Palladium-Catalyzed Asymmetric Hydrophosphorylation of Alkynes:

Facile Access to P-Stereogenic Phosphinates

Zhiping Yang, ab Xiaodong Gu, Li-biao Hanc and Jun (Joelle) Wang*b

^aHarbin Institute of Technology, Harbin 150080, China

^bShenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.

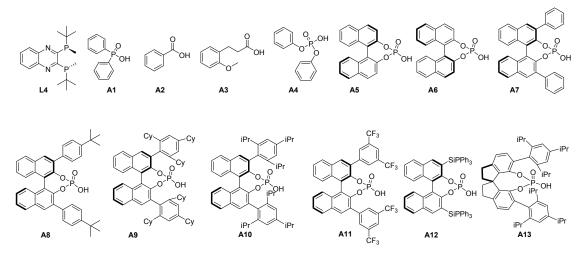
^cNational Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan

E-mail: wang.j@sustech.edu.cn

Table of Contents

1.	General information	S1
2.	Screening of the reaction conditions	S3
3.	Typical procedure for hydrophosphination of alkynes	
4.	Gram-scale alkenylphosphinates synthesis	
5.	Synthetic transformation of the products	S4
6.	Deuterium labelling experiment	
7.	Analytic data for the products	S9
8.	NMR spectrum.	S25
9.	HPLC spectrum	S70
10.	X-ray crystal structure of 4	S100

1. General information


NMR Spectra were recorded on a Bruker DPX-500 (400) spectrometer at 500 MHz or 400 MHz for ¹H NMR, 200MHz or 160MHz for ³¹P NMR, 376 MHz for ¹⁹F NMR and 100 MHz or 125 MHz for ¹³C NMR in CDCl₃ with tetramethylsilane (TMS) or the residual deuterated solvent peaks as internal standard. Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in Hertz (Hz). Flash column chromatograph was carried out using 200-300 mesh silica gel at medium pressure. High resolution mass spectra (HRMS) were recorded on a LC-TOF spectrometer. ESI-HRMS data were acquired using a Thermo LTQ Orbitrap XL Instrument equipped with an ESI source. Optical rotation was obtained on a Rudolph Research Analytical (Atopol I). HPLC analysis was performed on Agilent 1260 series. Unless otherwise noted, all reagents were purchased from commercial suppliers and used without purification. All air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or in a glove box under argon. Anhydrous toluene and THF (Tetrahydrofuran) were distilled from sodium benzophenone prior to use. Anhydrous DCE and 1, 4-dioxane was distilled from calcium hydride and stored under argon.

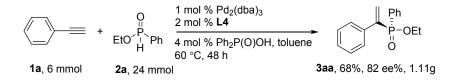
2. Screening of the reaction conditions

1) Table S1. Screening of acids

	-== +	O EtO ^{-P} P H	2 mol 4 mol toluer	% Pd ₂ (dba) ₃ % L4 I % Acid ne, 20 h	Ph P-OEt O
1a , 0.2	5 mmol	2a ,1.0 mm	ol	3	Baa
	entry	Acid	T/ºC	3aa (yield %, ee %)	
	1	A1	60	70, 83	
	2	A2	60	44, 76	
	3	A3	60	44, 84	
	4	A4	60	65, 77	
	5 ^b	A5	70	50, 57	
	6 ^b	A6	70	56, 56	
	7 ^b	A7	70	50, 64	
	8 ^b	A8	70	55, 72	
	9 ^b	A9	70	92, 77	
	10 ^b	A10	70	76, 84	
	11 ^b	A10	60	44, 83	
	12 ^b	A11	70	57, 45	
	13 ^b	A12	70	20, 81	
	14 ^b	A13	70	54, 80	

^aCondition: 1 mol % $Pd_2(dba)_3$, 2 mol % L4, and 4 mol % Acid in toluene were stirred for 10 min in argon atmosphere. 0.25 mmol alkyne and 1 mmol ethyl phenylphosphinate were added. The mixture was stirred under argon atmosphere for 20 h. ^b 24 h.

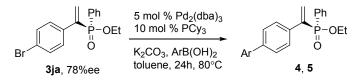
2) Table S2. Screening of the ratio of 1a/2a


	۲ + ۱a	O H EtO ^{^P} Ph 2a	1% Pd ₂ (dba) ₃ 2% (<i>R</i> , <i>R</i>)-QuinoxP* 4% Ph ₂ P(O)OH, toluene 60°C, 20 h	$\begin{array}{c} \begin{array}{c} Ph \\ \vdots \\ P-OEt \\ O \\ \end{array} \\ \begin{array}{c} H \\ P \\ O \\ \end{array} \\ \begin{array}{c} H \\ P \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ (R) \\ H \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ (R) \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ \end{array} \\ \begin{array}{c} H \\ P \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ O \\ O \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ P-OEt \\ O \\ O \\ O \\ O \\ \end{array} \\ \end{array} \\ \begin{array}{c} Ph \\ Ph \\ P-OEt \\ O \\ O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} Ph \\ Ph	
entry	Alkyne/P-H	T/ºC	<i>R</i>-2a (yield %, ee%)	3aa (yield %, ee%)	S
1	1/1	60	40, 61	50, 55	6
2	3/1	60	16, 53	51, 59	6
3	1/1	50	72, 16	18, 74	8
4	1/1	40	63, 7	9, 80	10
5	1/3	60	-	59, 78	-
6	1/4	60	-	70, 83	-
7	1/6	60	-	34, 85	-

^{*a*}Condition: 1 mol % $Pd_2(dba)_3$, 2 mol % (*R*, *R*)-QuinoxP, and 4 mol % diphenylphosphinic acid in 1mL toluene were stirred for 10 min in argon atmosphere. Alkynes and ethyl phenylphosphinates were added, and the mixture was stirred at 60 °C for 20h.

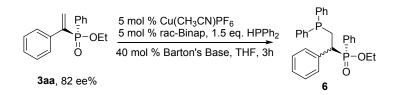
3. Typical procedure for hydrophosphination of alkynes

An oven-dried Schlenk tube containing a Teflon-coated stir bar was charged with 1 mol % $Pd_2(dba)_3$ (2.3 mg), 2 mol % (*R*, *R*)-QuinoxP* (1.7 mg), 4 mol % diphenylphosphinic acid (2.2 mg) in 1 mL toluene under argon atmosphere and stirred at room temperature for 10 min. Then, 0.25 mmol alkynes and 1 mmol H-phosphinate were added and the mixture was stirred at 60 °C or 80 °C for 20 h. After removal of the solvent, the residues were passed through a short silica chromatography (EA / PE = 1:3) to afford the desired product.

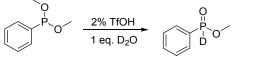

4. Gram-scale alkenylphosphinate synthesis

An oven-dried Schlenk tube containing a Teflon-coated stir bar was charged with 1 mol % $Pd_2(dba)_3$ (54.9 mg), 2 mol % (*R*, *R*)-QuinoxP*(40.0 mg), 4 mol % diphenylphosphinic acid (52.3 mg) in 24 mL toluene under argon atmosphere and stirred at room temperature for 10 min. Then, 6.0 mmol alkynes

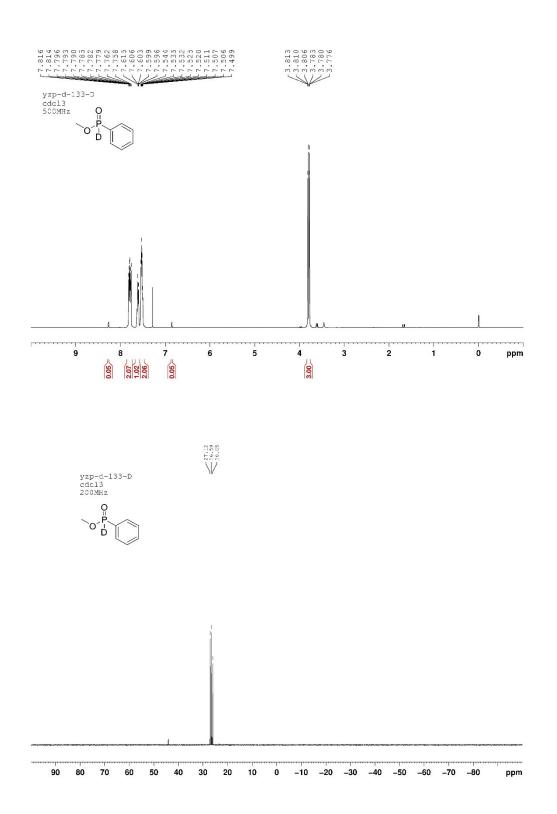
(616 mg) and 24 mmol ethyl phenylphosphinate (4.08 g) were added and the mixture was stirred at 60 $^{\circ}$ C for 48 h. After removal of the solvent, the residues were passed through a short silica chromatography (EA / PE = 1:3) to afford the desired product **3aa** (1.11 g, 68% yield). The enantioselective excess of the product was determined to be 82% ee by chiral HPLC.


5. Synthetic transformation of the products

An oven-dried Schlenk tube containing a Teflon-coated stir bar was charged with 5 mol % $Pd_2(dba)_3$ (4.6 mg), 10 mol % PCy_3 (2.8 mg), 2 eq K₂CO₃ (0.2 mmol) in 1 mL toluene under argon atmosphere and stirred at room temperature for 10 min. Then, 0.1 mmol **3ja** (35.0 mg) and 0.2 mmol ArB(OH)₂ were added and the mixture was stirred at 80 °C for 20 h. After removal of the solvent, the residues were passed through a short silica chromatography (EA / PE = 1:3) to afford the desired product **4** (98%, 77% ee) and **5** (75%, 77% ee).


An oven-dried Schlenk tube containing a Teflon-coated stir bar was charged with 5 mol % Pd(OAc)₂ (1.1 mg) in 1 mL CH₃OH under argon atmosphere. Then, 0.1 mmol **3aa** (27.2 mg) and 0.12 mmol PhN₂BF₄ (23 mg) were added and the mixture was stirred at rt for 12 h. After removal of the solvent, the residues were passed through a short silica chromatography (EA / PE = 1:3) to afford the desired product **3qa** (34.7 mg, 99% yield, 82% ee).

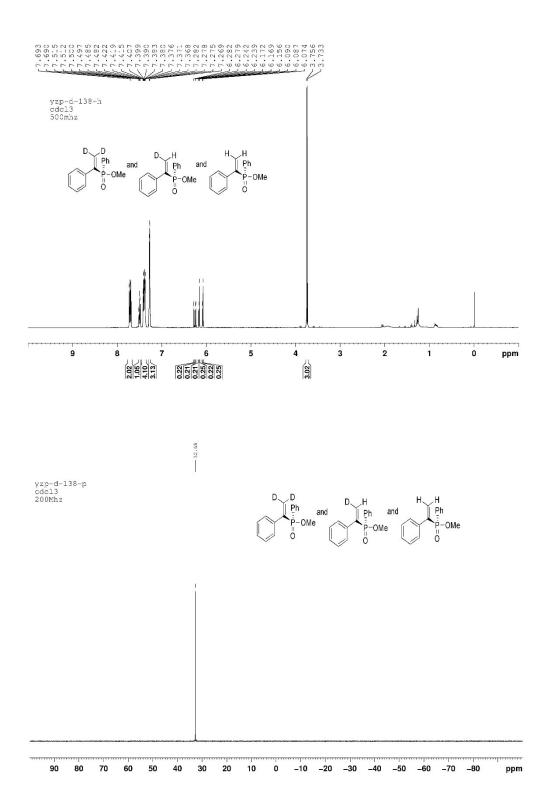
An oven-dried Schlenk tube containing a Teflon-coated stir bar was charged with [Cu(CH₃CN)₄]PF₆

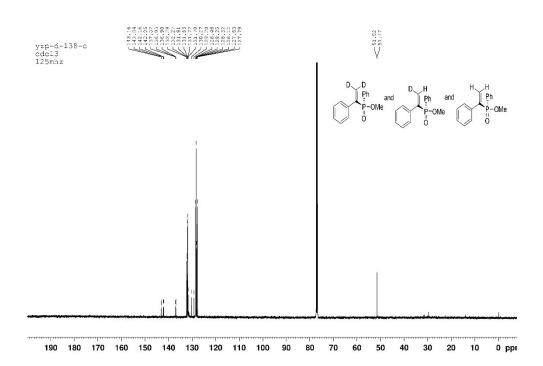

(1.8 mg) and rac-Binap (3.1 mg) in a glove box under argon atmosphere. Anhydrous THF (1.0 mL, 0.10 M) was added. The mixture was stirred at room temperature for 15 minutes. Then **3aa** (27.2 mg) and HPPh₂ (28.0 mg) were added sequentially. Then the Schlenk tube was taken out of the glove box. After the mixture was cooled to 0 °C, Barton's Base (8µL) was added. The resulting reaction mixture was stirred at 0 °C for 3 hours. After solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (EA / PE = 1:3) to give the desired product **6** (42.0 mg, 92% yield, major 79% ee, minor 79% ee).

6. Deuterium labelling experiment



column chromatography, 56% D solvent and TfOH extracted by pump, 90% D


To an oven-dried vial fitted with a stirrer bar was added dimethyl phenylphosphonite (1.70 g, 10 mmol), 1 equiv. H₂O (180 uL), trifluorormethanesulfonic acid (18 uL, 2 mol%) under argon atmosphere. The tube was then sealed, slightly shaken at room temperature, in 5 minutes. Solvent and trifluorormethanesulfonic acid were extracted by pump. Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.82-7.71 (m, 2H), 7.63-7.55 (m, 2H), 7.55-7.46 (m, 2H), 3.82-3.73 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 133.2 (t, *J* = 2.8), 130.9 (t, *J* = 11.8), 128.7 (t, *J* = 13.9), 52.0 (d, *J* = 6.5 Hz). ³¹P NMR (160 MHz, CDCl₃): δ 26.6 (t, *J* = 85.9).


S6

(156 mg, 1 mmol, 4 equiv) at 80 °C for 20 h to afford desired product **3ab** as colorless oil (44.0 mg, 73% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.66 (m, 2H), 7.53 – 7.46 (m, 1H), 7.45 – 7.34 (m, 4H), 7.31 – 7.25 (m, 3H), 6.26 (dd, *J* = 20.1, 1.4 Hz, 0.43H), 6.13 (dd, *J* = 41.0, 1.4 Hz, 0.43H), 6.11 (d, *J* = 40.9 Hz, 0.5H), 3.74 (d, *J* = 11.1 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 32.7. ¹³C NMR (125 MHz, CDCl₃) δ 142.6 (dd, *J* = 125.1, 14.0 Hz), 137.0 (dd, *J* = 11.6, 4.0 Hz), 132.3 (d, *J*_{CP} = 2.8 Hz), 131.9 (d, *J*_{CP} = 10.1 Hz), 131.7 (d, *J*_{CP} = 8.6 Hz), 129.7 (d, *J*_{CP} = 135.3 Hz), 128.4 (d, *J*_{CP} = 13.2 Hz), 128.3, 128.1, 127.8 (d, *J*_{CP} = 4.7 Hz), 51.5 (d, *J*_{CP} = 6.2 Hz).

S8

7. Analytic data for the products

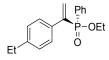
Ethyl phenyl(1-phenylvinyl)phosphinate (3aa)

General procedure was used with phenylacetylene (25.5 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinates (170 mg, 1 mmol, 4 equiv) at 60 °C for 20 h to afford **3aa** as colorless oil (47.6 mg, 70% yield, 83% ee). [α]²⁰_D = 3.4 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.78 – 7.67 (m, 2H), 7.54 – 7.46 (m, 1H), 7.44 – 7.36 (m, 4H), 7.31 – 7.26 (m, 3H), 6.27 (dd, *J* = 20.0, 1.5 Hz, 1H), 6.13 (dd, *J* = 40.7, 1.5 Hz, 1H), 4.20 – 4.04 (m, 2H), 1.34 (t, *J* = 7.1 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 30.8. ¹³C NMR (125 MHz, CDCl₃) δ 143.0 (d, *J*_{CP} = 124.7 Hz), 137.0 (d, *J*_{CP} = 11.8 Hz), 132.1 (d, *J*_{CP} = 2.7 Hz), 131.7 (d, *J*_{CP} = 10.0 Hz), 131.4 (d, *J*_{CP} = 8.3 Hz), 130.4 (d, *J*_{CP} = 6.0 Hz), 16.4 (d, *J*_{CP} = 6.5 Hz). The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 254 nm, t (major) = 17.0 min, t (minor) = 18.5 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₆H₁₈O₂P, 273.1039; found 273.1036.

Ethyl phenyl(1-(*p*-tolyl)vinyl)phosphinate (3ba)

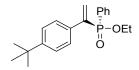
General procedure was used with 4-ethynyltoluene (29.0 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 60 °C for 20 h to afford **3ba** as colorless oil (50.0 mg, 70% yield, 82% ee). [α]²⁰_D = 1.9 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.66 (m, 2H), 7.53 – 7.44 (m, 1H), 7.43 – 7.34 (m, 2H), 7.32 – 7.26 (m, 2H), 7.12 – 7.04 (m, 2H), 6.23 (dd, *J* = 19.9, 1.5 Hz, 1H), 6.10 (dd, *J* = 40.9, 1.5 Hz, 1H), 4.18 – 4.01 (m, 2H), 2.30 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 31.0. ¹³C NMR (125 MHz, CDCl₃) δ 142.7 (d, *J*_{CP} = 124.5 Hz), 137.9, 134.1 (d, *J*_{CP} = 11.8 Hz), 132.1 (d, *J*_{CP} = 2.8 Hz), 131.8 (d, *J*_{CP} = 9.9 Hz), 130.8 (d, *J*_{CP} = 8.7 Hz), 130.6 (d, *J*_{CP} = 134.6 Hz), 129.0, 128.3 (d, *J*_{CP} = 12.8 Hz), 127.6 (d, *J*_{CP} = 4.9 Hz), 61.1 (d, *J*_{CP} = 5.8 Hz), 21.1, 16.4 (d, *J*_{CP} = 6.6 Hz). The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 254 nm, t (major) = 15.5 min, t (minor) = 17.1 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₇H₂₀OP, 287.1195 ; found 287.1194.

Ethyl phenyl(1-(*m*-tolyl)vinyl)phosphinate (3ca)

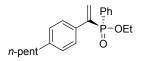

General procedure was used with 3-ethynyltoluene (29.0 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) 60 °C for 20 h to afford **3ca** as colorless oil (50.0 mg, 70% yield, 81% ee). [α]²⁰_D = 3.7 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.68 (m, 2H), 7.52 – 7.45 (m, 1H), 7.44 – 7.36 (m, 2H), 7.22 – 7.10 (m, 3H), 7.09 – 7.04 (m, 1H), 6.22 (dd, *J* = 20, 1.5 Hz, 1H), 6.09 (dd, *J* = 40.9, 1.5 Hz, 1H), 4.19 – 3.97 (m, 2H), 2.29 (s, 3H), 1.32 (t, *J* = 7.0 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 30.9. ¹³C NMR (125 MHz, CDCl₃) δ 143.1 (d, *J*_{CP} = 124.9 Hz), 137.8, 137.0 (d, *J*_{CP} = 11.7 Hz), 132.1 (d, *J*_{CP} = 2.7 Hz), 131.8 (d, *J*_{CP} = 9.7 Hz), 131.2 (d, *J*_{CP} = 8.4 Hz), 130.5 (d, *J*_{CP} = 134.3 Hz), 128.8, 128.5 (d, *J*_{CP} = 5.2 Hz), 128.3 (d, *J*_{CP} = 15.6 Hz), 128.1, 124.9 (d, *J*_{CP} = 4.6 Hz), 61.1 (d, *J*_{CP} = 5.9 Hz), 21.35, 16.4 (d, *J*_{CP} = 6.4 Hz). The enantiomeric excess was determined by Daicel Chiralcel AD-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 254 nm, t (minor) = 19.3 min, t (major) = 23.5 min.HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₇H₂₀OP, 287.1195; found 287.1194.

Ethyl phenyl(1-(o-tolyl)vinyl)phosphinate (3da)

General procedure was used with 2-ethynyltoluene (29.0 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 60 °C for 20 h to afford **3da** as colorless oil (65.0 mg, 91% yield, 30% ee). [α]²⁰_D = 5.0 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.51 (m, 2H), 7.53-7.47 (m, 1H), 7.40 – 7.29 (m, 2H), 7.2 – 7.14 (m, 1H), 7.14 – 7.05 (m, 2H), 7.04 – 6.95 (m, 1H), 6.41 (dd, *J* = 20.5, 1.9 Hz, 1H), 5.82 (dd, *J* = 42.2, 1.9 Hz, 1H), 4.18 – 4.07 (m, 1H), 4.04 – 3.91 (m, 1H), 1.97 (s, 3H), 1.32 (t, *J* = 7.01 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 29.6. ¹³C NMR (125 MHz, CDCl₃) δ 143.3 (d, *J*_{CP} = 125.4 Hz), 136.4 (d, *J*_{CP} = 9.4 Hz), 136.3 (d, *J*_{CP} = 4.6 Hz), 132.3 (d, *J*_{CP} = 12.6 Hz), 132.1, 132.0, 130.0, 129.8 (d, *J*_{CP} = 132.4 Hz), 129.3 (d, *J*_{CP} = 3.2 Hz), 128.1 (d, *J*_{CP} = 12.6 Hz), 127.7 (d, *J*_{CP} = 2.1 Hz), 125.0, 61.0 (d, *J*_{CP} = 6.0 Hz), 19.6, 16.3 (d, *J*_{CP} = 6.7 Hz). The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 254 nm, t (major) = 12.4 min, t (minor) = 13.2 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₇H₂₀OP, 287.1195; found 287.1194.


Ethyl (1-(4-ethylphenyl)vinyl)(phenyl)phosphinate (3ea)

General procedure was used with 4-ethylphenylacetylene (32.5 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 60 °C for 20 h to afford **3ea** as colorless oil (54.0 mg, 72% yield, 83% ee). [α]²⁰_D = 2.3 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.80 – 7.63 (m, 2H), 7.47 (td, *J* = 7.5, 1.3 Hz, 1H), 7.40 (td, *J* = 7.8, 3.5 Hz, 2H), 7.32 (m, 2H), 7.09 (m, 2H), 6.22 (dd, *J* = 19.9, 1.5 Hz, 1H), 6.10 (dd, *J* = 40.9, 1.5 Hz, 1H), 4.17 – 3.97 (m, 2H), 2.59 (q, *J* = 7.6 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.19 (t, *J* = 7.6 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 31.1. ¹³C NMR (125 MHz, CDCl₃) δ 144.2, 142.6 (d, *J*_{CP} = 124.7 Hz), 134.2 (d, *J*_{CP} = 11.8 Hz), 132.0 (d, *J*_{CP} = 2.8 Hz), 131.7 (d, *J*_{CP} = 10.2 Hz), 130.9 (d, *J*_{CP} = 8.6 Hz), 130.5 (d, *J*_{CP} = 135.2 Hz), 128.0 (d, *J*_{CP} = 80.0 Hz), 127.7, 127.6 (d, *J*_{CP} = 71.8 Hz), 61.0 (d, *J*_{CP} = 6.4 Hz), 28.4, 16.3 (d, *J*_{CP} = 6.4 Hz), 15.3. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 98


/ 2, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 13.4 min, t (minor) = 14.2 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₈H₂₂O₂P, 301.1352; found 301.1353.

Ethyl (1-(4-(tert-butyl)phenyl)vinyl)(phenyl)phosphinate (3fa)

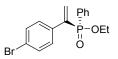
General procedure was used with 4-(tert-butyl)phenylacetylene (39.5 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 60 °C for 20 h to afford **3fa** as colorless oil (68.9 mg, 84% yield, 81% ee). [α]²⁰_D = 0.9 (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.70 (m, 2H), 7.57 – 7.47 (m, 1H), 7.40 (td, *J* = 7.4, 3.4 Hz, 2H), 7.38 – 7.33 (m, 2H), 7.33 – 7.26 (m, 2H), 6.22 (d, *J* = 20.0 Hz, 1H), 6.13 (d, *J* = 40.9 Hz, 1H), 4.16 – 4.03 (m, 2H), 1.32 (t, *J* = 7.0 Hz, 3H), 1.27 (d, *J* = 10.3 Hz, 9H). ³¹P NMR (160 MHz, CDCl₃) δ 31.1. ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 142.8 (d, *J*_{CP} = 124.6 Hz), 134.0 (d, *J*_{CP} = 11.7 Hz), 132.0 (d, *J*_{CP} = 2.7 Hz), 131.8, 131.7, 130.9 (d, *J*_{CP} = 6.2 Hz), 34.5, 31.2, 16.4 (d, *J*_{CP} = 6.4 Hz). The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 254 nm, t (minor) = 11.2 min, t (major) = 12.1 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₂₀H₂₆O₂P, 329.1665; found 329.1665.

Ethyl (1-(4-pentylphenyl)vinyl)(phenyl)phosphinate (3ga)

General procedure was used with 1-ethynyl-4-pentylbenzene (43.0 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 60 °C for 20 h to afford **3ga** as colorless oil (46.1 mg, 54% yield, 82% ee). [α]²⁰_D = 1.8 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.81 – 7.66 (m, 2H), 7.44 – 7.51 (m, 1H), 7.41 (td, *J* = 7.6, 3.5 Hz, 2H), 7.27–7.33 (m, 2H), 7.04 – 7.12 (m, 2H), 6.25 (dd, *J* = 20.0, 1.4 Hz, 1H), 6.13 (dd, *J* = 40.9, 1.4 Hz, 1H), 4.21 – 4.00 (m, 2H), 2.65 – 2.49 (m, 2H), 1.59 (m, 2H), 1.32 (m, 7H), 0.89 (t, *J* = 7.0 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 31.1. ¹³C NMR (125 MHz, CDCl₃) δ 142.9, 142.7 (d, *J*_{CP} = 124.6 Hz), 134.2 (d, *J*_{CP} = 11.7 Hz), 132.0 (d, *J*_{CP} = 2.7 Hz),

131.7 (d, $J_{CP} = 10.1$ Hz), 130.8 (d, $J_{CP} = 8.3$ Hz), 130.6 (d, $J_{CP} = 134.8$ Hz), 128.3, 128.2 (d, $J_{CP} = 13.0$ Hz), 127.6 (d, $J_{CP} = 5.2$ Hz), 61.1 (d, $J_{CP} = 5.9$ Hz), 35.5, 31.4 , 30.9, 22.4, 16.4 (d, $J_{CP} = 6.7$ Hz), 14.0. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.3 min, t (minor) = 8.8 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₂₁H₂₈O₂P, 343.1821; found 343.1822.

Ethyl (1-(4-fluorophenyl)vinyl)(phenyl)phosphinate (3ha)


General procedure was used with 4-fluorophenylacetylene (30.0 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 80 °C for 20 h to afford **3ha** as colorless oil (55.1 mg, 76% yield, 77% ee). $[\alpha]^{20}_{D} = -0.5$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.81 – 7.57 (m, 2H), 7.57 – 7.44 (m, 1H), 7.44 – 7.30 (m, 4H), 6.95 (t, J = 8.6 Hz, 2H), 6.21 (d, J = 19.8 Hz, 1H), 6.06 (d, J = 40.6 Hz, 1H), 4.19 – 3.94 (m, 2H), 1.37 – 1.24 (t, J = 7.0 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 30.6. ¹³C NMR (125 MHz, CDCl₃) δ 162.6 (d, J = 248.1 Hz), 142.1 (d, J = 125.0 Hz), 133.0 (dd, J = 2.8, 11.8 Hz), 132.2 (d, J = 2.6 Hz), 131.8 (d, J = 10.2 Hz), 131.1 (d, J = 8.6 Hz), 130.9, 129.6 (dd, J = 5.3, 8.1 Hz), 128.4 (d, J = 12.9 Hz), 115.2 (d, J = 21.4 Hz), 61.2 (d, J = 6.0 Hz), 16.4 (d, J = 6.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -113.8. The enantiomeric excess was determined by Daicel Chiralcel AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 17.4 min, t (major) = 21.1 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₆H₁₇FO₂P, 291.0945; found 291.0945.

Ethyl (1-(4-chlorophenyl)vinyl)(phenyl)phosphinate (3ia)

General procedure was used with 4-chlorophenylacetylene (34.1 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 80 °C for 20 h to afford **3ia** as yellow oil (54.3 mg, 71% yield, 83% ee). $[\alpha]^{20}_{D} = -3.0$ (c 1, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.75 – 7.64 (m, 2H), 7.52 – 7.47 (m, 1H), 7.44 – 7.37 (m, 2H), 7.36 – 7.30 (m, 2H), 7.26 – 7.21 (m, 2H), 6.23 (dd, J = 19.8, 1.3 Hz, 1H), 6.08 (dd, J = 40.4, 1.3 Hz, 1H), 4.22 – 3.96 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H). ³¹P NMR

(200 MHz, CDCl₃) δ 30.4. ¹³C NMR (125 MHz, CDCl₃) δ 142.2 (d, $J_{CP} = 126.0$ Hz), 135.5 (d, $J_{CP} = 12.0$ Hz), 134.2, 132.3 (d, $J_{CP} = 2.6$ Hz), 131.8 (d, $J_{CP} = 10.0$ Hz), 131.5 (d, $J_{CP} = 8.2$ Hz), 130.1 (d, $J_{CP} = 129.4$ Hz), 128.8 (d, $J_{CP} = 84.5$ Hz), 128.7 (d, $J_{CP} = 102.4$ Hz), 128.5, 61.2 (d, $J_{CP} = 5.9$ Hz), 16.4 (d, $J_{CP} = 6.5$ Hz). The enantiomeric excess was determined by Daicel Chiralcel AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 19.7 min, t (major) = 25.9 min. HRMS (ESI-ion trap) m/z: [M+H]⁺ calcd for C₁₆H₁₇ClO₂P, 307.0649; found 307.0649.

Ethyl (1-(4-bromophenyl)vinyl)(phenyl)phosphinate (3ja)

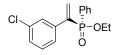
General procedure was used with 4-bromophenylacetylene (45.2 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 80 °C for 20 h to afford **3ja** as yellow oil (69 mg, 79% yield, 79% ee). [α]²⁰_D = -3.7 (c 1, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.72 (dd, *J* = 12.1, 7.6 Hz, 2H), 7.54 – 7.48 (m, 1H), 7.46 – 7.35 (m, 4H), 7.33 – 7.22 (m, 2H), 6.25 (d, *J* = 19.8 Hz, 1H), 6.10 (d, *J* = 40.3 Hz, 1H), 4.22 – 3.99 (m, 2H), 1.34 (t, *J* = 7.1 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 30.2. ¹³C NMR (125 MHz, CDCl₃) δ 142.2 (d, *J*_{CP} = 126.5 Hz), 136.0 (d, *J*_{CP} = 11.7 Hz), 132.3 (d, *J*_{CP} = 2.7 Hz), 131.8 (d, *J*_{CP} = 9.9 Hz), 131.5, 131.4, 130.1 (d, *J*_{CP} = 6.4 Hz). The enantiomeric excess was determined by Daicel Chiralcel AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, λ = 254 nm, t (minor) = 22.0 min, t (major) = 30.0 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₆H₁₇BrO₂P, 351.0144; found 351.0144.

Ethyl phenyl(1-(4-(trifluoromethyl)phenyl)vinyl)phosphinate (3ka)

General procedure was used with 4-trifluoromethylphenylacetylene (42.5 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 80 °C for 20 h to afford **3ka** as yellow oil (35.8 mg, 42% yield, 82% ee). $[\alpha]^{20}_{D} = -1.2$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.77 – 7.65

(m, 2H), 7.58 – 7.46 (m, 5H), 7.45 – 7.36 (m, 2H), 6.27 (dd, J = 19.9, 1.2 Hz, 1H), 6.13 (dd, J = 40.1, 1.2 Hz, 1H), 4.23 – 3.98 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) 30.1. ¹³C NMR (125 MHz, CDCl₃) δ 142.4 (d, $J_{CP} = 126.3$ Hz), 140.8 (d, $J_{CP} = 11.7$ Hz), 132.5 (d, $J_{CP} = 2.2$ Hz), 132.4,131.8 (d, $J_{CP} = 10.4$ Hz), 130.1 (q, $J_{C-F} = 32.8$ Hz), 129.9 (d, $J_{CP} = 135.5$ Hz), 128.5 (d, $J_{CP} = 13.4$ Hz), 128.2 (d, $J_{CP} = 4.4$ Hz), 125.3 (q, $J_{C-F} = 3.8$ Hz), 124.0 (q, $J_{C-F} = 274.6$ Hz), 61.4 (d, $J_{CP} = 5.7$ Hz), 16.4 (d, $J_{CP} = 6.6$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7. The enantiomeric excess was determined by Daicel Chiralcel AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 16.7 min, t (major) = 20.2 min. HRMS (ESI-ion trap) m/z: [M+H]⁺ calcd for C₁₇H₁₇F₃O₂P, 341.0913; found 341.0912.

Ethyl (1-(4-methoxyphenyl)vinyl)(phenyl)phosphinate (3la)


General procedure was used with 4-ethynylanisole (33.0 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 80 °C for 20 h to afford **3la** as yellow oil (70.9 mg, 94% yield, 63% ee). [α]²⁰_D = 0.6 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.69 (m, 2H), 7.52 – 7.45 (m, 1H), 7.40 (td, *J* = 7.6, 3.5 Hz, 2H), 7.37 – 7.33 (m, 2H), 6.83 – 6.77 (m, 2H), 6.19 (dd, *J* = 19.9, 1.3 Hz, 1H), 6.07 (dd, *J* = 41.0, 1.3 Hz, 1H), 4.16 – 4.04 (m, 2H), 3.77 (s, 3H), 1.33 (t, *J* = 7.0 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 31.2. ¹³C NMR (125 MHz, CDCl₃) δ 159.5, 142.7 (d, *J*_{CP} = 124.9 Hz), 132.1 (d, *J*_{CP} = 2.7 Hz), 131.8 (d, *J*_{CP} = 10.0 Hz), 131.2, 130.2 (d, *J*_{CP} = 8.6 Hz), 129.4 (d, *J*_{CP} = 12.1 Hz), 128.7 (d, *J*_{CP} = 98.1 Hz), 128.6 (d, *J*_{CP} = 80.2 Hz), 113.7, 61.1 (d, *J*_{CP} = 5.9 Hz), 55.2, 16.4 (d, *J*_{CP} = 6.8 Hz). The enantiomeric excess was determined by Daicel Chiralcel AD-H (0.46 cm x 25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (minor) = 14.1 min, t (major) = 20.2 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₇H₂₀O₃P, 303.1145; found 303.1144.

Ethyl (1-(3-methoxyphenyl)vinyl)(phenyl)phosphinate (3ma)

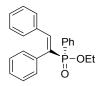
General procedure was used with 3-ethynylanisole (33.0 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 80 °C for 20 h to afford **3ma** as yellow oil (66.4 mg,

88% yield, 72% ee). [α]²⁰_D = 4.0 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.78 – 7.65 (m, 2H), 7.52 – 7.45 (m, 1H), 7.39 (td, J = 7.5, 3.5 Hz, 2H), 7.17 (t, J = 7.9 Hz, 1H), 6.95 (m, 1H), 6.92 (m, 1H), 6.81 (dd, J = 8.3, 2.4 Hz, 1H), 6.27 (dd, J = 19.8, 1.5 Hz, 1H), 6.12 (dd, J = 40.4, 1.5 Hz, 1H), 4.16 – 4.04 (m, 2H), 3.72 (s, 3H), 1.32 (t, J = 7.0 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 30.5. ¹³C NMR (126 MHz, CDCl₃) δ 159.3, 143.0 (d, J_{CP} = 124.9 Hz), 138.6 (d, J_{CP} = 11.8 Hz), 132.2 (d, J_{CP} = 2.7 Hz), 131.8 (d, J_{CP} = 10.0 Hz), 131.6 (d, J_{CP} = 8.3 Hz) , 130.5 (d, J_{CP} = 135.0 Hz), 128.8 (d, J_{CP} = 122.7 Hz), 128.5, 120.4 (d, J_{CP} = 4.6 Hz), 114.0, 113.3(d, J_{CP} = 5.5 Hz), 61.2 (d, J_{CP} = 5.6 Hz), 55.2, 16.5 (d, J_{CP} = 6.4 Hz). The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexaneds / IPA = 95 / 5, 1.0 mL/min, λ = 254 nm, t (major) = 10.7 min, t (minor) = 11.5 min.HRMS (ESI-ion trap) m/z: [M+H]⁺ calcd for C₁₇H₂₀O₃P, 303.1145; found 303.1144.

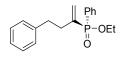
Ethyl (1-(3-chlorophenyl)vinyl)(phenyl)phosphinate (3na)

General procedure was used with 3-chlorophenylacetylene (34.1 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 80 °C for 20 h to afford **3na** as yellow oil (37.8 mg, 50% yield, 78% ee). [α]²⁰_D = -3.6 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.65 – 7.74 (m, 2H), 7.53 – 7.47 (m, 1H), 7.44 – 7.38 (m, 2H), 7.38 – 7.33 (m, 1H), 7.31 – 7.27 (m, 1H), 7.25 – 7.22 (m, 1H), 7.22 – 7.17 (m, 1H), 6.25 (dd, *J* = 19.8, 1.2 Hz, 1H), 6.09 (dd, *J* = 40.2, 1.2 Hz, 1H), 4.18 – 4.00 (m, 2H), 1.33 (t, *J* = 7.03 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 30.2. ¹³C NMR (125 MHz, CDCl₃) δ 142.2 (d, *J*_{CP} = 126.5 Hz), 138.8 (d, *J*_{CP} = 12.0 Hz), 134.1, 132.4 (d, *J*_{CP} = 2.8 Hz), 132.0 (d, *J*_{CP} = 8.2 Hz), 131.8 (d, *J*_{CP} = 10.1 Hz), 130.0 (d, *J*_{CP} = 135.4 Hz), 129.5, 128.4 (d, *J*_{CP} = 12.6 Hz), 128.2, 127.9 (d, *J*_{CP} = 5.1 Hz), 126.1 (d, *J*_{CP} = 4.5 Hz), 61.3 (d, *J*_{CP} = 6.0 Hz), 16.4 (d, *J*_{CP} = 6.6 Hz). The enantiomeric excess was determined by Daicel Chiralcel AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, λ = 254 nm, t (minor) = 14.2 min, t (major) = 16.0 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₆H₁₇ClO₂P, 307.0649; found 307.0649.

Ethyl phenyl(1-(thiophen-2-yl)vinyl)phosphinate (30a)


General procedure was used with 2-ethynylthiophene (27 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 80 °C for 20 h to afford **30a** as yellow oil (50.7 mg, 73% yield, 84% ee). [α]²⁰_D = 5.4 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.84 – 7.68 (m, 2H), 7.54 – 7.46 (m, 2H), 7.44 – 7.39 (m, 2H), 7.25 – 7.21 (m, 1H), 7.21 – 7.16 (m, 1H), 6.25 (d, *J* = 22.4 Hz, 1H), 6.19 (s, 1H), 4.18 – 4.07 (m, 2H), 1.35 (t, *J* = 6.9 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 30.7. ¹³C NMR (125 MHz, CDCl₃) δ 137.1 (d, *J*_{CP} = 81.1 Hz), 136.6 (d, *J*_{CP} = 32.4 Hz), 132.2 (d, *J*_{CP} = 2.8 Hz), 131.6 (d, *J*_{CP} = 10.4 Hz), 130.6 (d, *J*_{CP} = 136.2 Hz), 129.4 (d, *J*_{CP} = 7.6 Hz), 128.4 (d, *J*_{CP} = 12.8 Hz), 126.5 (d, *J*_{CP} = 6.6 Hz), 125.6, 123.9 (d, *J*_{CP} = 4.6 Hz), 61.2 (d, *J*_{CP} = 5.6 Hz), 16.4 (d, *J*_{CP} = 6.4 Hz). The enantiomeric excess was determined by Daicel Chiralcel AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, λ = 254 nm, t (minor) = 23.8 min, t (major) = 28.4 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₄H₁₆O₂PS, 279.0603; found 279.0602.

Ethyl phenyl(1-(pyridin-3-yl)vinyl)phosphinate (3pa)


General procedure was used with 3-ethynylpyridine (25.7 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 80 °C for 20 h to afford **3pa** as yellow oil (30.0 mg, 44% yield, 86% ee). [α]²⁰_D = -2.3 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.53 (d, *J* = 21.0 Hz, 2H), 7.82 – 7.73 (m, 1H), 7.73 – 7.63 (m, 2H), 7.53 – 7.45 (m, 1H), 7.40 (td, *J* = 7.6, 3.6 Hz, 2H), 7.21 (dd, *J* = 7.7, 4.8 Hz, 1H), 6.29 (dd, *J* = 19.8, 1.1 Hz, 1H), 6.12 (dd, *J* = 40.1, 1.1 Hz, 1H), 4.20 – 3.95 (m, 2H), 1.35 (t, *J* = 7.6 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 29.9. ¹³C NMR (125 MHz, CDCl₃) δ 149.2, 148.5 (d, *J*_{CP} = 5.6 Hz), 140.4 (d, *J*_{CP} = 126.7 Hz), 135.3 (d, *J*_{CP} = 3.8 Hz), 132.5 (d, *J*_{CP} = 2.7 Hz), 131.8 (d, *J*_{CP} = 10.0 Hz), 129.7 (d, *J*_{CP} = 135.4 Hz), 128.6 (d, *J*_{CP} = 12.8 Hz), 123.0, 61.4 (d, *J*_{CP} = 6.0 Hz), 16.4 (d, *J*_{CP} = 6.4 Hz). The enantiomeric excess was determined by Daicel Chiralcel AD (0.46 cm x 25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (minor) = 18.9 min, t (major) = 20.0 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₅H₁₇NO₂P, 274.0991; found 274.0990.

Ethyl (Z)-(1,2-diphenylvinyl)(phenyl)phosphinate (3qa)

General procedure was used with diphenylacetylene (44.5 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 80 °C for 20 h to afford **3qa** as yellow oil (60.0 mg, 69% yield, 61% ee). [α]²⁰_D = 25.3 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 21.9 Hz, 1H), 7.53 – 7.64 (m, 2H), 7.46 (t, *J* = 7.1 Hz, 1H), 7.34 (td, *J* = 7.6, 3.3 Hz, 2H), 7.29 – 7.22 (m, 3H), 7.19 – 7.14 (m, 1H), 7.07 – 7.14 (m, 2H), 7.08 – 7.01 (m, 2H), 6.98 (m, 2H), 4.22 – 4.04 (m, 2H), 1.34 (t, *J* = 7.0 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 30.7. ¹³C NMR (125 MHz, CDCl₃) δ 142.6 (d, *J*_{CP} = 10.0 Hz), 135.5 (d, *J*_{CP} = 9.1 Hz), 134.7 (d, *J*_{CP} = 19.0 Hz), 134.3 (d, *J*_{CP} = 127.1 Hz), 132.0, 131.9, 131.8 (d, *J*_{CP} = 2.6 Hz), 130.2, 130.1 (d, *J*_{CP} = 136.6 Hz), 129.4 (d, *J*_{CP} = 4.5 Hz), 128.6, 128.4 (d, *J*_{CP} = 112.2 Hz), 128.1, 127.6 (d, *J*_{CP} = 2.7 Hz), 60.9 (d, *J*_{CP} = 6.8 Hz), 16.4 (d, *J*_{CP} = 7.0 Hz). The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 254 nm, t (major) = 12.5 min, t (minor) = 13.7 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₂₂H₂₂O₂P, 349.1352; found 349.1352.

Ethyl phenyl(4-phenylbut-1-en-2-yl)phosphinate (3ra)

General procedure was used with 4-phenyl-1-butyne (32.5 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 60 °C for 20 h to afford **3ra** as yellow oil (45.0 mg, 60% yield, 84% ee). [α]²⁰_D = -3.6 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.82 – 7. 70 (m, 2H), 7.57 – 7.51 (m, 1H), 7.47 (td, *J* = 7.5, 3.4 Hz, 2H), 7.24 (m, 2H), 7.16 (m, 1H), 7.09 (m, 2H), 6.02 (dd, *J* = 21.1, 0.8 Hz, 1H), 5.78 (dd, *J* = 43.5, 0.8 Hz, 1H), 4.16 – 3.94 (m, 2H), 2.82 – 2.64 (m, 2H), 2.60 – 2.40 (m, 2H), 1.33 (t, *J* = 7.0 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 32.8. ¹³C NMR (125 MHz, CDCl₃) δ 142.2, 141.3, 141.0, 132.2 (d, *J*_{CP} = 2.8 Hz), 131.8 (d, *J*_{CP} = 10.1 Hz), 130.3 (d, *J*_{CP} = 131.7 Hz), 128.7 (d, *J*_{CP} = 9.0 Hz), 128.5 (d, *J*_{CP} = 12.7 Hz), 128.3 (d, *J*_{CP} = 4.6 Hz), 125.9, 60.8 (d, *J*_{CP} = 5.5 Hz), 33.1 (d, *J*_{CP} = 11.8 Hz), 16.4 (d, *J*_{CP} = 6.3 Hz). The enantiomeric excess was determined by Daicel Chiralcel AD-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ =

250 nm, t (minor) = 24.6 min, t (major) = 26.4 min. HRMS (ESI-ion trap) m/z: [M+H]⁺ calcd for C₁₈H₂₂O₂P, 301.1352; found 301.1354.

Ethyl (1-(cyclohex-1-en-1-yl)vinyl)(phenyl)phosphinate (3sa)

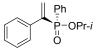
General procedure was used with 1-ethynylcyclohexene (26.5 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 60 °C for 20 h to afford **3sa** as colorless oil (38.0 mg, 55% yield, 51% ee). [α]²⁰_D = -4.8 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.81 – 7.70 (m, 2H), 7.54 – 7.47 (m, 1H), 7.47 – 7.36 (m, 2H), 6.22 (m, 1H), 5.92 (d, *J* = 8.2 Hz, 1H), 5.87 (d, *J* = 28.7 Hz, 1H), 4.16 – 3.95 (m, 2H), 2.12 – 2.08 (m, 2H), 2.08 – 2.01 (m, 2H), 1.67 – 1.55 (m, 2H), 1.55 – 1.45 (m, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 31.0. ¹³C NMR (125 MHz, CDCl₃) δ 143.4 (d, *J*_{CP} = 122 Hz), 132.9 (d, *J*_{CP} = 10.8 Hz), 131.9 (d, *J*_{CP} = 2.7 Hz), 131.5 (d, *J*_{CP} = 133.9 Hz), 131.4 (d, *J*_{CP} = 5.9 Hz), 26.9 (d, *J*_{CP} = 6.2 Hz), 25.8, 22.6, 21.6, 16.4 (d, *J*_{CP} = 6.8 Hz). The enantiomeric excess was determined by Daicel Chiralcel AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, λ = 254 nm, t (minor) = 12.2 min, t (major) = 13.3 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₆H₂₂O₂P, 277.1352; found 277.1352.

Ethyl dec-1-en-5-yn-2-yl(phenyl)phosphinate (3ta)

General procedure was used with 1,5-decadiyne (33.5 mg, 0.25 mmol, 1 equiv) and ethyl phenylphosphinatess (170 mg, 1 mmol, 4 equiv) at 80 °C for 20 h to afford **3ta** as colorless oil (51.7 mg, 68% yield, 74% ee). $[\alpha]^{20}_{D} = 0.4$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.82 – 7.69 (m, 2H), 7.57 – 7.48 (m, 1H), 7.48 – 7.40 (m, 2H), 6.04 (d, J = 20.9 Hz, 1H), 5.86 (dd, J = 43.1, 1.2 Hz, 1H), 4.21 – 3.87 (m, 2H), 2.43 – 2.31 (m, 2H), 2.31 – 2.24 (m, 2H), 2.13 – 1.99 (m, 2H), 1.43 – 1.28 (m, 7H), 0.86 (t, J = 7.2 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 32.5. ¹³C NMR (125 MHz, CDCl₃) δ

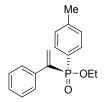
140.7 (d, $J_{CP} = 125.5$ Hz), 132.1 (d, $J_{CP} = 2.6$ Hz), 131.7 (d, $J_{CP} = 10.0$ Hz), 130.3 (d, $J_{CP} = 132.2$ Hz), 129.3 (d, $J_{CP} = 8.5$ Hz), 128.4 (d, $J_{CP} = 12.8$ Hz), 81.2, 78.5, 60.8 (d, $J_{CP} = 6.1$ Hz), 31.1, 31.0, 30.9, 21.8, 18.3, 17.0 (dd, $J_{CP} = 163.0$, 5.8 Hz), 13.5. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 9.3, t (minor) = 10.4 min. HRMS (ESI-ion trap) m/z: [M+H]⁺ calcd for C₁₈H₂₆O₂P, 305.1665; found 305.1665.

Methyl phenyl(1-phenylvinyl)phosphinate (3ab)


General procedure was used with phenylacetylene (25.5 mg, 0.25 mmol, 1 equiv) and methyl phenylphosphinates (156 mg, 1 mmol, 4 equiv) at 60 °C for 20 h to afford **3ab** as colorless oil (50.0 mg, 78% yield, 71% ee). [α]²⁰_D = 4.7 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.66 (m, 2H), 7.53 – 7.46 (m, 1H), 7.45 – 7.34 (m, 4H), 7.31 – 7.25 (m, 3H), 6.26 (dd, *J* = 20.1, 1.4 Hz, 1H), 6.13 (dd, *J* = 41.0, 1.4 Hz, 1H), 3.74 (d, *J* = 11.1 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 32.7. ¹³C NMR (125 MHz, CDCl₃) δ 142.6 (d, *J*_{CP} = 123.2 Hz), 137.0 (d, *J*_{CP} = 11.6 Hz), 132.3 (d, *J*_{CP} = 2.7 Hz), 131.9 (d, *J*_{CP} = 10.1 Hz), 131.8 (d, *J*_{CP} = 8.7 Hz), 129.7 (d, *J*_{CP} = 135.1 Hz), 128.4 (d, *J*_{CP} = 13.4 Hz), 128.3, 128.1, 127.8 (d, *J*_{CP} = 4.7 Hz), 51.5 (d, *J*_{CP} = 6.1 Hz). The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 254 nm, t (major) = 13.3 min, t (minor) = 14.1 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₅H₁₆O₂P, 259.0882; found 259.0883.

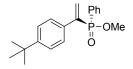
Propyl phenyl(1-phenylvinyl)phosphinate (3ac)

General procedure was used with phenylacetylene (25.5 mg, 0.25 mmol, 1 equiv) and propyl phenylphosphinates (184 mg, 1 mmol, 4 equiv) at 60 °C for 20 h to afford **3ac** as colorless oil (50.8 mg, 71% yield, 80% ee). [α]²⁰_D = 3.8 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.77 – 7.65 (m, 2H), 7.52 – 7.45 (m, 1H), 7.43 – 7.35 (m, 4H), 7.31 – 7.23 (m, 3H), 6.28 (dd, *J* = 20.0, 1.5 Hz, 1H), 6.12 (dd, *J* = 40.7, 1.5 Hz, 1H), 4.07 – 3.88 (m, 2H), 1.76 – 1.64 (m, 2H), 0.93 (t, *J* = 7.4 Hz, 3H). ³¹P NMR (200


MHz, CDCl₃) δ 30.6. ¹³C NMR (125 MHz, CDCl₃) δ 143.1 (d, $J_{CP} = 124.9$ Hz), 137.1 (d, $J_{CP} = 11.7$ Hz), 132.1 (d, $J_{CP} = 2.7$ Hz), 131.8 (d, $J_{CP} = 10.0$ Hz), 131.4 (d, $J_{CP} = 8.3$ Hz), 130.4 (d, $J_{CP} = 134.9$ Hz), 128.3 (d, $J_{CP} = 12.8$ Hz), 128.2, 128.0, 127.8 (d, $J_{CP} = 5.0$ Hz), 66.5 (d, $J_{CP} = 6.1$ Hz), 23.8 (d, $J_{CP} = 6.7$ Hz), 10.1. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.5 min, t (minor) = 14.5 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₇H₂₀O₂P, 287.1195; found 287.1195.

Isopropyl phenyl(1-phenylvinyl)phosphinate (3ad)

General procedure was used with phenylacetylene (25.5 mg, 0.25 mmol, 1 equiv) and isopropyl phenylphosphinates (184 mg, 1 mmol, 4 equiv) at 60 °C for 20 h to afford **3ad** as colorless oil (22.9 mg, 32% yield, 73% ee). [α]²⁰_D = 4.0 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.69 (m, 2H), 7.51 – 7.45 (m, 1H), 7.43 – 7.35 (m, 4H), 7.31 – 7.17 (m, 3H), 6.24 (dd, *J* = 20.0, 1.5 Hz, 1H), 6.10 (dd, *J* = 40.7, 1.5 Hz, 1H), 4.78 – 4.57 (m, 1H), 1.32 (d, *J* = 6.2 Hz, 3H), 1.27 (d, *J* = 6.2 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 29.4. ¹³C NMR (125 MHz, CDCl₃) δ 143.7 (d, *J*_{CP} = 124.7 Hz), 137.2 (d, *J*_{CP} = 11.9 Hz), 132.0 (d, *J*_{CP} = 2.6 Hz), 131.8 (d, *J*_{CP} = 10.3 Hz), 131.0 (d, *J*_{CP} = 8.2 Hz), 130.8, 128.2, 128.1 (d, *J*_{CP} = 40.8 Hz), 127.9, 127.8, 70.4 (d, *J*_{CP} = 6.2 Hz), 24.2 (q, *J*_{CP} = 2.0 Hz). The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 254 nm, t (major) = 15.8 min, t (minor) = 22.7 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₇H₂₀O₂P, 287.1195; found 287.1194.


Ethyl (1-phenylvinyl)(p-tolyl)phosphinate (3ae)

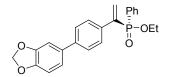
General procedure was used with phenylacetylene (25.5 mg, 0.25 mmol, 1 equiv) and ethyl *p*-tolylphosphinate (184 mg, 1 mmol, 4 equiv) at 80 °C for 20 h to afford **3ae** as colorless oil (33.6 mg, 43% yield, 37% ee). [α]²⁰_D = 1.0 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.64 – 7.56 (m, 2H), 7.43-7.37 (m, 2H), 7.30 – 7.25 (m, 3H), 7.24 – 7.18 (m, 2H), 6.24 (dd, *J* = 20.0, 1.6 Hz, 1H), 6.1 (dd, *J*

= 40.0, 1.6 Hz, 1H), 4.16 – 4.10 (m, 2H), 2.36 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 31.2. ¹³C NMR (125 MHz, CDCl₃) δ 143.3 (d, $J_{CP} = 125.0$ Hz), 142.7 (d, $J_{CP} = 2.8$ Hz), 137.2 (d, $J_{CP} = 11.8$ Hz), 131.8 (d, $J_{CP} = 10.0$ Hz), 131.1 (d, $J_{CP} = 8.2$ Hz), 129.1 (d, $J_{CP} = 13.5$ Hz), 128.2 128.0, 127.9, 127.8, 61.0 (d, $J_{CP} = 6.0$ Hz), 21.6, 16.4 (d, $J_{CP} = 6.5$ Hz). The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 13.7 min, t (minor) = 17.4 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₇H₂₀OP, 287.1195; found 287.1194.

Methyl (1-(4-(tert-butyl)phenyl)vinyl)(phenyl)phosphinate (3fb)

General procedure was used with 4-(tert-butyl)phenylacetylene (39.5 mg, 0.25 mmol, 1 equiv) and methyl phenylphosphinates (156 mg, 1 mmol, 4 equiv) at 60 °C for 20 h to afford **3fb** as colorless oil (40.0 mg, 51% yield, 71% ee). [α]²⁰_D = 2.9 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.78 – 7.70 (m, 2H), 7.55 – 7.46 (m, 1H), 7.45 – 7.38 (m, 2H), 7.36 – 7.27 (m, 4H), 6.22 (d, *J* = 1.2 Hz, 0.5H), 6.18 (d, *J* = 1.0 Hz, 1H), 6.10 (d, *J* = 1.3 Hz, 0.5H), 3.74 (d, *J* = 11.1, 3H), 1.28 (s, 9H). ³¹P NMR (200 MHz, CDCl₃) δ 33.2. ¹³C NMR (125 MHz, CDCl₃) δ 151.2, 142.2 (d, *J*_{CP} = 123.8 Hz), 133.9 (d, *J*_{CP} = 12.0 Hz), 132.2 (d, *J*_{CP} = 2.8 Hz), 131.8 (d, *J*_{CP} = 10.0 Hz), 131.2 (d, *J*_{CP} = 8.6 Hz), 130.0 (d, *J*_{CP} = 135.2 Hz), 128.4 (d, *J*_{CP} = 13.0 Hz), 127.4 (d, *J*_{CP} = 5.2 Hz), 125.3, 51.5 (d, *J*_{CP} = 6.3 Hz), 34.5, 31.2. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 254 nm, t (major) = 13.3 min, t (minor) = 14.1 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₁₉H₂₄O₂P, 315.1508; found 315.1509.

Methyl(phenyl)(1-phenylvinyl)phosphine oxide (3af)


General procedure was used with phenylacetylene (25.5 mg, 0.25 mmol, 1 equiv) and methyl(phenyl)phosphine oxide (140 mg, 1 mmol, 4 equiv) at 60 °C for 20 h to afford **3af** as colorless oil (17.0 mg, 28% yield, 54% ee). $[\alpha]^{20}_{D} = -4.1$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.76 –

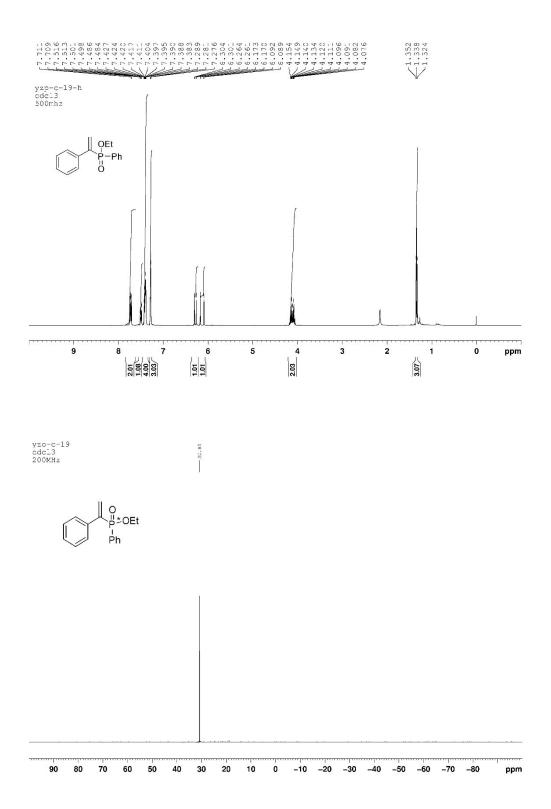
7.64 (m, 2H), 7.57 – 7.50 (m, 1H), 7.43-7.50 (m, 2H), 7.32 – 7.24 (m, 5H), 6.12 (dt, J = 8.3, 1.1 Hz, 1H), 6.07 (dd, J = 26.9, 1.1 Hz, 1H), 1.81 (d, J = 13.1 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 30.7. ¹³C NMR (125 MHz, CDCl₃) δ 145.8 (d, $J_{CP} = 89.1$ Hz), 137.5 (d, $J_{CP} = 11.0$ Hz), 132.7 (d, $J_{CP} = 100.8$ Hz), 131.8 (d, $J_{CP} = 2.7$ Hz), 130.7 (d, $J_{CP} = 9.4$ Hz), 129.6 (d, $J_{CP} = 8.2$ Hz), 128.5 (d, $J_{CP} = 11.6$ Hz), 128.4, 128.1, 127.8 (d, $J_{CP} = 4.5$ Hz), 15.2 (d, $J_{CP} = 74.4$ Hz). The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 23.4 min, t (minor) = 25.8 min. HRMS (ESI-ion trap) m/z: [M+H]⁺ calcd for C₁₅H₁₆OP, 243.0933; found 243.0933.

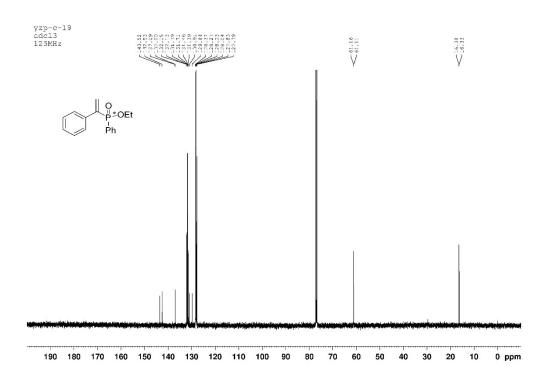
Ethyl (1-([1,1'-biphenyl]-4-yl)vinyl)(phenyl)phosphinate (4)

White solid (34.1 mg, 98% yield, 77% ee). Mp 86-87°C. $[\alpha]^{20}_{D} = -4.8$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.81 – 7.71 (m, 2H), 7.59 – 7.55 (m, 2H), 7.54 – 7.47 (m, 5H), 7.46 – 7.39 (m, 4H), 7.37 – 7.31 (m, 1H), 6.28 (d, *J* = 19.9 Hz, 1H), 6.19 (d, *J* = 40.7 Hz, 1H), 4.22 – 4.03 (m, 2H), 1.37 (t, *J* = 7.1 Hz, 3H). ³¹P NMR (200 MHz, CDCl₃) δ 30.9. ¹³C NMR (125 MHz, CDCl₃) δ 142.6 (d, *J* = 125.2 Hz), 140.8, 140.4, 136.0 (d, *J* = 11.8 Hz), 132.2 (d, *J* = 2.8 Hz), 131.8 (d, *J* = 10.1 Hz), 131.2 (d, *J* = 7.8 Hz), 130.5 (d, *J* = 134.8 Hz), 128.8, 128.4 (d, *J* = 12.8 Hz), 128.3, 128.2, 127.4, 127.0, 61.2 (d, *J* = 5.9 Hz), 16.4 (d, *J* = 6.5 Hz). The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 254 nm, t (minor) = 16.4min, t (major) = 17.8 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₂₂H₂₂O₂P, 349.1352; found 349.1347.

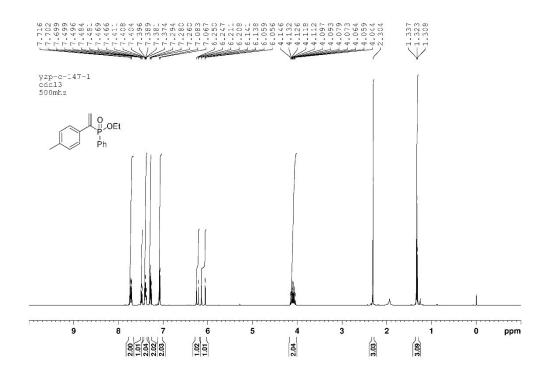
Ethyl (1-(4-(benzo[d][1,3]dioxol-5-yl)phenyl)vinyl)(phenyl)phosphinate (5)

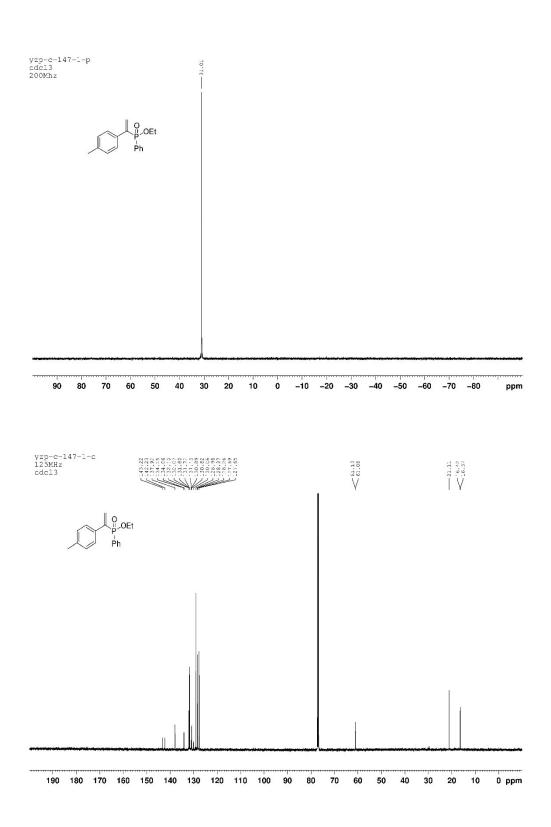
Yellow oil (30.0 mg, 77% yield, 77% ee). $[\alpha]^{20}{}_{D} = 11.0$ (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.82 - 7.68(m, 2H), 7.51 - 7.38 (m, 7H), 7.07 - 6.99 (m, 2H), 6.89 - 6.81 (m, 1H), 6.26 (d, J = 20.0 Hz, 1H), 6.16 (d, J = 40.0 Hz, 1H), 5.97 (s, 2H), 4.23 - 3.97 (m, 2H), 1.34 (t, J = 7.0 Hz, 3H)). ³¹P NMR (160 MHz, CDCl₃) δ 30.9. ¹³C NMR (100 MHz, CDCl₃) δ 147.6 (d, J = 93.4 Hz), 142.5 (d, J = 124.4 Hz), 140.5, 135.6 (d, J = 11.8 Hz), 134.7, 132.2 (d, J = 2.7 Hz), 131.8 (d, J = 10.1 Hz), 131.1 (d, J = 8.4 Hz), 130.4 (d, J = 135.4 Hz), 128.4, 128.3, 128.2 (d, J = 5.1), 126.6, 120.5 , 108.5, 107.4, 101.1, 61.2 (d, J = 6.0 Hz), 16.4 (d, J = 6.5 Hz). The enantiomeric excess was determined by Daicel Chiralcel AD-H (0.46 cm x 25 cm), Hexanes / IPA = 75 / 25, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 10.9min, t (major) = 14.1 min. HRMS (ESI-ion trap) m/z: [M+H]⁺ calcd for C₂₃H₂₂O₄P, 393.1250; found 393.1245.


Ethyl (S)-(2-(diphenylphosphaneyl)-1-phenylethyl)(phenyl)phosphinate (6)

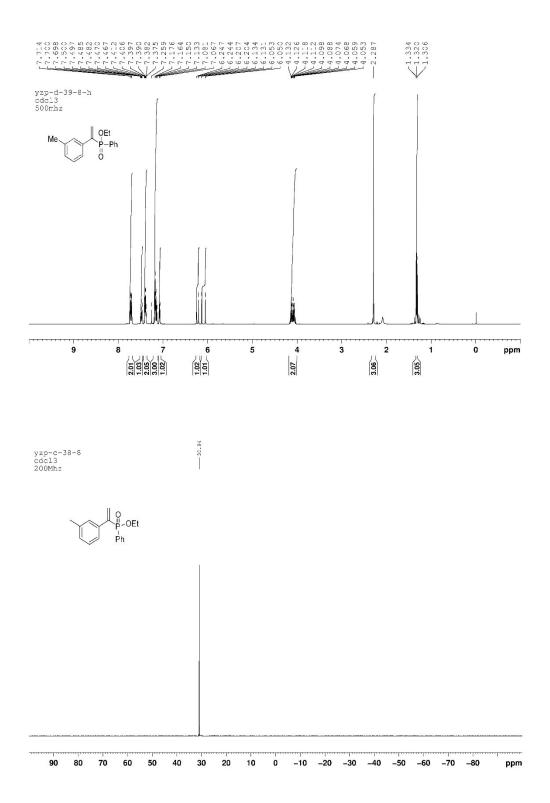

Colorless oil (42.0 mg, 92% yield, dr 3:2, major 79% ee, minor 79% ee). ¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.48 (m, 1.24H), 7.48 – 7.42 (m, 1.25H), 7.41 – 7.34 (m, 5H), 7.30 – 7.14 (m, 10.0H), 7.13 – 7.08 (m, 1.82H), 7.03 – 6.94 (m, 1.19H), 4.22 – 4.05 (m, 0.64H), 3.95 – 3.83 (m, 0.62H), 3.83 – 3.68 (m, 0.81H), 3.15 – 2.89 (m, 1.64H), 2.75 – 2.55 (m, 1.41H), 1.30 (t, *J* = 7.0 Hz, 1.88H), 1.07 (t, *J* = 7.0 Hz, 1.2H). ³¹P NMR (200 MHz, CDCl₃) δ 43.1, 42.9, 41.6, 41.4, -20.2, -20.3, -20.7, -20.9. ¹³C NMR (125 MHz, CDCl₃) δ 139.0 (d, *J* = 13.7 Hz), 136.8 (d, *J* = 15.0 Hz), 136.3 (d, *J* = 15.3 Hz), 135.2 (dd, *J* = 7.2, 3.1 Hz), 134.85 (t, *J* = 3.5 Hz), 133.8, 133.6, 133.4, 132.3 – 131.9 (m), 131.7 (d, *J* = 18.0 Hz), 130.1, 129.7 (d, *J* = 5.9 Hz), 129.6 (d, *J* = 6.0 Hz), 129.2, 129.1, 128.5 (d, *J* = 7.1Hz), 128.42 – 127.87 (m), 127.3 (d, *J* = 15.0 Hz), 43.8 (d, *J* = 14.5 Hz), 27.9 (d, *J* = 15.6 Hz), 27.5 (dd, *J* = 15.6, 3.4 Hz), 16.4 (d, *J* = 6.4 Hz), 16.2 (d, *J* = 6.2 Hz). The enantiomeric excess was determined by Daicel Chiralcel IA (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 210 nm, t1 (major) = 22.1 min, t1 (minor) = 24.5 min, t2 (major) = 27.6 min, t2 (minor) = 29.6 min. HRMS (ESI-ion trap) *m/z*: [M+H]⁺ calcd for C₂₈H₂₉O₂P₂, 459.1637; found 459.1630.

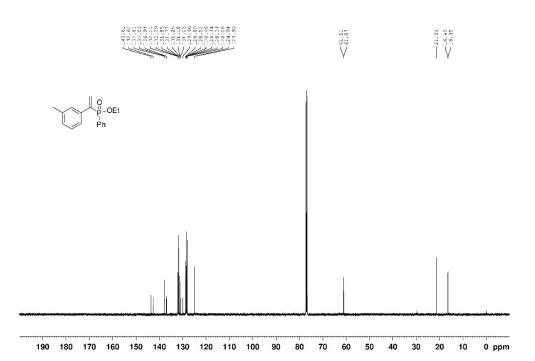
7. NMR spectrum

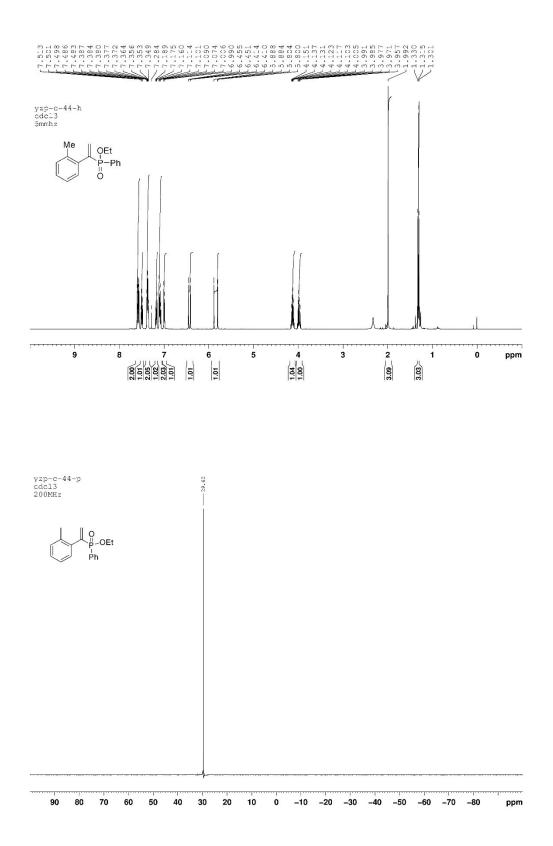

Ethyl phenyl(1-phenylvinyl)phosphinate (3aa)



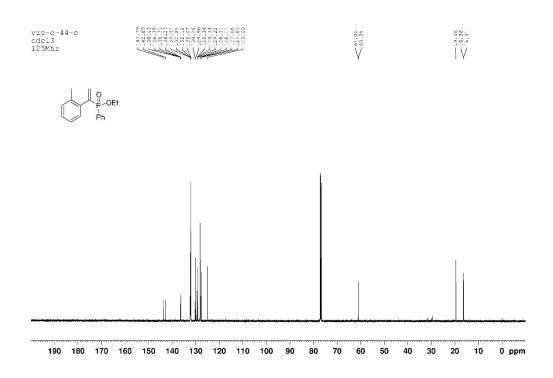
S25

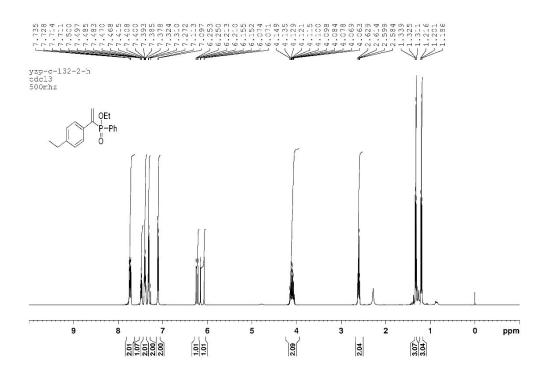


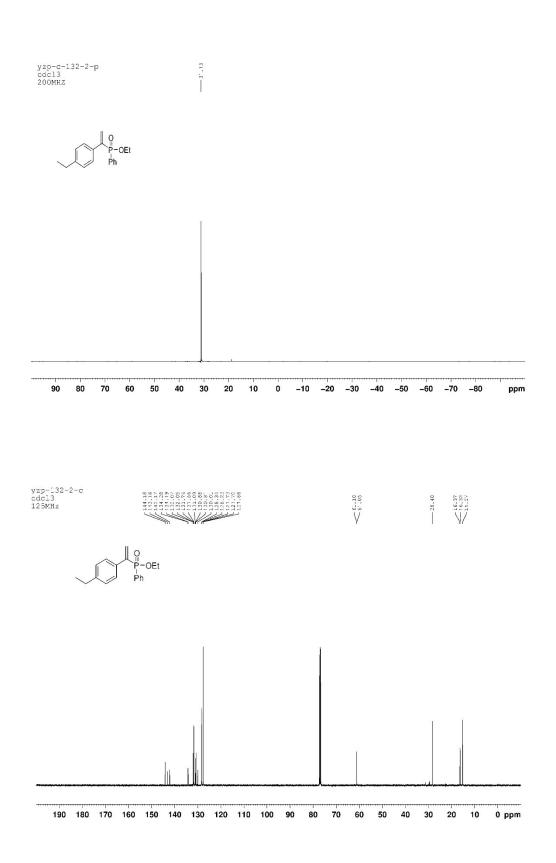

Ethyl phenyl(1-(p-tolyl)vinyl)phosphinate (3ba)

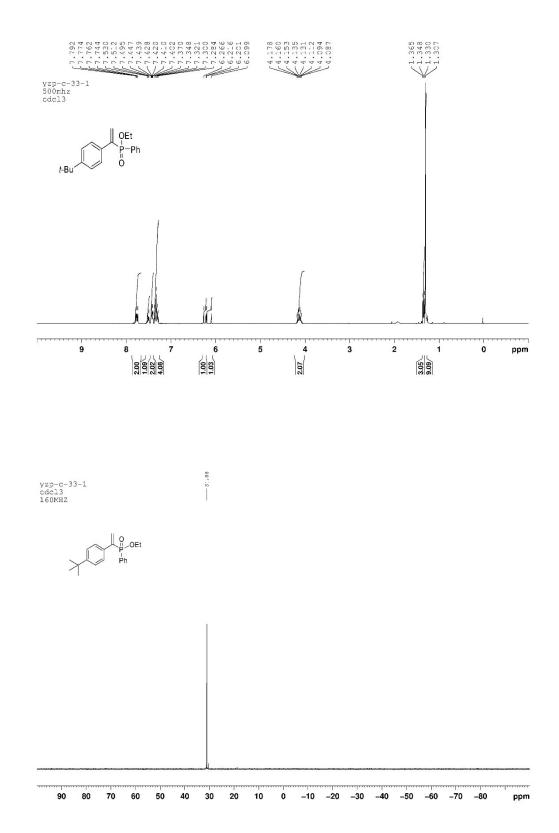


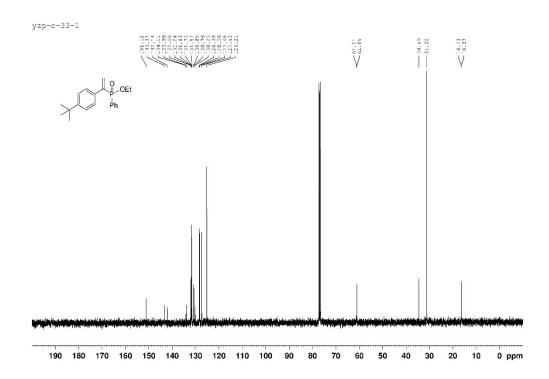
Ethyl phenyl(1-(*m*-tolyl)vinyl) phosphinate (3ca)

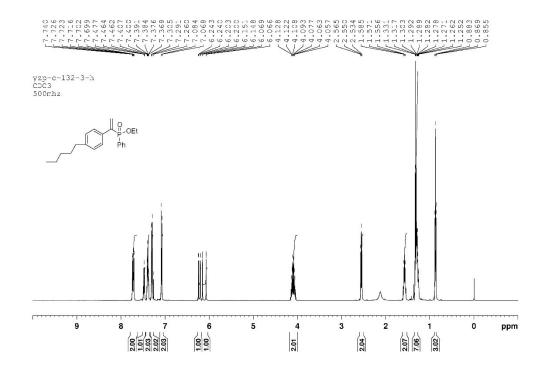


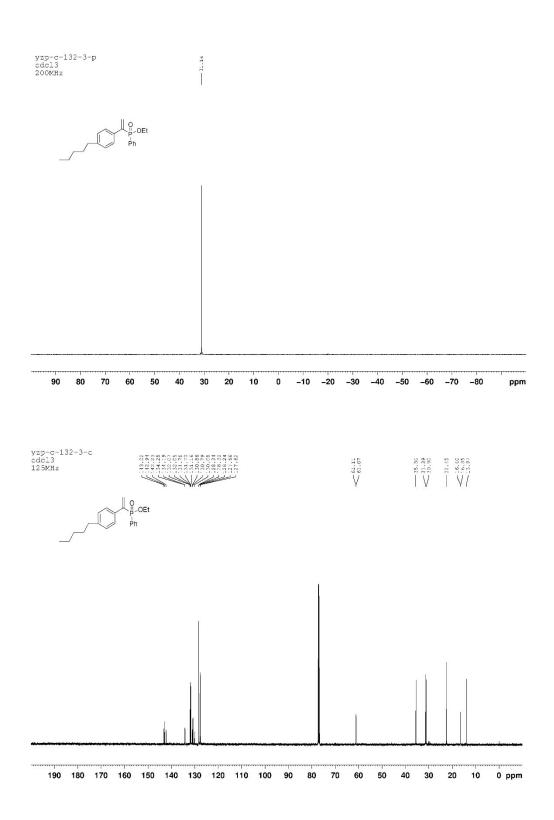

Ethyl phenyl(1-(o-tolyl)vinyl)phosphinate (3da)



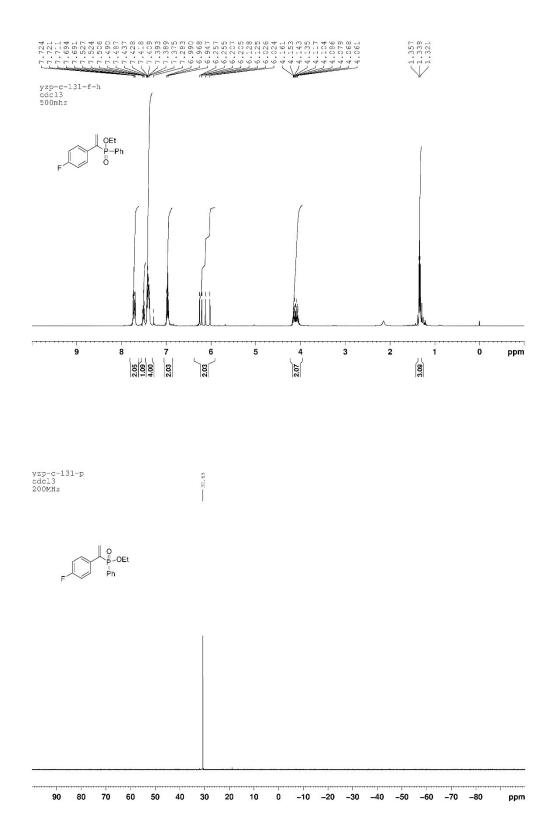

S30

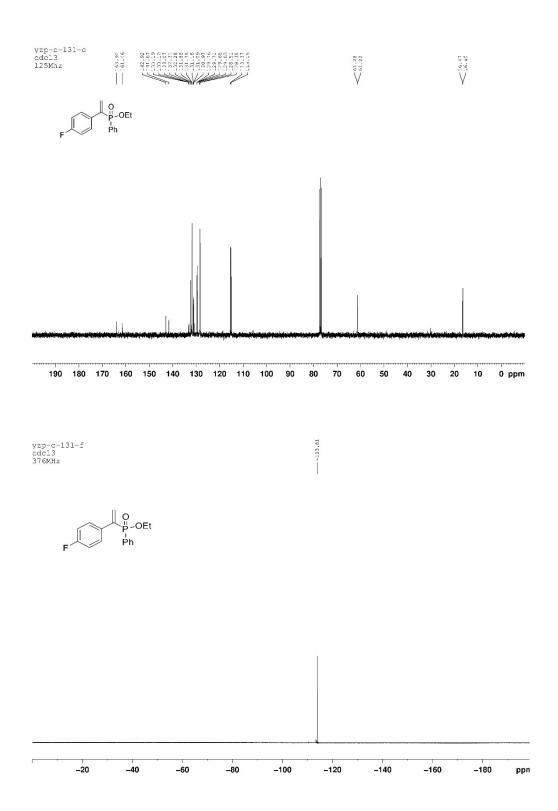

Ethyl (1-(4-ethylphenyl)vinyl)(phenyl)phosphinate (3ea)

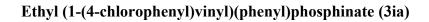


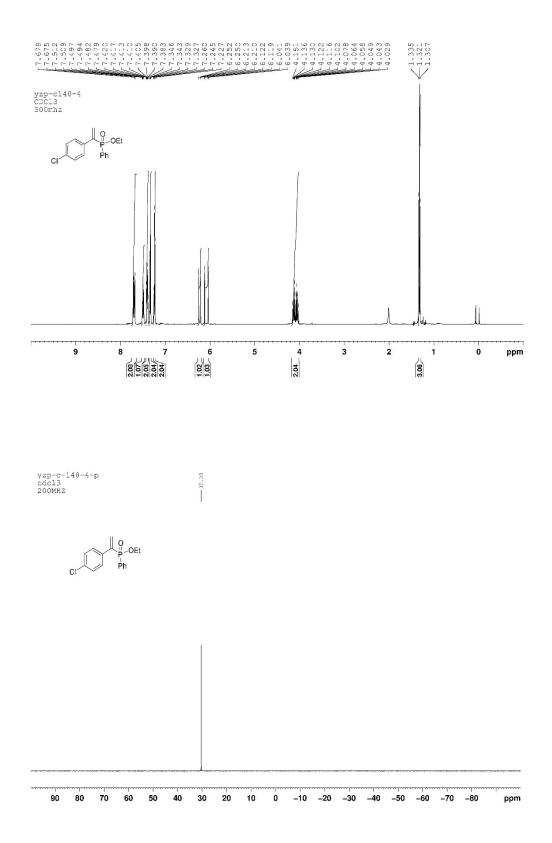


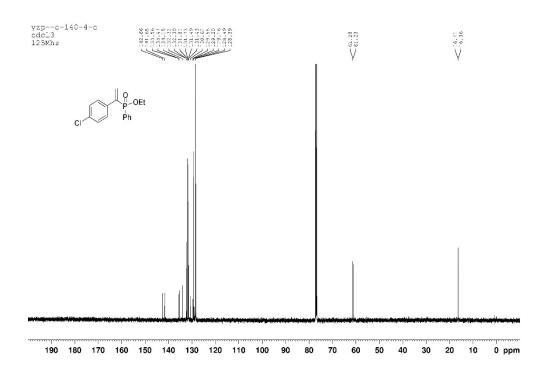
Ethyl (1-(4-(tert-butyl)phenyl)vinyl)(phenyl)phosphinate (3fa)

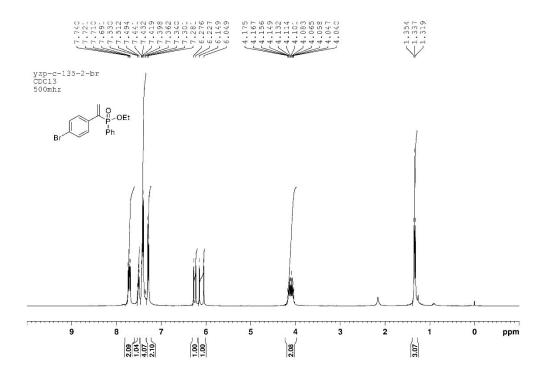


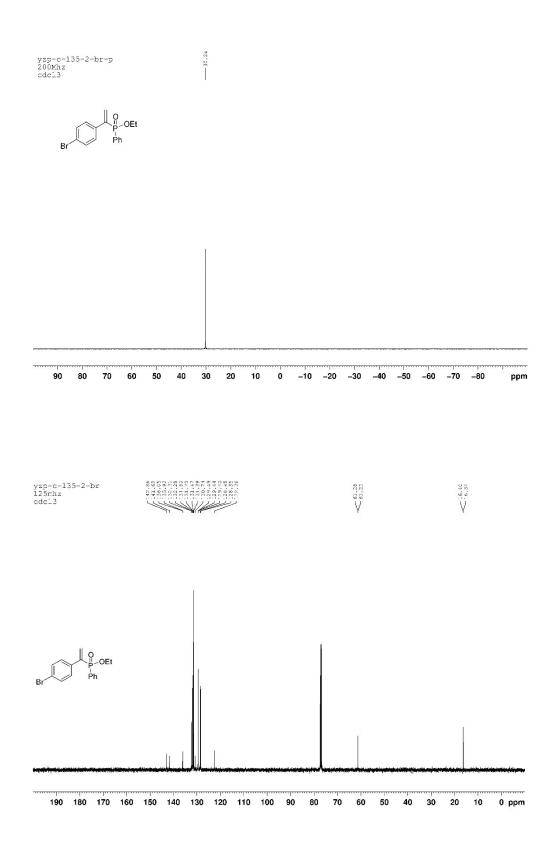

Ethyl (1-(4-pentylphenyl)vinyl)(phenyl)phosphinate (3ga)

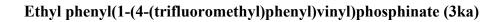


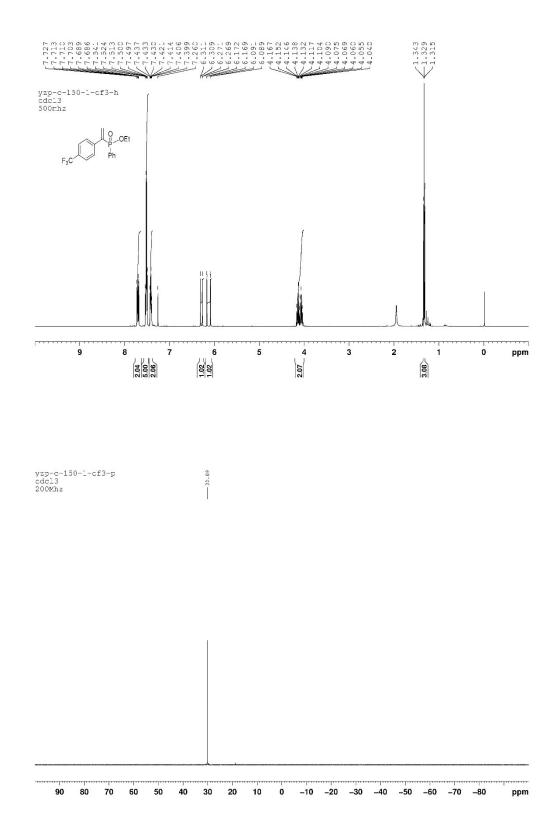


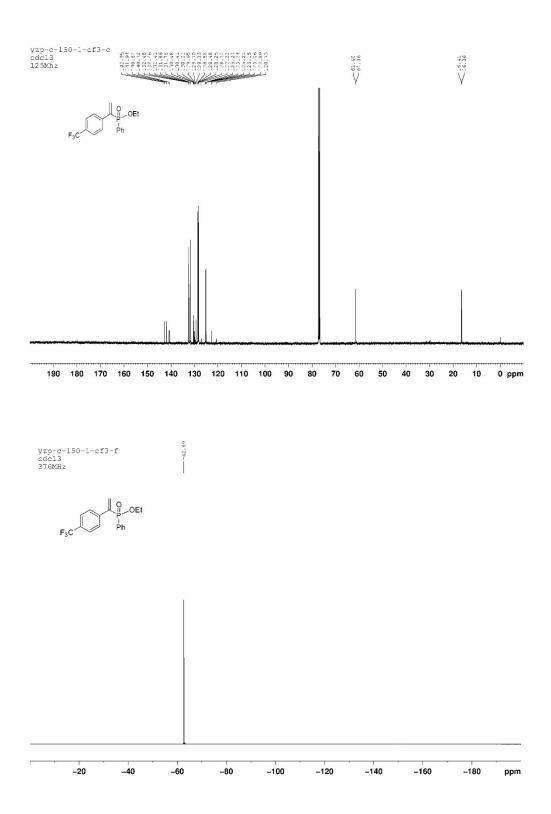

Ethyl (1-(4-fluorophenyl)vinyl)(phenyl)phosphinate (3ha)

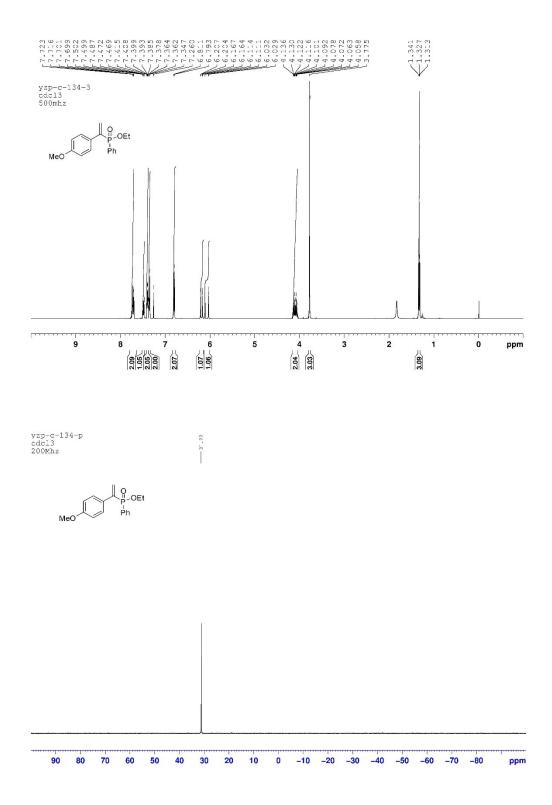


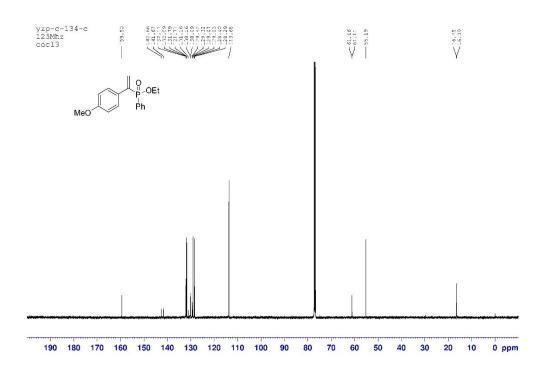


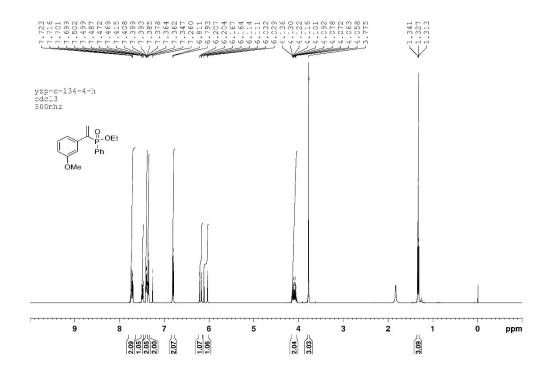


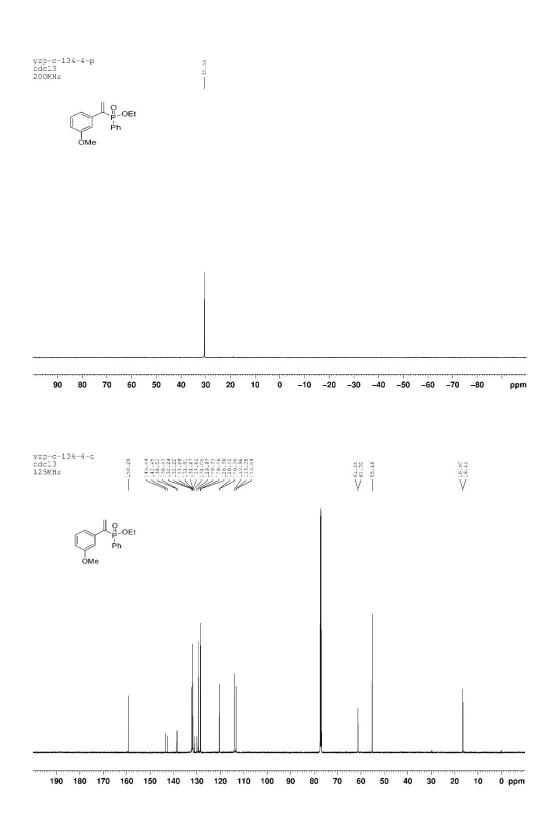


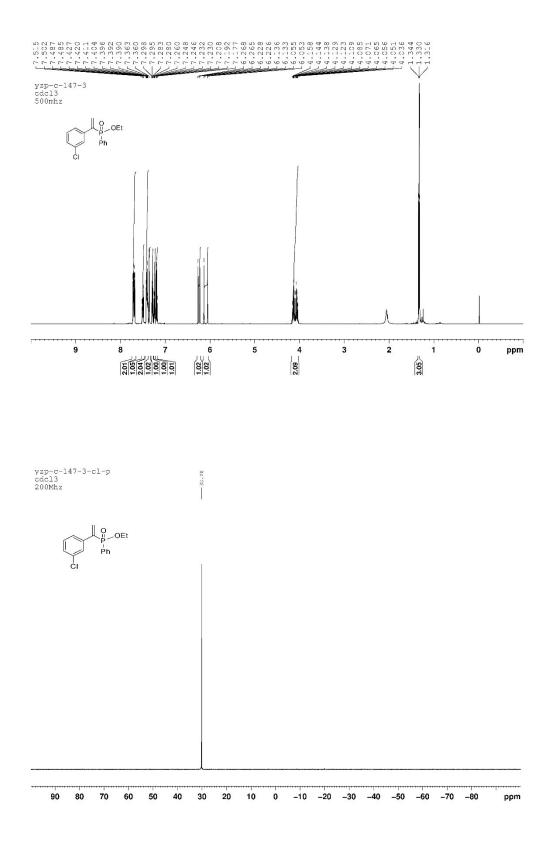

Ethyl (1-(4-bromophenyl)vinyl)(phenyl)phosphinate (3ja)

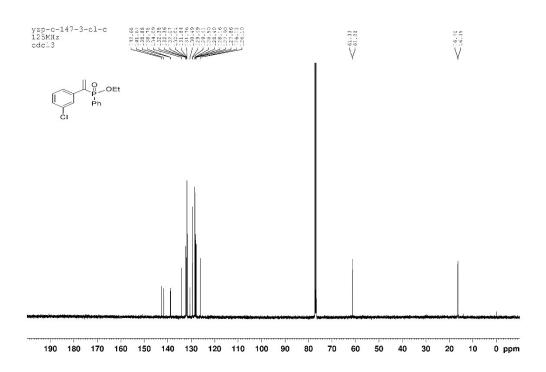


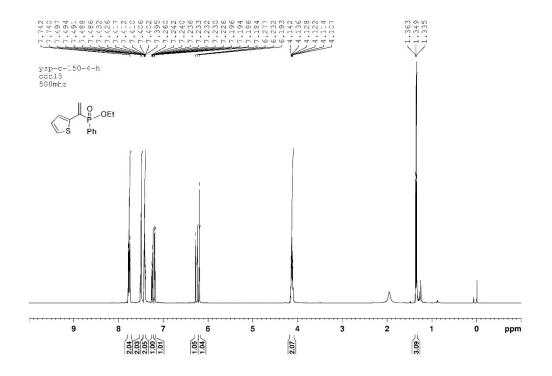


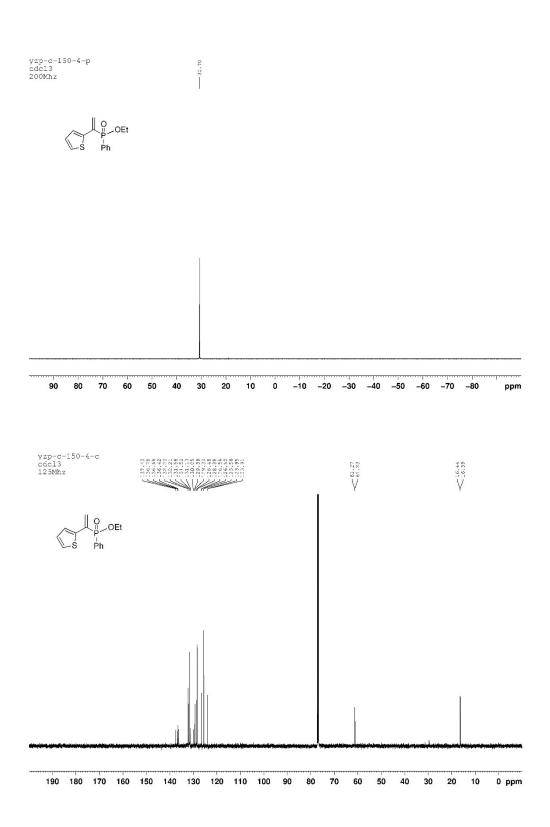


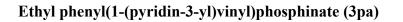

Ethyl (1-(4-methoxyphenyl)vinyl)(phenyl)phosphinate (3la)

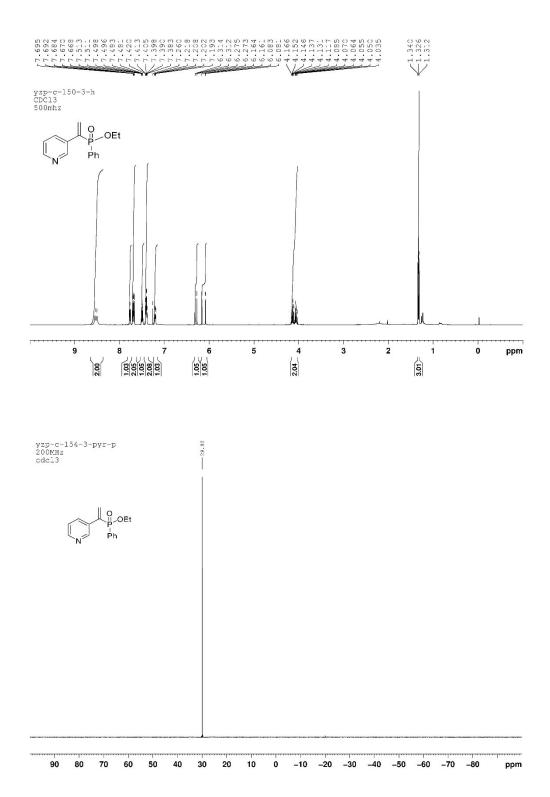


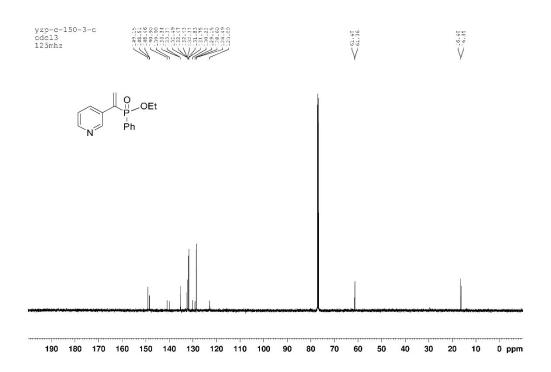

Ethyl (1-(3-methoxyphenyl)vinyl)(phenyl)phosphinate (3ma)

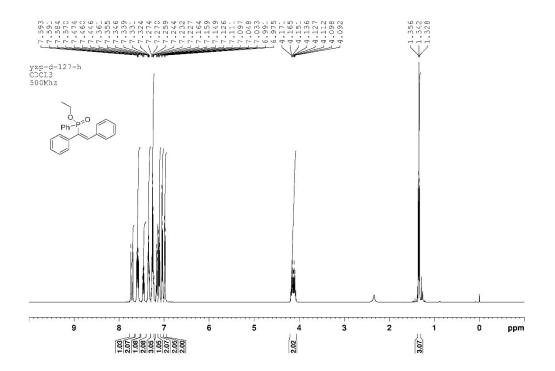


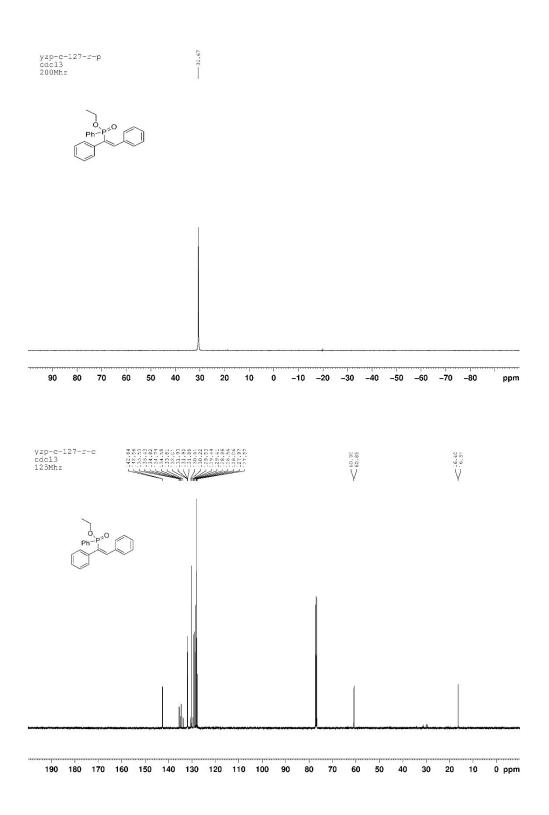


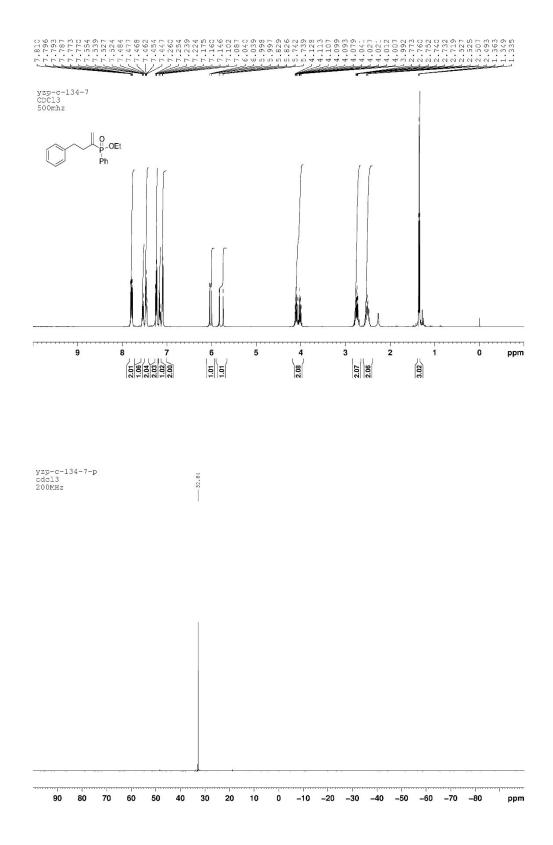


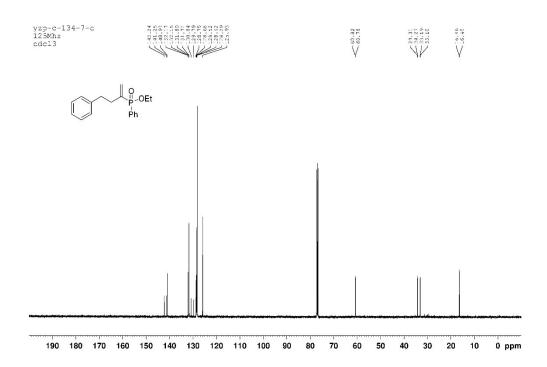


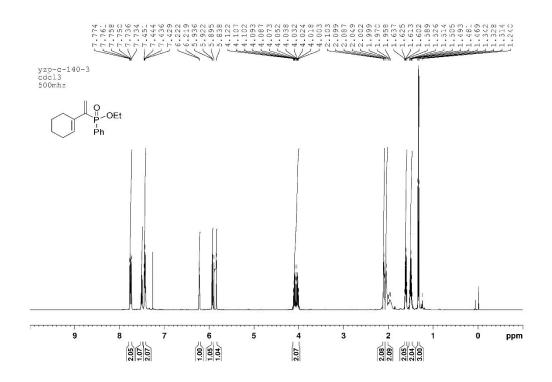

Ethyl phenyl(1-(thiophen-2-yl)vinyl)phosphinate (30a)

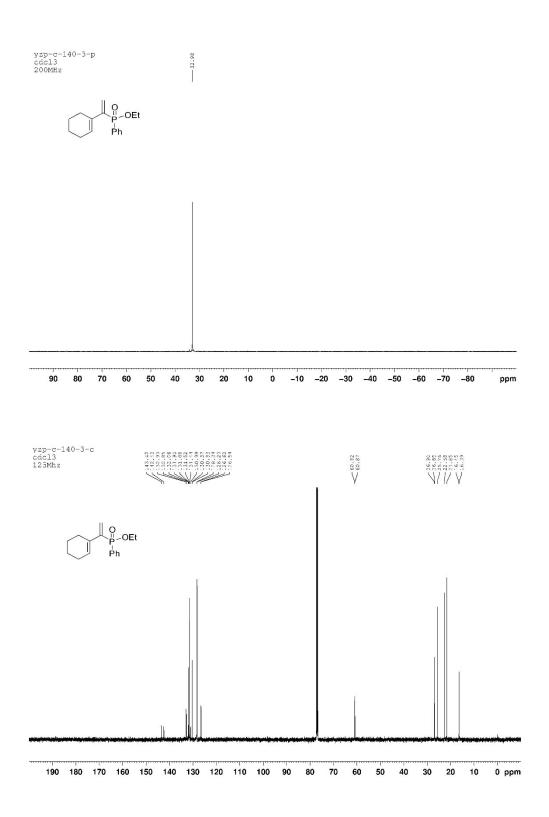


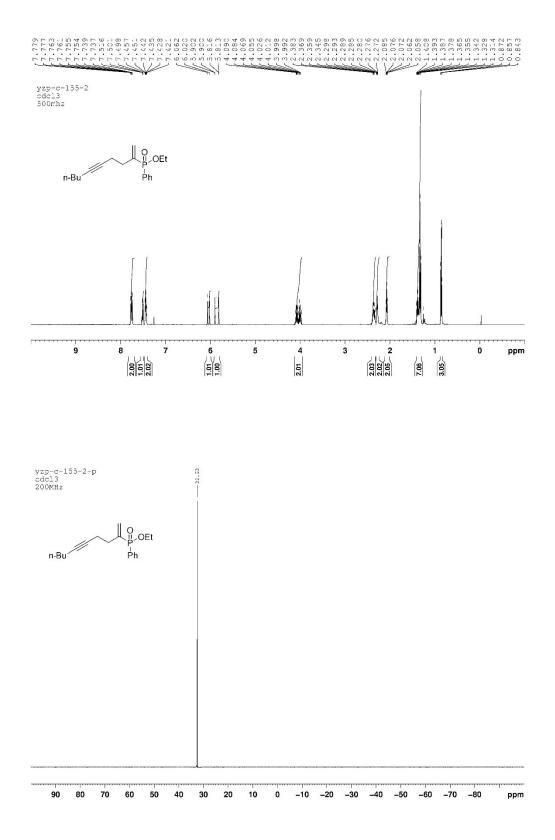


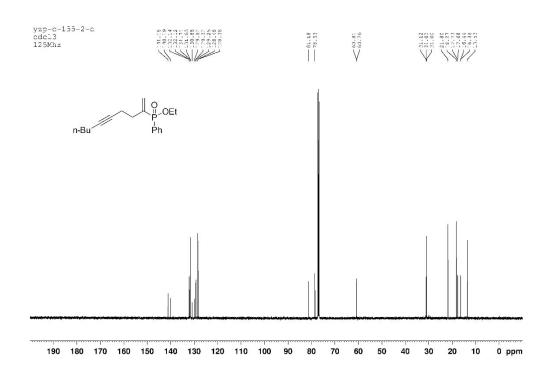


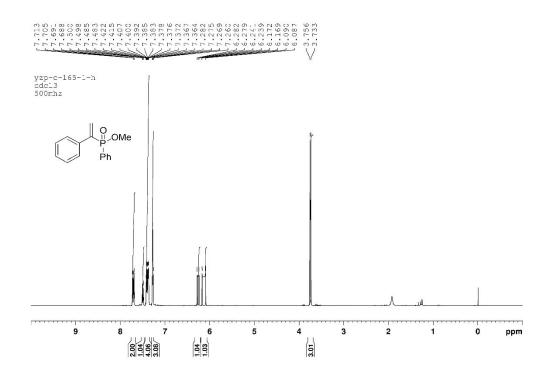

Ethyl (Z)-(1,2-diphenylvinyl)(phenyl)phosphinate (3qa)

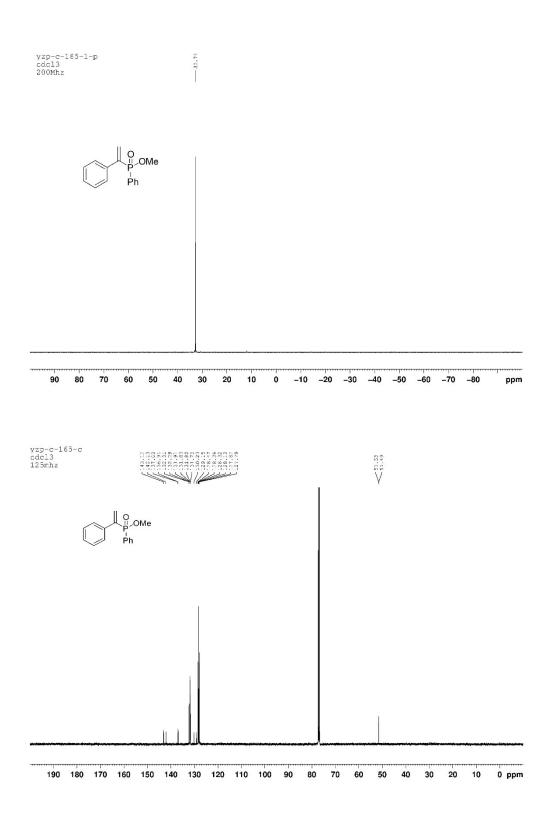


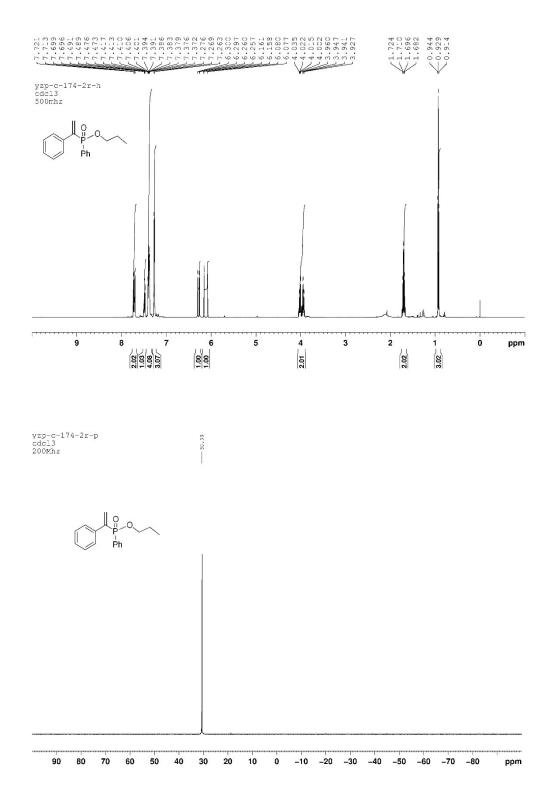

Ethyl phenyl(4-phenylbut-1-en-2-yl)phosphinate (3ra)

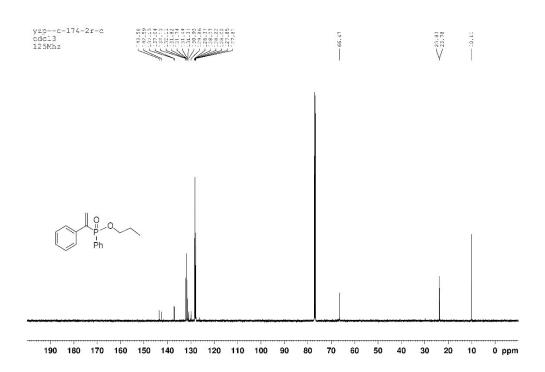


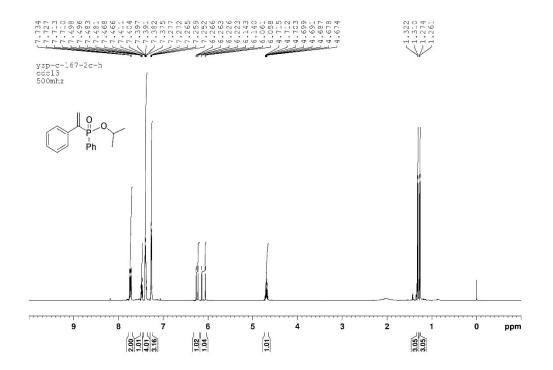

Ethyl (1-(cyclohex-1-en-1-yl)vinyl)(phenyl)phosphinate (3sa)

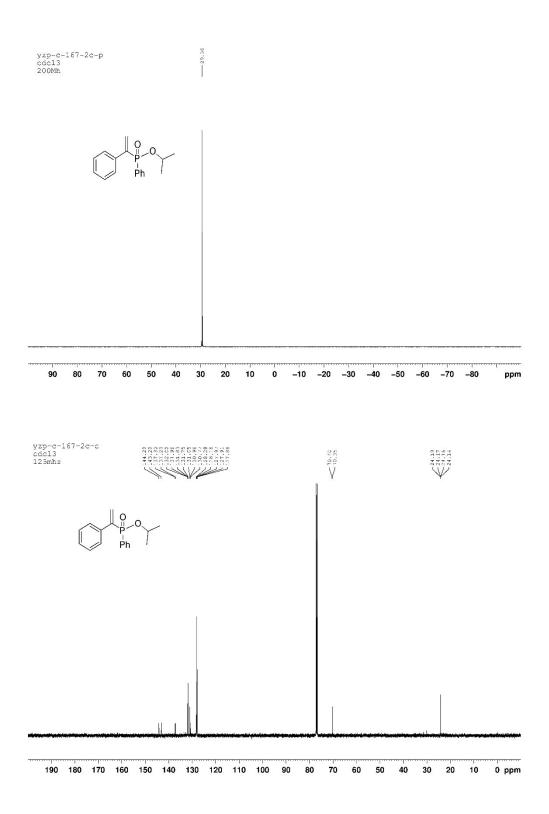


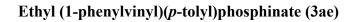

Ethyl dec-1-en-5-yn-2-yl(phenyl)phosphinate (3ta)

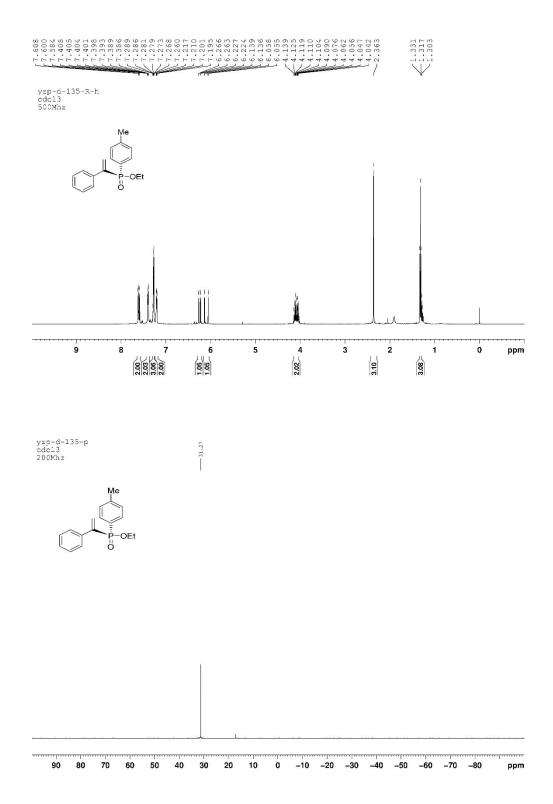


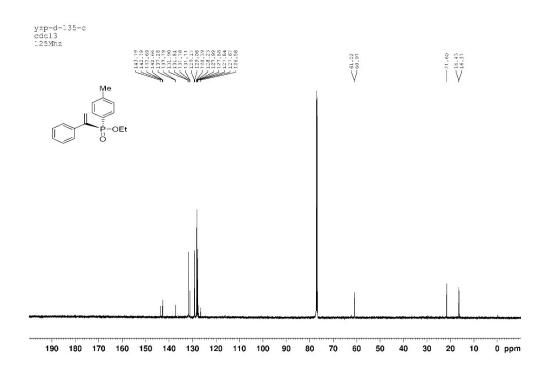

Methyl phenyl(1-phenylvinyl)phosphinate (3ab)

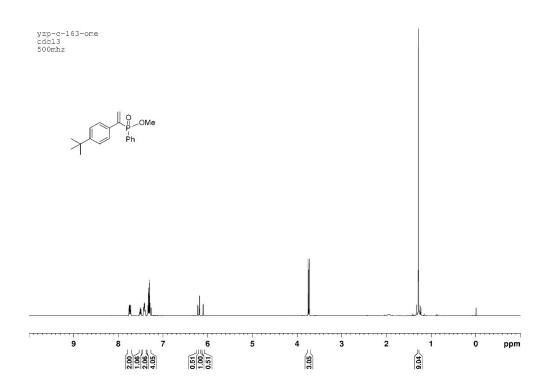


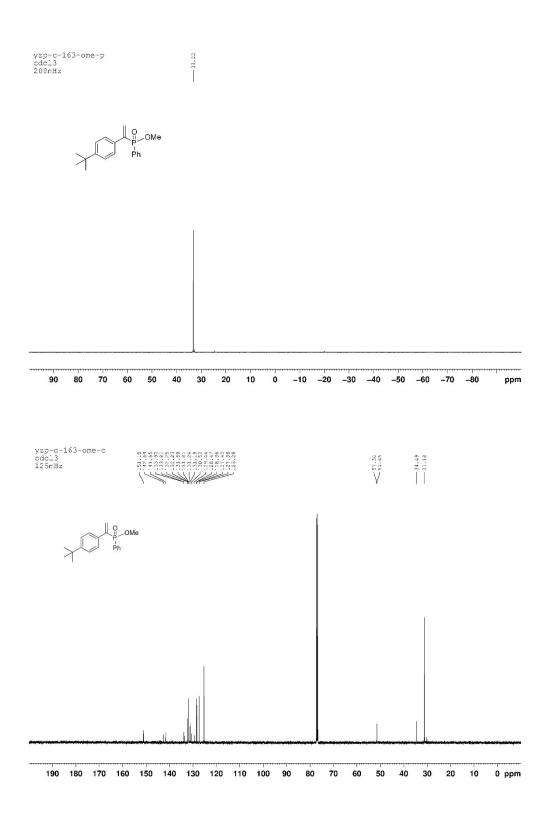

Propyl phenyl(1-phenylvinyl) phosphinate (3ac)

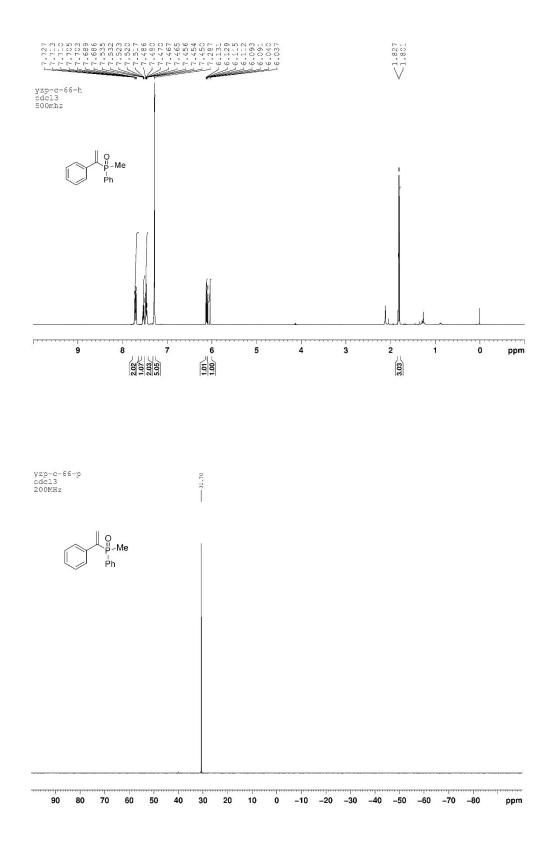




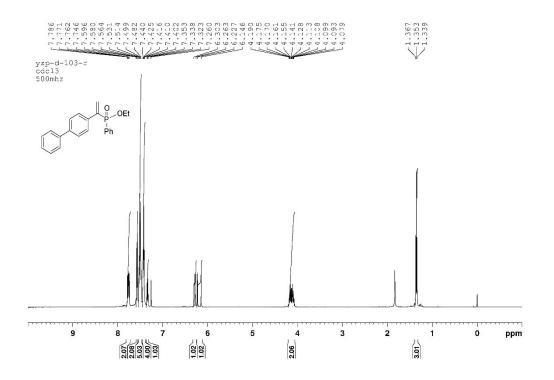

Isopropyl phenyl(1-phenylvinyl)phosphinate (3ad)

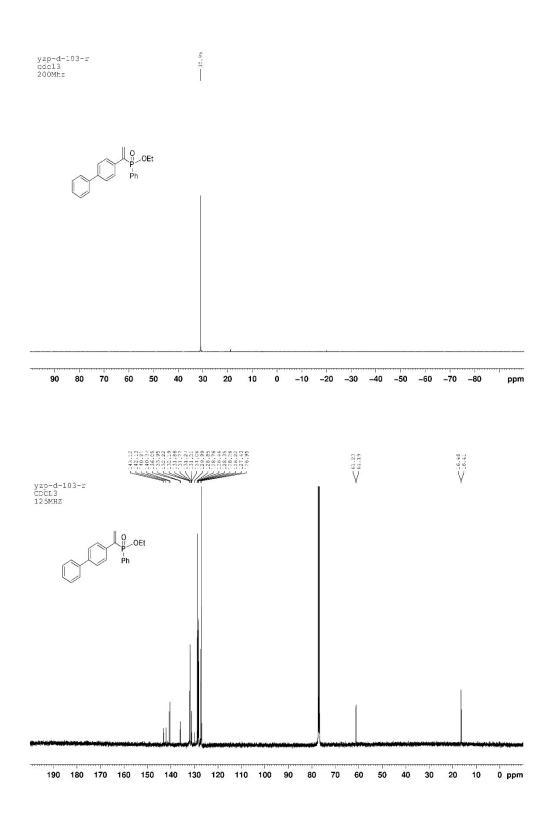


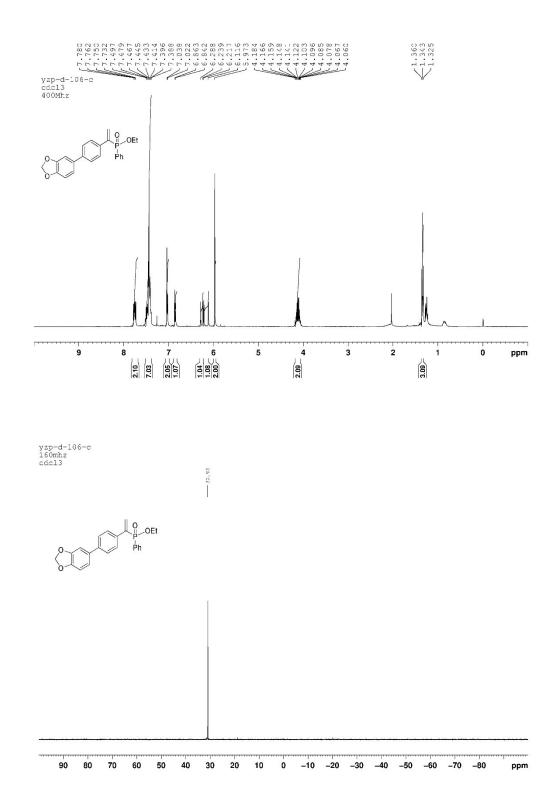


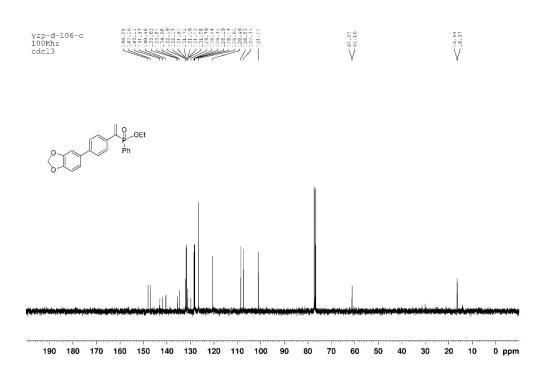


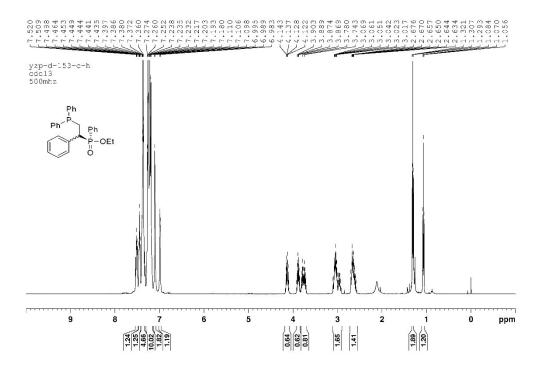

Methyl (1-(4-(tert-butyl)phenyl)vinyl)(phenyl)phosphinate (3fb)

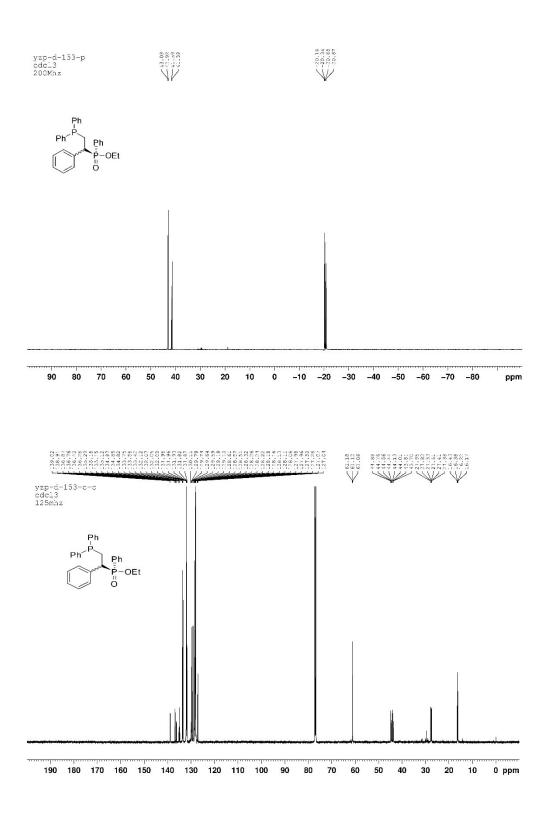



Methyl(phenyl)(1-phenylvinyl)phosphine oxide (3af)

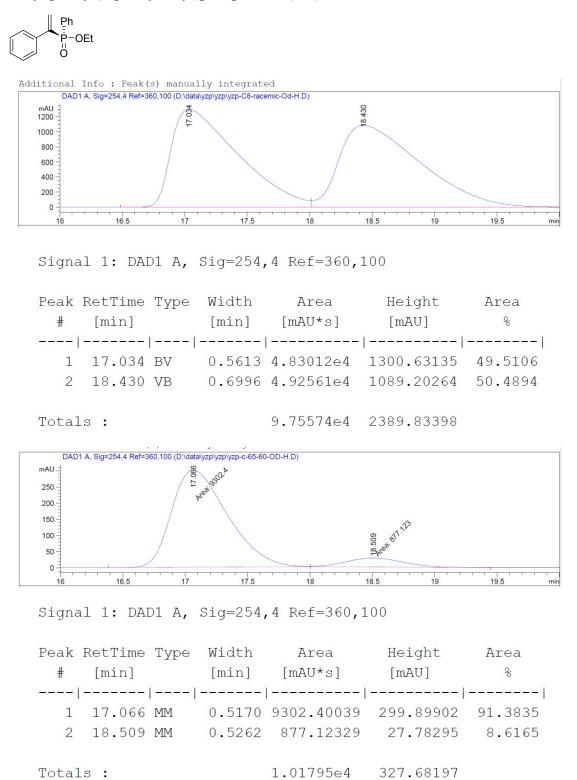


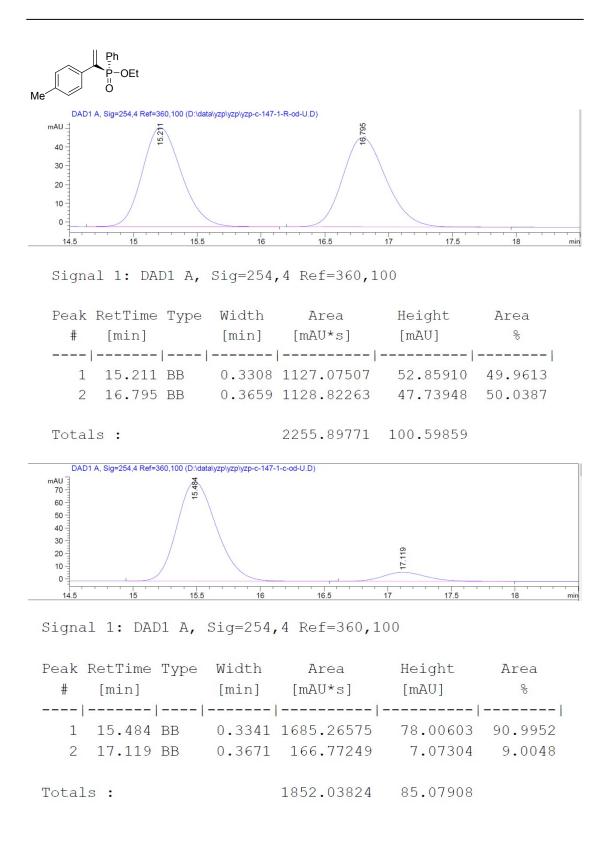

Ethyl (1-([1,1'-biphenyl]-4-yl)vinyl)(phenyl)phosphinate (4)





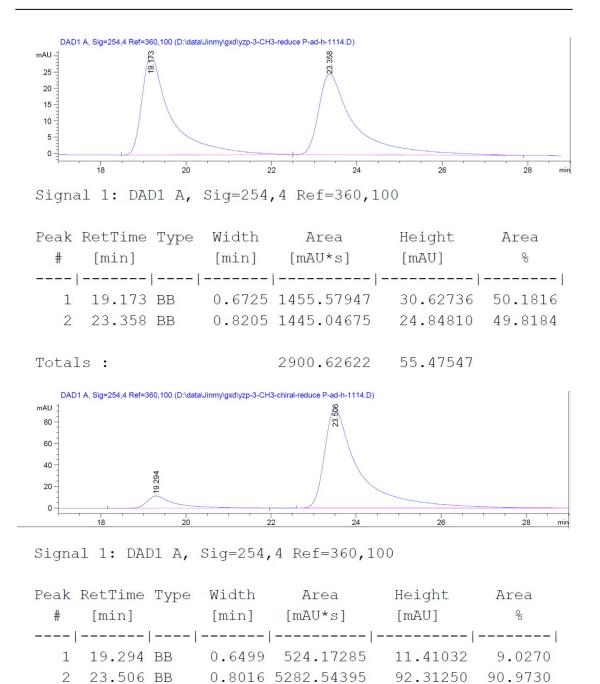
Ethyl (1-(4-(benzo[d][1,3]dioxol-5-yl)phenyl)vinyl)(phenyl)phosphinate (5)


Ethyl (2-(diphenylphosphaneyl)-1-phenylethyl)(phenyl)phosphinate (6)



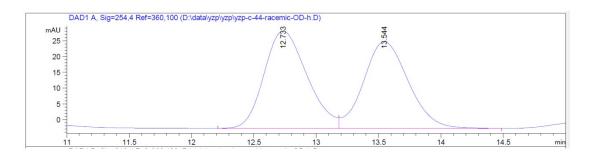
8. HPLC spectrum

Ethyl phenyl(1-phenylvinyl)phosphinate (3aa)



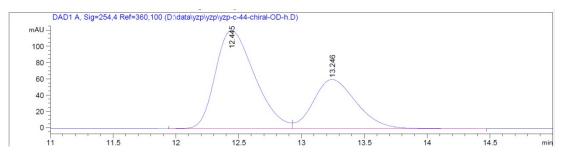
Ethyl phenyl(1-(*p*-tolyl)vinyl)phosphinate (3ba)

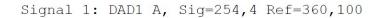
Ethyl phenyl(1-(*m*-tolyl)vinyl)phosphinate (3ca)


Me Ph P-OEt O

Totals: 5806.71680 103.72282

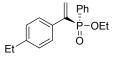
Ethyl phenyl(1-(o-tolyl)vinyl)phosphinate (3da)

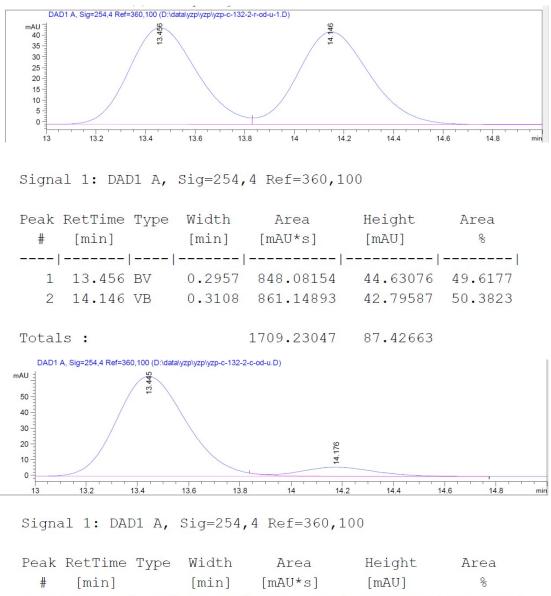

Me P-OEt 0



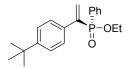
Signal 1: DAD1 A, Sig=254,4 Ref=360,100

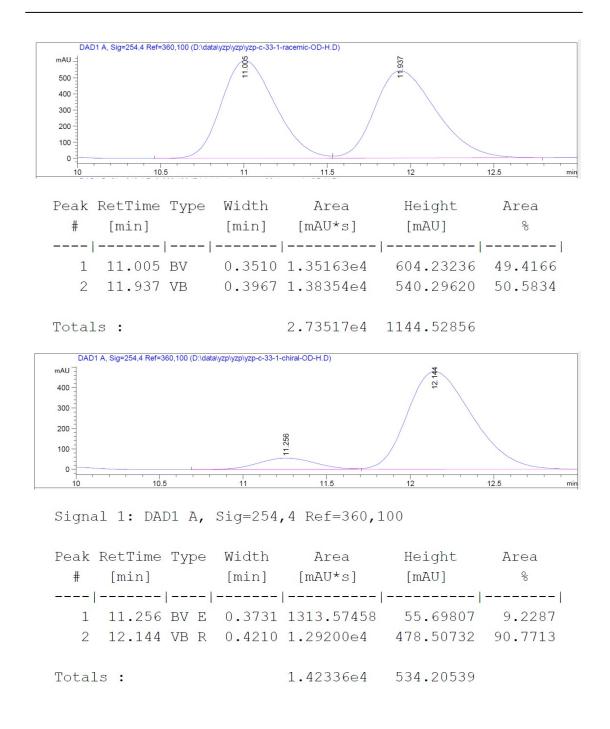
Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	Olo
1	12.733 BV	0.3705	736.65143	30.85783	51.7973
2	13.544 VB	0.3871	685.52838	27.47429	48.2027

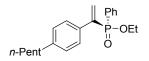


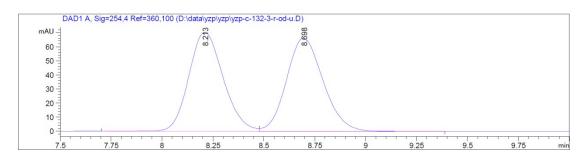


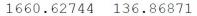
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	90
1 12.445 BV	0.3372	2618.21777	120.62339	64.5660
2 13.246 VB	0.3650	1436.88525	60.52047	35.4340
Totals :		4055.10303	181.14386	

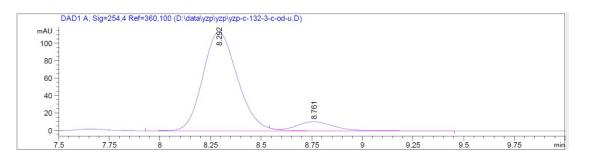

Ethyl (1-(4-ethylphenyl)vinyl)(phenyl)phosphinate (3ea)



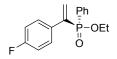

r oun	I COCI I III O	11 -			III Oa	morgine	III Oa	
#	[min]			[min]	[mAU*s]	[mAU]	8	
1	13.445	BV	R	0.2952	1213.60986	63.44499	91.3723	
2	14.176	VB	Е	0.2987	114.59372	5.84656	8.6277	
Total	s :				1328.20358	69.29155		

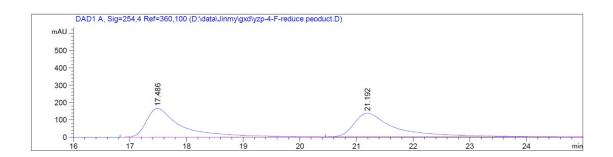

Ethyl (1-(4-(*tert*-butyl)phenyl)vinyl)(phenyl)phosphinate (3fa)


Ethyl (1-(4-pentylphenyl)vinyl)(phenyl)phosphinate (3ga)



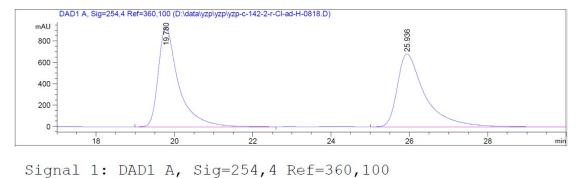
Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] olo # 8.213 BV 0.1809 827.99847 70.53882 49.8606 1 2 8.698 VB 0.1944 832.62897 66.32990 50.1394





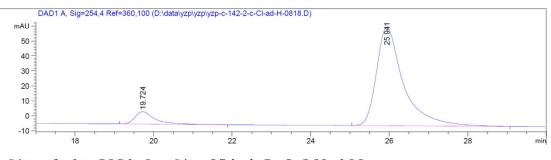
Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	00
1 8.292 BV R	0.1823	1349.61511	113.81870	90.9758
2 8.761 VB E	0.1961	133.87355	10.54477	9.0242
Totals :		1483.48866	124.36347	


Ethyl (1-(4-fluorophenyl)vinyl)(phenyl)phosphinate (3ha)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100 Peak RetTime Type Width Area Height Area 8 # [mAU*s] [min] [min] [mAU] 0.6041 7085.03564 1 17.486 BB 165.96121 50.0418 2 21.192 BBA 0.7303 7073.19629 137.01465 49.9582 Totals : 1.41582e4 302.97586 DAD1 A, Sig=254,4 Ref=360,100 (D:\data\Jinmy\gxd\yzp-4-F-product.D) mAU 1000 800 -600 -120 400 -21. 17.429 200 0 18 19 21 22 23 24 17 20 min Signal 1: DAD1 A, Sig=254,4 Ref=360,100 Peak RetTime Type Width Area Height Area [mAU*s] [mAU] 00 # [min] [min] 1 17.429 BB 0.5972 2296.09277 54.53732 11.8369 21.120 BBA 0.7435 1.71017e4 324.16965 88.1631 2 1.93978e4 378.70697 Totals :

Ph OEt

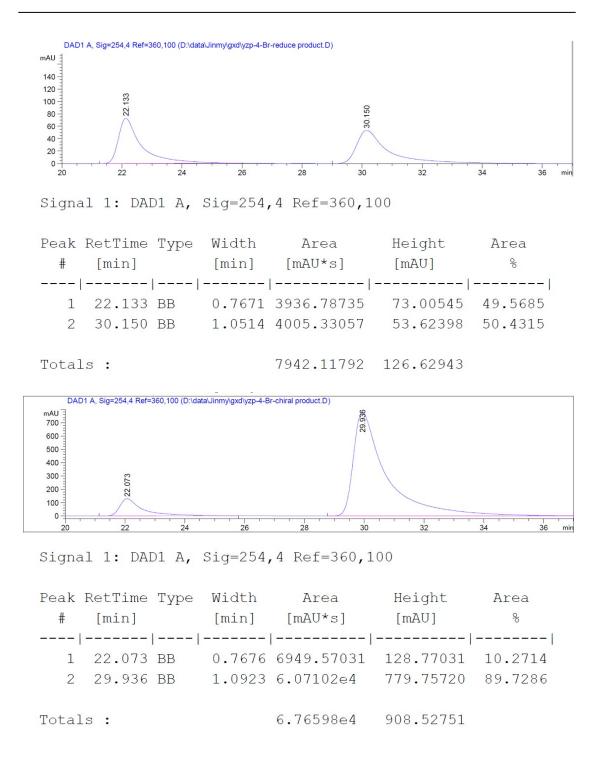


Peak RetTime Type Width Area Height

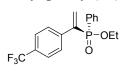
#	[min]		[min]	[mAU*s]	[mAU]	00
		-				
1	19.780	BB	0.5283	3.35288e4	930.75446	49.9538
2	25.936	BBA	0.7156	3.35908e4	683.27417	50.0462

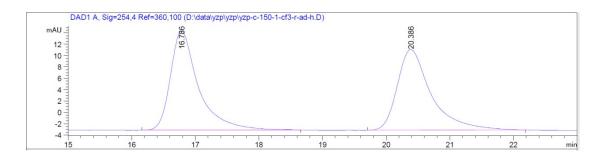
6.71197e4 1614.02863

Area

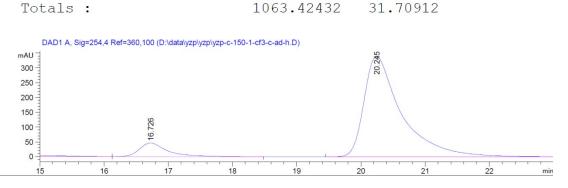


Signal 1: DAD1 A, Sig=254,4 Ref=360,100


Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	00
1 19.724 BB	0.5084	294.05746	8.27934	8.5991
2 25.941 BB	0.6977	3125.58203	65.86158	91.4009
Totals :		3419.63950	74.14091	

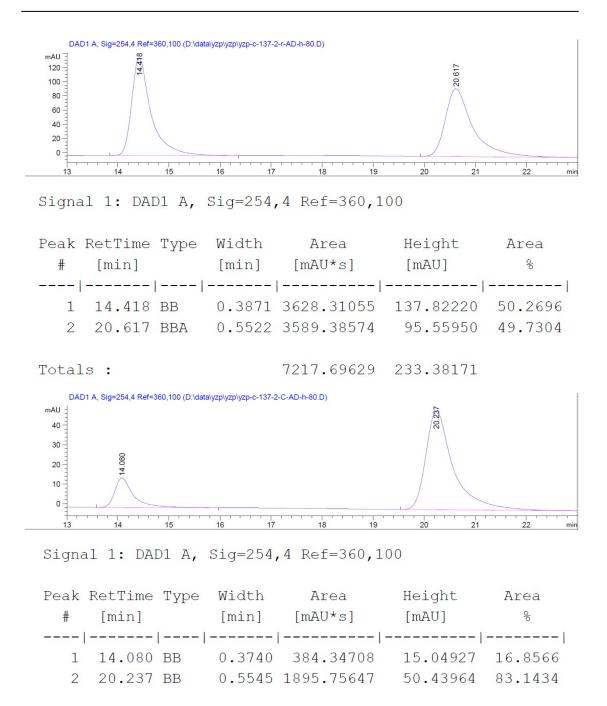

Ethyl (1-(4-bromophenyl)vinyl)(phenyl)phosphinate (3ja)

Br Ph P-OEt



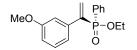
Ethyl phenyl(1-(4-(trifluoromethyl)phenyl)vinyl)phosphinate (3ka)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100 Peak RetTime Type Width Height Area Area [mAU*s] [mAU] # [min] [min] ----|-----|-----|-----|-----| 16.786 BB 0.4495 539.09833 17.49617 50.6946 1 2 20.386 BB 0.5484 524.32599 14.21295 49.3054

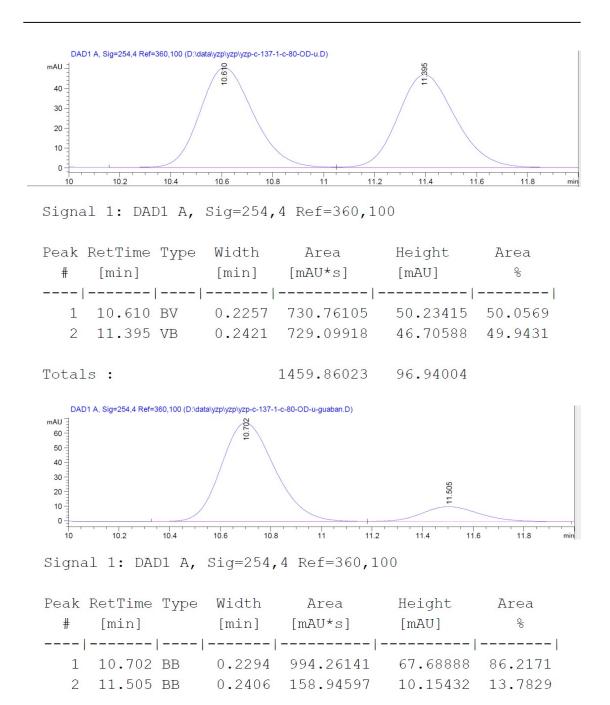

90

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	010
1 16.726 BB	0.4421	1374.91882	45.82354	9.1003
2 20.245 BB	0.5856	1.37336e4	339.73163	90.8997
Totals :		1.51086e4	385.55517	

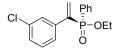

Ethyl (1-(4-methoxyphenyl)vinyl)(phenyl)phosphinate (3la)

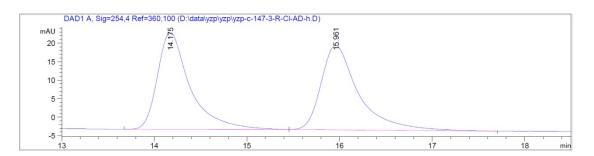
Ρh P−OEt MeO



otals :	2280.10355	65.48891

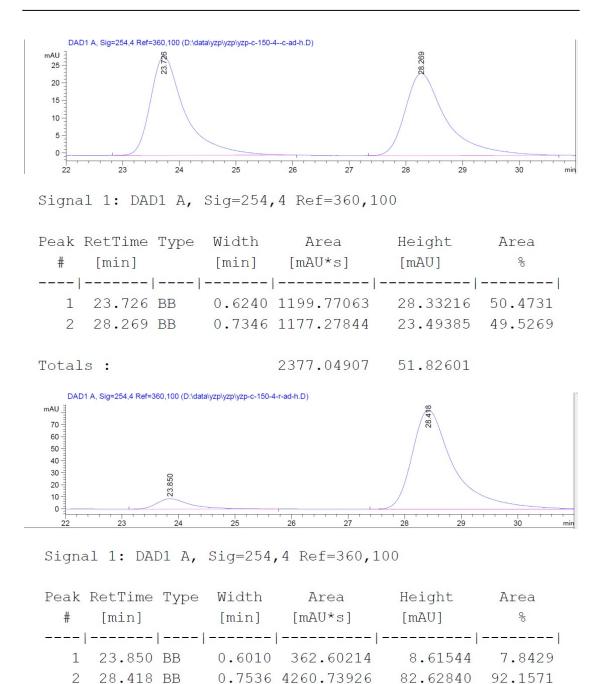
Ethyl (1-(3-methoxyphenyl)vinyl)(phenyl)phosphinate (3ma)




Т

Totals	:	1153.20738	77.84320

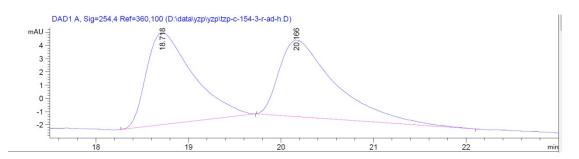
Ethyl (1-(3-chlorophenyl)vinyl)(phenyl)phosphinate (3na)


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
		-		-		
1	14.175	BB	0.3578	637.51459	26.20414	49.9793
2	15.961	BB	0.4132	638.04175	22.74858	50.0207
Total	s :			1275.55634	48.95271	
	, Sig=254,4 Ref=360	100 (D:\data))	numum o 147 2 C			
mAU	, 3ig-234,4 itel-300	, 100 (D. idalaiyz	p/yzp/yzp-c-147-3-C	(10-4D-11-D)		
60 - 50 -				<u>, 6</u>		
40						
30		14				
10		14.214				
0						
13	14		15	16	17	18 min

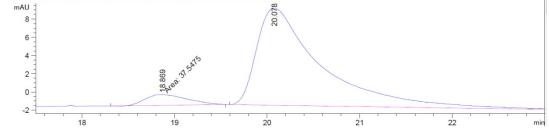
Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	00
				I	
1	14.214 BB	0.3644	244.77248	9.83293	10.8374
2	16.002 BB	0.4179	2013.81152	70.79815	89.1626
Total	s :		2258.58400	80.63108	

Ethyl phenyl(1-(thiophen-2-yl)vinyl)phosphinate (30a)



Totals :	4623.34140	91.24384

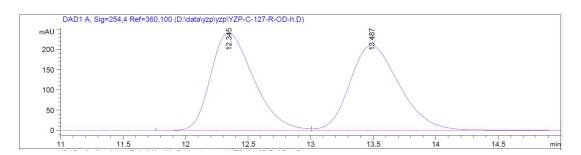
Ethyl phenyl(1-(pyridin-3-yl)vinyl)phosphinate (3pa)



Peak Ret	Гіте Туре	Width	Area	Height	Area
# [m	in]	[min]	[mAU*s]	[mAU]	olo
1 18	.718 BB	0.4868	242.45108	6.95281	49.7336
2 20	.166 BB	0.5886	245.04849	5.77976	50.2664

487.49957

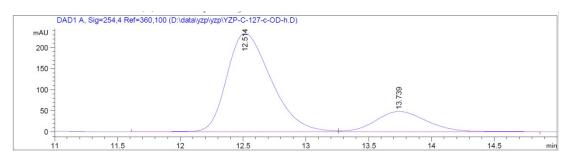
12.73257


Signal	1:	DAD1	Α,	Sig=254,4	Ref=360,100
--------	----	------	----	-----------	-------------

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	90
1	18.869 MM	0.5303	37.54748	1.18003	6.7609
2	20.078 BB	0.6762	517.81714	10.67050	93.2391
Total	s:		555.36462	11.85053	

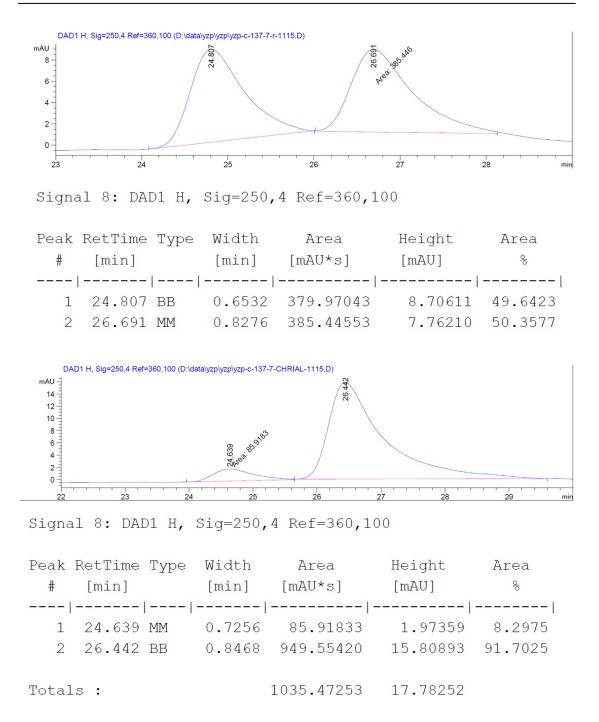
Ethyl (Z)-(1,2-diphenylvinyl)(phenyl)phosphinate (3qa)

Ph P-OEt 0

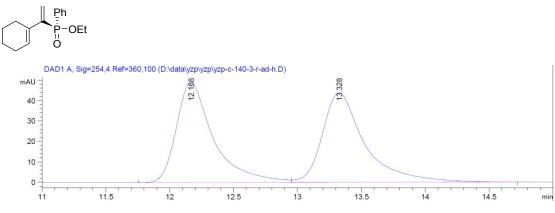

Totals :

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
		-				
1	12.345	BV	0.3669	5725.15137	241.20590	49.6995
2	13.487	VB	0.4265	5794.37842	209.63976	50.3005



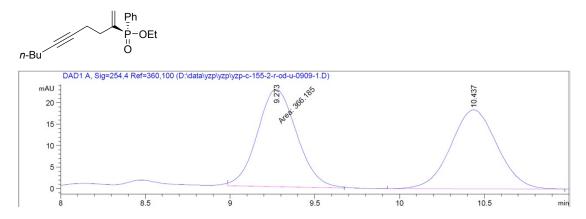
Signal 1: DAD1 A, Sig=254,4 Ref=360,100


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
		-				
1	12.514	BV	0.3776	5703.88672	232.99278	80.8349
2	13.739	VB	0.4371	1352.33093	47.93449	19.1651
Total	s:			7056.21765	280.92727	

Ethyl phenyl(4-phenylbut-1-en-2-yl)phosphinate (3ra)

Ph P-OEt 0

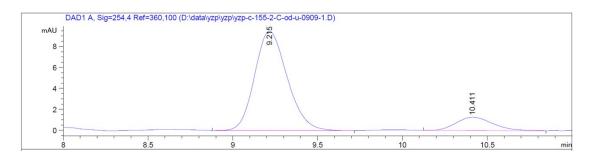
Ethyl (1-(cyclohex-1-en-1-yl)vinyl)(phenyl)phosphinate (3sa)



Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] olo 12.168 BV 0.2981 987.60193 48.80626 49.4378 1 2 13.328 VB 0.3393 1010.06213 43.75435 50.5622 Totals : 1997.66406 92.56062 DAD1 A, Sig=254,4 Ref=360,100 (D:\data\yzp\yzp\yzp-c-140-3-c-ad-h.D) mAU 70 60 50 12.177 40 30 20 10 0 11.5 12 12.5 13.5 14 14.5 13 11

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

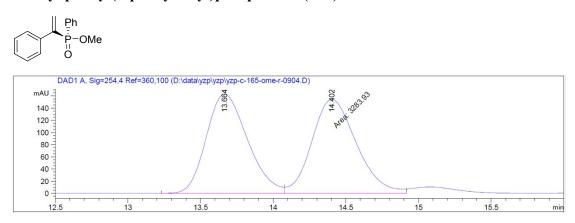
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
		-				
1	12.177	BV	0.3024	620.33344	30.36318	24.4034
2	13.334	VB	0.3431	1921.66394	82.09179	75.5966
Total	s :			2541.99738	112.45497	

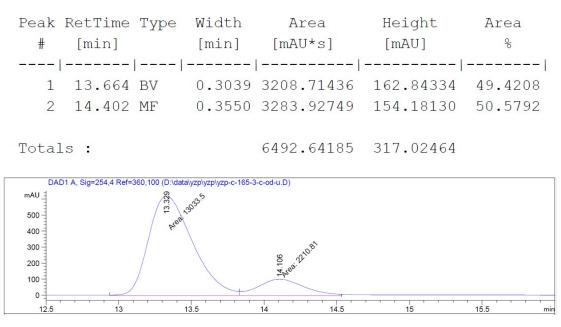

Ethyl dec-1-en-5-yn-2-yl(phenyl)phosphinate (3ta)

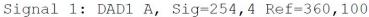
S88

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
			-			
1	9.273	FM	0.2693	366.18530	22.66425	50.9785
2	10.437	BB	0.2954	352.12766	18.38955	49.0215

718.31296 41.05380

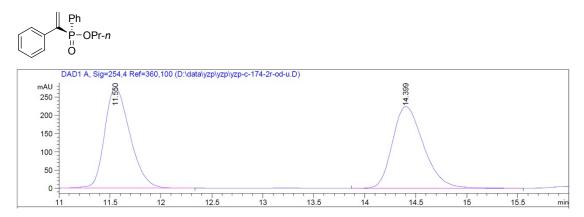



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

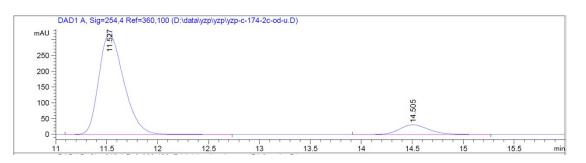

Totals :

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	00
			-		
1	9.215 BB	0.2056	126.38673	9.47484	86.9516
2	10.411 BB	0.2295	18.96622	1.26053	13.0484
Total	s:		145.35295	10.73537	

Methyl phenyl(1-phenylvinyl)phosphinate (3ab)

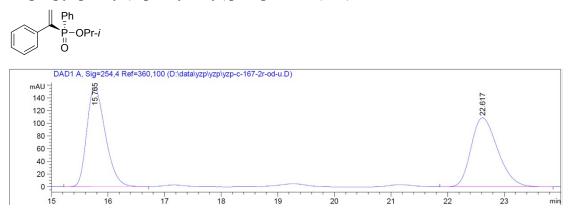


Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	00
1	13.329 MF	0.3494	1.30335e4	621.63159	85.4974
2	14.106 FM	0.3633	2210.81201	101.41106	14.5026
Total	s :		1.52443e4	723.04265	


Propyl phenyl(1-phenylvinyl)phosphinate (3ac)

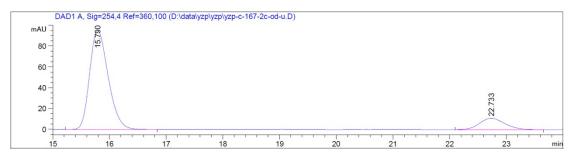
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
		-				
1	11.550	BB	0.2652	4757.17090	275.84192	49.9634
2	14.399	BB	0.3277	4764.14355	224.41707	50.0366

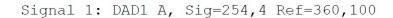
```
Totals :
```


9521.31445 500.25899

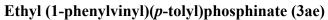
Signal 1: DAD1 A, Sig=254,4 Ref=360,100

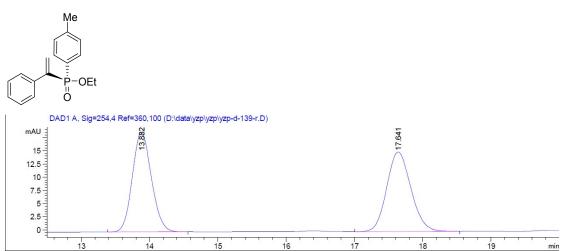
Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	00
1	11.527 BB	0.2624	5408.20215	318.08746	89.9798
2	14.505 BB	0.3037	602.26172	30.58710	10.0202
Total	s:		6010.46387	348.67456	

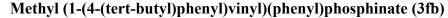

Isopropyl phenyl(1-phenylvinyl)phosphinate (3ad)

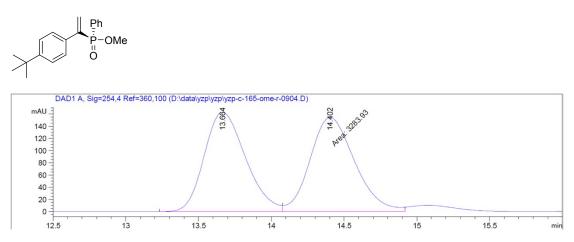


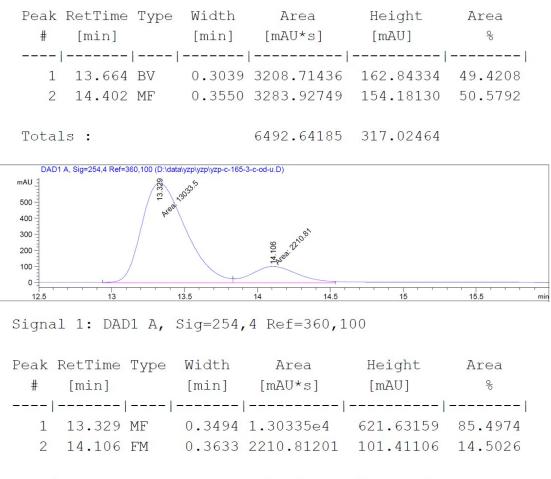
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	15.765	BB	0.3517	3556.52637	156.15768	49.9463
2	22.617	BB	0.5104	3564.17554	108.75292	50.0537



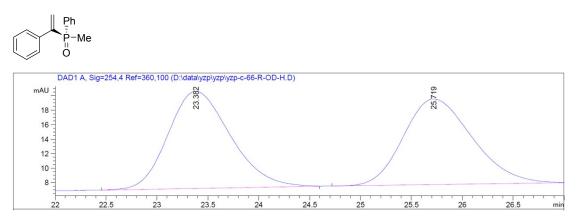

7120.70190 264.91061

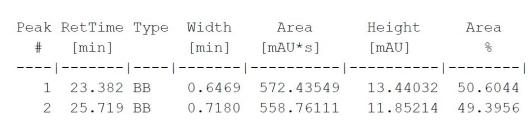


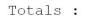

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	00
1 15.790 BB	0.3524	2167.35767	95.61871	86.4514
2 22.733 BB	0.4723	339.66675	10.99948	13.5486
Totals :		2507.02441	106.61819	



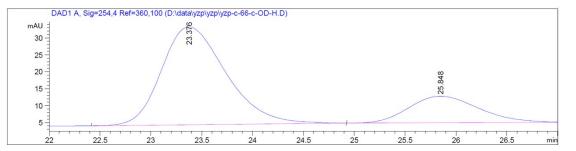
Peak RetTime Type Width Area Height Area 00 # [min] [min] [mAU*s] [mAU] 0.2997 365.34946 18.88466 49.6452 1 13.882 BB 2 17.641 BB 0.3792 370.57196 15.05156 50.3548 735.92142 33.93622 Totals : DAD1 A, Sig=254,4 Ref=360,100 (D:\data\yzp\yzp\yzp-d-139-c.D) mAU -140 120 100 17.477 80 -60 40 20 0 13 14 15 16 17 18 19 min Signal 1: DAD1 A, Sig=254,4 Ref=360,100 Peak RetTime Type Width Area Height Area [mAU*s] 8 # [min] [min] [mAU] ----|-----|-----|------|------| 13.741 BB 0.3495 3580.47192 160.94972 68.5631 1 17.477 BB 0.4102 1641.68225 62.15380 31.4369 2 Totals : 5222.15417 223.10352

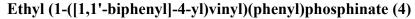


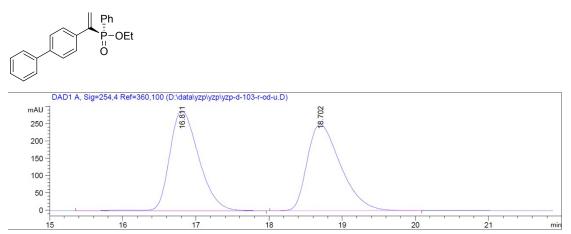



Totals :

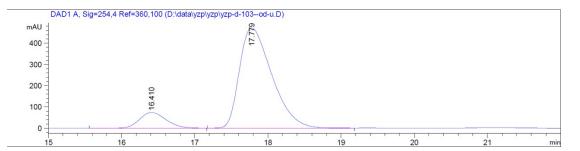
1.52443e4 723.04265


Methyl(phenyl)(1-phenylvinyl)phosphine oxide (3af)

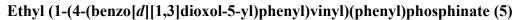


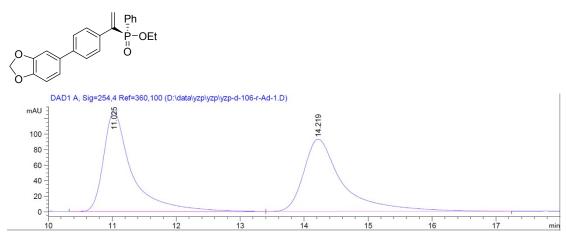


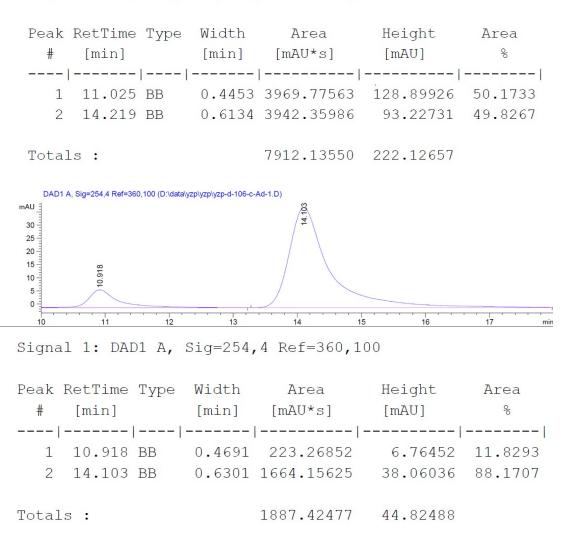
Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	00
			-		
1	23.376 BB	0.6754	1274.11572	28.95158	77.2414
2	25.848 BB	0.6960	375.40952	7.82153	22.7586
Total	s :		1649.52524	36.77311	



Peak RetTime Type Width Height Area Area [mAU*s] 00 # [min] [min] [mAU] 16.811 BB 0.4277 7969.07227 289.00461 50.2286 1 2 18.702 BB 0.4877 7896.53174 249.20995 49.7714

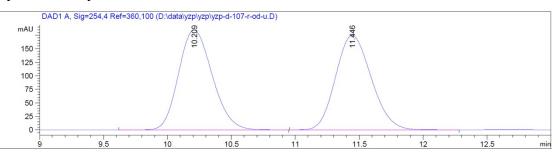



1.58656e4 538.21455

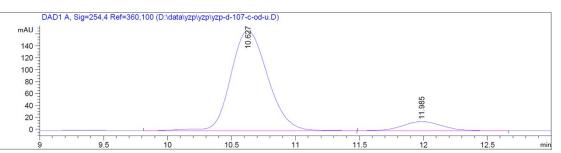


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

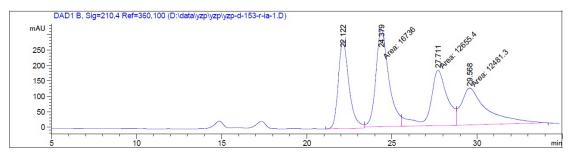
Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	90
1	16.410 BB	0.3914	1863.21716	74.09490	11.3717
2	17.779 BB	0.4746	1.45215e4	472.37955	88.6283
Total	s :		1.63847e4	546.47445	



Ethyl (Z)-(1,2-diphenylvinyl)(phenyl)phosphinate (3qa)


Synthesized by Heck Reaction from 3aa

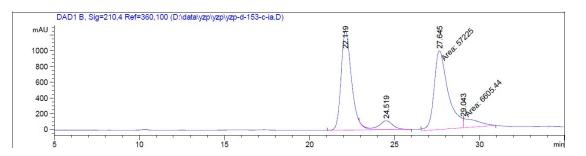
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
		-				
1	10.209	BB	0.2879	3391.75781	185.00055	50.0071
2	11.446	BB	0.3043	3390.79492	174.78204	49.9929



6782.55273 359.78259

Peak F	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	00
-					
1	10.627 BB	0.3133	3352.64258	167.64192	91.3298
2	11.985 BB	0.3279	318.27710	15.10228	8.6702
Totals	5 :		3670.91968	182.74420	

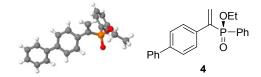
Ethyl (2-(diphenylphosphaneyl)-1-phenylethyl)(phenyl)phosphinate (6)



Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime Ty [min]	ype Width [min]	Area [mAU*s]	Height [mAU]	Area %
				·	
1	22.122 BV	0.6636	1.24106e4	283.02176	22.8626
2	24.379 MH	0.8836	1.67360e4	315.67279	30.8309
3	27.711 FN	1.1735	1.26554e4	179.73544	23.3137
4	29.568 MM	1 1.7431	1.24813e4	119.34130	22.9928

5.42833e4 897.77129


Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Тур	be	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	22.119	BV	R	0.6486	5.40321e4	1264.40503	43.4386
2	24.519	VB	E	0.8350	6524.84131	114.46527	5.2456
3	27.645	MF		0.9533	5.72250e4	1000.44855	46.0054
4	29.043	FM		0.9372	6605.43604	117.47057	5.3104

Totals :

1.24387e5 2496.78942

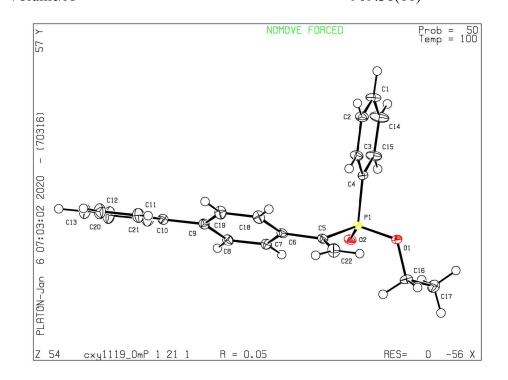

9. X-ray crystal structure of 4

Table S3

Identification code	cxy1119_0m
Empirical formula	$C_{22}H_{21}O_2P$
Formula weight	348.36
Temperature/K	100
Crystal system	monoclinic

Space group	P2 ₁
a/Å	6.0977(4)
b/Å	8.3134(6)
c/Å	18.1062(12)
$\alpha/^{\circ}$	90
β/°	97.792(2)
$\gamma/^{\circ}$	90
Volume/Å ³	909.38(11)

