Zhao, Zhang and Wang, Supporting Information

Supplementary Information

Radical α-Addition Involved Electrooxidative [3+2] Annulation of Phenols and Electron-Deficient Alkenes

Qiang Zhao, Ji-Kang Jin, Jie Wang, Feng-Lian Zhang*, and Yi-Feng Wang*

^aHefei National Laboratory for Physical Sciences at the Microscale, Center for Excellence in Molecular Synthesis of CAS, and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China. To whom correspondence should be addressed. Email: zfl9@ustc.edu.cn; yfwangzj@ustc.edu.cn

Table of Contents

1. General Information	S2
2. Synthesis of α,β-unsaturated carbonyl compounds	S2
3. Information for reaction set up:	S4
3.1. Small scale reaction	S4
3.2. Large scale reaction	S4
4. Electrooxidative annulation of phenols and electron-deficient alkenes	
5. Mechanistic studies	S22
5.1. Synthesis of 4,4',5,5'-tetramethoxy-[1,1'-biphenyl]-2,2'-diol (5)	S22
5.2. Computational studies	S22
6. Synthesis of 3,4'-di-O-methycedrusin (4)	S28
7. References	
8. Copies of ¹ H NMR and ¹³ C NMR Spectra	S32

1. General Information

¹ H NMR (400 MHz) spectra were recorded on a Bruker Avance 400 spectrometer and ¹ H NMR (500 MHz) spectra were recorded on a Bruker Avance 500 spectrometer in CDCl₃ [using CDCl₃ (for 1 H, δ = 7.26) or (CD₃)₂SO (for 1 H, δ = 2.50) as the internal standard]. ¹³C NMR (101 MHz) spectra were recorded on a Bruker Avance 400 spectrometer and ¹³C NMR (126 MHz) spectra were recorded on a Bruker Avance 500 spectrometer in CDCl₃ [using CDCl₃ (for ¹³C, δ = 77.0 or (CD₃)₂SO (for ¹³C, δ = 39.52) as internal standard]. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, ddd = doublet of doublet, dt = doublet of triplet, m = multiplet, s br = singlebroad. High-resolution mass spectra were obtained with a Water XEVO G2 Q-Tof (Waters Corporation). X-ray crystallography analysis was performed on Bruker X8 APEX X-ray diffractionmeter. Melting points were uncorrected and were recorded on a Buchi B-54 melting point apparatus. Flash column chromatography was performed using Merck silica gel 60 with distilled solvents. Commercially available reagents were purchased from Energy Chemical, J & K Scientific, Adamas-beta and Sigma-Aldrich Co., Inc.

 α , β -unsaturated carbonyl compounds 2a,¹ 2b,² 2c,³ 2d,¹ 2e,³ 2f,⁴ 2g,⁵ 2h,⁶ 2i,⁷ 2j,⁸ 2k,¹ 2l,⁹ 2m,⁹ 2q,¹⁰ 2r,¹⁰ and phenols 1ad,¹¹ 1ag,¹² 1ah,¹³ 1ai,¹³ 1aj,¹³ 1ak,¹³ 1al,¹⁴ were known compounds and prepared according to the literature procedures. Phenols 1a, 1aa, 1ab, 1ac, 1ae, 1af, 1am, were purchased and used directly without further purification.

2. Synthesis of α,β-unsaturated carbonyl compounds

 α , β -unsaturated carbonyl compounds **2n**, **2o**, **2p** were prepared by the procedure shown below.

General procedure :

To a solution of (*E*)-3-(4-methoxyphenyl)acrylic acid (0.894 g, 5.02 mmol) and drops of DMF (cat.) in CH₂Cl₂ was slowly added (CO)₂Cl₂ (0.9 mL, 10.64 mmol) at 0 °C. The reaction mixture was warm to room temperature, and stirred under nitrogen atmosphere for 1h. The solvent was removed under vacuo to afford a crude acyl chloride product. The crude product was dissolved in CH₂Cl₂, Et₃N (1.0 mL, 7.19 mmol) and aminomethylcyclopropane (0.5 mL, 5.84 mmol) were added. The reaction mixture was

stirred at room temperature before it was cooled to 0 °C and quenched with water. The aqueous layer was extracted with CH₂Cl₂ three times. The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude residue was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 5:1) to give **2p** (0.914 g) in 78% yield as a white solid, mp: 84-85 °C; ¹H NMR (500 MHz, CDCl₃) δ 0.23-0.26 (m, 2H), 0.51-0.55 (m, 2H), 0.97-1.05 (m, 1H), 3.24 (dd, *J* = 7.0, 5.5 Hz, 2H), 3.82 (s, 3H), 5.74 (s, 1H), 6.28 (d, *J* = 15.5 Hz, 1H), 6.88 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 2H), 7.58 (d, *J* = 15.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 3.43, 10.77, 44.55, 55.32, 114.20, 118.34, 127.58, 129.27, 140.49, 160.78, 166.05; ESIHRMS: Found: m/z 232.1340. Calcd for C₁₄H₁₈O₂: (M+H)⁺ 232.1338.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (E)-3-(4-methoxyphenyl)acrylate (2n)

Following general procedure, **2n** was synthesised in 29% yield (487.2 mg, 1.540 mmol) from the reaction of (*E*)-3-(4-methoxyphenyl)acrylic acid (1.294 g, 7.262 mmol) and *L*-menthol (938.6 mg, 6.006 mmol); White solid, mp 52-53°C.

¹H NMR (500 MHz, CDCl₃) δ 0.79 (d, J = 6.9 Hz, 3H), 0.89-0.94 (m, 7H), 1.04 (q, J = 12.0 Hz, 1H), 1.06-1.14 (m, 1H), 1.41-1.57 (m, 2H), 1.67-1.73 (m, 2H), 1.88-1.97 (m, 1H), 2.02-2.09 (m, 1H), 3.84 (s, 3H), 4.81 (ddd, J = 11.0, 10.5, 4.5 Hz, 1H), 6.30 (d, J = 16.0 Hz, 1H), 6.90 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 16.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 16.42, 20.77, 22.05, 23.53, 26.32, 31.41, 34.31, 41.06, 47.22, 55.34, 74.00, 114.25, 116.21, 127.27, 129.65, 144.00, 161.24, 166.91; ESIHRMS: Found: m/z 317.2114. Calcd for C₂₀H₂₉O₃: (M+H)⁺ 317.2117.

(1s,3R,5S,7s)-4-oxoadamantan-1-yl (E)-3-(4-methoxyphenyl)acrylate (2o)

Following general procedure, **20** was obtained in 30% yield (977.1 mg, 2.99 mmol) from the reaction of (*E*)-3-(4-methoxyphenyl)acrylic acid (2.167 g, 12.16 mmol) and 5-hydroxyadamantan-2-one (1.678 g, 10.10 mmol); white solid, mp 120-121 °C.

¹H NMR (500 MHz, CDCl₃) δ 1.96 (d, J = 12.9 Hz, 2H), 2.04-2.09 (m, 2H), 2.35-2.40 (m, 2H), 2.40-2.46 (m, 3H), 2.50 (d, J = 11.7 Hz, 2H), 2.68 (s, 2H), 3.84 (s, 3H), 6.23 (d, J = 16.0 Hz, 1H), 6.90 (d, J = 9.0 Hz, 2H), 7.45 (d, J = 9.0 Hz, 2H), 7.55 (d, J = 16.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 29.85, 38.21, 40.00, 41.41, 47.07, 55.35, 114.28, 116.80, 127.11, 129.67, 144.0 4, 161.31, 166.24, 215.78; ESIHRMS: Found: m/z 327.1594. Calcd for C₂₀H₂₃ O₄: (M+H)⁺ 327.1596.

3. Information for reaction set up:

3.1. Small scale reaction

Supplementary Figure 1. Experimental setup diagram for the small scale r eaction.

3.2. Large scale reaction

Supplementary Figure 2. Experimental setup diagram for the large scale re action.

4. Electrooxidative annulation of phenols and electron-deficient alkenes General procedure:

In an oven-dried undivided three-necked flask (10 mL) equipped with a stir bar, ethyl 4-methoxycinnamate (**2a**) (62.0 mg, 0.301 mmol), *p*-methoxylphenol (**1a**) (58.0 mg, 0.467 mmol), *n*-Bu₄NBF₄ (100.3 mg, 0.305 mmol) and HFIP/CH₂Cl₂ (3:2, 10 mL) were added. The flask was equipped with graphite rod electrode (ϕ 6 mm) as the anode and cathode. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under room temperature and nitrogen atmosphere for 2 h. After evaporation of solvent, the crude residue was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 10 : 1) to afford product **3a** (81.4 mg, 0.248 mmol) in 82% yield.

Ethyl 5-methoxy-2-(4-methoxyphenyl)-2,3-dihydrobenzofuran-3-carboxylate (3a)

Yellow solid, mp 45-46 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.34 (t, *J* = 7.2, 3H), 3.78 (s, 3H), 3.80 (s, 3H), 4.21-4.35 (m, 3H), 6.05 (d, *J* = 8.0, 1H), 6.78-6.83 (m, 2H), 6.89-6.92 (m, 2H), 6.96-6.97 (m, 1H), 7.34-7.38 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 14.16, 55.16, 55.90, 55.93, 61.48, 85.60, 109.70, 110.91, 113.98, 114.66, 124.87, 127.22, 132.60, 153.32, 154.24, 159.57, 170.54; ESIHRMS: Found: *m/z* 351.1204. Calcd for C₁₉H₂₀O₅Na: (M+Na)⁺ 351.1208.

Ethyl-2-(3,4-dimethoxyphenyl)-5-methoxy-2,3-dihydrobenzofuran-3-carboxylate (3b)

According to the general procedure, the reaction of **2b** (71.5 mg, 0.303 mmol), **1a** (59.1 mg, 0.476 mmol), *n*-Bu₄NBF₄ (100.3 mg, 0.305 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 5:1) afforded 89.3 mg (82%) of **3b** as yellow solid, mp 57-58 °C.

Procedure for gram scale synthesis

In an oven-dried two-necked flask (100 mL) equipped with a stir bar, (*E*)-ethyl 3-(3,4-dimethoxyphenyl)acrylate (**2b**)(1.208 g, 5.113 mmol), p-methoxylphenol (**1a**) (0.956g, 7.701 mmol), *n*-Bu₄NBF₄ (1.687 g, 5.123 mmol) and HFIP/CH₂Cl₂ (36/24 mL) were added. The bottle was equipped with graphite rod (ϕ 6 mm) as the anode and cathode. The reaction mixture was stirred and electrolyzed at a constant current of 50 mA under room temperature and nitrogen atmosphere for 6 h. After evaporation of solvent, the crude residue was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 5 : 1) to afford product **3b** (1.199g, 3.346 mmol) in 66% yield.

¹H NMR (400 MHz, CDCl₃) δ 1.33 (t, *J* = 7.2, 3H), 3.77 (s, 3H), 3.86 (s, 3H), 3.87 (s, 3H), 4.20-4.35 (m, 3H), 6.01 (d, *J* = 8.0, 1H), 6.76-6.83 (m, 2H), 6.85 (d, *J* = 8.0, 1H), 6.92-6.99 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 14.22, 55.86, 55.89, 55.98, 61.58, 85.84, 108.990, 109.81, 110.94, 111.09, 114.71, 118.42, 124.92, 132.95, 149.04, 149.16, 153.31, 154.33, 170.58; ESIHRMS: Found: *m/z* 359.1508. Calcd for C₂₀H₂₃O₆: (M+H)⁺ 359.1495.

Ethyl-5-methoxy-2-(2-methoxyphenyl)-2,3-dihydrobenzofuran-3-carboxylate (3c)

According to the general procedure, the reaction of **2c** (63.4 mg, 0.307 mmol), **1a** (61.1 mg, 0.492 mmol), *n*-Bu₄NBF₄ (102.0 mg, 0.310 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2.5 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 10:1) afforded 53.1 mg (53%) of **3c** as pale yellow solid, mp 78-79 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.33 (t, *J* = 7.2 Hz, 3H), 3.74 (s, 3H), 3.79 (s, 3H), 4.14 (d, *J* = 6.4 Hz, 1H), 4.20-4.35 (m, 2H), 6.33 (d, *J* = 6.4 Hz, 1H), 6.77 (dd, *J* = 8.8, 2.8 Hz, 1H), 6.83-6.86 (m, 2H), 6.87-6.89 (m, 1H), 6.91-6.95 (m, 1H), 7.24-7.29 (m, 1H), 7.40-7.42 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 14.30, 55.20, 55.48, 55.97, 61.26, 82.29, 109.76, 110.34, 110.67, 114.69, 120.50, 125.41, 125.41, 128.89, 129.30, 153.62, 154.16, 155.88, 171.40; ESIHRMS: Found: *m*/z 351.1204. Calcd for C₁₉H₂₀NaOs: (M+Na)⁺351.1208.

Ethyl-2-(benzo[d][1,3]dioxol-5-yl)-5-methoxy-2,3-dihydrobenzofuran-3carboxylate (3d)

According to the general procedure, the reaction of **2d** (71.5 mg, 0.303 mmol), **1a** (59.1 mg, 0.476 mmol), *n*-Bu₄NBF₄ (100.3 mg, 0.305 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 5:1) to afford 89.3 mg (82%) of **3d** as pale solid, mp 60-61 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.33 (t, *J* = 7.2, 3H), 3.77 (s, 3H), 4.19-4.34 (m, 3H), 5.94 (s, 2H), 5.99 (d, *J* = 7.6 Hz, 1H), 6.74-6.84 (m, 3H), 6.88-6.89 (m, 3H), 6.93-6.94 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 14.21, 55.98, 56.08, 61.60, 85.68, 101.11, 106.23, 108.24, 109.78, 110.97, 114.78, 119.53, 124.72, 134.51, 147.58, 147.97, 153.27, 154.34, 170.52; ESIHRMS: Found: m/z 365.1000. Calcd for C₁₉H₁₈O₆Na: (M+Na)⁺ 365.1001.

Ethyl-5-methoxy-2-(4-methoxy-[1,1'-biphenyl]-3-yl)-2,3-dihydrobenzofuran-3-carboxylate (3e)

According to the general procedure, the reaction of **2e** (85.3 mg, 0.302 mmol), **1a** (62.6 mg, 0.504 mmol), *n*-Bu₄NBF₄ (103.1 mg, 0.313 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 10:1) to afford 99.0 mg (74%) of **3e** as white solid, mp 98-99 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.35 (t, *J* = 7.2 Hz, 3H), 3.76 (s, 3H), 3.85 (s, 3H), 4.22 (d, *J* = 6.4 Hz, 1H), 4.23-4.38 (m, 2H), 6.40 (d, *J* = 6.4 Hz, 1H), 6.79 (ddd, *J* = 8.8, 2.8, 0.8 Hz, 1H), 6.86 (dd, *J* = 2.8, 0.8 Hz, 1H), 6.89 (d, *J* = 8.8 Hz, 1H), 6.97 (d, *J* = 8.4 Hz, 1H), 7.27-7.32 (m, 1H), 7.38-7.42 (m, 2H), 7.50-7.54 (m, 3H), 7.67 (dd, *J* = 2.4, 0.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 14.35, 55.44, 55.56, 56.01, 61.33, 82.37, 109.86, 110.65, 110.77, 114.76, 124.83, 125.40, 126.72, 126.81, 127.42, 128.65, 129.65, 133.71, 140.70, 153.60, 154.22, 155.49, 171.41; ESIHRMS: Found: m/z 427.1518. Calcd for C₂₅H₂₄O₅Na: (M+Na)⁺ 427.1521.

Ethyl-5-methoxy-2,2',3,3'-tetrahydro-[2,5'-bibenzofuran]-3-carboxylate (3f)

According to the general procedure, the reaction of **2f** (65.6 mg, 0.301 mmol), **1a** (60.3 mg, 0.486 mmol), *n*-Bu₄NBF₄ (101.3 mg, 0.308 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 1.5 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 10:1) afforded 71.3 mg (77%) of **3f** as yellow solid, mp 50-51 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.32 (t, *J* = 7.2 Hz, 3H), 3.18 (t, *J* = 8.8 Hz, 2H), 3.77 (s, 3H), 4.19-4.34 (m, 3H), 4.56 (t, *J* = 8.8 Hz, 2H), 6.00 (d, *J* = 7.8 Hz, 1H), 6.74-6.78 (m, 3H), 6.94-6.95 (m, 1H), 7.15 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.24-7.25 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 14.30, 29.63, 56.06, 56.14, 61.60, 71.45, 86.08, 109.27, 109.82, 111.01, 114.78, 122.77, 125.03, 126.30, 127.67, 132.67, 153.43, 154.33, 160.33, 170.70; ESIHRMS: Found: *m*/*z* 362.1204. Calcd for C19H20NaO5: (M+Na)⁺ 363.1208.

Ethyl-2-(4-hydroxy-3-methoxyphenyl)-5-methoxy-2,3-dihydrobenzofuran-3carboxylate (3g)

According to the general procedure, the reaction of **2g** (73.2 mg, 0.329 mmol), **1a** (62.0 mg, 0.499 mmol), *n*-Bu₄NBF₄ (110.0 mg, 0.334 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 10:1) afforded 73.8 mg (65%) of **3g** as bright yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 1.33 (t, *J* = 7.2 Hz, 3H), 3.78 (s, 3H), 3.88 (s, 3H), 4.20-4.35 (m, 3H), 5.64 (s, 1H), 6.00 (d, *J* = 8.4 Hz, 1H), 6.77-6.82 (m, 2H), 6.90-6.93 (m,

3H), 6.77-6.82 (m, 2H), 6.94-6.95 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 14.25, 55.96, 56.05, 56.09, 61.60, 86.00, 108.46, 109.84, 111.00, 114.48, 114.79, 119.16, 124.99, 132.43, 145.78, 146.70, 153.37, 154.38, 170.63; ESIHRMS: Found: *m*/*z* 345.1328. Calcd for C₁₉H₂₁NaO₆: (M+H)⁺345.1338.

Ethyl-5-methoxy-2-(4-(pyrrolidin-1-yl)phenyl)-2,3-dihydrobenzofuran-3carboxylate (3h)

According to the general procedure, the reaction of **2h** (74.2 mg, 0.303 mmol), **1a** (60.0 mg, 0.483 mmol), *n*-Bu₄NBF₄ (101.2 mg, 0.307 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 1.5 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =10:1) afforded 71.5 mg (64%) of **3h** as gray liquid.

¹H NMR (400 MHz, CDCl₃) δ 1.33 (t, *J* = 7.2 Hz, 3H), 1.97-2.03 (m, 4H), 3.24-3.32 (m, 4H), 3.79 (s, 3H), 4.19-4.34 (m, 3H), 5.99 (d, *J* = 8.4 Hz, 1H), 6.54-6.57 (m, 2H), 6.78 (d, *J* = 1.6 Hz, 2H), 6.95-6.96 (m, 1H), 7.27-7.30 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ = 14.22, 25.38, 47.63, 55.76, 55.99, 61.39, 86.48, 109.71, 110.83, 111.61, 114.61, 125.35, 127.32, 148.00, 153.51, 154.08, 170.81; ESIHRMS: Found: *m*/*z* 368.1860. Calcd for C₂₂H₂₆NO4: (M+H)⁺ 368.1862.

Ethyl-2-(4-(dimethylamino)phenyl)-5-methoxy-2,3-dihydrobenzofuran-3carboxylate (3i)

According to the general procedure, the reaction of **2i** (66.2 mg, 0.302 mmol), **1a** (57.6 mg, 0.464 mmol), *n*-Bu₄NBF₄ (101.5 mg, 0.308 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =10:1) afforded 86.0 mg (83%) of **3i** as pale yellow solid, mp 55-56 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.33 (t, *J* = 7.2 Hz, 3H), 2.95 (s, 6H), 3.78 (s, 3H), 4.20-4.33 (m, 3H), 5.99 (d, *J* = 8.0 Hz, 1H), 6.70-6.74 (m, 2H), 6.78 (d, *J* = 1.6 Hz, 2H), 6.94-6.96 (m, 1H), 7.26-7.31 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 14.24, 40.49, 55.75, 56.01, 61.44, 86.23, 109.75, 110.88, 112.42, 114.65, 125.27, 127.18, 127.86, 150.69, 153.50, 154.14, 170.78; ESIHRMS: Found: *m*/z 342.1704. Calcd for C₂₀H₂₄NO4: (M+H)⁺ 342.1705.

Ethyl-2-(4-(*tert*-butyl)phenyl)-5-methoxy-2,3-dihydrobenzofuran-3-carboxylate (3j)

According to the general procedure, the reaction of **2j** (72.3 mg, 0.311 mmol), **1a** (58.3 mg, 0.470 mmol), *n*-Bu₄NBF₄ (102.8 mg, 0.312 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1) afforded 55.0 mg (50%) of **3j** as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 1.33-1.36 (m, 12H), 3.79 (s, 3H), 4.23-4.35 (m, 3H), 6.09 (d, *J* = 7.6 Hz, 1H), 6.79-6.80 (m, 2H), 6.97 (s, 1H), 7.36-7.42 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 14.22, 31.25, 34.53, 55.88, 55.97, 61.54, 85.63, 109.78, 111.95, 114.72, 124.87, 125.59, 137.62, 151.31, 153.45, 154.26, 170.64; ESIHRMS: Found: *m/z* 377.1733. Calcd for C₂₂H₂₆NO4: (M+H)⁺377.1729.

Ethyl-2-([1,1'-biphenyl]-4-yl)-5-methoxy-2,3-dihydrobenzofuran-3-carboxylate (3k)

According to the general procedure, the reaction of 2k (76.2 mg, 0.302 mmol), 1a (63.8 mg, 0.514 mmol), *n*-Bu₄NBF₄ (100.8 mg, 0.306 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2.5 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 20:1) afforded 33.9 mg (30%) of **3k** as pale yellow solid, mp 64-65 °C.

¹H NMR (400 MHz, CDCl₃) δ 1.36 (t, *J* = 7.2 Hz, 3H), 3.79 (s, 3H), 4.23-4.37 (m, 3H), 6.15 (d, *J* = 7.8 Hz, 1H), 6.79-6.88 (m, 2H), 6.97 (d, *J* = 2.4 Hz, 1H), 7.34-7.37 (m, 1H), 7.45 (dd, *J* = 8.4, 6.8 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.57-7.61 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 14.26, 56.02, 56.09, 61.69, 85.50, 109.88, 111.03, 114.81, 124.72, 126.25, 127.09, 127.41, 127.46, 128.77, 139.69, 140.61, 141.27, 153.41, 154.37, 170.60; ESIHRMS: Found: *m*/*z* 397.1412. Calcd for C₂₄H₂₂NaO4: (M+Na)⁺ 397.1416.

Ethyl-5-methoxy-2-(naphthalen-2-yl)-2,3-dihydrobenzofuran-3-carboxylate (3l)

According to the general procedure, the reaction of **21** (69.0 mg, 0.305 mmol), **1a** (60.8 mg, 0.490 mmol), *n*-Bu₄NBF₄ (101.8 mg, 0.309 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2.5 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 20:1) afforded 35.1 mg (33%) of **31** as pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 1.35 (t, *J* = 7.2 Hz, 3H), 3.79 (s, 3H), 4.24-4.38 (m, 3H), 6.27 (d, *J* = 8.0 Hz, 1H), 6.83 (ddd, *J* = 8.8, 2.8, 0.8 Hz, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 6.97-6.98 (m, 1H), 7.48-7.51 (m, 3H), 7.83-7.87 (m, 3H), 7.90 (d, *J* = 0.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 14.26, 56.05, 56.14, 61.69, 85.88, 109.91, 111.08, 114.90, 123.31, 124.76, 124.93, 126.21, 126.36, 127.69, 128.08, 128.78, 133.14, 133.22, 137.99, 153.54, 154.44, 170.63; ESIHRMS: Found: *m*/*z* 371.1286. Calcd for C₂₄H₁₉NaO4: (M+H)⁺371.1283.

Ethyl-5-methoxy-2-(4-methoxyphenyl)-2-methyl-2,3-dihydrobenzofuran-3carboxylate (3m)

According to the general procedure, the reaction of 2m (66.5 mg, 0.302 mmol), 1a (56.8 mg, 0.458 mmol), *n*-Bu₄NBF₄ (100.8 mg, 0.306 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2.5 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 20:1 then 10:1) afforded 79.4 mg (82%) of **3m** as yellow liquid. These two diastereomers could be separated by flash column chromatography, but the stereochemistry of each isomer was not assigned.

isomer 1: ¹H NMR (500 MHz, CDCl₃) δ 1.33 (t, *J* = 7.0 Hz, 3H), 1.72 (s, 3H), 3.74 (s, 3H), 3.79 (s, 3H), 4.24-4.34 (m, 2H), 4.38 (s, 1H), 6.73 (s, 1H), 6.77 (d, *J* = 8.5 Hz, 1H), 6.84 (d, *J* = 8.5 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 14.24, 24.73, 55.22, 55.91, 60.10, 61.21, 90.55, 109.84, 111.75, 113.66, 114.79, 125.44, 125.85, 138.54, 153.14, 154.27, 158.78, 170.63; ESIHRMS: Found: *m*/*z* 365.1363. Calcd for C₂₀H₂₂NaO₅: (M+Na)⁺ 365.1365. isomer 2: ¹H NMR (500 MHz, CDCl₃) δ 0.86 (t, *J* = 7.2 Hz, 3H), 1.85 (s, 3H), 3.60-3.66 (m, 1H), 3.71-3.75 (m, 1H), 3.76 (s, 3H), 3.78 (s, 3H), 4.22 (s, 1H), 6.76-6.87 (m, 5H), 7.34-7.36 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 13.60, 29.18, 55.19, 55.92, 60.74, 91.05, 110.09, 111.62, 113.17, 114.88, 125.79, 126.69, 133.87, 153.44, 154.22, 158.87, 170.12; ESIHRMS: Found: *m*/*z* 365.1364. Calcd for C₂₀H₂₂NaO₅: (M+Na)⁺ 365.1365.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl-5-methoxy-2-(4-methoxyphenyl)-2,3dihydrobenzofuran-3-carboxylate (3n)

According to the general procedure, the reaction of 2n (95.9 mg, 0.303 mmol), 1a (61.8 mg, 0.498 mmol), *n*-Bu₄NBF₄ (109.6 mg, 0.333 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 1.5 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =30:1) afforded 101.8 mg (77%) of **3n** as colorless liquid.

¹H NMR (500 MHz, CDCl₃) δ 0.73 (d, *J* = 7.0 Hz, 3H), 0.85 (d, *J* = 7.0 Hz, 2H), 0.85-0.92 (m, 5H), 0.98 – 1.12 (m, 2H), 1.41-1.54 (m, 2H), 1.67-1.71 (m, 2H), 1.74 – 1.92 (m, 1H), 2.01-2.05 (m, 1H), 3.77 (s, 3H), 3.81 (s, 3H), 4.22 (t, 7.5 Hz, 1H), 4.78-4.84 (m, 1H), 6.01 (d, *J* = 8.0 Hz, 1H), 6.78-6.81 (m, 2H), 6.89 – 6.94 (m, 3H), 7.32-7.35 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 15.83, 16.21, 20.69, 20.89, 21.96, 22.91, 23.32, 25.95, 26.15, 31.38, 34.06, 34.11, 40.76, 40.88, 47.00, 47.03, 55.26, 55.94, 55.99, 56.32, 56.47, 75.59, 85.83, 85.90, 109.79, 109.87, 110.45, 110.64, 114.02, 114.88, 115.30, 124.96, 125.23, 127.17, 127.28, 132.70, 153.36, 153.44, 154.25, 154.31, 159.59, 170.30, 170.34; ESIHRMS: Found: *m/z* 461.2302. Calcd for C₂₇H₃₄O₅Na: (M+Na)⁺ 461.2304.

(1s,3R,5S,7S)-4-oxoadamantan-1-yl-5-methoxy-2-(4-methoxyphenyl)-2,3dihydrobenzofuran-3-carboxylate (30)

According to the general procedure, the reaction of **2o** (99.2 mg, 0.304 mmol), **1a** (58.2 mg, 0.469 mmol), *n*-Bu₄NBF₄ (100.6 mg, 0.306 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =5:1) afforded 97.5 mg (72%) of **3o** as white solid, mp 114-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.93-1.97 (m, 2H), 2.02-2.05 (m, 2H), 2.36-2.40 (m, 5H), 2.43-2.49 (m, 2H), 2.67 (s, 2H), 3.77 (s, 3H), 3.80 (s, 3H), 4.17 (d, *J* = 8.0 Hz, 1H), 5.94 (d, *J* = 8.0 Hz, 1H), 6.78 (s, 2H), 6.88-6.91 (m, 3H), 7.31 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 29.81, 38.01, 39.92, 41.20, 41.24, 46.91, 55.26, 55.99, 56.65, 79.27, 85.54, 109.75, 110.99, 114.05, 114.49, 124.98, 127.29, 132.63, 153.37, 154.26, 159.64, 169.39, 214.97; ESIHRMS: Found: *m*/z 471.1789. Calcd for C₂₇H₂₈O₆Na: (M+Na)⁺471.1784.

N-(cyclopropylmethyl)-5-methoxy-2-(4-methoxyphenyl)-2,3-dihydrobenzofuran-3-amine (3p)

According to the general procedure, the reaction of **2p** (71.7 mg, 0.310 mmol), **1a** (117.4 mg, 0.946 mmol), *n*-Bu₄NBF₄ (103.7 mg, 0.315 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =5:1) afforded 53.2 mg (49%) of **3p** as white solid, mp 137-138 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.17-0.21 (m, 2H), 0.47-0.52 (m, 2H), 0.86-0.99 (m, 1H), 3.15-3.18 (m, 2H), 3.77 (s, 3H), 3.80 (s, 3H), 4.05 (d, *J* = 6.8 Hz, 1H), 5.73-5.79 (m, 1H), 5.88 (d, *J* = 6.8 Hz, 1H), 6.79-6.82 (m, 2H), 6.83-6.86 (m, 1H), 6.87-6.90 (m, 2H), 7.31-7.35 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 3.32, 3.36, 10.72, 44.54, 55.30, 56.06, 58.65, 87.44, 110.32, 110.69, 114.06, 115.00, 125.63, 127.00, 132.98, 154.07, 154.55, 159.57, 170.52; ESIHRMS: Found: *m*/z 376.1520. Calcd for C₂₁H₂₃NO4Na: (M+Na)⁺ 376.1525.

5-methoxy-2-(4-methoxyphenyl)-3-(trifluoromethyl)-2,3-dihydrobenzofuran (3q)

According to the general procedure, the reaction of **2q** (62.3mg, 0.308 mmol), **1a** (58.1mg, 0.468 mmol), *n*-Bu₄NBF₄ (104.1 mg, 0.316 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =40:1) afforded 43.0 mg (43) of **3p** as pale yellow solid, mp 42-43 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.9 (s, 3H), 3.70 (s, 3H), 3.90-3.98 (m, 1H), 5.65 (d, *J* = 5.6 Hz, 1H), 6.75-6.77 (m, 2H), 6.78-6.82 (m, 3H), 7.16-7.20 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 55.27, 55.56 (q, *J* = 28.7 Hz), 55.98, 83.15 (q, *J* = 2.6 Hz), 110.15, 111.35, 114.24, 116.24, 120.42 (q, *J* = 2.0 Hz), 125.77 (q, *J* = 279.8 Hz), 126.79, 132.34, 154.47, 154.52, 159.83; ¹⁹F NMR (376 MHz, CDCl₃) δ -70.73 (d, *J* = 9.3 Hz); ESIHRMS: Found: *m*/*z* 325.1038. Calcd for C17H16O3F₃: (M+H)⁺ 325.1052.

5-methoxy-2-(4-methoxyphenyl)-2,3-dihydrobenzofuran-3-carbonitrile (3r)

In an oven-dried undivided three-necked flask (10 mL) equipped with a stir bar, **2r** (53.3 mg, 0.3113 mmol),*p*-methoxylphenol (**1a**) (59.1 mg, 0.476 mmol), *n*-Bu₄NPF₆ (197.5 mg,0.51 M) and HFIP/CH₂Cl₂ (3:2, 10 mL) were added. The flask was equipped with graphite rod electrode (φ 6 mm) as the anode and cathode. The reaction mixture was stirred and electrolyzed at a constant potential of 2.5 V under room temperature and nitrogen atmosphere for 10 h. After evaporation of solvent, the crude residue was dissolved in CDCl₃ along with 20 µL CHCl₂CHCl₂ as internal standard for crude ¹H NMR. The result showed that the target product **3r** was detected in 48% yield. Purification by flash column chromatography on silica gel gave an inseparable mixture containing **2r** and **3r** (**2r**:**3r** = 1:1.15).

Yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 3.22 (t, *J* = 8.5 Hz, 2H), 3.79 (s, 3H), 4.32 (d, *J* = 9.5Hz, 1H), 4.60 (t, *J* = 8.5 Hz, 2H), 5.73 (d, *J* = 9.5 Hz, 1H), 6.80 (d, *J* = 8.5 Hz, 1H), 6.83-6.85 (m, 2H), 6.92 (s, 1H), 7.21 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.29-7.31 (m, 1); ¹³C NMR (126 MHz, CDCl₃) δ 29.46, 42.09, 56.02, 71.52, 87.66, 109.54, 109.79, 110.78, 116.29, 118.10, 122.24, 122.53, 126.13, 128.05, 129.67, 152.90, 155.00, 160.96; ESIHRMS: Found: *m/z* 316.0944. Calcd for C18H15NO3Na: (M+Na)⁺ 316.0950.

Ethyl-7-chloro-5-methoxy-2-(4-methoxyphenyl)-2,3-dihydrobenzofuran-3-

carboxylate (3aa)

According to the general procedure, the reaction of **2a** (62.9 mg, 0.305 mmol), **1aa** (73.7 mg, 0.465 mmol), *n*-Bu₄NBF₄ (104.8 mg, 0.318 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =20:1) afforded 89.0 mg (80%) of **3aa** as yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 1.32 (t, *J* = 7.2 Hz, 3H), 3.76 (s, 3H), 3.80 (s, 3H), 4.12-4.34 (m, 3H), 6.10 (d, *J* = 8.0 Hz, 1H), 6.81 (dd, *J* = 2.4, 0.8 Hz, 1H), 6.86 (dd, *J* = 2.4, 1.2 Hz, 1H), 6.90 (d, *J* = 8.8 Hz, 2H), 7.34 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 14.17, 55.24, 56.11, 56.50, 61.74, 86.18, 110.07, 114.07, 114.78, 114.89, 126.16, 127.35, 131.88, 149.49, 154.50, 159.78, 169.99; ESIHRMS: Found: *m/z* 385.0815. Calcd for C₁₉H₁₉O₅NaCl: (M+Na)⁺385.0819.

Ethyl-7-bromo-5-methoxy-2-(4-methoxyphenyl)-2,3-dihydrobenzofuran-3carboxylate (3ab)

According to the general procedure, the reaction of **2a** (62.6 mg, 0.304 mmol), **1ab** (93.8 mg, 0.462 mmol), *n*-Bu₄NBF₄ (100.7 mg, 0.306 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =10:1) afforded 117.6 mg (95%) of **3ab** as brown liquid.

¹H NMR (400 MHz, CDCl₃) δ 1.32 (t, *J* = 7.2 Hz, 3H), 3.76 (s, 3H), 3.80 (s, 3H), 4.20-4.33 (m, 3H), 6.10 (d, *J* = 7.6 Hz, 1H), 6.88-6.92 (m, 3H), 6.95 (dd, *J* = 2.8, 1.2 Hz, 1H), 7.32-7.36 (d, *J* = 2.8, 8.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 14.19, 55.27, 56.18, 56.81, 61.77, 85.88, 102.18, 110.86, 114.08, 117.35, 125.75, 127.32, 131.96, 150.92, 154.65, 159.76, 170.05; ESIHRMS: Found: *m*/*z* 429.0315. Calcd for C₁₉H₁₉ O₅NaBr: (M+Na)⁺429.0314.

Ethyl-6-bromo-5-methoxy-2-(4-methoxyphenyl)-2,3-dihydrobenzofuran-3carboxylate (3ac)

According to the general procedure, the reaction of **2a** (62.9 mg, 0.305 mmol), **1ac** (93.1 mg, 0.459 mmol), *n*-Bu₄NBF₄ (102.4 mg, 0.311 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2.5 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =10:1) afforded 97.0 mg (78%) of **3ac** as white solid, mp 93-94°C. Recrystallization from petroleum ether/ethyl acetate gave colorless crystals.

CCDC: 1968793. ¹H NMR (400 MHz, CDCl₃) δ 1.33 (t, *J* = 7.2 Hz, 3H), 3.81 (s, 3H), 3.85 (s, 3H), 4.19 (dd, *J* = 7.6, 1.2 Hz, 1H), 4.20-4.36 (m, 2H), 6.03 (d, *J* = 7.6 Hz, 1H), 6.88-6.92 (m, 2H), 6.97 (d, *J* = 1.2 Hz, 1H), 7.09 (s, 1H), 7.29-7.34 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 14.25, 55.30, 55.87, 57.15, 61.72, 86.12, 109.53, 112.41, 114.13, 114.43, 123.90, 127.22, 132.26, 150.71, 153.65, 159.76, 170.20; ESIHRMS: Found: *m/z* 429.0313. Calcd for C19H19 O5NaBr: (M+Na)⁺429.0314.

Supp	olementary	Table 1.	Crystal	data and	l structure	refinement	for 3ac
	•		•				

$C_{19}H_{19}BrO_5$
407.25
291(2)
triclinic
P-1
8.9606(3)
9.9217(4)
11.8105(4)
72.290(3)
88.750(3)
63.972(4)
891.11(6)
2
1.518
3.376
416.0
$0.28 \times 0.25 \times 0.24$

Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	7.926 to 148.154
Index ranges	$-11 \le h \le 7, -12 \le k \le 8, -14 \le l \le 14$
Reflections collected	5844
Independent reflections	3476 [$R_{int} = 0.0212$, $R_{sigma} = 0.0211$]
Data/restraints/parameters	3476/0/229
Goodness-of-fit on F ²	1.047
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0299, wR_2 = 0.0782$
Final R indexes [all data]	$R_1 = 0.0312, wR_2 = 0.0795$
Largest diff. peak/hole / e Å ⁻³	0.40/-0.64

Ethyl-5-(allyloxy)-2-(4-methoxyphenyl)-2,3-dihydrobenzofuran-3carboxylate(3ad)

According to the general procedure, the reaction of **2a** (63.8 mg, 0.309 mmol), **1ad** (64.2 mg, 0.472 mmol), *n*-Bu₄NBF₄ (103.3 mg, 0.314 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =20:1) afforded 89.3 mg (81%) of **3ad** as yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 1.34 (t, *J* = 7.1 Hz, 3H), 3.80 (s, 3H), 4.21-4.35 (m, 3H), 4.50 (ddd, *J* = 5.6, 1.6 Hz, 2H), 5.29 (ddt, *J* = 10.4, 2.8, 1.2 Hz, 1H), 5.42 (ddt, *J* = 17.2, 3.2, 1.6 Hz, 1H), 6.02-6.11 (m, 2H), 6.78-6.84 (m, 2H), 6.89-6.93 (m, 2H), 6.98-7.00 (m, 1H), 7.34-7.37 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 14.19, 55.19, 55.92, 61.50, 69.78, 85.63, 109.72, 111.98, 113.99, 115.81, 117.43, 124.85, 127.24, 132.59, 133.49, 153.23, 153.48, 159.59, 170.54; ESIHRMS: Found: *m/z* 377.1359. Calcd for C_{21H₂₂O₅Na: (M+Na)⁺ 377.1365.}

Ethyl-5-ethoxy-2-(4-methoxyphenyl)-2,3-dihydrobenzofuran-3-carboxylate(3ae)

According to the general procedure, the reaction of **2a** (62.5 mg, 0.303 mmol), **1ae** (63.3 mg, 0.458 mmol), *n*-Bu₄NBF₄ (101.6 mg, 0.319 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 1.5 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =10:1) afforded 67.7 mg (65%) of **3ae** as yellow liquid . ¹H NMR (400

MHz, CDCl₃) δ 1.33 (t, *J* = 7.2 Hz, 3H), 1.40 (t, *J* = 7.2 Hz, 3H), 3.80 (s, 3H), 3.99 (q, *J* = 7.2 Hz, 2H), 4.21-4.34 (m, 3H), 6.03 (d, *J* = 8.0 Hz, 1H), 6.78-6.80 (m, 2H), 6.90 (d, *J* = 8.8 Hz, 2H), 6.94-6.96 (m, 1H), 7.35 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 14.22, 14.89, 55.23, 56.00, 61.52, 64.33, 85.63, 109.75, 111.70, 114.03, 115.57, 124.85, 127.27, 132.68, 153.32, 153.58, 159.61, 170.64; ESIHRMS: Found: *m*/*z* 365.1368. Calcd for C₂₀H₂₂O₅Na: (M+Na)⁺ 365.1365.

Ethyl-7-(tert-butyl)-5-methoxy-2-(4-methoxyphenyl)-2,3-dihydrobenzofuran-3carboxylate (3af)

According to the general procedure, the reaction of **2a** (63.6 mg, 0.308 mmol), **1af** (83.8 mg, 0.465 mmol), *n*-Bu₄NBF₄ (103.4 mg, 0.314 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 1.5 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =20:1) afforded 105.6 mg (89%) of **3af** as yellow liquid .

¹H NMR (500 MHz, CDCl₃) δ 1.34 (t, *J* = 7.2 Hz, 3H), 1.39 (s, 9H), 3.78 (s, 3H), 3.81 (s, 3H), 4.16 (d, *J* = 8.4 Hz, 1H), 4.22-4.35 (m, 2H), 6.05 (d, *J* = 8.4 Hz, 1H), 6.79 (s, 2H), 6.91 (d, *J* = 7.2 Hz, 2H), 7.35 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 14.28, 29.15, 34.32, 55.26, 55.89, 56.18, 61.46, 84.94, 106.96, 113.22, 113.98, 124.65, 127.00, 133.51, 134.05, 151.43, 153.93, 159.42, 171.01; ESIHRMS: Found: *m/z* 407.1830. Calcd for C₂₃H₂₈O₅Na: (M+Na)⁺407.1834.

Ethyl-5-methoxy-2-(4-methoxyphenyl)-6-phenyl-2,3-dihydrobenzofuran-3carboxylate (3ag)

According to the general procedure, the reaction of **2a** (63.1 mg, 0.306 mmol), **1ag** (92.1 mg, 0.460 mmol), *n*-Bu₄NBF₄ (102.4 mg, 0.311 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =20:1) afforded 88 mg (71%) of **3ag** as yellow liquid .

¹H NMR (400 MHz, CDCl₃) δ 1.38 (t, *J* = 7.2 Hz, 3H), 3.77 (s, 3H), 3.83 (s, 3H), 4.25-4.41 (m, 3H), 6.09 (d, *J* = 8.0 Hz, 1H), 6.90 (s, 1H), 6.93 (d, *J* = 8.4 Hz, 2H), 7.06 (d, *J* = 1.2 Hz, 1H), 7.32-7.37 (m, 1H), 7.38-7.45 (m, 4H), 7.53-7.56 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 14.27, 55.25, 56.17, 56.58, 61.57, 85.72, 109.13, 111.66, 114.08, 123.34, 127.04, 127.29, 127.96, 129.40, 132.20, 132.69, 138.33, 151.29, 153.46, 159.66, 170.66; ESIHRMS: Found: *m*/*z* 427.1516. Calcd for C₂₅H₂₄O₅Na: (M+Na)⁺ 427.1521.

Ethyl-5-methoxy-2-(4-methoxyphenyl)-6-(3-(trifluoromethyl)phenyl)-2,3dihydrobenzofuran-3-carboxylate (3ah)

According to the general procedure, the reaction of **2a** (62.8 mg, 0.305 mmol), **1ah** (124.0 mg, 0.462 mmol), *n*-Bu₄NBF₄ (101.0 mg, 0.307 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 1 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =15:1) afforded 95.2 mg (66%) of **3ah** as pale yellow liquid.

¹H NMR (500 MHz, CDCl₃) δ 1.36 (t, J = 7.2 Hz, 3H), 3.77 (s, 3H), 3.82 (s, 3H), 4.24-4.38 (m, 3H), 6.07 (d, J = 7.5 Hz, 1H), 6.86 (s, 1H), 6.92 (d, J = 8.5 Hz, 2H), 7.05 (s, 1H), 7.37 (d, J = 8.5 Hz, 2H), 7.52 (dd, J = 7.5, 8.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 7.5 Hz, 1H), 7.78 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 14.31, 55.31, 56.17, 56.50, 61.69, 85.81, 109.07, 111.53, 114.12, 123.77 (q, J = 3.8 Hz), 124.22 (q, J = 272.2 Hz), 124.25, 126.32 (q, J = 3.8 Hz), 127.29, 128.42, 130.34 (q, J = 32.0 Hz), 130.44, 132.59, 132.75, 139.04, 151.17, 153.52, 159.71, 170.56; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.52; ESIHRMS: Found: *m/z* 495.1395. Calcd for C₂₆H₂₃O₅NaF₃: (M+Na)⁺ 495.1395.

Ethyl-6-(4-fluorophenyl)-5-methoxy-2-(4-methoxyphenyl)-2,3dihydrobenzofuran-3-carboxylate (3ai)

According to the general procedure, the reaction of **2a** (63.2 mg, 0.306 mmol), **1ai** (100.6 mg, 0.461 mmol), *n*-Bu₄NBF₄ (103.2 mg, 0.313 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =25:1) afforded 88.6 mg (68%) of **3ai** as yellow liquid . ¹H NMR (400

MHz, CDCl₃) δ 1.36 (t, J = 7.2 Hz, 3H), 3.75 (s, 3H), 3.82 (s, 3H), 4.23-4.39(m, 3H), 6.07 (d, J = 7.6 Hz, 1H), 6.84 (s, 1H), 6.90-6.94 (m, 2H), 7.03 (d, J = 1.2 Hz, 1H), 7.06-7.12 (m, 2H), 7.35-7.39 (m, 2H), 7.46-7.51 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 14.30, 55.30, 56.17, 56.56, 61.62, 85.78, 109.14, 111.56, 114.12, 114.89 (d, J = 21.4 Hz), 123.50, 127.30, 131.03 (d, J = 8.0 Hz), 131.12, 132.66, 134.24 (d, J = 3.1 Hz), 151.20, 153.49, 159.71, 162.05 (d, J = 247.1 Hz), 170.65; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.53 (m); ESIHRMS: Found: m/z 445.1418. Calcd for C₂₅H₂₃O₅FNa: (M+Na)⁺ 445.1427.

Ethyl-6-(4-cyanophenyl)-5-methoxy-2-(4-methoxyphenyl)-2,3dihydrobenzofuran-3-carboxylate (3aj)

According to the general procedure, the reaction of **2a** (62.6 mg, 0.304 mmol), **1aj** (101.4 mg, 0.450 mmol), *n*-Bu₄NBF₄ (102.2 mg, 0.310 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =5:1) afforded 124.8 mg (95%) of **3aj** as yellow solid, mp 44-45 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.36 (t, *J* = 7.1 Hz, 3H), 3.77 (s, 3H), 3.81 (s, 3H), 4.23-4.39 (m, 3H), 6.07 (d, *J* = 8.0 Hz, 1H), 6.84 (s, 1H), 6.90-6.93 (m, 2H), 7.06 (d, *J* = 1.2 Hz, 1H), 7.34-7.38 (m, 2H), 7.60-7.63 (m, 2H), 7.67-7.70 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 14.27, 55.28, 56.10, 56.44, 61.70, 85.88, 109.17, 110.56, 111.28, 114.13, 119.03, 124.93, 127.25, 129.87, 130.15, 131.75, 132.43, 143.16, 151.14, 153.53, 159.74, 170.42; ESIHRMS: Found: *m/z* 430.1657. Calcd for C₂₆H₂₄NO5: (M+H)⁺430.1654.

Ethyl-6-(4-(ethoxycarbonyl)phenyl)-5-methoxy-2-(4-methoxyphenyl)-2,3dihydrobenzofuran-3-carboxylate (3ak)

According to the general procedure, the reaction of **2a** (62.4 mg, 0.303 mmol), **1ak** (123.0 mg, 0.452 mmol), *n*-Bu₄NBF₄ (99.6 mg, 0.303 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =5:1) afforded 122.4 mg (85%) of **3ak** as bright yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 1.36 (t, J = 7.2 Hz, 3H), 1.41 (t, J = 7.2 Hz, 3H), 3.75 (s, 3H), 3.81 (s, 3H), 4.23-4.37 (m, 3H), 4.40 (q, J = 7.2 Hz, 2H), 6.07 (d, J = 8.0 Hz, 1H), 6.87 (s, 1H), 6.91 (d, J = 8.8 Hz, 2H), 7.04 (d, J = 0.8 Hz), 1H), 7.36 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H), 8.07 (d, J = 8.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 14.30, 14.34, 55.31, 56.187, 56.59, 60.86, 61.66, 85.82, 109.27, 111.49, 114.13, 124.26, 127.29, 129.00, 129.24, 129.42, 131.06, 132.60, 143.03, 151.31, 153.52, 159.72, 166.55, 170.56; ESIHRMS: Found: *m*/*z* 477.1908. Calcd for C₂₈H₂₉NO₇: (M+H)⁺477.1913.

Ethyl-2-(4-methoxyphenyl)-5-((4-methylphenyl)sulfonamido)-2,3dihydrobenzofuran-3-carboxylate (3al)

According to the general procedure, the reaction of **2a** (63.1, 0.306 mmol), **1al** (122.9 mg, 0.467 mmol), *n*-Bu₄NBF₄ (104.3 mg, 0.317 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =4:1) afforded 117.2 mg (83%) of **3al** as white solid, mp 103-104 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.28 (t, *J* = 7.2 Hz, 3H), 2.39 (s, 3H), 3.80 (s, 3H), 4.16-4.28 (m, 3H), 6.03 (d, *J* = 7.6 Hz, 1H), 6.68 (s, 1H), 6.69 (d, *J* = 8.8 Hz, 1H), 6.83 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.88 (d, *J* = 8.8 Hz, 2H), 7.15-7.18 (m, 1H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.8 Hz, 2H), 7.60 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 14.13, 21.50, 55.30, 55.32, 61.75, 86.06, 109.95, 114.12, 121.83, 125.15, 125.88, 127.26, 127.32, 129.20, 129.52, 132.14, 136.01, 143.65, 157.69, 159.77, 170.30; ESIHRMS: Found: *m/z* 490.1290. Calcd for C₂₅H₂₅NO6NaS: (M+Na)⁺490.1300.

Ethyl-2-(4-methoxyphenyl)-5-(methylthio)-2,3-dihydrobenzofuran-3-carboxylate (3am)

According to the general procedure, the reaction of **2a** (62.4, 0.303 mmol), **1am** (65.1 mg, 0.464 mmol), *n*-Bu₄NBF₄ (101.6 mg, 0.309 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) was electrolyzed under nitrogen atmosphere at room temperature for 2.5 h. The subsequent purification by flash column chromatography on silica gel (petroleum ether : ethyl acetate =30:1) afforded 62.5 mg (60%) of **3am** as pale yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 1.33 (t, *J* = 7.2 Hz, 3H), 2.46 (s, 3H), 3.80 (s, 3H), 4.21-4.35 (m, 3H), 6.06 (d, *J* = 8.0 Hz, 1H), 6.83 (d, *J* = 8.4 Hz, 1H), 6.90 (d, *J* = 8.8 Hz, 2H), 7.24 (ddd, J = 8.4, 2.0, 0.8 Hz, 1H), 7.33 (d, J = 8.8 Hz, 2H), 7.36-7.38 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 14.24, 18.52, 55.29, 55.49, 61.68, 85.88, 110.33, 114.12, 125.18, 126.12, 127.29, 129.04, 130.81, 132.37, 158.05, 159.74, 170.45; ESIHRMS: Found: m/z 367.0981. Calcd for C₁₉H₂₀O₄NaS: (M+Na)⁺ 367.0980.

5. Mechanistic studies 5.1. Synthesis of 4,4',5,5'-tetramethoxy-[1,1'-biphenyl]-2,2'-diol (5)

In an oven-dried two-necked flask, a stir bar, **2a** (62.2 mg, 0.302 mmol), **1o** (70.0 mg, 0.454 mmol), *n*-Bu₄NBF₄ (100.3 mg, 0.305 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) were added. The flask was equipped with graphite rod (ϕ 6 mm) as the anode and cathode. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under room temperature and nitrogen atmosphere for 75 min. After evaporation of solvent, the crude residue was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 2 : 1) to afford product **5** (50.3 mg) in 87% yield as brown solid, mp 166-167 °C. ¹H NMR (500 MHz, (CD₃)₂SO) δ 3.68 (s, 6H), 3.73 (s, 6H), 6.53 (s, 2H), 6.77 (s, 2H), 8.87 (s, 2H); ¹³C NMR (126 MHz, (CD₃)₂SO) δ 55.49 , 56.39 , 101.41 , 115.93 , 116.62 , 141.84 , 147.98 , 148.63; ESIHRMS: Found: *m/z* 329.0996. Calcd for C₁₆H₁₈O₆Na: (M+Na)⁺ 329.1001.

5.2. Computational studies

All the calculations were performed using Gaussian 16 software packages.¹⁶ Solutionphase geometry optimizations of all of the minima and transition states involved were carried out at the (U)B3LYP¹⁷/6-31G(d)¹⁸ level of theory with an empirical dispersion term (Grimme-D3(0))¹⁹ as implemented. SMD solvation model²⁰ for the mix solvent system of CF₃CH₂OH/CH₂Cl₂ (3:2) was adopted. Vibrational frequency analysis was calculated at the same level of theory to validate each structure as either a minimum or a transition state and to evaluate its zero-point energy and thermal corrections at 298 K. For each transition state, the intrinsic reaction coordinate (IRC) analysis was conducted to ensure that it connects the right reactant and product.²¹ To obtain more accurate energies, single point energy calculations were performed at the SMD/(U)M06-2X²²/6-311+G(d,p)²³ level of theory with an empirical dispersion term (Grimme-D3(0))¹⁹ as implemented. Unless otherwise specified, all of the conformers were located but only the ones with the lowest Gibbs energies were reported.

Table 1. Thermal correction of Gibbs free energy (TCG, hartree) and single point energies (SP,

Compounds	TCG	SP	Compounds	TCG	Е
2a	0.194273	-691.286591	Int-a-II	0.311269	-1112.617674
II	0.092267	-421.308446	TS-b-I	0.308129	-1112.565178
TS-a-I	0.310336	-1112.577527	Int-b-I	0.309109	-1112.574783
Int-a-I	0.309134	-1112.588731	Int-b-II	0.311694	-1112.611122

hartree) in solvent CF₃CH₂OH/CH₂Cl₂ (3:2) for all species involved in this study

Cartesian coordinates for all optimized geometries

2a				0	2.16840900	0.59004200	-0.00000200
С	2.67141200	-1.40348800	-0.00097000	С	3.14944300	-0.46184200	-0.00002000
С	1.33033400	-1.06437200	-0.00103200	Н	4.11517400	0.04474700	-0.00003800
С	0.92094300	0.28928500	-0.00037700	Н	3.05363800	-1.08092900	0.89802500
С	1.92425300	1.27508600	0.00023900	Н	3.05360300	-1.08092900	-0.89806100
С	3.27919200	0.94955000	0.00034600				
С	3.65918700	-0.39951900	-0.00024200	TS-a-	I		
Н	2.98789400	-2.44231000	-0.00150000	С	2.92356400	-1.06385900	-1.24827500
Н	0.58924800	-1.85826100	-0.00168500	С	1.57329600	-1.01470200	-0.96138400
Н	1.63606700	2.32350800	0.00069700	С	1.10090900	-1.05015500	0.38282400
Н	4.02023200	1.74020200	0.00087000	С	2.08177300	-1.15425500	1.40602900
С	-0.47385800	0.70547700	-0.00027700	С	3.43941300	-1.20112200	1.12604200
Н	-0.64196600	1.78225700	-0.00061500	С	3.87296900	-1.15150600	-0.21100800
С	-1.57149200	-0.08139300	0.00031200	Н	3.27910400	-1.03726700	-2.27413200
Н	-1.52077300	-1.16534500	0.00086500	Н	0.86606300	-0.95150900	-1.78109500
С	-2.91188900	0.51484600	0.00038400	Н	1.75427500	-1.18469800	2.44219400
0	-3.86913400	-0.43923200	0.00062000	Н	4.15121500	-1.27196400	1.94025800
С	-5.24449800	0.02262600	0.00013200	С	-0.27386300	-0.97924900	0.73619500
Н	-5.40665200	0.64393500	-0.88703700	Н	-0.51979300	-1.03206700	1.79313100
Н	-5.40693100	0.64497900	0.88651700	С	-1.35780900	-0.74561800	-0.16368900
С	-6.12853200	-1.20734800	0.00071700	Н	-1.19848800	-1.01628900	-1.20494100
Н	-7.18097300	-0.90305600	0.00035500	С	-2.70834900	-1.17217400	0.32960300
Н	-5.94456200	-1.81990300	-0.88871200	0	-3.59209700	-1.23591300	-0.67806800
Н	-5.94486700	-1.81883200	0.89094600	С	-4.97728200	-1.48946500	-0.31193000
0	-3.17069900	1.71462600	-0.00073500	Н	-5.28761700	-0.71340900	0.39441400
0	4.94391600	-0.84205400	-0.00020300	Н	-5.03536800	-2.46082000	0.18896300
С	6.00029900	0.12429000	0.00064600	С	-5.78667800	-1.45541400	-1.59057700
Н	6.92658300	-0.45304600	0.00061100	Н	-6.84220900	-1.63689300	-1.36024800
Н	5.96124400	0.75494800	-0.89552400	Н	-5.70114500	-0.47814400	-2.07808900
Н	5.96069100	0.75396200	0.89748400	Н	-5.44660400	-2.22754200	-2.28931300
				0	-2.99251000	-1.39865900	1.49472200
п				0	5.17262900	-1.18737300	-0.60564700
С	0.86199700	0.27791000	0.00000300	С	6.19019200	-1.29983400	0.39533700
С	0.35357700	-1.04482800	0.00001100	Н	7.13645400	-1.31752500	-0.14832100
С	-1.00723500	-1.24721600	0.00001400	Н	6.17393600	-0.43979800	1.07528100
С	-1.94624100	-0.14231700	0.00001700	Н	6.07905100	-2.22742500	0.96924900
С	-1.37921500	1.19470200	-0.00000400	С	-0.39858900	1.64766800	-1.03057000
С	-0.02463600	1.39047800	-0.00000600	С	-1.65578400	1.13285400	-0.52633900
Н	1.02868700	-1.89268700	0.00001500	С	-2.15388200	1.62610100	0.78559900
Н	-1.42020000	-2.25186300	0.00001700	С	-1.14007000	2.15131700	1.68538100
Н	-2.06984400	2.03303300	-0.00001400	С	0.11844500	2.40220500	1.23182500
Н	0.40912100	2.38627900	-0.00001600	С	0.48746200	2.20433900	-0.15176100
0	-3.19544700	-0.33491400	-0.00000100	Н	-0.14983300	1.48366000	-2.07190900

Н	-1.43051200	2.37086200	2.70852900	C	0.15739700	2.88925900	-1.23338800
Н	0.88021500	2.81190200	1.89046800	C	-0.23116700	2.57334500	0.13441200
0	-3.35498600	1.52321100	1.10783800	Н	0.20142200	1.43747200	1.88697900
0	1.74412300	2.64199600	-0.44039100	Н	1.53240200	2.60263100	-2.84230700
С	2.17026900	2.58595100	-1.80507000	Н	-0.46854800	3.60299700	-1.76373000
Н	1.52079700	3.20044400	-2.44107500	0	3.10830200	0.91382700	-1.60972800
Н	3.18475000	2.98862800	-1.81603500	0	-1.33429500	3.27253100	0.53321700
Н	2.18073000	1.55528800	-2.17459900	C	-1.84294500	2.99827900	1.84051100
Н	-2.44820700	0.99998300	-1.25974800	Н	-1.10656700	3.25444300	2.61285800
				Н	-2.72756900	3.62744700	1.95550200
Int-a	ı-I			Н	-2.12403000	1.94236400	1.93651700
С	-3.00388900	-1.01549000	1.27589300	Н	2.50553000	1.05234400	0.93774700
С	-1.65381800	-0.93630800	0.99316900				
С	-1.16372300	-1.03977200	-0.34647800	In	t-a-II		
С	-2.14314800	-1.23841200	-1.36414800	C	3.28399300	0.24729600	-1.21356500
С	-3.50029100	-1.31541400	-1.08464900	C	1.99254600	-0.10931100	-0.87593300
С	-3.94521700	-1.20107400	0.24393800	С	1.72192800	-0.93559700	0.25873000
Н	-3.36510400	-0.93771200	2.29764800	C	2.84991100	-1.36326200	1.01820400
Н	-0.95738600	-0.79548100	1.81273800	C	4.14800000	-1.00701800	0.68149500
Н	-1.81135600	-1.32458600	-2.39607300	С	4.37727200	-0.19496600	-0.44310700
Н	-4.20388800	-1.46139700	-1.89637500	Н	3.48113600	0.87725300	-2.07654200
С	0.20116700	-0.95293200	-0.69543700	Н	1.17330500	0.25708900	-1.48576900
Н	0.46486000	-1.05739700	-1.74417500	Н	2.68381500	-1.99001100	1.89114100
С	1.32217100	-0.61892100	0.23315500	Н	4.97242200	-1.35832600	1.29145400
Н	1.09136500	-0.89567800	1.26778500	С	0.42308500	-1.33025900	0.64765300
С	2.59657800	-1.37653400	-0.13599900	Н	0.31382800	-1.92663400	1.54831700
0	3.56903400	-1.14898200	0.75853600	C	-0.83875100	-0.91014800	-0.06586100
С	4.87045000	-1.72924700	0.46668200	Н	-0.67803200	-0.91789800	-1.14720100
Н	5.19518300	-1.35972800	-0.51131500	С	-1.94752200	-1.90964700	0.22730900
Н	4.76425100	-2.81699800	0.40946500	0	-2.48676700	-2.41970900	-0.87194700
С	5.80572100	-1.30291800	1.57792100	C	-3.58384400	-3.37082400	-0.69661400
Н	6.80358300	-1.71668300	1.39556600	Н	-4.37852700	-2.87250900	-0.13376700
Н	5.88547700	-0.21123200	1.62118500	Н	-3.21242400	-4.21392100	-0.10679000
Н	5.45133600	-1.66791700	2.54811000	C	-4.03048100	-3.78730300	-2.08064300
0	2.72403600	-2.11373900	-1.09722500	Н	-4.85590000	-4.50235500	-1.99482500
0	-5.24991700	-1.25848300	0.63701700	Н	-4.37897700	-2.92220400	-2.65478500
С	-6.25299200	-1.45278200	-0.36351400	Н	-3.21151200	-4.26691500	-2.62723600
Н	-7.20459300	-1.47012800	0.17132700	0	-2.31264600	-2.20922400	1.36193100
Н	-6.25623700	-0.62978000	-1.08871600	0	5.60565800	0.21815700	-0.86731100
Н	-6.11124500	-2.40516600	-0.88887700	C	6.75615500	-0.19576900	-0.12561500
С	0.47316700	1.68619300	0.86797500	Н	7.61278300	0.24708200	-0.63746100
С	1.63439400	0.94746200	0.27914700	Н	6.71766400	0.17183100	0.90710000
С	2.08201100	1.39123000	-1.11130800	Н	6.85649100	-1.28807700	-0.12332700
С	1.24477400	2.34552900	-1.82728200	С	-1.29302700	0.51032600	0.31503000

С	-1.39966400	1.47453100	-0.68778200	
С	-1.54391700	0.88944000	1.65229000	
С	-1.71682100	2.80691300	-0.39491300	
Н	-1.21625600	1.20365000	-1.72391800	
С	-1.85497000	2.21855900	1.93986500	
С	-1.93741400	3.18394000	0.93327200	
Н	-2.04000800	2.49096300	2.97507000	
Н	-2.17993800	4.20670500	1.19725900	
0	-1.45887600	0.01779300	2.71152700	
Н	-1.70132300	-0.88654700	2.40769600	
0	-1.77938600	3.65285000	-1.47358000	
С	-2.07939500	5.02648800	-1.22816100	
Н	-1.32147300	5.49413900	-0.58641500	
Н	-2.07449500	5.51183000	-2.20650700	
Н	-3.06895100	5.14557700	-0.76838300	
TS-b-l	[
С	-1.94406200	-2.01893000	1.18895600	
С	-0.70378500	-1.47118400	0.89287900	
С	-0.43985400	-0.90811000	-0.36926300	
С	-1.47413600	-0.90932100	-1.31283600	
С	-2.73113400	-1.45115900	-1.03184900	
С	-2.97015600	-2.00862400	0.22964800	
Н	-2.14644500	-2.45052500	2.16488200	
Н	0.06027100	-1.46301100	1.66477400	
Н	-1.30080800	-0.47089300	-2.29222100	
Н	-3.50241800	-1.43089800	-1.79278500	
С	0.85873000	-0.25638500	-0.71060300	
Н	0.96877900	-0.06787800	-1.77873000	
С	2.06864300	-0.74642100	-0.11957800	
Н	2.06852400	-1.32705000	0.79430800	
С	3.35561300	-0.35139600	-0.65844900	
0	4.38179200	-0.89648700	0.03111700	
С	5.71675500	-0.55639000	-0.42342900	
Н	5.83666900	0.53120700	-0.37466100	
Н	5.82149200	-0.86427200	-1.46936300	
С	6.69412500	-1.27677600	0.48168600	
Н	7.71928800	-1.04546900	0.17221900	
Н	6.56643900	-0.96050700	1.52266100	
Н	6.55112300	-2.36140200	0.42493500	
0	3.51747200	0.39593300	-1.62510300	
0	-4.15482400	-2.56077800	0.62396400	
С	-5.24789700	-2.54323200	-0.29684300	
Н	-6.08260500	-3.01543700	0.22500800	

Н	-5.52139700	-1.51633400	-0.57019000
Н	-5.01504400	-3.11412200	-1.20418800
С	-1.63581900	2.05824100	1.17176500
С	-0.51941300	1.75360000	1.88562900
С	0.76843800	1.56488100	1.23174300
С	0.76637300	1.57809700	-0.26148300
С	-0.40273800	2.09720000	-0.93532100
С	-1.58521000	2.24399400	-0.26540900
Н	-2.57953800	2.18444600	1.69092200
Н	-0.37489500	2.25760200	-2.00896300
0	1.81079600	1.33462000	1.86937900
0	-2.67838000	2.60668000	-0.99309600
С	-3.96578200	2.63718200	-0.36523800
Н	-4.01996600	3.41307900	0.40742100
Н	-4.67129200	2.87460700	-1.16367100
Н	-4.21835700	1.66114400	0.06566000
Н	-0.55258900	1.64702300	2.96581900
Н	1.72578600	1.86736700	-0.68595400
Int-k)-I		
С	-1.95251800	-2.01450300	1.27971800
С	-0.77493000	-1.34671800	0.96488900
С	-0.49356900	-0.95435800	-0.35514100
С	-1.43586600	-1.25655000	-1.34182400
С	-2.62662800	-1.92662000	-1.04475100
С	-2.88877800	-2.30741100	0.27633100
Η	-2.16841500	-2.31673300	2.30048300
Η	-0.06903900	-1.12550300	1.76052100
Η	-1.24440800	-0.96215600	-2.37104100
Η	-3.32960000	-2.14187900	-1.84106200
С	0.76080000	-0.17733100	-0.71225300
Η	0.86326400	-0.14786900	-1.80505300
С	2.00947200	-0.76562700	-0.15605300
Η	1.97942200	-1.52769400	0.61303900
С	3.30196700	-0.31754000	-0.62248100
0	4.31944800	-0.93684000	0.01877800
С	5.65994200	-0.54477000	-0.37207300
Η	5.77358100	0.53176800	-0.20494700
Н	5.78546100	-0.73820700	-1.44292200
С	6.62522800	-1.35475900	0.46809600
Н	7.65449900	-1.08780200	0.20426900
Н	6.47708900	-1.15302200	1.53456600
Н	6.48940600	-2.42750900	0.29235100
0	3.47905000	0.52995700	-1.50125900

0	-4.01498500	-2.96361000	0.68913200	Н	-0.46897500	-0.84775700	1.53346600
С	-5.00718900	-3.28128500	-0.28869500	С	-1.27721400	-1.13948300	-0.39187900
Н	-5.80664000	-3.78969300	0.25418000	Н	-1.10987500	-1.20720100	-1.46042000
Н	-5.40652700	-2.37538300	-0.76171100	С	-2.56219500	-1.55010900	0.11390800
Н	-4.60775200	-3.95112600	-1.06049300	0	-3.32944300	-2.13659300	-0.82056300
С	-1.55080300	2.57523500	1.12832800	С	-4.64975700	-2.57775700	-0.40000600
С	-0.49597700	2.11127900	1.84521500	Н	-5.19697600	-1.71301300	-0.01070500
С	0.66158400	1.51982300	1.19237500	Н	-4.53229800	-3.30372300	0.41116800
С	0.62681200	1.37486400	-0.32011000	С	-5.32390900	-3.18187800	-1.61332000
С	-0.55170500	1.97608900	-1.00768200	Н	-6.32619700	-3.52797300	-1.33817900
С	-1.58335300	2.52151600	-0.32662400	Н	-5.42042200	-2.44154000	-2.41480500
Н	-2.39550900	3.00145600	1.65906400	Н	-4.75332300	-4.03705900	-1.99132400
Н	-0.58607900	1.93384100	-2.09281200	0	-2.94380700	-1.39518500	1.28636500
0	1.64059100	1.11220000	1.83380600	0	5.17187200	-1.92126900	-0.58254900
0	-2.64016500	3.01389800	-1.04841000	C	6.13333600	-2.02472800	0.46964900
С	-3.73042900	3.63900900	-0.36628500	Н	7.07339300	-2.29792100	-0.01408900
Н	-3.40218800	4.51596000	0.20526200	Н	6.25765900	-1.06859600	0.99318200
Н	-4.41756500	3.96059000	-1.15173700	Н	5.85460700	-2.80354800	1.19048000
Н	-4.24846700	2.93663400	0.29824200	С	-0.88190900	3.79619700	0.44704100
Н	-0.48429300	2.16332500	2.92983700	С	-1.52059200	2.99842100	1.39734300
Н	1.54788400	1.83409100	-0.70230500	С	-1.35069400	1.61235400	1.41799800
				С	-0.48843900	1.00419200	0.47625800
Int-b	-II			C	0.12693800	1.80636000	-0.48699800
С	2.98491700	-1.50828600	-1.32386500	С	-0.05815300	3.19219300	-0.51091100
С	1.65231700	-1.17886000	-1.09567800	Н	-1.04119400	4.86814700	0.45978800
С	1.18131900	-0.91914600	0.20101400	Н	0.79126800	1.36520100	-1.22321100
С	2.09572000	-1.00311500	1.25620400	0	-1.99620700	0.91355000	2.40766800
С	3.43731500	-1.33121700	1.04713700	0	0.61378300	3.86366000	-1.50093200
С	3.88775900	-1.58715800	-0.25415700	С	0.47682100	5.28313800	-1.55874100
Н	3.34533800	-1.71043700	-2.32841300	Н	0.84203500	5.75938700	-0.63970200
Н	0.98112500	-1.12560500	-1.94739200	Н	1.09002000	5.60724900	-2.40236900
Н	1.75808600	-0.80510300	2.27105900	Н	-0.56568500	5.57924600	-1.73273500
Н	4.10989500	-1.38665600	1.89520600	Н	-2.17358100	3.44831400	2.13977700
С	-0.25673900	-0.51999000	0.51080900	Н	-2.28553000	0.02851400	2.07847000

6. Synthesis of 3,4'-di-O-methycedrusin (4)

In an oven-dried undivided three-necked flask (10 mL) equipped with a stir bar, ethyl-3-(4-hydroxy-3-methoxyphenyl)propanoate (172.1 mg, 0.767 mmol), ethyl 4-methoxycinnamate (**2b**) (71.5 mg, 0.303 mmol), *n*-Bu₄NBF₄ (100.3 mg, 0.305 mmol) and HFIP/CH₂Cl₂ (3:2 10 mL) were added. The bottle was equipped with graphite rod electrode (ϕ 6 mm) as the anode and cathode. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under room temperature and nitrogen atmosphere for 5 h. After evaporation of solvent, the crude residue was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 8 : 1) to afford product **3bn** (54.1 mg, 0.126 mmol) in 42% yield as a yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 1.23 (t, *J* = 7.2 Hz, 3H), 1.32 (t, *J* = 7.5 Hz, 3H), 2.59 (t, *J* = 8.0 Hz, 2H), 2.90 (t, *J* = 8.0 Hz, 2H), 3.84-3.88 (m, 9H), 4.12 (q, *J* = 7.5 Hz, 2H), 4.19-4.32 (m, 3H), 6.04 (d, *J* = 8.5 Hz, 1H), 6.69 (s, 1H), 6.80 (s, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 6.93 (s, 1H), 6.96 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 14.14, 14.19, 30.82, 36.31, 55.83, 55.85, 55.99, 56.00, 60.34, 61.52, 86.62, 109.17, 110.93, 112.72, 116.30, 118.73, 125.21, 132.50, 134.16, 144.16, 146.20, 149.05, 170.60, 172.80; ESIHRMS: Found: *m*/z 481.1839. Calcd for C₂₅H₃₀O₈Na: (M+Na)⁺481.1838.

To a solution of LiAlH₄ (69.7 mg, 1.84 mmol) in dry THF (3 mL) was added a solution of **3bn** (84.2 mg, 0.184 mmol) dissolved in dry THF (3 mL) dropwise at 0 °C. The reaction was continued at 0 °C for 5 min and at ambient temperature for additional 1 h. After the residual LiAlH₄ had been destroyed by adding water dropwise to the cooled mixture, concentrated HCl was then added dropwise until two clear layers formed. After separation, the aqueous layer was extracted with ethyl acetate (10 mL x 3) and the combined extracts were then dried over Na₂SO₄, filtered and evaporated at reduced pressure. The residue was purified by column chromatography with ethyl acetate- petroleum ether as eluent (4:1) to afford product **4** (52.1 mg, 0.139 mmol) in 76% yield as a colorless liquid. The ¹H and ¹³C NMR data (shown below) of this compound were identical to the reported ones.^{15 1}H NMR (500 MHz, CDCl₃) δ 1.77 (s br, 2H), 1.77-1.90 (m, 2H), 2.65 (t, *J* = 7.5 Hz, 2H), 3.60 (dd, *J* = 5.5, 12.0 Hz, 1H), 3.67 (t, *J* = 6.5 Hz, 2H), 3.84 (s, 3H), 3.85 (s, 3H), 3.87 (s, 3H), 3.89 (d, *J* = 5.0 Hz, 1H), 3.95 (dd, *J* = 11.0, 6.0 Hz, 1H), 5.55 (d, *J* = 7.5 Hz, 1H), 6.66 (s, 1H), 6.67 (s, 1H), 6.82 (d, *J* = 8.5 Hz, 1H),

6.94-6.95 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 31.94, 34.54, 53.72, 55.87, 55.95, 62.19, 63.82, 87.71, 109.27, 110.90, 112.34, 115.95, 118.65, 127.71, 133.65, 135.35, 144.12, 146.48, 148.87, 149.05; ESIHRMS: Found: *m/z* 397.1634. Calcd for C₂₁H₂₆O₆Na: (M+Na)⁺ 397.16927.

7. References

- (1) Qiu, G., Mamboury, M., Wang, Q. & Zhu, J., Angew. Chem. Int. Ed., 2016, 55, 15377.
- (2) Lebel, H., Ladjel, C. & Bréthous, L., J. Am. Chem. Soc., 2007, 129, 13321.
- (3) A. Kaga, H. Hayashi, H. Hakamata, M. Oi, M. Uchiyama, R. Takita, S. Chiba, *Angew. Chem. Int. Ed.*, 2017, **56**, 11807.
- (4) O. Uchikawa, K. Fukatsu, R. Tokunoh, M. Kawada, K. Matsumoto, Y. Imai, S. Hinuma, K. Kato, H. Nishikawa, K. Hirai, M. Miyamoto, S. Ohkawa, *J. Med. Chem.*, 2002, 45, 4222.
- (5) Constantin, M.-A., Conrad, J. & Beifuss, U., Green Chem., 2012, 14, 2375.
- S. Sasmal, D. Balasubrahmanyam, H. R. Kanna Reddy, G. Balaji, G. Srinivas, S. Cheera, C. Abbineni,
 P. K. Sasmal, I. Khanna, V. J. Sebastian, V. P. Jadhav, M. P. Singh, R. Talwar, J. Suresh, D.
 Shashikumar, K. Harinder Reddy, V. Sihorkar, T. M. Frimurer, Ø. Rist, L. Elster, T. Högberg, Bioorg.,
 Med. Chem. Lett., 2012, 22, 3163.
- (7) A. Bouziane, M. Hélou, B. Carboni, F. Carreaux, B. Demerseman, C. Bruneau, J.-L. Renaud, *Chem. Eur. J.*, 2008, 14, 5630.
- (8) S. Einaru, K. Shitamichi, T. Nagano, A. Matsumoto, K. Asano, S. Matsubara, Angew. Chem. Int. Ed., 2018, 57, 13863.
- (9) S.-C. Ren, F.-L. Zhang, A.-Q. Xu, Y. Yang, M. Zheng, X. Zhou, Y. Fu, Y.-F. Wang, *Nat. Commun.*, 2019, 10, 1934.
- (10) Y.-S. Huang, J. Wang, W.-X. Zheng, F.-L. Zhang, Y.-J. Yu, M. Zheng, X. Zhou, Y.-F. Wang, Chem. Commun., 2019, 55, 11904.
- (11) Huang, H., Denne, J., Yang, C.-H., Wang, H. & Kang, J. Y., Angew. Chem. Int. Ed., 2018, 57, 6624.
- (12) Smith, D. T., Vitaku, E. & Njardarson, J. T. Org. Lett., 2017, 19, 3508.
- (13) P. Feng, G. Ma, X. Chen, X. Wu, L. Lin, P. Liu, T. Chen, Angew. Chem. Int. Ed., 2019, 58, 8400.
- (14) Leduc, A. B. & Kerr, M. A., Eur. J. Org. Chem., 2007, 2007, 237.
- (15) L. Pieters, S. Van Dyck, M. Gao, R. Bai, E. Hamel, A. Vlietinck, G. Lemière, J. Med. Chem., 1999, 42, 5475.
- (16) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Jr. Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, **2016**.
- (17) (a) Miehlich, B., Savin, A., Stoll, H. & Preuss, H., *Chem. Phys. Lett.*, 1989, 157, 200. (b) Lee, C. T., Yang, W. T., Parr, R. G., *Phys. Rev.* B, 1988, 37, 785.
- (18) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
- (19) Grimme, S., Antony, J.; Ehrlich, S., Krieg, H., J. Chem. Phys., 2010, 132, 154104.
- (20) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., J. Phys. Chem. B, 2009, **113**, 6378.
- (21) (a) Fukui, K., Acc. Chem. Res., 1981, 14, 363. (b) Fukui, K., J. Phys. Chem., 1970, 74, 4161.

- (22) (a) Zhao, Y. & Truhlar, D. G., *Theor. Chem. Acc.*, 2008, **120**, 215. (b) Zhao, Y. & Truhlar, D. G., *Acc. Chem. Res.*, 2008, **41**, 157.
- (23) (a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A., *J. Chem. Phys.*, 1980, 72, 650. (b) McLean, A. D. & Chandler, G. S., *J. Chem. Phys.*, 1980, 72, 5639. (c) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R., *J. Comput. Chem.*, 1983, 4, 294. (d) Frisch, M. J., Pople, J. A. & Binkley, J. S., *J. Chem. Phys.*, 1984, 80, 3265.

8. Copies of ¹H NMR and ¹³C NMR Spectra

Zhao, Zhang and Wang, Supporting Information

S62

S64

Zhao, Zhang and Wang, Supporting Information

S95

Zhao, Zhang and Wang, Supporting Information

Դ 3.25

- 3.05

HN Ts

10.0 ppm (t1) **→** 3.10

0.0

3.11

S101

5.0

μ

1.00

Т

Y

- 2.09

Zhao, Zhang and Wang, Supporting Information

