.1969$, found 505.1962.

Different Substrates:

Under a N_{2} atmosphere, the substrate $\mathbf{1}(0.2 \mathrm{mmol}, 44.7 \mathrm{mg})$, the catalyst OBn-DPI $(0.04 \mathrm{mmol}, 8.6 \mathrm{mg})$ and DIPEA ($0.8 \mathrm{mmol}, 132.2 \mu \mathrm{~L}$) were dissolved in anhydrous toluene (2 mL) and cooled to $-55^{\circ} \mathrm{C}$ in a dry two-necked flask. ClCOOBn (0.6 mmol , $84.5 \mu \mathrm{~L}$) was then added and the vial was sealed with a septum. The reaction mixture was stirred at $-55{ }^{\circ} \mathrm{C}$ for $8-72 \mathrm{~h}$ (Reaction time for 2 s -v was 72 h , reaction time for
$\mathbf{2 w}$-x was 8 h , reaction time for $\mathbf{2 y}$-ad was 10 h) and then the temperature was gradually raised to $20^{\circ} \mathrm{C}$. Methyl 3-aminopropionate hydrochloride ($0.3 \mathrm{mmol}, 41.9$ mg) and DIPEA ($0.3 \mathrm{mmol}, 49.6 \mu \mathrm{~L}$) were dissolved in anhydrous toluene (1 mL) in another dry flask and stirred for 10 min . Then the mixture was transferred into the former reaction flask and the reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 36 h . The reaction mixture was quenched with $0.2 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(5$ $\mathrm{mL} \times 3$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the residue was purified by column chromatography (petroleum ether/ethyl acetate) to give the corresponding product 2. The ee value was determined by chiral HPLC analysis after purification by column chromatography (petroleum ether/ethyl acetate).

Benzyl (R)-3-((3-methoxy-3-oxopropyl)amino)-2-(3-methoxybenzamido)-2-methyl-3-oxopropanoate (2s)

Purification by flash chromatography (petroleum ether/ethyl acetate $=3 / 2$) afforded the product as a colorless oil ($73.3 \mathrm{mg}, 83 \%$ yield). HPLC analysis: 97% ee [Daicel CHIRALPAK AS-H column; solvent system: 20\% isopropanol/80\% hexane; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times: 13.8 min (minor), 36.9 min (major) $] .[\boldsymbol{\alpha}]^{25}{ }_{\mathbf{D}}=2.9(c 0.70$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right): \delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.09-$ $7.02(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 172.4,170.3,167.8,166.1,159.8,135.1,135.1$, $129.6,128.5,128.4,128.2,119.0,118.4,112.2,68.1,63.2,55.5,51.9,35.7,33.3,21.9$. IR (thin film): $v 3372,3066,3034,3002,2955,2922,2851,1744,1731,1659,1583$, 1506, 1481, 1373, 1262, 1225, 1122, 1044, 800, 758, $698 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} 443.1813$, found 443.1811.

2t
Benzyl (R)-3-((3-methoxy-3-oxopropyl)amino)-2-(2-methoxybenzamido)-2-methyl-3-oxopropanoate (2t)

Purification by flash chromatography (petroleum ether/ethyl acetate $=3 / 2$) afforded the product as a colorless oil ($67.1 \mathrm{mg}, 76 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK AS-H column; solvent system: 20% isopropanol/80\% hexane; 0.5 $\mathrm{mL} / \mathrm{min}$; retention times: 26.1 min (minor), 30.4 min (major) $]$. $[\alpha]^{25}{ }_{\mathbf{D}}=0.9(c 0.70$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.0,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.01(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 172.5,170.6,168.2,164.2,158.0,135.3,133.3,132.1$, 128.5, 128.3, 128.1, 121.1, 120.8, 111.4, 67.9, 63.8, 56.0, 51.8, 35.5, 33.4, 21.9. IR (thin film): $v 3360,3067,3033,2922,2850,1738,1688,1647,1601,1516,1483$, $1440,1373,1301,1262,1241,1178,1103,1048,1021,801,758,699,608 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} 443.1813$, found 443.1815 .

2u
Benzyl (R)-3-((3-methoxy-3-oxopropyl)amino)-2-methyl-2-(4-methylbenzamido)-3-oxopropanoate (2u)

Purification by flash chromatography (petroleum ether/ethyl acetate $=3 / 2$) afforded the product as a colorless oil ($63.2 \mathrm{mg}, 74 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK AS-H column; solvent system: 20\% isopropanol/80\% hexane; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times: 11.2 min (minor), $21.3 \mathrm{~min}($ major $)] .[\boldsymbol{\alpha}]^{25}{ }_{\mathrm{D}}=-0.8(c 0.25$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right): \delta 7.81-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~s}, 5 \mathrm{H}), 7.23(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}$): $\delta 172.4,170.4,167.9,166.1,142.3,135.1,130.7$, 129.2, 128.4, 128.3, 128.1, 127.1, 68.0, 63.1, 51.8, 35.6, 33.2, 21.9, 21.5. IR (thin film): $v 3475,3414,2960,2922,2851,1738,1644,1524,1487,1384,1262,1122$, 799, 753, 698, $602 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 427.1864$, found 427.1860.

2v
Benzyl (R)-2-(4-(tert-butyl)benzamido)-3-((3-methoxy-3-oxopropyl)amino)-2-

methyl-3-oxopropanoate (2v)

Purification by flash chromatography (petroleum ether/ethyl acetate $=2 / 1$) afforded the product as a colorless oil ($73.2 \mathrm{mg}, 78 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK AS-H column; solvent system: 20% isopropanol/ 80% hexane; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times: 7.6 min (minor), 10.8 min (major) $] .[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=2.7(c 0.15$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{~ M H z}\right): \delta 7.81-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29(\mathrm{~s}, 5 \mathrm{H}), 6.75(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.64 ($\mathrm{s}, 3 \mathrm{H}$), $3.51-3.45$ (m, 2H), $2.55-2.38$ (m, 2H), 1.88 (s, 3H), 1.34 (s, 9H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}$): $\delta 172.3,170.4,167.9,166.1,155.4,135.1,130.7$, 128.4, 128.3, 128.1, 127.0, 125.4, 68.0, 63.1, 51.8, 35.6, 34.9, 33.3, 31.1, 21.9. IR (thin film): $v 3481,3416,2962,2922,2852,1738,1647,1526,1488,1384,1261$, 1118, 1018, 801, 697, $602 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$ 469.2333, found 469.2332.

Benzyl (R)-2-(4-fluorobenzamido)-3-((3-methoxy-3-oxopropyl)amino)-2-methyl-3-oxopropanoate (2w)

Purification by flash chromatography (petroleum ether/ethyl acetate $=3 / 2$) afforded the product as a colorless oil ($65.8 \mathrm{mg}, 76 \%$ yield). HPLC analysis: 97% ee [Daicel CHIRALPAK AS-H column; solvent system: 20% isopropanol/80\% hexane; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times: 10.6 min (minor), 36.7 min (major)]. $[\boldsymbol{\alpha}]^{25}{ }_{\mathrm{D}}=4.4$ (c 0.5 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right): \delta 7.85-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}$, $5 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}$, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 172.4,170.2,167.8,165.2,165.0(\mathrm{~d}, J=250.9 \mathrm{~Hz})$, $135.0,129.8(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 129.5(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 128.5,128.4,128.2,115.6$ (d, $J=$ 21.8 Hz), $68.1,63.2,51.9,35.7,33.2,21.9$. IR (thin film): $v 3648,3481,2960,2920$, $2850,1738,1659,1605,1533,1488,1471,1384,1262,1127,852,802,700 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 431.1613$, found 431.1614.

Benzyl (R)-2-(4-chlorobenzamido)-3-((3-methoxy-3-oxopropyl)amino)-2-methyl-

3-oxopropanoate (2 x)

Purification by flash chromatography (petroleum ether/ethyl acetate $=3 / 2$) afforded the product as a light yellow oil ($65.1 \mathrm{mg}, 73 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK AS-H column; solvent system: 20% isopropanol/80\% hexane; $1.0 \mathrm{~mL} / \mathrm{min}$; retention times: 11.7 min (minor), 35.7 min (major) $] .[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-0.8(c$ $0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.82-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.38(\mathrm{~m}$, $2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.74(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 100 \mathrm{MHz}\right): \delta 172.3,170.1,167.6,165.1,138.1,135.0,132.0$, $128.8,128.5,128.5,128.4,128.2,68.1,63.2,51.9,35.7,33.2,21.9$. IR (thin film): v 3481, 2960, 2920, 2850, 1738, 1659, 1647, 1541, 1472, 1384, 1263, 1123, 1093, 1014, 800, $701 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$447.1317, found 447.1318 .

$2 y$

Benzyl (R)-2-benzamido-3-((3-methoxy-3-oxopropyl)amino)-2-methyl-3oxopropanoate (2y)

Purification by flash chromatography (petroleum ether/ethyl acetate $=2 / 1$) afforded the product as a colorless oil ($66.3 \mathrm{mg}, 80 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK AS-H column; solvent system: 20% isopropanol/ 80% hexane; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times: 11.6 min (minor), 32.3 min (major)]. $[\boldsymbol{\alpha}]^{25}{ }_{\mathbf{D}}=0.7$ (c 0.55 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{M H z}\right): \delta 7.89-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H})$, $7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 5 \mathrm{H}), 6.77(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.19(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.89$ (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 172.3,170.3,167.8,166.2,135.0,133.6$, 131.8, 128.5, 128.4, 128.3, 128.1, 127.1, 68.1, 63.2, 51.8, 35.6, 33.2, 21.9. IR (thin film): $v 3481,3420,2962,2925,2852,1731,1647,1580,1539,1472,1384,1261$, 1110, 1025, 801, 697, $602 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$ 413.1707, found 413.1703.

$2 z$
Benzyl (R)-2-benzamido-2-((3-methoxy-3-oxopropyl)carbamoyl)butanoate (2z)

Purification by flash chromatography (petroleum ether/ethyl acetate $=2 / 1$) afforded the product as a colorless oil ($66.1 \mathrm{mg}, 78 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK AS-H column; solvent system: 20% isopropanol/80\% hexane; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times: 10.2 min (minor), 14.1 min (major) $) .[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-1.8(c 0.55$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.88-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.57-$ $7.49(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 5 \mathrm{H}), 6.78(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.66$ $(\mathrm{m}, 1 \mathrm{H}), 2.56-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.23(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{M H z}\right): \delta 172.4,170.1,166.8,166.1,135.1,133.7,131.8,128.6,128.5$, 128.4, 128.2, 127.1, 68.0, 67.3, 51.9, 35.6, 33.3, 26.6, 7.7. IR (thin film): v 3400, 3063, 3032, 2960, 2922, 2851, 1738, 1659, 1648, 1580, 1507, 1475, 1384, 1259, 1220, 1089, 1028, 802, $698 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 427.1864$, found 427.1861.

$2 a a$
Benzyl (R)-2-benzamido-2-((3-methoxy-3-oxopropyl)carbamoyl)pentanoate (2aa)
Purification by flash chromatography (petroleum ether/ethyl acetate $=5 / 2$) afforded the product as a colorless oil ($67.7 \mathrm{mg}, 77 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK AS-H column; solvent system: 20% isopropanol/80\% hexane; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times: 9.2 min (minor), 12.3 min (major)]. [$\boldsymbol{\alpha}]^{25}{ }_{\mathbf{D}}=-0.8(c 0.50$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right): \delta 7.85-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.55-$ $7.49(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 5 \mathrm{H}), 6.78(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.58$ $(\mathrm{m}, 1 \mathrm{H}), 2.57-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.16-1.02$ $(\mathrm{m}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 172.4,170.1$, $166.9,166.1,135.1,133.7,131.8,128.6,128.5,128.4,128.2,127.1,68.0,66.9,51.9$, 35.6, 35.4, 33.3, 17.0, 13.8. IR (thin film): $v 3714,3648,3377,3065,3033,2960$, 2923, 2874, 2851, 1738, 1659, 1506, 1476, 1368, 1281, 1218, 1178, 1028, 803, 698, $601 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 441.2020$, found 441.2016.

2ab

Benzyl (R)-2-benzamido-2-((3-methoxy-3-oxopropyl)carbamoyl)hexanoate (2ab)

Purification by flash chromatography (petroleum ether/ethyl acetate $=3 / 1$) afforded the product as a colorless oil ($67.0 \mathrm{mg}, 74 \%$ yield). HPLC analysis: 99% ee [Daicel CHIRALPAK OD-H column; solvent system: 20% isopropanol/ 80% hexane; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times: 7.8 min (minor), 11.1 min (major)]. $[\boldsymbol{\alpha}]^{25}{ }_{\mathbf{D}}=-1.2(c 0.50$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, 400 \mathbf{M H z}$): $\delta 7.86-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.56-$ $7.49(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 5 \mathrm{H}), 6.79(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.17 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.41$ (m, 2H), $2.70-2.60$ $(\mathrm{m}, 1 \mathrm{H}), 2.57-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.10$ $(\mathrm{m}, 1 \mathrm{H}), 1.09-0.97(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (CDCl $\left.\mathbf{N}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right):$ $\delta 172.4,170.1,167.0,166.0,135.1,133.7,131.8,128.6,128.5,128.4,128.2,127.2$, $68.0,66.8,51.8,35.6,33.3,33.1,25.7,22.4,13.8$. IR (thin film): v 3390, 3063, 2959, 2924, 2853, 1738, 1659, 1580, 1507, 1472, 1376, 1264, 1214, 1111, 800, $696 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 455.2177$, found 455.2172.

2ac

Benzyl (R)-2-benzamido-2-((3-methoxy-3-oxopropyl)carbamoyl)-4methylpentanoate (2ac)

Purification by flash chromatography (petroleum ether/ethyl acetate $=3 / 1$) afforded the product as a colorless oil ($67.9 \mathrm{mg}, 75 \%$ yield). HPLC analysis: 99% ee [Daicel CHIRALPAK AS-H column; solvent system: 20% isopropanol/80\% hexane; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times: 7.6 min (minor), 9.0 min (major) $] .[\boldsymbol{\alpha}]^{25}{ }_{\mathbf{D}}=-0.9(c 0.45$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.92-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H})$, $7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 5 \mathrm{H}), 6.75(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.17 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{dd}, J=14.8,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.19$ (dd, $J=14.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.60-1.52(\mathrm{~m}, 1 \mathrm{H}), 0.87$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 172.4$, 170.4, 167.3, 166.1, 135.0, 133.8, 131.8, 128.6, 128.5, 128.4, 128.3, 127.1, 68.1, 66.5, 51.9, 41.1, 35.6, 33.1, 24.5, 23.5, 23.3. IR (thin film): v 3378, 3065, 3033, 2957, 2925, 2871, 2852, 1738, 1659, 1580, 1506, 1476, 1443, 1368, 1261, 1216, 1178, 1076, 1028, 803, $697 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 455.2177$, found 455.2175 .

2ad

Benzyl (R)-2-benzamido-2-benzyl-3-((3-methoxy-3-oxopropyl)amino)-3oxopropanoate (2ad)

Purification by flash chromatography (petroleum ether/ethyl acetate $=2 / 1$) afforded the product as a colorless oil ($80.3 \mathrm{mg}, 82 \%$ yield). HPLC analysis: 97% ee [Daicel CHIRALPAK OD-H column; solvent system: 10% isopropanol/ 90% hexane; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times: 23.5 min (minor), 35.2 min (major)]. [$\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-5.5(c 0.80$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{4 0 0} \mathbf{M H z}\right): \delta 7.76-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.38(\mathrm{~m}, 4 \mathrm{H})$, $7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.29(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}$, $3 \mathrm{H}), 3.62(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.39(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathrm{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 100 \mathrm{MHz}\right): \delta 172.7,169.6,166.4,166.0,134.9,134.9,133.7,131.9$, $129.9,128.6,128.6,128.5,128.3,127.2,127.1,68.3,67.5,51.9,38.3,35.6,33.2$. IR (thin film): v 3648, 3390, 3064, 3032, 2954, 2924, 2853, 1738, 1683, 1660, 1580, 1506, 1476, 1445, 1374, 1281, 1202, 1117, 1084, 1049, 748, $701 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 489.2020$, found 489.2026 .

2ae
Benzyl (R)-2-benzamido-3-((3-methoxy-3-oxopropyl)amino)-3-oxo-2phenylpropanoate (2ae)

Purification by flash chromatography (petroleum ether/ethyl acetate $=2 / 1$) afforded the product as a white oil ($69.5 \mathrm{mg}, 73 \%$ yield). HPLC analysis: 57% ee [Daicel CHIRALPAK OD-H column; solvent system: 20% isopropanol/ 80% hexane; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times: 10.7 min (major), 31.5 min (minor) $] .[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=-22.0(c 0.10$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right): \delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.62-$ $7.49(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.24-$ $7.20(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.59-$ $3.52(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.44(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 172.1,169.4$, $167.3,166.5,136.1,134.9,133.5,132.0,128.7,128.6,128.4,128.3,128.0,127.4$, $127.3,69.6,68.4,51.8,35.9,33.4$. IR (thin film): v 3365, 3195, 3062, 3030, 2961, $2921,2851,1729,1660,1602,1517,1471,1370,1261,1200,1149,1089,1026,939$,

801, 697, $561 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{6}(\mathrm{M}+\mathrm{Na})^{+} 497.1683$, found 497.1698.

6. Effect of \mathbf{N}-Acylated Catalyst

Under a N_{2} atmosphere, azlactone $3(0.2 \mathrm{mmol})$ and DIPEA (0.24 mmol) were dissolved in anhydrous toluene (1 mL) and cooled to $-55^{\circ} \mathrm{C}$ in a dry flask. The catalyst OBn-DPI (0.2 mmol) and ClCOOBn (0.24 mmol) were dissolved in anhydrous toluene (1 mL) in another dry flask and stirred for 10 min to form active species \mathbf{A}. Then the mixture of the catalyst and ClCOOBn was transferred into the former reaction flask and the reaction mixture was stirred at $-55{ }^{\circ} \mathrm{C}$ for 6 h . C-acylated product $\mathbf{4}$ was obtained in 82% yield (calculated from ${ }^{1} \mathrm{H}$ NMR spectra).

Because active species A can quickly turn into BnOH in the air, we made ${ }^{1} \mathrm{H}$ NMR spectra of A by taking catalyst OBn-DPI (0.1 mmol) and ClCOOBn $(0.12 \mathrm{mmol})$ with solvent CDCl_{3} in a NMR tube and tested this sample immediately. Then the sample was transferred into a reaction flask, which contains azlactone $3(0.1 \mathrm{mmol})$, DIPEA (0.12 mmol) and anhydrous toluene $(0.5 \mathrm{~mL})$ at $-55^{\circ} \mathrm{C}$. This reaction mixture was stirred at $-55^{\circ} \mathrm{C}$ for 6 h and the C-acylated product 4 was obtained in 78% yield (calculated from ${ }^{1} \mathrm{H}$ NMR spectra).

Here is the ${ }^{1} \mathrm{H}$ NMR spectra of active species $\mathbf{A} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta$ $8.10(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.36(\mathrm{~m}$, 4H), $7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.54$ (m, 1H).

7. Synthetic Applications

Synthesis of small peptides

Substrate $2 n(0.78 \mathrm{mmol}, 356 \mathrm{mg})$ and $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(274 \mathrm{mg})$ were charged in an autoclave. The system was evacuated and filled with hydrogen. Then anhydrous $\mathrm{MeOH}(10 \mathrm{~mL})$ was added and the hydrogen pressure was adjusted to 3 atm . After vigorous stirring at $20^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was filtered and evaporated under reduced pressure to give $\mathbf{6}(285 \mathrm{mg}, 99 \%$ yield).

Compound $6(0.2 \mathrm{mmol}, 73.3 \mathrm{mg}), O$-(6-chloro- 1 H -benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HCTU, $83.0 \mathrm{mg}, \quad 0.2 \mathrm{mmol}$), 6-chloro-1-hydroxybenzotriazole (Cl-HOBt, $85.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2,6-lutidine (70 $\mu \mathrm{L}, 0.6 \mathrm{mmol}$) were dissolved in dry dichloromethane (10 mL). The solution was cooled in an ice bath and treated with a solution of amino acid methyl ester hydrochloride (0.2 mmol) and 2,6-lutidine ($24 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) in dichloromethane (3 mL). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and gradually raised to $20^{\circ} \mathrm{C}$ for another 12 h . Subsequently, the solution was washed thrice with 1 M HCl and the aqueous phase was extracted with dichloromethane. After drying over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, the combined organic phases were filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel to give the corresponding small peptide product 7 .

7a
Methyl (R)-2-((S)-3-((2-methoxy-2-oxoethyl)amino)-2-(4-methoxybenzamido)-
2-methyl-3-oxopropanamido)butanoate (7a)
Purification by flash chromatography (petroleum ether/ethyl acetate $=1 / 2$) afforded the product as a colorless oil ($72.6 \mathrm{mg}, 83 \%$ yield). $[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=3.3$ (c 1.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, 400 \mathrm{MHz}$): $\delta 7.87$ - 7.81 (m, 3H), 7.69 - 7.62 (m, 1H), 7.57 (d, $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{td}, J=7.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (dd, $J=18.1,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=18.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.94$ $(\mathrm{s}, 3 \mathrm{H}), 1.99-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.69(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 171.9,170.6,170.2,169.5,166.6,162.8,129.2,125.7,113.9$, 63.3, 55.5, 54.1, 52.4, 52.4, 41.8, 25.2, 23.0, 9.5. IR (thin film): v 3353, 3061, 2957, 2927, 2850, 1747, 1682, 1647, 1607, 1505, 1441, 1373, 1295, 1259, 1212, 1179, 1110, 1026, 983, 848, 795, $595 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{8}(\mathrm{M}+\mathrm{Na})^{+}$ 460.1690, found 460.1695 .

7b
Methyl (R)-2-((S)-3-(((S)-1-methoxy-1-oxopropan-2-yl)amino)-2-(4-methoxybenzamido)-2-methyl-3-oxopropanamido)butanoate (7b)

Purification by flash chromatography (petroleum ether/ethyl acetate $=1 / 2$) afforded the product as a colorless oil ($77.8 \mathrm{mg}, 86 \%$ yield). $[\alpha]^{25}{ }_{\mathbf{D}}=-1.0\left(c 0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right): \delta 7.87-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.92$ (m, 2H), $4.62-4.47$ (m, 2H), 3.86 (s, 3H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.43$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 172.6$, $171.9,170.2,169.6,166.4,162.7,129.2,125.8,113.8,63.2,55.5,53.9,52.5,52.4$, 48.8, 25.2, 22.7, 17.7, 9.5. IR (thin film): v 3379, 2955, 2878, 2847, 1744, 1661, 1607, 1506, 1376, 1296, 1257, 1211, 1178, 1029, 847, 772, $602 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{8}(\mathrm{M}+\mathrm{Na})^{+} 474.1847$, found 474.1850.

Methyl (R)-2-((S)-3-(((R)-1-methoxy-1-oxopropan-2-yl)amino)-2-
(4-methoxybenzamido)-2-methyl-3-oxopropanamido)butanoate (7c)
Purification by flash chromatography (petroleum ether/ethyl acetate $=1 / 2$) afforded the product as a white solid ($76.5 \mathrm{mg}, 85 \%$ yield). M.p.: $135.2-136.0^{\circ} \mathrm{C} .[\boldsymbol{\alpha}]^{25}{ }_{\mathrm{D}}=$ $-10.3\left(c 0.7, \mathbf{C H}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.81(\mathrm{~m}$, $2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.60-$ $4.48(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}$, $3 \mathrm{H}), 1.81-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{M H z}\right): \delta 172.5,171.8,170.0,169.8,166.3,162.7,129.1,125.8,113.8$, $63.3,55.4,54.0,52.5,52.4,48.8,25.2,22.7,17.9,9.5$. IR (thin film): v 3481, 2962 , 2925, 2854, 1747, 1681, 1647, 1608, 1507, 1455, 1376, 1263, 1209, 1030, 798, 601 cm^{-1}. HRMS (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{8}(\mathrm{M}+\mathrm{Na})^{+} 474.1847$, found 474.1848 .

Methyl (R)-2-((R)-3-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)-2-(4-methoxybenzamido)-2-methyl-3-oxopropanamido)butanoate (7d)

Purification by flash chromatography (petroleum ether/ethyl acetate $=1 / 1$) afforded the product as a colorless oil ($83.3 \mathrm{mg}, 79 \%$ yield $) .[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D}=29.5\left(c \quad 1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}$): $\delta 7.86-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{dt}, J=7.5,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.47 (td, $J=7.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (s, 3H), 3.71 (s, 3H), 3.67 (s, 3H), 3.14 (dd, $J=$ $13.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=13.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 1 \mathrm{H})$, $1.77-1.65(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 171.8$, 171.2, 169.8, 169.8, 166.2, 162.8, 135.5, 129.2, 129.2, 128.6, 127.1, 125.7, 113.8, $63.3,55.5,54.0,53.8,52.4,52.3,37.7,25.2,22.7,9.5$. IR (thin film): $v 3374,3062$, 3030, 2954, 2879, 2842, 1747, 1689, 1608, 1516, 1362, 1295, 1258, 1212, 1029, 847, $772,736,702,595 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{8}(\mathrm{M}+\mathrm{Na})^{+} 550.2160$, found 550.2163.

Methyl (R)-2-((S)-3-((2-((2-methoxy-2-oxoethyl)amino)-2-oxoethyl)amino)-2-(4-methoxybenzamido)-2-methyl-3-oxopropanamido)butanoate (7e)

Purification by flash chromatography (petroleum ether/ethyl acetate $=1 / 7$) afforded the product as a white solid ($77.0 \mathrm{mg}, 78 \%$ yield). M.p.: $179.0-179.8^{\circ} \mathrm{C} .[\boldsymbol{\alpha}]^{25}{ }_{\mathbf{D}}=-6.6$ (c $0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{M H z}\right): \delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.79(\mathrm{~m}, 2 \mathrm{H})$, $7.66-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.90(\mathrm{~m}$, $2 \mathrm{H}), 4.46$ (td, $J=7.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (dd, $J=17.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (dd, $J=17.7$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (dd, $J=17.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (s, 3 H), $3.80(\mathrm{dd}, J=17.2,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 1 \mathrm{H})$, $0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 171.8,170.6,170.2,169.6$, $169.2,167.2,163.1,129.3,125.0,113.9,63.3,55.5,54.1,52.5,52.1,43.4,41.0,25.0$, 22.8, 9.6. IR (thin film): v 3648, 3481, 2955, 2921, 2850, 1747, 1660, 1647, 1607, 1506, 1296, 1259, 1211, 1184, 1082, 1026, 970, 844, $601 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NaO}_{9}(\mathrm{M}+\mathrm{Na})^{+} 517.1905$, found 517.1904.

Methyl (R)-2-((S)-3-((2-(((S)-1-methoxy-1-oxopropan-2-yl)amino)-2-oxoethyl)amino)-2-(4-methoxybenzamido)-2-methyl-3oxopropanamido)butanoate (7f)

Purification by flash chromatography (ethyl acetate) afforded the product as a white solid ($90.2 \mathrm{mg}, 89 \%$ yield). M.p.: $152.5-153.5{ }^{\circ} \mathrm{C} .[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D}=20.7$ (c 0.8, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{~ M H z}\right): \delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.59-4.50(\mathrm{~m}$, $1 \mathrm{H}), 4.47$ (td, $J=7.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=17.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.74$ $(\mathrm{s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{dd}, J=17.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$, $1.83-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z) : ~} \delta 173.5,171.7,170.3,169.6,168.6,167.0,163.1,129.4,125.1$, $114.0,63.3,55.5,54.1,52.5,52.3,48.2,43.3,25.0,22.8,17.2,9.6$. IR (thin film): v 3314, 3062, 2955, 2924, 2851, 1743, 1646, 1607, 1538, 1505, 1376, 1259, 1211, 1161,

1109, 1025, 849, 798, 736, $602 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{NaO}_{9}$ $(\mathrm{M}+\mathrm{Na})^{+} 531.2061$, found 531.2068 .

7 g
Methyl (R)-2-((S)-3-(((S)-1-((2-methoxy-2-oxoethyl)amino)-1-oxopropan-
2-yl)amino)-2-(4-methoxybenzamido)-2-methyl-3-oxopropanamido)butanoate (7g)

Purification by flash chromatography (petroleum ether/ethyl acetate $=1 / 20$) afforded the product as a colorless oil ($79.6 \mathrm{mg}, 78 \%$ yield). $[\boldsymbol{\alpha}]^{25}{ }_{\mathbf{D}}=-5.3(c 0.3$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right): \delta 7.87-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 2 \mathrm{H})$, $4.57-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{td}, J=7.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=17.9,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.96 (dd, $J=17.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.89(\mathrm{~m}$, $1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 172.4,171.8,170.5,170.4,169.8,166.4,162.9$, 129.2, 125.4, 114.0, 63.4, 55.5, 54.1, 52.4, 52.2, 49.7, 41.2, 24.8, 22.7, 17.1, 9.8. IR (thin film): $\vee 3840,3740,3352,2954,2925,2854,1744,1659,1607,1506,1458$, 1376, 1259, 1209, 1181, 1098, 1026, 848, 795, 701, $594 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{NaO}_{9}(\mathrm{M}+\mathrm{Na})^{+}$531.2061, found 531.2061.

Synthesis of α-Alkyl Serine:

Substrate $2 f(0.41 \mathrm{mmol}, 151 \mathrm{mg})$ and $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(100 \mathrm{mg})$ were charged in an autoclave. The system was evacuated and filled with hydrogen. Then anhydrous $\mathrm{MeOH}(2 \mathrm{~mL})$ was added and the hydrogen pressure was adjusted to 3 atm . After vigorous stirring at $20^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was filtered and evaporated
 $\delta 7.77(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}$, 3H), $1.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): ~ \delta 171.1,170.1,166.8,162.8,129.2$, 124.9, 113.8, 63.2, 55.4, 53.6, 21.1.
$8(0.4 \mathrm{mmol}, 113 \mathrm{mg})$ was dissolved in anhydrous THF (5 mL) in a dry two-necked flask at $20^{\circ} \mathrm{C}, \mathrm{LiBH}_{4}(2 \mathrm{M}$ solution in THF, $0.6 \mathrm{mmol}, 0.3 \mathrm{~mL}$) was then added dropwise. The reaction mixture was stirred at $20{ }^{\circ} \mathrm{C}$ for 12 h . The solvent was acidized with $0.1 \mathrm{M} \mathrm{HCl}(8 \mathrm{~mL})$ and extracted with EtOAc ($10 \mathrm{~mL} \times 4$). The crude product was purified by flash chromatography on silica gel to give $(\boldsymbol{R})-\mathbf{1 0}$.

(R)-10
(R)-3-Hydroxy-2-(4-methoxybenzamido)-2-methylpropanoic acid ((R)-10)

Purification by flash chromatography (ethyl acetate/methanol $=5 / 1$, added 0.5% AcOH) afforded the product as a white solid (71.2 mg , 83% yield). M.p.: 49.5-50.5 ${ }^{\circ} \mathrm{C}$. HPLC analysis: 98% ee [Daicel CHIRALPAK AS-H column; solvent system: 5% ethanol/95\% hexane, added $0.5 \% \mathrm{AcOH} ; 0.5 \mathrm{~mL} / \mathrm{min}$; retention times: 46.7 min (minor), 52.1 min (major)]. $[\boldsymbol{\alpha}]^{25}{ }_{\mathbf{D}}=-0.6(c 0.3, \mathbf{M e O H}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, $400 \mathrm{MHz}): \delta 7.74$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.28 (s, 1H), 6.87 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.77 (brs, $1 \mathrm{H}), 4.05-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta$ 175.4, 168.7, 162.7, 129.2, 125.5, 113.8, 66.2, 62.0, 55.4, 19.7. IR (thin film): v 3411, 2955, 2917, 2849, 1715, 1640, 1608, 1540, 1504, 1463, 1305, 1259, 1180, 1120, 1052, 1030, 845, 769, $599 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 276.0842$, found 276.0847 .

Substrate $2 \mathbf{f}(0.43 \mathrm{mmol}, 160 \mathrm{mg}$) was dissolved in THF (5 mL) in two-necked flask at $20^{\circ} \mathrm{C}$. $\mathrm{KOH}(0.43 \mathrm{mmol}, 24.1 \mathrm{mg})$ was dissolved in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and added dropwise into the flask. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 4 h . The solvent was acidized with 0.1 M HCl to $\mathrm{PH}<6$ and extracted with $\mathrm{EtOAc}(10 \mathrm{~mL} \times 4)$. The crude product was purified by flash chromatography on silica gel (ethyl acetate/methanol $=10 / 1$, added $0.5 \% \mathrm{AcOH}$) to give $9\left(120.5 \mathrm{mg}, 78 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right): \delta 7.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 5 \mathrm{H}), 6.89$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 100\right.$ MHz): $\delta 170.9,169.5,167.0,162.8,134.8,129.2,128.5,128.4,128.0,124.8,113.9$, 68.3, 63.4, 55.4, 21.2.

9 ($0.2 \mathrm{mmol}, 71.5 \mathrm{mg}$) was dissolved in anhydrous THF (3 mL) in a dry two-necked flask at $20^{\circ} \mathrm{C}, \mathrm{LiBH}_{4}(2 \mathrm{M}$ solution in THF, $0.3 \mathrm{mmol}, 0.15 \mathrm{~mL}$) was then added dropwise. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 12 h . The solvent was acidized with $0.1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(6 \mathrm{~mL} \times 4)$. The crude product was purified by flash chromatography on silica gel to give $(\boldsymbol{S}) \mathbf{- 1 0}$.

(S)-10
(S)-3-Hydroxy-2-(4-methoxybenzamido)-2-methylpropanoic acid ((S)-10)

Purification by flash chromatography (ethyl acetate/methanol $=5 / 1$, added 0.5% AcOH) afforded the product as a white solid (43.1 mg , 85% yield). M.p.: 49.5-50.5 ${ }^{\circ} \mathrm{C}$. HPLC analysis: 98% ee [Daicel CHIRALPAK AS-H column; solvent system: 5% ethanol/95\% hexane, added $0.5 \% \mathrm{AcOH} ; 0.5 \mathrm{~mL} / \mathrm{min}$; retention times: 46.1 min (major), 53.9 min (minor)]. $[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=0.7(c 0.3, \mathrm{MeOH}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, 400 MHz): $\delta 7.74(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77$ (brs, $1 \mathrm{H}), 4.05-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta$ 175.4, 168.7, 162.7, 129.2, 125.5, 113.8, 66.2, 62.0, 55.4, 19.7. HRMS (ESI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$276.0842, found 276.0847.

Synthesis of Substituted 2-Oxazolines:

Under a N_{2} atmosphere, the compound $\mathbf{2 a}(0.35 \mathrm{mmol}, 156.3 \mathrm{mg})$ was dissolved in anhydrous THF (6 mL) in a dry two-necked flask at $20{ }^{\circ} \mathrm{C}$. $\mathrm{LiBH}_{4}(2 \mathrm{M}$ solution in THF, $0.53 \mathrm{mmol}, 0.26 \mathrm{~mL}$) was then added dropwise. The reaction mixture was stirred at $20{ }^{\circ} \mathrm{C}$ for 12 h . The solvent was acidized with $0.1 \mathrm{M} \mathrm{HCl}(6 \mathrm{~mL})$ and extracted with EtOAc ($10 \mathrm{~mL} \times 4$). The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=1 / 2$, added $0.5 \% \mathrm{AcOH}$) to give $\mathbf{1 1}$ ($94.6 \mathrm{mg}, \mathbf{7 9 \%}$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D C l}_{\mathbf{3}}, \mathbf{4 0 0} \mathbf{~ M H z}$): $\delta 8.11-8.04(\mathrm{~m}, 1 \mathrm{H})$, $7.78-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 2 \mathrm{H})$, $4.53-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.61(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}$, 3H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z) : ~} \delta 173.9,168.2,162.6,138.0,129.0,128.7,127.4$, 127.3, 126.3, 113.9, 67.7, 61.1, 55.5, 43.5, 20.2. HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}$ $(\mathrm{M}+\mathrm{H})^{+} 343.1652$, found 343.1649 .

Under a N_{2} atmosphere, the compound $11(0.16 \mathrm{mmol}, 55.0 \mathrm{mg})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.4$ $\mathrm{mmol}, 56 \mu \mathrm{~L}$) was dissolved in $\mathrm{DCM}(10 \mathrm{~mL})$ in a dry two-necked flask and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{MsCl}(0.4 \mathrm{mmol}, 31 \mu \mathrm{~L})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$. Then the ice bath was removed, and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 72 hours. The solvent was acidized with $0.1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(8 \mathrm{~mL} \times 4)$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the residue was purified by column chromatography to give $\mathbf{1 2}$.

(S)-N-Benzyl-2-(4-methoxyphenyl)-4-methyl-4,5-dihydrooxazole-4-carboxamide (12)

Purification by flash chromatography (petroleum ether/ethyl acetate $=2 / 1$) afforded the product as a white oil ($49.2 \mathrm{mg}, 94 \%$ yield). HPLC analysis: 98% ee [Daicel CHIRALPAK AS-H column; solvent system: 20% isopropanol/ 80% hexane; 0.5 $\mathrm{mL} / \mathrm{min}$; retention times: 15.9 min (minor), 20.2 min (major)]. $[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-15.8(c 1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D C l}_{\mathbf{3}}, \mathbf{4 0 0} \mathbf{~ M H z}$): $\delta 7.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}$, $2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=14.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=15.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (d,
 164.4, 162.5, 138.1, 130.2, 128.7, 127.6, 127.4, 119.6, 113.8, 76.5, 74.6, 55.4, 43.0, 26.7. IR (thin film): v 3840, 3739, 3648, 3393, 3064, 3031, 2960, 2928, 2867, 1724, 1668, 1641, 1610, 1579, 1512, 1455, 1423, 1354, 1307, 1258, 1171, 1076, 1029, 841, $745,699,685 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 325.1547$, found 325.1543.

8. Reference

1. Z. Zhang, F. Xie, J. Jia and W. Zhang, J. Am. Chem. Soc., 2010, 132, 15939-15941.
2. A. S. De Miranda, J. C. Gomes, M. T. Rodrigues, I. C. R. Costa, W. P. Almeida, R. d. O. Lopes, L. S. M. Miranda, F. Coelho and R. O. M. A. de Souza, J. Mol. Catal. B: Enzym., 2013, 91, 77-80.
3. M. Wang, Z. Zhang, S. Liu, F. Xie and W. Zhang, Chem. Commun., 2014, 50, 1227-1230.
4. M. Wang, X. Zhang, Z. Ling, Z. Zhang and W. Zhang, Chem. Commun., 2017, 53, 1381-1384.
5. J. C. Ruble and G. C. Fu, J. Am. Chem. Soc., 1998, 120, 11532-11533.
6. E. Badiola, B. Fiser, E. Gómez-Bengoa, A. Mielgo, I. Olaizola, I. Urruzuno, J. M. García, J. M. Odriozola, J. Razkin, M. Oiarbide and C. Palomo, J. Am. Chem. Soc., 2014, 136, 17869-17881.
7. S. Li, W. Zhu, F. Gao, C. Li, J. Wang and H. Liu, J. Org. Chem., 2017, 82, 126-134.
8. M. Weber, S. Jautze, W. Frey and R. Peters, Chem. - Eur. J., 2012, 18, 14792-14804.
9. M. Weber, W. Frey and R. Peters, Angew. Chem. Int. Ed., 2013, 52, 13223-13227.

9．NMR Spectra

$2 a$

 ザずす

© $\underset{\circ}{\sim}$ F
\％ఠi if
高
$\underset{\text { Ñ }}{\text { N }}$

2b

$\begin{array}{lccccccccc}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{\substack{100}}{100} 90 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

융
$\underset{\sim}{N}$
$\underset{\text { N }}{\text { N }}$

Nㅜ웅
-42.73
$\stackrel{\bar{N}}{\stackrel{\rightharpoonup}{*}}$

[^0]

○O:

$\stackrel{\overline{6}}{\dot{7}}$
읓

\&요 ल

8 88ำ

$\stackrel{\mu}{\sim} \sim$
 ¢

గ్ల꾼 ざ $\underset{N}{N}$

[^1]

[^2]

ल 여요 Nㅡㄴ 은

[^3]

엉역
속응 으웅
오융̊ㅇ

人凶禸
岕 $\underset{\sim}{\sim} \underset{\sim}{\sim} \stackrel{\infty}{\sim} \underset{\sim}{\sim}$

$\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 9 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

 $\stackrel{\text { § }}{\Gamma}$

N○べ゚

o્c oi in io
으웅
N

$\stackrel{\aleph}{\Gamma} \stackrel{\Gamma}{\Gamma}$

[^4]

[^5]

[^6]

 ㅎ．． $\stackrel{\infty}{i} \stackrel{+}{i}$ $\stackrel{8}{\square}$

ペツサツホ
 1）\1

[^7]

 Nio

毋の ゥッ ஸ్ర ¢ ¢

へ人入入べ入。か

$\stackrel{\text { さ }}{\stackrel{y}{*}}$

$$
\begin{aligned}
& \text { NNㅜㄴ }
\end{aligned}
$$

	$\stackrel{\sim}{\sim}$
\checkmark	-5-5\%

$\underset{\substack{\forall \\ \infty \\ 0 \\ i}}{\substack{\infty \\ 1}}$

ผฺ Nัก

ભ్ల్లM

[^8]

N응

ㄷ․
@ 0 ભ్ల్ల ભ్ల

둔눈
M్ M-

2ab

প্ল゙సべ	－				
N尺¢		Nom	$\stackrel{\infty}{\square}$	 	m
¢					

2ac

MeOOC

2ad

NO응은

¢ ${ }^{\circ}$	\bigcirc	¢ N®
$\%$	is	ఱ్లై

へ－0．0	¢んか\％
N®®\％	¢0¢

No
$\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ & & & & & \\ \text { fpan）}\end{array}$

$$
\begin{aligned}
& \text { OCK }
\end{aligned}
$$

$\stackrel{\sim}{\sim}$

~®
$\stackrel{\circ}{10}$

[^9]

N二尺
$\stackrel{\infty}{\underset{1}{\infty} \stackrel{\infty}{\sim}} \stackrel{\vdots}{\sim}$

Nロ～
NiN～～～

[^10]

N둥

$\stackrel{\stackrel{\rightharpoonup}{\mathrm{m}}}{\stackrel{\mathrm{m}}{\rightleftharpoons}}$
ㄷ．
がかめ

$\stackrel{\overline{i n}}{\stackrel{1}{\circ}}$

	¢Noncon	-
둥obioco		$\stackrel{\text { j }}{ }$

๗is MiN
$\stackrel{\circ}{\stackrel{\circ}{0}}$
NiN
$\stackrel{\Gamma}{\circ}$

190
$100 \begin{aligned} \text { fl } \\ \text { (ppm) }\end{aligned}$

[^11]

in onmint
Nㅗㄷ응으응
$\stackrel{\sim}{\infty} \stackrel{\infty}{\infty}$

\% NiN
$\stackrel{1}{\sim}$

190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ f 1 \end{gathered}$	$(\mathrm{ppm})^{90}$	80	70	60	50	40	30	20	10	0

Mo Nompoos
Nㅗㄷ아으응

()
$\underset{\sim}{\infty} \underset{\sim}{\infty}$
$\stackrel{\infty}{\text { N N N }}$

∞
$\stackrel{\infty}{\infty}$
$\stackrel{m}{5}$

1 | ∞ |
| :---: |
| ∞ |
| ∞ |
| 0 |

$\begin{array}{ccc}0 & \ddagger \\ 0 & & \ddagger \\ 0 & 0 & 10 \\ 1 & 1 & 1\end{array}$
$\stackrel{\text { O. }}{\stackrel{\sim}{\circ}} \stackrel{\text { N }}{\text { N }}$

12

8	$\stackrel{9}{7}$
$\stackrel{1}{17}$	\%

$\stackrel{8}{\circ}$

風

10. HPLC Charts

(R)-OBn-DPI

Peak	Ret. Time	Area \%
1	18.553	46.721
2	20.195	53.279

Peak	Ret. Time	Area \%	Ee
1	18.704	100.000	100

Peak	Ret. Time	Area \%
1	27.484	49.318
2	31.811	50.682

Peak	Ret. Time	Area \%	Ee
1	28.809	0.719	
2	33.177	99.281	99

Peak	Ret. Time	Area \%
1	19.007	50.033
2	21.168	49.967

Peak	Ret. Time	Area \%	Ee
1	19.004	99.334	99
2	21.223	0.666	

Peak	Ret. Time	Area \%	Ee
1	92.728	1.078	
2	99.621	98.922	98

Peak	Ret. Time	Area \%
1	43.138	49.685
2	49.512	50.315

Peak	Ret. Time	Area \%	Ee
1	44.808	1.163	
2	49.368	98.837	98

Peak	Ret. Time	Area \%
1	18.874	50.587
2	24.342	49.413

Peak	Ret. Time	Area \%	Ee
1	19.021	99.127	98
2	25.042	0.873	

Peak	Ret. Time	Area \%
1	31.871	50.030
2	36.366	49.970

Peak	Ret. Time	Area \%	Ee
1	31.898	99.230	98
2	36.876	0.770	

Peak	Ret. Time	Area \%
1	30.597	49.979
2	38.203	50.021

Peak	Ret. Time	Area \%	Ee
1	31.858	0.923	
2	39.107	99.077	98

Peak	Ret. Time	Area \%
1	21.256	49.374
2	25.223	50.626

Peak	Ret. Time	Area \%	Ee
1	21.681	1.030	
2	25.185	98.970	98

Peak	Ret. Time	Area \%
1	22.816	49.643
2	28.724	50.357

Peak	Ret. Time	Area \%	Ee
1	23.519	0.959	
2	28.649	99.041	98

Peak	Ret. Time	Area \%
1	32.568	50.129
2	42.756	49.871

Peak	Ret. Time	Area \%
1	35.108	49.799
2	40.438	50.201

Peak	Ret. Time	Area \%	Ee
1	33.926	98.596	97
2	39.812	1.404	

2s

Peak	Ret. Time	Area \%
1	13.715	50.187
2	37.795	49.813

Peak	Ret. Time	Area \%	Ee
1	13.845	1.545	
2	36.873	98.455	97

Peak	Ret. Time	Area \%	Ee
1	26.076	0.938	
2	30.448	99.062	98

2u

Peak	Ret. Time	Area \%	Ee
1	11.238	1.088	
2	21.281	98.912	98

2v

Peak	Ret. Time	Area \%
1	7.508	47.488
2	10.795	52.512

Peak	Ret. Time	Area \%	Ee
1	7.553	0.804	
2	10.773	99.196	98

Peak	Ret. Time	Area \%
1	10.445	49.398
2	38.198	50.602

Peak	Ret. Time	Area \%	Ee
1	10.553	1.746	
2	36.660	98.254	97

Peak	Ret. Time	Area \%
1	11.617	49.723
2	36.147	50.277

Peak	Ret. Time	Area \%	Ee
1	11.693	1.205	
2	35.670	98.795	98

Peak	Ret. Time	Area \%
1	11.142	49.296
2	30.198	50.704

$2 z$

Peak	Ret. Time	Area \%	Ee
1	10.244	1.021	
2	14.081	98.979	98

Peak	Ret. Time	Area \%
1	9.179	50.262
2	12.337	49.738

Peak	Ret. Time	Area \%	Ee
1	9.209	1.160	
2	12.332	98.840	98

Peak	Ret. Time	Area \%
1	7.584	50.033
2	11.077	49.967

Peak	Ret. Time	Area \%	Ee
1	7.763	0.669	
2	11.104	99.331	99

MeOOC

2ac

Peak	Ret. Time	Area \%
1	7.562	49.817
2	9.004	50.183

Peak	Ret. Time	Area \%	Ee
1	7.590	0.726	
2	9.001	99.274	99

(

Peak	Ret. Time	Area \%
1	23.131	50.455
2	35.966	49.545

Peak	Ret. Time	Area \%	Ee
1	23.458	1.506	
2	35.158	98.494	97

Peak	Ret. Time	Area \%
1	10.851	49.854
2	31.246	50.146

Peak	Ret. Time	Area \%	Ee
1	10.686	78.617	57
2	31.534	21.383	

(R)-10

Peak	Ret. Time	Area \%
1	48.098	48.860
2	55.628	51.140

Peak	Ret. Time	Area \%	Ee
1	46.668	1.182	
2	52.126	98.818	98

Peak	Ret. Time	Area \%
1	48.098	48.860
2	55.628	51.140

Peak	Ret. Time	Area \%
1	15.900	50.147
2	20.418	49.853

Peak	Ret. Time	Area \%	Ee
1	15.929	1.118	
2	20.243	98.882	98

[^0]: $\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^1]: $\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array} 90$

[^2]: $\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array} 90$

[^3]: $\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(p p m)\end{array}$

[^4]: $\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(p p m)\end{array}$

[^5]: $\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 90 & & \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^6]: $\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}$

[^7]:

[^8]: $\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array} 90$

[^9]: $\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppqin})\end{array}$

[^10]:

[^11]:

