Supporting Information

Synthesis of Conjugated Triynes via Alkyne Metathesis

Idriss Curbet,[†] Sophie Colombel-Rouen,[†] Romane Manguin,[†] Anthony Clermont,[†] Alexandre Quelhas,[†] Daniel S. Müller,[†] Thierry Roisnel,[†] Olivier Baslé,^{‡†} Yann Trolez^{*†} and Marc Mauduit^{*†}

† Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France. [‡] LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France

E-mail: yann.trolez@ensc-rennes.fr; marc.mauduit@ensc-rennes.fr

Table of contents

I-	General	
II-	Reagents	
III-	Synthesis of diyne substrates	5
S	ynthesis of (E)-(4-chlorobut-3-en-1-yn-1-yl)-triisopropylsilane (12a)	5
S	ynthesis of Triisopropyl(penta-1,3-diynyl)silane (13a)	6
S	ynthesis of (<i>E</i>)-(4-chlorobut-3-en-1-yn-1-yl)triethylsilane (12b)	6
S	ynthesis of triethyl(penta-1,3-diyn-1-yl)silane (13b)	6
S	ynthesis of (<i>E</i>)-(4-chlorobut-3-en-1-yn-1-yl)triphenylsilane (12c)	7
S	ynthesis of (penta-1,3-diyn-1-yl)triphenylsilane (13c)	7
S	ynthesis of (E)-(3-chloroprop-2-ene-1,1,1-triyl)tribenzene (12d)	8
S	ynthesis of hexa-2,4-diyne-1,1,1-triyltribenzene (13d)	8
S	ynthesis of (E)-(4-chlorobut-3-en-1-yn-1-yl)- 1,3,5-trimethylbenzene (12e)	8
S	ynthesis of 1,3,5-trimethyl-2-(penta-1,3-diyn-1-yl)benzene (13e)	9
IV-	Mo-catalyzed self-metathesis of diynes	9
Se	elf-metathesis of TIPS-diyne 13a (Table 1- Entries 1-6)	
Se	elf-metathesis of TMS-diyne 13f (Table 1- Entry 7)	
Se	elf-metathesis of TES-diyne 13b (Table 1- Entry 8)	
Se	elf-metathesis of Ph ₃ Si-diyne 13c (Table 1, Entry 9)	
S	ynthesis of 1,1,1,8,8,8-hexaphenylocta-2,4,6-triyne (16) (Scheme 2, a)	
S	ynthesis of 1,6-dimesitylhexa-1,3,5-triyne (17) (Scheme 2, b)	
V-	Mo-catalyzed cross-metathesis of diynes	

Cross metathesis of triisopropyl(penta-1,3-diyn-1-yl)silane (13a) and 1,3, (penta-1,3-diyn-1-yl)benzene (13e) (Scheme 3, c)	5-trimethyl-2
Cross metathesis of triisopropyl(penta-1,3-diyn-1-yl)silane (13a) and hexa-2, triyltribenzene (13d) (Scheme 3, d)	4-diyne-1,1,1-
Cross metathesis of 1,3,5-trimethyl-2-(penta-1,3-diyn-1-yl)benzene (13e) a diyne-1,1,1-triyltribenzene (13d) (Scheme 3, e)	and hexa-2,4-
VI- Stability study of 16 and 14a toward the Mo-benzylidyne catalyst Cat-2	
Stability study of 16	
Stability study of 14a	
VII- Post-functionalization of dissymmetrical triyne 22	
VIII- NMR spectra	
IX- X-Ray Crystallographic data	52
X-ray structure of triyne 16	52
X-ray structure of diyne 13d	53
X-ray structure of diyne 13e	54
X-ray structure of triyne 14c	55
X-ray structure of triyne 22	56
X-ray structure of triyne 23	57

I- General

Reactions were monitored by thin-layer chromatography (TLC) carried out on silica gel plates (60F254) using UV light as visualizing agent and by staining with KMnO₄. Column chromatography was performed with silica gel (spherical, particle size 40 µm, neutral). ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra were recorded on a Bruker 400 NMR spectrometer with complete proton decoupling for nucleus other than ¹H. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra were recorded on a Bruker Av I 500 MHz fitted with a TCI cryoprobe (Biosit platform - Université de Rennes 1). Chemical shifts are reported in parts per million with the solvent resonance as the internal standard (CDCl₃: ¹H, δ 7.26 ppm; ¹³C, δ 77.16 ppm). Coupling constants (J) are reported in hertz (Hz). Multiplicities are reported using following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Solvents: tetrahydrofuran and toluene were purified using MBraun MB-SPS-5 Solvent Purification System and typically contained <15 ppm of H₂O (verified by Karl Fischer titration). Solvents used for catalysis were freeze-pump-thaw degassed prior to use. All commercial chemicals were used as received unless otherwise noted. CDCl₃ was purchased from Euriso-Top company and used as received. High Resolution Mass Spectrometry (HRMS) were recorded on a Waters QTof-I spectrometer using electrospray ionization at the Centre Régional de Mesures Physiques de l'Ouest (CRMPO), Université de Rennes 1 and at Institut de Chimie de Toulouse. Melting points were measured on a Stuart Melting Point Apparatus SMP3 and are uncorrected.

II- Reagents

Starting materials and products:

- (E)-(2-chlorovinyl)triisopropylsilane 12a was prepared according to the literature.^[1]
- The synthesis of 1,4-bis(triisopropylsilyl)buta-1,3-diyne (15a) was described in the literature.^[2]
- Prop-2-yne-1,1,1-triyltribenzene (10d) was prepared according to the literature.^[3]
- Trimethyl(penta-1,3-diynyl)silane (13f) was prepared according to the literature.^[4]
- 1,4-bis(trimethylsilyl)buta-1,3-diyne (15f) is commercially available. CAS: 4526-07-2.
- 2-ethynyl-1,3,5-trimethylbenzene (10e) is commercially available. CAS: 769-26-6.
- The Mo-based complex **Cat-2** was synthesized by the Prof. A. Fürstner group according to the literature.^[5]

III- Synthesis of diyne substrates

General procedure to the synthesis of diyne substrate

Argon gas was bubbled through a solution of acetylene **10** (1.0 equiv.), dichloroethylene **11** (4.0 equiv.), $PdCl_2(PPh_3)_2$ (0.05 or 0.1 equiv.), and diisopropylamine (5.0 equiv.) in THF (C = 0.06 M) for 10 minutes. CuI (0.1 equiv.) was added at room temperature and the mixture was heated to 50 °C for 14 hours. Then heating was stopped and once the reaction mixture reached room temperature it was filtered through a pad of silica gel and thoroughly rinsed with pentane. The desired compound **12** was obtained after distillation under reduced pressure.

To a solution of freshly prepared compound **12** (1.0 equiv.) in THF (C = 0.06 M) was added *n*-BuLi (2.0 equiv.; 1.6 M solution in hexanes) at 0 °C and the solution was stirred for 1 hour at 0 °C. Then a solution of iodomethane (4.5 or 10 equiv.) in THF (C = 1 M) was added dropwise to the reaction mixture at 0 °C. The mixture was stirred at room temperature for 16 hours and then quenched by the addition of a saturated aqueous solution of NH₄Cl. The aqueous layer was extracted with Et₂O and the combined organic layers were washed with brine, dried over MgSO₄ and concentrated in vacuo. The resultant residue was purified by flash chromatography (Pentane/DCM) to obtain diyne **13**.

Synthesis of (E)-(4-chlorobut-3-en-1-yn-1-yl)-triisopropylsilane (12a)

Following the general procedure for the synthesis of chlorinated compound (**12**), with triisopropylacetylene (2.7 mL, 12 mmol, 1.0 equiv.), dichloroethylene (3.8 mL, 49 mmol, 4.0 equiv.), $PdCl_2(PPh_3)_2$ (844.8 mg, 1.2 mmol, 0.05 equiv.), diisopropylamine (8.4 mL, 60 mmol,

5.0 equiv.), CuI (232.8 mg, 1.2 mmol, 0.1 equiv.) in THF (40 mL), the desired product **12a** was isolated as a pale-yellow oil (2.21 g, **76% yield**) after distillation under reduced pressure.

¹H NMR (400 MHz, CDCl₃): δ 6.58 (d, J = 13.6 Hz, 1 H), 5.98 (d, J = 13.6 Hz, 1 H), 1.08 (s, 3 H), 1.07 (s, 18H).
¹³C NMR (101 MHz, CDCl₃): δ 131.4, 114.3, 101.6, 94.4, 18.7, 11.4. Spectral data were consistent with those previously reported.^[6]

Synthesis of Triisopropyl(penta-1,3-diynyl)silane (13a)

Following the general procedure for the synthesis of diyne (13), with (*E*)-(2-chlorovinyl)triisopropylsilane 12a (2.21 g, 9.1 mmol, 1.0 equiv.), *n*BuLi (12.8 mL, 18.2 mmol, 2.0 equiv.; 1.42 M solution in hexanes), THF (130 mL), solution of MeI (2.6 mL, 41 mmol, 4.5 equiv.) in THF (9 mL),

the desired product **13a** was obtained as a pale-yellow oil (1.43 g, **71% yield**) after purification by column chromatography (Pentane/DCM from 100:0 to 95:5).

¹**H NMR** (400 MHz, CDCl₃): δ 1.92 (s, 3 H), 1.06 (s, 21 H). ¹³**C NMR** (101 MHz, CDCl₃): δ 90.3, 79.4, 74.5, 65.3, 18.6, 11.4, 4.3. Spectral data were consistent with those previously reported.^[7]

Synthesis of (*E*)-(4-chlorobut-3-en-1-yn-1-yl)triethylsilane (12b)

Following the general procedure for the synthesis of chlorinated compound **(12)**, with triethyl(ethynyl)silane (2.2 mL, 12.2 mmol, 1.0 equiv.), dichloroethylene (3.8 mL, 49 mmol, 4.0 equiv.), PdCl₂(PPh₃)₂ (845.2 mg, 1.2 mmol, 0.1 equiv.), diisopropylamine (8.4 mL, 59.9 mmol,

4.9 equiv.), CuI (229.7 mg, 1.2 mmol, 0.1 equiv.) in THF (40 mL), the desired product **12b** was isolated as a pale-yellow solid (1.01 g, **41% yield**) after distillation under reduced pressure.

¹**H NMR** (400 MHz, CDCl₃): δ 6.58 (d, *J* = 13.6 Hz, 1 H), 5.96 (d, *J* = 13.6 Hz, 1 H), 1.02-0.97 (m, 9H), 0.65-0.59 (m, 6H). ¹³**C NMR** (101 MHz, CDCl₃): δ 131.6, 114.2, 100.8, 95.4, 7.5, 4.4.

Synthesis of triethyl(penta-1,3-diyn-1-yl)silane (13b)

Following the general procedure for the synthesis of diyne (**13**), with (*E*)-(4-chlorobut-3-en-1-yn-1-yl)triethylsilane **12b** (908.5 mg, 4.5 mmol, 1.0 equiv.), *n*BuLi (6.4 mL, 9.1 mmol, 2.0 equiv.; 1.42 M solution in hexanes), THF (68 mL), solution of MeI (2.8 mL, 45.0 mmol, 10 equiv.) in THF (4.5 mL), the desired product **13b** was obtained as a yellowish oil (350.7 mg, **44% yield**) after purification by column chromatography (Pentane).

¹H NMR (400 MHz, CDCl₃): δ 1.93 (s, 3 H), 0.99, (t, *J* = 7.9 Hz, 9H), 0.60 (q, *J* = 7.9 Hz, 6H).
¹³C NMR (101 MHz, CDCl₃): δ 89.6, 80.6, 75.1, 65.1, 7.5, 4.4. Spectral data were consistent with those previously reported.^[8]

Synthesis of (*E*)-(4-chlorobut-3-en-1-yn-1-yl)triphenylsilane (12c)

^{Ph}_{Ph-Si} ^{Ph}_{Ph} ^{Ph-Si} ^{Ph} ^{Ph} ^{Cl} ^{Ph} ^{Ph} ^{Cl} ^{Ph} ^{Cl} ^{Ph} ^{Cl} ^{Ph} ^{Chemical Formula: C₂₂H₁₇ClSi ^{Molecular Weight: 344,91} ^{12c} (42.0 mg, 0.06 mmol, 0.1 equiv.), dichloroethylene (241 µL, 3.1 mmol, 5.2 equiv.), PdCl₂(PPh₃)₂ (42.0 mg, 0.06 mmol, 0.1 equiv.), diisopropylamine (430 µL, 3.1 mmol, 5.1 equiv.), CuI (12 mg, 0.06 mmol, 0.1 equiv.) in THF (2 mL), the desired product **12c** was isolated as a white solid (104 mg, **51% yield**) after purification by column chromatography (Pentane/DCM from 100:0 to 95:5).}

¹**H NMR** (400 MHz, CDCl₃): δ 7.65-7.63 (m, 6 H), 7.47-7.37 (m, 9H), 6.75 (d, J = 13.7 Hz, 1 H), 6.10 (d, J = 13.7 Hz, 1 H). ¹³**C NMR** (101 MHz, CDCl₃): δ 135.7, 133.1, 130.2, 128.2, 113.9, 104.0, 92.8. **HRMS** (ESI) m/z calcd. for C₂₂H₁₈³⁵ClSi [M+H]⁺ 345.08663, found 345.0864.

Synthesis of (penta-1,3-diyn-1-yl)triphenylsilane (13c)

^{Ph} ^{Ph-Si} ^{Si} ^{Chemical Formula: C₂₃H₁₈Si ^{13c} ¹⁰}

¹**H NMR** (400 MHz, CDCl₃): δ 7.65-7.62 (m, 6 H), 7.45-7.36 (m, 9H), 1.98 (s, 3 H). ¹³**C NMR** (101 MHz, CDCl₃): δ 135.7, 133.0, 130.2, 128.2, 92.9, 77.4, 77.3, 65.2, 4.5. **HRMS** (ESI) *m/z* calcd. for C₂₃H₁₈NaSi [M+Na]⁺ 345.10755, found 345.1072.

Synthesis of (E)-(3-chloroprop-2-ene-1,1,1-triyl)tribenzene (12d)

 $\begin{array}{c} \begin{array}{c} Ph \\ Ph \\ \hline \\ Ph \end{array} \end{array} \begin{array}{c} \hline \\ Chemical Formula: C_{23}H_{17}Cl \\ Molecular Weight: 328,84 \end{array}$

Following the general procedure for the synthesis of chlorinated compound (12), with prop-2-yne-1,1,1-triyltribenzene (608 mg, 2.3 mmol, 1.0 equiv.), dichloroethylene (673 mg, 6.9 mmol, 3.0 equiv.), PdCl₂(PPh₃)₂ (78.5 mg,

0.1 mmol, 0.05 equiv.), diisopropylamine (1.6 mL, 11.4 mmol, 5.0 equiv.), CuI (47 mg, 0.25 mmol, 0.1 equiv.) in THF (40 mL), the desired product **12d** was isolated as a colorless solid (539 mg, **72% yield**) after purification by column chromatography (Pentane/DCM from 100:0 to 95:5).

¹**H** NMR (400 MHz, CDCl₃): δ 7.29-7.21 (m, 15 H), 6.58 (d, *J* = 13.6 Hz, 1 H), 6.09 (d, *J* = 13.6 Hz, 1 H). ¹³**C** NMR (101 MHz, CDCl₃): δ 144.8, 129.9, 129.1, 128.1, 127.0, 114.0, 98.2, 93.4, 68.7. **HRMS** (ESI) *m/z* calcd. for C₂₃H₁₈³⁵Cl [M+H]⁺ 329.10915, found 329.1091.

Synthesis of hexa-2,4-diyne-1,1,1-triyltribenzene (13d)

Following the general procedure for the synthesis of diyne (13), with (E)-(3-chloroprop-2-ene-1,1,1-triyl)tribenzene 12d (117.9 mg, 0.36 mmol, 1.0 equiv.), *n*BuLi (0.5 mL, 0.71 mmol, 2.0 equiv.; 1.42 M solution in hexanes),

THF (5 mL), solution of MeI (0.1 mL, 1.61 mmol, 4.5 equiv.) in THF (0.5 mL), the desired product **13d** was obtained as a yellowish solid (83.3 mg, **76% yield**) after purification by column chromatography (Pentane/DCM from 100:0 to 95:5).

¹**H-NMR** (400 MHz, CDCl₃): δ 7.31-7.21 (m, 15 H), 1.96 (s, 3 H). ¹³**C NMR** (101 MHz, CDCl₃): δ 144.5, 129.1, 128.1, 127.0, 80.8, 76.4, 70.2, 64.5, 56.1, 4.4. **HRMS** (ESI) *m/z* calcd. for C₂₄H₁₉ [M+H]⁺ 307.14813, found 307.1481.

Synthesis of (*E*)-(4-chlorobut-3-en-1-yn-1-yl)- 1,3,5-trimethylbenzene (12e)

Following the general procedure for the synthesis of chlorinated compound (12), with 2-ethynyl-1,3,5-trimethylbenzene (0.8 mL, 5.1 mmol, 1.0 equiv.), dichloroethylene (1.9 mL, 24.5 mmol, 4.8 equiv.), $PdCl_2(PPh_3)_2$ (423.3 mg, 0.6 mmol, 0.1 equiv.), diisopropylamine (4.2 mL, 30 mmol, 5.8

equiv.), CuI (116.2 mg, 0.6 mmol, 0.1 equiv.) in THF (20 mL), the desired product **12e** was isolated as a pale-yellow oil (603.5 mg, **58% yield**) after distillation under reduced pressure.

¹**H NMR** (400 MHz, CDCl₃): δ 6.90 (s, 2 H), 6.62 (d, *J* = 13.6 Hz, 1 H), 6.28 (d, *J* = 13.6 Hz, 1 H), 2.42 (s, 6 H), 2.32 (s, 3 H). ¹³**C NMR** (101 MHz, CDCl₃): δ 140.3, 138.3, 128.9, 127.8,

119.5, 114.5, 91.9, 90.1, 21.5, 21.0. **HRMS** (ESI) *m/z* calcd. for C₁₃H₁₄³⁵Cl [M+H]⁺ 205.07785, found 205.0782.

Synthesis of 1,3,5-trimethyl-2-(penta-1,3-diyn-1-yl)benzene (13e)

13e

Following the general procedure for the synthesis of diyne (13), with (*E*)-(2-chlorovinyl)triisopropylsilane 12e (603.5 mg, 2.9 mmol, 1.0 equiv.), *n*BuLi (4.3 mL, 6.1 mmol, 2.0 equiv.; 1.42 M solution in hexanes), THF (45 mL), solution of MeI (1.8 mL, 29 mmol, 10 equiv.) in THF (3 mL),

the desired product 13e was obtained as a yellow solid (394.7 mg, 73% yield).

¹H NMR (400 MHz, CDCl₃): δ 6.85 (s, 2 H), 2.40 (s, 6 H), 2.28 (s, 3 H), 2.05 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃): δ 141.9, 138.5, 127.8, 118.9, 81.5, 81.2, 72.4, 64.8, 21.5, 21.0, 4.9 HRMS (ESI) *m/z* calcd. for C₁₄H₁₅ [M+H]⁺ 183.1168, found 183.1168.

IV- Mo-catalyzed self-metathesis of diynes

Note: All reactions were carried out in a glove-box with degassed solvents. The powdered molecular sieves Molecular sieves 4 Å (CAS: 70955-01-0; Ref. No. 11424553 Alfa AesarTM) and) and 5 Å (CAS : 69912-79-4; Ref. No. 10296980 Acros OrganicsTM) were heated with a heatgun (~ 300 °C for 10 min at 1 mbar) prior to introduction into the glove box.

acetophenone (2.0 equiv)

• GC-analysis:

Internal standard:

Description of GC-method:	
Instrument:	Shimadzu GC-2014
Carrier gas:	Helium
Inlet temperature:	300 °C
Pressure:	143.4 kPa
Column flow:	1.79 mL / min; 40.6 cm / s
Split ratio:	20

Temperature protocol:

Determination of response factors:

Area under Peak of triyne 14a / area under peak of acetophenone

Area under Peak of diyne starting material **13a** / area under Peak of acetophenone Determination of GC conversion and yield:

Triyne **14a** (%) = 151.5 * [(Area of triyne**14a**/ area of acetophenone) - 0,0127]Diyne **13a** (%) = 40.3 * [(Area of diyne**13a**/ area of acetophenone) + 0.0662]

entry	diynes	Cat-2 (mol%)	Conv. (%) ^{<i>a</i>}	Ratio 14:15 ^b	Yield 14 (%) ^{<i>a</i>}	Yield 15 (%) ^{<i>a</i>}
1°	13 a	3	50	nd	1	-
2	13 a	3	96	86:14	86	-
3	13 a	2	91	90:10	80	-
4 ^d	13 a	2	89	90:10	74	-
5	13 a	1	75	95:5	59	-
6 ^e	13 a	3	96	81:19	63 ^f	-
$7^{ m g}$	13f	3	91	0:100	-	48
8	13b	3	>98	2:98	-	56
9 ^h	13c	3	95 ⁱ	40:60 ^j	12 ^{j,k}	13 ^{j,k}

Table S1 : Self-metathesis of TIPS-diynes 13a catalyzed by Mo-complex Cat-2

^{*a*}Determined by GC-analysis with acetophenone as internal standard. ^{*b*}Determined by GC-analysis Performed without MS $4\text{\AA}/5\text{\AA}$. ^{*d*}Performed at 20 °C. ^{*e*}Performed at 0.55 mmol-scale. ^{*f*}Isolated yield after silica gel chromatography.^{*g*}Performed at 20 °C over 1h. ^{*h*}Performed at 0.26 mmol-scale. ^{*i*}Based on the recovered starting material. ^{*j*}Determined by quantitative ¹³C NMR spectroscopy. ^{*k*}Estimated yield from an isolated mixture of **14c** + **15c**.

Self-metathesis of TIPS-diyne 13a (Table 1- Entries 1-6)

$$TIPS - \underbrace{\qquad }_{TOluene, 3h, 40 \circ C} \qquad TIPS - \underbrace{\qquad }_{TOluene, 3h, 40 \to C} \qquad TIPS - \underbrace{\qquad }_{TOluene, 3h, 40 \to C} \qquad TIPS - \underbrace{$$

A stock solution of catalyst **Cat-2** (5.0 mg) in toluene (500 μ L) was prepared in the glove-box. To a microwave tube charged with TIPS-diyne **13a** (14.3 mg, 0.032 mmol, 2.0 equiv.) were added toluene (250 μ L). Then 100 μ L of the previously prepared stock solution of catalyst **Cat-2** (0.00096 mmol, 3 mol%) was added and the reaction was stirred for 3 hours at 40 °C. Then the microwave tube was removed from the glove box and acetophenone (14.9 μ L, 0.128 mmol, 4.0 equiv.) was added. Approximately 100 μ L of this solution was removed, filtered through syringe filter (0.2 μ m, 25 mm) and rinsed with 1.5 mL of diethyl ether. The resulting solution was analyzed by GC.

• <u>GC-trace of Table 1, entry 1 (13a without molecular sieves)</u>

<Peak Table>

SFIDT							
Peak#	Name	Ret. Time	Area	Height	Area%	Height%	Resolution(USP)
1		3.36	229007	12510	44.8	17.5	
2		7.01	267559	57424	52.4	80.2	15.08
3		12.16	7826	555	1.5	0.8	22.62
4		13.28	1973	193	0.4	0.3	3.67
5		13.63	4487	876	0.9	1.2	1.82
Total			510853	71558	100.0	100.0	

Figure S1: GC chromatogram of Table 1, entry 1

Calculation details:

Conversion of 13a = 100 - [40.3 * [(267559 / 229007) + 0.0662]] = 50%Yield of 14a = 151.5 * [(4487 / 229007) - 0.0127] = 1%Ratio 14a / 15a = 100 / 0

A stock solution of catalyst **Cat-2** (5.0 mg) in toluene (500 μ L) was prepared in the glove-box. To a microwave tube charged with TIPS-diyne **13a** (8.6 mg, 0.039 mmol, 2.0 equiv.) were added powdered molecular sieves 4 Å (40 mg) and powdered molecular sieves 5 Å (40 mg) in toluene (100 μ L). Then 100 μ L of the previously prepared stock solution of catalyst **Cat-2** (0.00096 mmol, 3 mol%) was added and the reaction was stirred for 3 hours at 40 °C. Then the microwave tube was removed from the glove box and acetophenone (9.1 μ L, 0.078 mmol, 4.0 equiv.) was added. Approximately 100 μ L of this solution was removed, filtered through syringe filter (0.2 μ m, 25 mm) and rinsed with 1.5 mL of diethyl ether. The resulting solution was analyzed by GC.

• <u>GC-trace of Table 1, entry 2 (13a with powdered molecular sieves 4 Å and 5 Å)</u>

Figure S2: GC chromatogram of Table 1, entry 2

Calculation details:

Conversion of 13a = 100 - [40.3 * [(10459 / 246222) + 0.0662]] = 96%Yield of 14a = 151.5 * [(143527 / 246222) - 0.0127] = 86%

Ratio 14a / 15a = (143527 / 23863) = 6.01 corresponding to a ratio of 86 /14

A stock solution of catalyst **Cat-2** (5.0 mg) in toluene (500 μ L) was prepared in the glove-box. To a microwave tube charged with TIPS-diyne **13a** (8.7 mg, 0.039 mmol, 2.0 equiv.) were added powdered molecular sieves 4 Å (40 mg) and powdered molecular sieves 5 Å (40 mg) in toluene (134 μ L). Then 66 μ L of the previously prepared stock solution of catalyst **Cat-2** (0.00063 mmol, 2 mol%) was added and the reaction was stirred for 3 hours at 40 °C. Then the microwave tube was removed from the glove box and acetophenone (9.1 μ L, 0.078 mmol, 4.0 equiv.) was added. Approximately 100 μ L of this solution was removed, filtered through syringe filter (0.2 μ m, 25 mm) and rinsed with 1.5 mL of diethyl ether. The resulting solution was analyzed by GC.

• <u>GC-trace of Table 1, entry 3 (13a with 2 mol% of Cat-2)</u>

Figure S3: GC chromatogram of Table 1, entry 3

Calculation details:

Conversion of 13a = 100 - [40.3 * [(55579 / 341825) + 0.0662]] = 91%Yield of 14a = 151.5 * [(179374 / 341825) - 0.0127] = 80%

Ratio 14a / 15a = (179374 / 18784) = 9.55 corresponding to a ratio of 90 /10

A stock solution of catalyst **Cat-2** (5.0 mg) in toluene (500 μ L) was prepared in the glove-box. To a microwave tube charged with TIPS-diyne **13a** (8.8 mg, 0.040 mmol, 2.0 equiv.) were added powdered molecular sieves 4 Å (40 mg) and powdered molecular sieves 5 Å (40 mg) in toluene (134 μ L). Then 66 μ L of the previously prepared stock solution of catalyst **Cat-2** (0.00063 mmol, 2 mol%) was added and the reaction was stirred for 3 hours at 20 °C. Then the microwave tube was removed from the glove box and acetophenone (9.1 μ L, 0.078 mmol, 4.0 equiv.) was added. Approximately 100 μ L of this solution was removed, filtered through syringe filter (0.2 μ m, 25 mm) and rinsed with 1.5 mL of diethyl ether. The resulting solution was analyzed by GC.

Figure S4: GC chromatogram of Table 1, entry 4

Calculation details:

Conversion of 13a = 100 - [40.3 * [(77307 / 386954) + 0.0662]] = 89%Yield of 14a = 151.5 * [(193241 / 386954) - 0.0127] = 74%

Ratio 14a / 15a = (193241 / 21357) = 9.05 corresponding to a ratio of 90 /10

A stock solution of catalyst **Cat-2** (5.0 mg) in toluene (500 μ L) was prepared in the glove-box. To a microwave tube charged with TIPS-diyne **13a** (8.8 mg, 0.040 mmol, 2.0 equiv.) were added powdered molecular sieves 4 Å (40 mg) and powdered molecular sieves 5 Å (40 mg) in toluene (167 μ L). Then 33 μ L of the previously prepared stock solution of catalyst **Cat-2** (0.00032 mmol, 1 mol%) was added and the reaction was stirred for 3 hours at 40 °C. Then the microwave tube was removed from the glove box and acetophenone (9.1 μ L, 0.078 mmol, 4.0 equiv.) was added. Approximately 100 μ L of this solution was removed, filtered through syringe filter (0.2 μ m, 25 mm) and rinsed with 1.5 mL of diethyl ether. The resulting solution was analyzed by GC.

• <u>GC-trace of Table 1, entry 5 (13a with 1 mol% of Cat-2)</u>

Figure S5: GC chromatogram of Table 1, entry 5

Calculation details:

Conversion of 13a = 100 - [40.3 * [(89297 / 162006) + 0.0662] = 75%Yield of 14a = 151.5 * [(63241 / 162006) - 0.0127] = 59%

Ratio 14a / 15a = (63241 / 3062) = 20.65 corresponding to a ratio of 95 /5

To a microwave tube charged with TIPS-diyne **13a** (121.0 mg, 0.549 mmol, 2.0 equiv.) were added powdered molecular sieves 4 Å (500 mg) and powdered molecular sieves 5 Å (500 mg) in toluene (3 mL). Then catalyst **Cat-2** (8.6 mg, 0.0082 mmol, 3 mol%) was added and the reaction was stirred for 3 hours at 40 °C. Then the microwave tube was removed from the glove box and the crude reaction mixture was filtered through a pad of silica, rinsed with dichloromethane and volatiles were evaporated. The crude mixture was purified by column chromatography (Pentane:DCM 100:0 to 90:10) and the obtained solid was washed with pentane to give the triyne **14a** as white solid (66.6 mg, **63% yield**).

¹**H** NMR (400 MHz, CDCl₃): δ 1.12-1.09 (m, 42 H). ¹³**C** NMR (101 MHz, CDCl₃): δ 90.0, 84.9, 61.5, 18.7, 11.4. Spectral data were consistent with those previously reported.^[9]

• <u>GC-trace of Table 1, entry 6 (13a with 3 mol% of Cat-2 performed at 0.27 mmol-scale)</u>

<Peak Table>

SFID1							
Peak#	Name	Ret. Time	Area	Height	Area%	Height%	Resolution(JP)
1		11.17	54767	14145	18.7	17.0	
2		13.57	237447	69124	81.3	83.0	26.65
Total			292214	83269	100.0	100.0	

Figure S6: GC chromatogram of Table 1, entry 6

Self-metathesis of TMS-diyne 13f (Table 1- Entry 7)

A stock solution of catalyst **Cat-2** (5.0 mg) in toluene (500 μ L) was prepared in the glove-box. To a microwave tube charged with TMS-diyne **13f** (8.9 mg, 0.065 mmol, 2.0 equiv.) were added powdered molecular sieves 4 Å (60 mg) and powdered molecular sieves 5 Å (60 mg) in toluene (250 μ L). Then 100 μ L of the previously prepared stock solution of catalyst **Cat-2** (0.00096 mmol, 3 mol%) was added and the reaction was stirred for 1 hour at 20 °C. Then the microwave tube was removed from the glove box and *n*-dodecane (29.8 μ L, 0.132 mmol, 4.0 equiv.) was added. Approximately 100 μ L of this solution was removed, filtered through syringe filter (0.2 μ m, 25 mm) and rinsed with 1.5 mL of diethyl ether. The resulting solution was analyzed by GC.

Note: Commercial 1,4-bis(trimethylsilyl)buta-1,3-diyne **15f** was used to establish the GC-method.

• GC-analysis:

Description of GC-method:	
Instrument:	Shimadzu GC-2014
Carrier gas:	Helium
Inlet temperature:	280 °C
Pressure:	137.7 kPa
Column flow:	1.86 mL / min; 40.0 cm / s
Split ratio:	20

Temperature protocol:

Internal standard:

n-dodecane (2.0 equiv.)

18

Determination of response factors:

Area under Peak of diyne product **15f** / area under peak of *n*-dodecane

Area under Peak of diyne-Me (starting material) **13f** / area under Peak of *n*-dodecane

Determination of GC conversion and yield:

Diyne-Me 13f (%)	= $285.7 * (\text{Area of diyne-Me } 13f / \text{ area of } n\text{-dodecane})$
Diyne 15f (%)	= 232.6 * (Area of diyne 15f / area of <i>n</i> -dodecane)

<Peak Table>

SFIDT							
Peak#	Name	Ret. Time	Area	Height	Area%	Height%	Resolution(JP)
1		4.48	10805	605	2.4	1.4	
2		6.19	73102	13382	16.4	31.0	6.39
3		6.76	355238	28630	79.5	66.3	3.68
4		14.30	7432	566	1.7	1.3	29.76
Total			446577	43183	100.0	100.0	

Calculation details:

Conversion of **13f** = 100 - [285.7 * (10805 / 355238)] = 91%

Yield of **15f** = 232.6 * (73102 / 355238) = 48%

Ratio 14 / 15 = 0 / 100

Self-metathesis of TES-diyne 13b (Table 1- Entry 8)

A stock solution of catalyst **Cat-2** (5.0 mg) in toluene (500 μ L) was prepared in the glove-box. To a microwave tube charged with TES-diyne **13b** (11.7 mg, 0.066 mmol, 2.0 equiv.) were added powdered molecular sieves 4 Å (60 mg) and powdered molecular sieves 5 Å (60 mg) in toluene (250 μ L). Then a freshly prepared stock solution of catalyst **Cat-2** (100 μ L, 0.00096 mmol, 3 mol%) was added and the reaction was stirred for 3 hours at 40 °C. Then the microwave tube was removed from the glove box and *n*-dodecane (14.9 μ L, 0.132 mmol, 2.0 equiv.) was added. Approximately 100 μ L of this solution was removed, filtered through syringe filter (0.2

 $\mu m,\,25$ mm) and rinsed with 1.5 mL of diethyl ether. The resulting solution was analyzed by GC.

Note: All reactions were carried out in a glove-box with degassed solvents. Powdered molecular sieves 4 Å (CAS: 70955-01-0; Ref. No. 11424553 Alfa AesarTM) and) and 5 Å (CAS : 69912-79-4; Ref. No. 10296980 Acros OrganicsTM) were heated with a heatgun (~ 300 °C for 10 min at 1 mbar) prior introduction into the glove box.

• GC-analysis:

Description of GC-method:	
Instrument:	Shimadzu GC-2014
Carrier gas:	Helium
Inlet temperature:	280 °C
Pressure:	143.4 kPa
Column flow:	1.79 mL / min; 40.0 cm / s
Split ratio:	20
Internal standard:	acetophenone (2.0 equiv.)

Temperature protocol:

Temperature:	80.0	С	C 30	₀ <u></u> ‡				
Equilibration Time:	3.0	min	20	₀‡		4		
Column Information	(TR-5)		10	₀₽				
Column ID:				0.0	5.0	10.0 15.0	20.0 25	o min
Installation Date:	05/04/01			Calua		maarah wa Draar	Bedrau	
Column Max Temp.:	340 C				n Oven Te	mperature Progr	am Reuraw	
					n .	T .	11.1.1.75	
Law alley	20.0				Rate	Temperature	Hold lime	- N
Length:	30.0 m			0	Kate .	80.0	0.00	ĥ
Length: Inner Diameter:	30.0 m 0.25 mm ID			0	- 15.00	80.0 340.0	0.00 10.00	Ô
Length: Inner Diameter:	30.0 m 0.25 mm ID			0 1 2	- 15.00 0.00	80.0 340.0 0.0	0.00 10.00 0.00	
Length: Inner Diameter: Film Thickness:	30.0 m 0.25 mm ID 0.25 um			0 1 2 3	- 15.00 0.00 0.00	80.0 340.0 0.0 0.0	Hold Time 0.00 10.00 0.00 0.00	-
Length: Inner Diameter: Film Thickness: Column No.:	30.0 m 0.25 mm ID 0.25 um 10			0 1 2 3	- 15.00 0.00 0.00	Remperature 80.0 340.0 0.0 0.0	Hold Time 0.00 10.00 0.00 0.00	•

Determination of response factors:

• Area under Peak of diyne **15b** / area under peak of acetophenone Determination of GC conversion and yield:

Diyne **15b** (%) = 50 * [(Area of diyne **15b** / area of *n*-dodecane) + 0,0715]

• <u>GC-trace of Table 1, entry 8 (13b with 3 mol% of Cat-2)</u>

<Peak Table>

Peak#	Name	Ret. Time	Area	Height	Area%	Height%	Resolution(JP)		
1		4.35	81463	4276	43.5	19.2			
2		8.70	85595	15209	45.7	68.2	16.32		
3		11.24	10930	1855	5.8	8.3	18.72		
4		12.14	7928	665	4.2	3.0	4.02		
5		13.92	1310	288	0.7	1.3	8.43		
Total			187226	22293	100.0	100.0			

Figure S8: GC chromatogram of Table 1, entry 8

<u>Calculation details:</u> Yield of **15b** = 50 * [(85595 / 81463) + 0.0715] = 56% Ratio **14** / **15** = 1310 / 85595 = 0.015 corresponding to a ratio of 2 /98

Figure S9: GC chromatogram of Starting Material TES-diyne 13b

Self-metathesis of Ph₃Si-diyne 13c (Table 1, Entry 9)

To a microwave tube charged with Ph_3Si -diyne **13c** (83.1 mg, 0.258 mmol, 2.0 equiv.) were added powdered molecular sieves 4 Å (240 mg) and powdered molecular sieves 5 Å (240 mg) in toluene (1.4 mL). Then catalyst **Cat-2** (4.2 mg, 0.0040 mmol, 3 mol%) was added and the reaction was stirred for 3 hours at 40 °C. Then the microwave tube was removed from the glove box and the crude reaction mixture was filtered through a pad of silica, rinsed with dichloromethane and volatiles were evaporated. The crude mixture was purified by column chromatography (Pentane:DCM 100:0 to 95:5) and the obtained solid was washed with pentane to give the mixture of triyne **14c** and diyne **15c** as a pale yellow solid (22.8 mg). Ratio 40:60

determined by quantitative ¹³C NMR spectroscopy (Estimated yield: 19% of diyne **15c** and 12% of triyne **14c** products were formed). Conversion >95%

<u>Note:</u> HRMS analysis could not performed but X-Ray structure was obtained for **14c** (CCDC 1966970)

NMR description of the mixture of 15c and 14c :

¹H NMR (400 MHz, CDCl₃): δ 7.65-7.63 (m, 12 H), 7.45-7.37 (m, 18 H). ¹³C NMR (101 MHz, CDCl₃): δ 135.8 (C_{Ar}), 135.7 (C_{Ar}), 135.5 (C_{Ar}), 132.3 (C_{Ar}), 130.5 (C_{Ar}), 130.4 (C_{Ar}), 130.0 (C_{Ar}), 128.3 (C_{Ar}), 128.2 (C_{Ar}), 128.0 (C_{Ar}), 92.1 (C₂), 91.7 (C₄), 83.4 (C₃), 83.2 (C₁), 63.3 (C₅).

The ratio between **14c** and **15c** was determined by quantitative ¹³C analysis. (zgig sequence from Bruker library was used, Acquisition time was set to 0.52s and D1 fixed to 12s for better relaxation)

Figure S10: Quantitative ¹³C NMR spectra of Table 1, entry 9

Calculation details:

Relaxation time for C_1 and C_3 were considered identical due to their similar chemical environment and 14c/15c ratio was determined on their corresponding signals.

Ratio 14c / 15c = 1.00 / 1.52 corresponding to a ratio of 40 /60

Yield of $15c : ([(m_{sample}*15c(\%)) / M_{15c}] / n_{total}) * 100$ Yield of 15c = ([(22.8 * 0.60) / 566.85] / 0.128) * 100 = 19%Yield of $14c : ([(m_{sample}*14c(\%)) / M_{14c}] / n_{total}) * 100$ Yield of 14c = ([(22.8 * 0.40) / 590.87] / 0.128) * 100 = 12%

Synthesis of 1,1,1,8,8,8-hexaphenylocta-2,4,6-triyne (16) (Scheme 2, a)

$$\begin{array}{c|c} Ph \\ Ph \\ \hline Ph \\ \hline Ph \\ \hline H \\ \end{array} \\ \hline H \\ \hline \hline H \\ \hline H \\ \hline \hline H \\ \hline \hline H \\ \hline \hline H \\ \hline H \\ \hline \hline H \\ \hline$$

In the glove-box, to a microwave tube charged with Trityl-diyne **13d** (78.7 mg, 0.257 mmol, 2.0 equiv.) were added powdered molecular sieves 4 Å (240 mg) and powdered molecular sieves 5 Å (240 mg) in toluene (1.4 mL). Then catalyst **Cat-2** (4.1 mg, 0.0039 mmol, 3 mol%) was added and the reaction was stirred for 3 hours at 40 °C. Then the microwave tube was removed from the glove box. The crude reaction mixture was filtered through a pad of silica and volatiles were evaporated. The crude mixture was purified by column chromatography (Pentane:DCM 100:0 to 90:10) and the obtained solid was washed with pentane to give the desired triyne **16** as white solid (38.5 mg, 0.069 mmol, **54% yield**). $R_f = 0.30$ (*n*-pentane). m.p. 280-282 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.32-7.20 (m, 30 H). ¹³**C** NMR (101 MHz, CDCl₃): δ 144.0, 129.2, 128.3, 127.4, 84.3, 70.2, 63.3, 56.6. **HRMS** (ESI) *m/z* calcd. for C₄₄H₃₁ [M+H]⁺ 558.2342, found 558.2338.

Synthesis of 1,6-dimesitylhexa-1,3,5-triyne (17) (Scheme 2, b)

A stock solution of catalyst **Cat-2** (5.0 mg) in toluene (500 μ L) was prepared in the glove-box. To a microwave tube charged with Mes-diyne **13e** (11.8 mg, 0.065 mmol, 2.0 equiv.) were added powdered molecular sieves 4 Å (60 mg) and powdered molecular sieves 5 Å (60 mg) in toluene (250 μ L). Then 100 μ L of the previously prepared stock solution of catalyst **Cat-2** (0.00096 mmol, 3 mol%) was added and the reaction was stirred for 1 hour at 40 °C. Then the microwave tube was removed from the glove box and acetophenone (9.1 μ L, 0.078 mmol, 4.0 equiv.) was added. Approximately 100 μ L of this solution was removed, filtered through syringe filter (0.2 μ m, 25 mm) and rinsed with 1.5 mL of diethyl ether. The resulting solution was analyzed by GC and GS-MS.

• GC-MS analysis:

Description of GC-method:

Instrument:	GC-MS Shimadzu QP2010SE
Carrier gas:	Helium
Inlet temperature:	300 °C
Pressure :	79.5 kPa
Column flow:	40 cm / s
Split ratio:	20
External standard:	<i>n</i> -dodecane (2.0 equiv)

Temperature protocol:

Inj. Port : SPL1	Inj. He	eat Port :	INJ1				
Column Oven Temp. :	80.0	°C •c	300				
Injection Temp. :	300.0	°C	200 -		·····		
Injection Mode :	Split 🔻		100 1				
Sampling Time :	1.00	min	0.0	5.0	10.0 15.0 20.0	25.0 30.0	35.0 min
Carrier Gas : He Prim. P	ress. : 500-900)	Pro	gram :	Column Oven Temperatu	ure 🔻	
Flow Control Mode :	Linear Velocit	y 🔻	_				
Pressure :	79.5	kPa		Rate	Final Temperature	Hold Time	<u>^</u>
Tatal David	27.0		0	-	80.0	0.00	. 💷
Total Flow :	27.0	mL/min		10.00	330.0	20.00	
Column Flow :	1.18	mL/min	3	0.00	0.0	0.00	
Linear Velocity :	40.0	cm/sec	Tot	al Program '	Time: 36.67	min	4
Purge Flow :	3.0	mL/min	Col	umn			
Split Ratio :	20.0		Name SH-Rxi-5ms Thickness : 0.25 um				
			Len	gth: 30.0 r	m Diameter :	0.25 mm	Set
Detail of Injection F	Port		Re	ady Check.			
High Press. Injection	Carrier Ga	s Saver					

Determination of response factors:

Area under Peak of triyne **17** / area under Peak of *n*-dodecane Determination of GC yield:

Triyne 17 (%) = $13.7 * [(Area of triyne 17 / area of n-dode$	ecane) - 0.0595
---	-----------------

Figure S11: GC-MS chromatogram obtained for the self-metathesis of 13e

<u>Calculation details:</u> Yield of 17 = 13.7 * [(7175170 / 2403677) - 0.0595] = 40%Ratio 17 / 18 / 19 = 0.015 corresponding to a ratio of 50 / 45 / 5

V- Mo-catalyzed cross-metathesis of diynes

Note: All reactions were carried out in a glove-box with degassed solvents. The powdered molecular sieves 4 Å (CAS: 70955-01-0; Ref. No. 11424553 Alfa AesarTM) and) and 5 Å (CAS: 69912-79-4; Ref. No. 10296980 Acros OrganicsTM) were heated with a heatgun (~ 300 °C for 10 min at 1 mbar) prior to introduction into the glove box.

Cross metathesis of triisopropyl(penta-1,3-diyn-1-yl)silane (13a) and 1,3,5-trimethyl-2-(penta-1,3-diyn-1-yl)benzene (13e) (Scheme 3, c)

A stock solution of catalyst **Cat-2** (5.0 mg) in toluene (500 μ L) was prepared in the glove-box. To a microwave tube charged with TIPS-diyne **13a** (7.1 mg, 0.032 mmol, 1.0 equiv.) and Mesdiyne **13e** (5.6 mg, 0.031 mmol, 1.0 equiv.) were added powdered molecular sieves 4 Å (60 mg) and powdered molecular sieves 5 Å (60 mg) in toluene (250 μ L). Then 100 μ L of the previously prepared stock solution of catalyst **Cat-2** (0.00096 mmol, 3 mol%) was added and the reaction was stirred for 3 hours at 40 °C. Then the microwave tube was removed from the glove box and acetophenone (9.1 μ L, 0.078 mmol, 4.0 equiv.) was added. Approximately 100 μ L of this solution was removed, filtered through syringe filter (0.2 μ m, 25 mm) and rinsed with 1.5 mL of diethyl ether. The resulting solution was analyzed by GC and GS-MS. All products were identified and results are available in Table S3.

• GC-MS analysis:

Description of GC-method:

Instument:	GC-MS Shimadzu QP2010SE
Carrier gas:	Helium
Inlet temperature:	300 °C
Pressure :	79.5 kPa
Column flow:	40 cm / s
Split ratio:	20
External standard:	<i>n</i> -dodecane (2.0 equiv)

Temperature protocol:

Inj. Port : SP	L1 Inj.	Heat Port :	INJ1				
Column Oven Temp Injection Temp. : Injection Mode : Sampling Time :	.: 80.0 300.0 Split 1.00	ີ ເ ເ 		5.0	10.0 15.0 20.0	25.0 30.0	35.0
Carrier Gas : He	Prim. Press. : 500-9	00	Pro	gram :	Column Oven Temperatu	ire 🔻	
Pressure :	: Linear Veloc	kPa		Rate	Final Temperature	Hold Time	^
Total Flow :	27.8	mL/min	0	- 15.00	80.0 330.0	0.00 20.00	
Column Flow :	1.18	mL/min	2	0.00	0.0	0.00	
Linear Velocity :	40.0	cm/sec	Tot	al Program	Time: 36.67	min	-
Split Ratio :	20.0	mu/min	-Col Nar Len	umin ne SH-Rxi gth: 30.0 i	-5ms Thickness : m Diameter :	0.25 um 0.25 mm	Set
Detail of Inje	ection Port	as Saver	Re	ady Check			
riigiti tess. Ilijeeti	un camero						

Product	W%
TIPS————————————————————————————————————	3%
Mes— <u>—</u> Mes	9%
TIPS— <u></u> Mes	9%
TIPS— <u> </u>	14%
MesMes	12%
TIPS— <u>—</u> —Mes	41%
TIPS— <u> </u>	3%
Mes- <u></u> Mes	4%
TIPS— <u> </u>	1%

 Table S3: GC-MS distribution obtained for the cross-metathesis of 13a and 13e

Figure S12: GC-MS chromatogram obtained for the cross-metathesis of 13a and 13e

Cross metathesis of triisopropyl(penta-1,3-diyn-1-yl)silane (13a) and hexa-2,4-diyne-1,1,1-triyltribenzene (13d) (Scheme 3, d)

In the glove-box, to a microwave tube charged with TIPS-diyne **13a** (42.6 mg, 0.193 mmol, 1.0 equiv.) and trityl-diyne **13d** (58.7 mg, 0.192 mmol, 1.0 equiv.) were added powdered molecular sieves 4 Å (380 mg) and powdered molecular sieves 5 Å (380 mg) in toluene (2.1 mL). Then catalyst **Cat-2** (10.0 mg, 0.0096 mmol, 5 mol%) was added and the reaction was stirred for 3 hours at 40 °C. Then the microwave tube was removed from the glove box. The crude reaction

mixture was filtered through a pad of silica and volatiles were evaporated. The crude mixture was purified by column chromatography (Pentane:DCM 100:0 to 90:10) and the obtained solid was washed with pentane to give the desired triyne **22** as white solid (44.0 mg, 0.093 mmol, **49% yield**). $R_f = 0.30$ (*n*-pentane). m.p. 280-282 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.36-7.27 (m, 9 H), 7.24-7.18 (m, 6 H), 1.10 (s, 21 H). ¹³**C** NMR (101 MHz, CDCl₃): δ 129.2, 128.3, 127.4, 18.7, 11.4. **HRMS** (ESI) m/z calcd. for C₃₄H₃₇Si [M+H]⁺ 472.2581, found 472.2582.

Note: Along the purification over SiO₂, triyne 14a was obtained as a white solid (19.6 mg, 0.051 mmol, 26% yield). Triyne 16 was also obtained as a white solid (2.8 mg, 0.005 mmol, 3% yield).

Cross metathesis of 1,3,5-trimethyl-2-(penta-1,3-diyn-1-yl)benzene (13e) and hexa-2,4diyne-1,1,1-triyltribenzene (13d) (Scheme 3, e)

In the glove-box, to a microwave tube charged with TIPS-diyne **13e** (26.0 mg, 0.140 mmol, 1.0 equiv.) and trityl-diyne **13d** (43.0 mg, 0.140 mmol, 1.0 equiv.) were added powdered molecular sieves 4 Å (260 mg) and powdered molecular sieves 5 Å (260 mg) in toluene (1.5 mL). Then catalyst **Cat-2** (7.5 mg, 0.0072 mmol, 5 mol%) was added and the reaction was stirred for 3 hours at 40 °C. Then the microwave tube was removed from the glove box. The crude reaction mixture was filtered through a pad of silica and volatiles were evaporated. The crude mixture was purified by column chromatography (Pentane:DCM 100:0 to 90:10) and the obtained solid was washed with pentane to give the triyne **23** as a pale yellow solid (25.1 mg, **41% yield**).

¹H NMR (400 MHz, CDCl₃): δ 7.35-7.25 (m, 15 H), 6.88 (s, 2 H), 2.42 (s, 6 H), 2.31 (s, 3 H).
¹³C NMR (101 MHz, CDCl₃): δ 144.7, 144.1, 142.8, 139.5, 129.2, 128.3, 128.0, 127.3, 117.9, 86.5, 81.4, 75.4, 70.4, 68.0, 63.2, 56.7, 21.6, 21.0. HRMS (ESI) *m/z* calcd. for C₃₄H₂₇ [M+H]⁺ 435.21073, found 435.2107.

<u>Note:</u> Along the purification over SiO₂, triyne 17 and diyne 18 were obtained as an inseparable isolated mixture with a 17/18 ratio of 55/45. (19.8 mg, corresponding to an estimated yield of 30% for 17 and 16% for 18). Triyne 16 was also obtained as a white solid (6.8 mg, 0.012 mmol, 9% yield).

VI- Stability study of 16 and 14a toward the Mo-benzylidyne catalyst Cat-2

Stability study of 16

A stock solution of catalyst **Cat-2** (4.1 mg) in toluene (410 μ L) was prepared in the glove-box. In the glove-box, to a microwave tube charged with a trityl-triyne **16** (20.4 mg, 0.037 mmol, 1.0 equiv.) were added powdered molecular sieves 4 Å (70 mg) and powdered molecular sieves 5 Å (70 mg) in toluene (0.4 mL). Then 110 μ L of the previously prepared stock solution of catalyst **Cat-2** (0.00106 mmol, 3 mol%) was added and the reaction was stirred for 3 hours at 40 °C. Then the microwave tube was removed from the glove box. The crude reaction mixture was filtered through a pad of silica and volatiles were evaporated. The crude mixture was purified by column chromatography (Pentane:DCM 100:0 to 90:10) and the obtained solid was washed with pentane to give the desired triyne **16** as white solid (19.8 mg, 0.035 mmol, **96% yield**).

¹**H NMR** (400 MHz, CDCl₃): δ 7.32-7.20 (m, 30 H). ¹³**C NMR** (101 MHz, CDCl₃): δ 144.0, 129.2, 128.3, 127.4, 84.3, 70.2, 63.3, 56.6.

Stability study of 14a

A stock solution of catalyst **Cat-2** (4.1 mg) in toluene (410 μ L) was prepared in the glove-box. To a microwave tube charged with a mixture of TIPS-triyne **14a** and TIPS-diyne **15a** (81:19) (5.7 mg, 0.013 mmol, 1.0 equiv.) were added toluene (140 μ L). Then a freshly prepared stock solution of catalyst **Cat-2** (40 μ L, 0.00038 mmol, 3 mol%) was added and the reaction was stirred for 3 hours at 40 °C. Then the microwave tube was removed from the glove box and acetophenone (6 μ L, 0.051 mmol, 4.0 equiv.) was added. Approximately 100 μ L of this solution was removed, filtered through syringe filter (0.2 μ m, 25 mm) and rinsed with 1.5 mL of diethyl ether. The resulting solution was analyzed by GC.

• <u>GC-trace of stability study of 14a (with 3 mol% of Cat-2 at 40 °C)</u>

<Peak Table>

35101							
Peak#	Name	Ret. Time	Area	Height	Area%	Height%	Resolution(JP)
1		3.29	416503	40085	56.7	30.5	
2		11.16	62437	16203	8.5	12.3	59.07
3		13.57	255421	74984	34.8	57.1	26.83
Total			734361	131271	100.0	100.0	

Figure S14: GC chromatogram

<u>Calculation details:</u> Yield of 14a = 151.5 * [(255421 / 416503) - 0.0127] = 91%

Ratio 14a / 15a = (255421 / 62437) = 4.09 corresponding to a ratio of 80 / 20

VII- Post-functionalization of dissymmetrical triyne 22

Compound **22** (36.1 mg, 0.076 mmol, 1.0 equiv.) was placed in a round bottom flask under an argon atmosphere and dissolved in acetonitrile:DCM (1:1) (1 mL). The flask was protected from light and N-iodosuccinimide (21.7 mg, 0.097 mmol, 1.3 equiv.) and silver fluoride (11.2 mg, 0.088 mmol, 1.2 equiv.) were added. After 16 h, 10 mL of CH_2Cl_2 were added and the solution was filtered through a pad of silica and volatiles were evaporated. The crude mixture was purified by column chromatography (Pentane:Et₂O 100:0 to 98:2) and the obtained solid was washed with pentane to give the desired triyne **24** as yellow solid (23.2 mg, 0.052 mmol, **69% yield**).

¹**H NMR** (400 MHz, CDCl₃): δ 7.33-7.28 (m, 9H), 7.24-7.21 (m, 6H). ¹³**C NMR** (101 MHz, CDCl₃): δ 143.9, 129.2, 128.4, 127.4, 83.5, 79.1, 69.6, 64.1, 59.2, 56.5. **HRMS** (ESI) *m/z* calcd. for C₂₅H₁₅I [M]⁺ 442.0234, found 442.1220.

VIII- NMR spectra

(E)-(4-chlorobut-3-en-1-yn-1-yl)-triisopropylsilane (12a)

Figure S15: ¹H and ¹³C NMR spectra of 12a in CDCl₃

Triisopropyl(penta-1,3-diynyl)silane (13a)

Triethyl(penta-1,3-diyn-1-yl)silane (13b)

(E)-(4-chlorobut-3-en-1-yn-1-yl)triphenylsilane (12c)

(penta-1,3-diyn-1-yl)triphenylsilane (13c)

(E)-(3-chloroprop-2-ene-1,1,1-triyl)tribenzene (12d)

Hexa-2,4-diyne-1,1,1-triyltribenzene (13d)

Figure S22: ¹H and ¹³C NMR spectra of 13d in CDCl₃

(E)-(4-chlorobut-3-en-1-yn-1-yl)- 1,3,5-trimethylbenzene (12e)

Figure S23: ¹H and ¹³C NMR spectra of 12e in CDCl₃

1,3,5-trimethyl-2-(penta-1,3-diyn-1-yl)benzene (13e)

Figure S24: ¹H and ¹³C NMR spectra of 13e in CDCl₃

1,1,1,8,8,8-hexaphenylocta-2,4,6-triyne (16)

Figure S26: ¹H and ¹³C NMR spectra of 16 in CDCl₃

Triisopropyl(7,7,7-triphenylhepta-1,3,5-triyn-1-yl)silane (22)

(7-mesitylhepta-2,4,6-triyne-1,1,1-triyl)tribenzene (23)

Figure S29: ¹H and ¹³C NMR spectra of 24 in CDCl₃

IX- X-Ray Crystallographic data

X-ray structure of triyne 16 (CCDC-1908075)

 Table S4: Crystal data and structure refinement for 16

Empirical formula	C44H30	
Formula weight	558.68 g/mol	
Temperature	150 K	
Wavelength	0.71073 Å	
Crystal system, space group	triclinic, P -1	
Unit cell dimensions	a = 9.9378(9) Å,	$\alpha = 93.791(3)^{\circ}$
	b = 9.9882(8) Å,	$\beta = 94.905(3)^{\circ}$
	c = 17.7699(15) Å.	$\gamma = 98.931(3)^{\circ}$
Volume	1730.4(3) Å ³	
Z, Calculated density	2, 1.072 g.cm ⁻³	
Absorption coefficient	0.061 mm ⁻¹	
F(000)	588	
Crystal size	0.420 x 0.250 x 0.140 mm	ı
Crystal color	colourless	
Theta range for data collection	2.914 to 27.484 °	
h_min, h_max	-12, 12	
k_min, k_max	-12, 12	
1_min, 1_max	-23, 23	
Reflections collected / unique	41529 / 7909 [R(int) = 0.	0434]
Reflections [I>2sigma(I)]	6557	
Completeness to theta_max	0.999	
Absorption correction type	multi-scan	
Max. and min. transmission	0.991, 0.000	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	7909 / 0 / 397	
Goodness-of-fit	1.051	
Final R indices [I>2sigma(I)]	R1 = 0.0457, wR2 = 0.1	170
R indices (all data)	R1 = 0.0571, wR2 = 0.12	244
Largest diff. peak and hole	0.342 and -0.342 e.Å ⁻³	

X-ray structure of diyne 13d (CCDC-1908076)

Table S5: Crystal data and structure refinement for 13d.

Empirical formula	C16 H12	
Formula weight	204.26 g/mol	
Temperature	150 K	
Wavelength	0.71073 Å	
Crystal system, space group	orthorhombic, P 21 21 21	
Unit cell dimensions	a = 9.3055(16) Å,	$\alpha = 90^{\circ}$
	b = 10.3538(15) Å,	$\beta = 90^{\circ}$
	c = 18.151(3) Å,	$\gamma = 90^{\circ}$
Volume	1748.8(5) Å ³	•
Z, Calculated density	6, 1.164 g.cm ⁻³	
Absorption coefficient	0.066 mm ⁻¹	
F(000)	648	
Crystal size	0.800 x 0.580 x 0.450 mm	n
Crystal color	colourless	
Theta range for data collection	2.943 to 27.470 °	
h_min, h_max	-12, 12	
k_min, k_max	-13, 13	
1_min, 1_max	-19, 23	
Reflections collected / unique	10436 / 3996 [R(int) = 0.0	0274]
Reflections [I>2sigma(I)]	3603	
Completeness to theta_max	0.998	
Absorption correction type	multi-scan	
Max. and min. transmission	0.971, 0.000	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	3996 / 0 / 219	
Goodness-of-fit	1.029	
Final R indices [I>2sigma(I)]	R1 = 0.0359, wR2 = 0.08	70
R indices (all data)	R1 = 0.0433, WR2 = 0.09	24
Largest diff. peak and hole	0.190 and -0.176 e.Å ⁻³	

X-ray structure of diyne 13e (CCDC-1908077)

 Table S6: Crystal data and structure refinement for 13e.

Empirical formula	$C_{14}H_{14}$	
Formula weight	182.25 g/mol	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	triclinic, P -1	
Unit cell dimensions	a = 7.5855(9) Å,	$\alpha = 90.902(5)^{\circ}$
	b = 8.3989(11) Å,	$\beta = 91.564(5)^{\circ}$
	c = 17.377(2) Å,	$\gamma = 91.339(4)^{\circ}$
Volume	1106.2(2) Å ³	•
Z, Calculated density	4, 1.094 g.cm ⁻³	
Absorption coefficient	0.061 mm ⁻¹	
F(000)	392	
Crystal size	0.490 x 0.410 x 0.270 mm	n
Crystal color	colourless	
Theta range for data collection	3.347 to 27.480 °	
h_min, h_max	-9, 9	
k_min, k_max	-10, 10	
l_min, l_max	-22, 22	
Reflections collected / unique	21175 / 4978 [R(int) = 0.0	0363]
Reflections [I>2sigma(I)]	4166	
Completeness to theta_max	0.982	
Absorption correction type	multi-scan	
Max. and min. transmission	0.984 , 0.897	
Refinement method	Full-matrix least-squares of	on F^2
Data / restraints / parameters	4978 / 0 / 261	
Goodness-of-fit	1.049	
Final R indices [I>2sigma(I)]	R1 = 0.0506, WR2 = 0.133	53
R indices (all data)	R1 = 0.0605, WR2 = 0.142	20
Largest diff. peak and hole	0.307 and -0.265 e.Å ⁻³	

X-ray structure of triyne 14c (CCDC-1966970)

Table S7: Crystal data and structure refinement for 14c

Empirical formula	$C_{43}H_{31}Cl_3Si_2$	
Formula weight	710.21 g/mol	
Temperature	150 K	
Wavelength	0.71073 ≈	
Crystal system, space group	monoclinic, P 21/n	
Unit cell dimensions	$a = 10.4193(6) \approx$,	alpha = 90∞
	$b = 21.2154(12) \approx$,	$beta = 99.801(2) \infty$
	$c = 17.2115(8) \approx$,	gamma = 90∞
Volume	3749.1(3)≈3	-
Z, Calculated density	4, 1.258 g.cm-3	
Absorption coefficient	0.338 mm-1	
F(000)	1472	
Crystal size	0.390 x 0.280 x 0.130 mm	n
Crystal color	colourless	
Crystal description	prism	
Theta range for data collection	2.137 to 27.581 ∞	
h_min, h_max	-13, 13	
k_min, k_max	-27, 24	
1_min, 1_max	-22, 22	
Reflections collected / unique	34871 / 8525 [R(int) = 0.0	0558]
Reflections [I>2sigma(I)]	6305	
Completeness to theta_max	0.982	
Absorption correction type	multi-scan	
Max. and min. transmission	0.957, 0.774	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	8525 / 0 / 433	
Goodness-of-fit	1.030	
Final R indices [I>2sigma(I)]	R1 = 0.0491, wR2 = 0.1	189
R indices (all data)	R1 = 0.0765, wR2 = 0.1	333
Largest diff. peak and hole	$0.358 \text{ and } -0.619 \text{ e.} \approx -3$	

X-ray structure of triyne 22 (CCDC-1915266)

 Table S8: Crystal data and structure refinement for 22.

Empirical formula	C34H36Si	
Formula weight	472.72 g/mol	
Temperature	150 K	
Wavelength	0.71073 Å	
Crystal system, space group	triclinic, P -1	
Unit cell dimensions	a = 8.5423(11) Å,	$\alpha = 76.313(5)^{\circ}$
	b = 10.4335(14) Å,	$\beta = 77.803(5)^{\circ}$
	c = 16.821(2) Å,	$\gamma = 83.761(5)^{\circ}$
Volume	1421.0(3) Å ³	•
Z, Calculated density	2, 1.105 g.cm ⁻³	
Absorption coefficient	0.102 mm ⁻¹	
F(000)	508	
Crystal size	0.420 x 0.280 x 0.090 mm	ı
Crystal color	colourless	
Theta range for data collection	2.444 to 27.582 °	
h_min, h_max	-10, 11	
k_min, k_max	-13, 13	
l_min, l_max	-21, 21	
Reflections collected / unique	26302 / 6444 [R(int) = 0.0	0702]
Reflections [I>2sigma(I)]	5125	
Completeness to theta_max	0.978	
Absorption correction type	multi-scan	
Max. and min. transmission	0.991, 0.827	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	6444 / 0 / 322	
Goodness-of-fit	1.029	
Final R indices [I>2sigma(I)]	R1 = 0.0477, wR2 = 0.112	91
R indices (all data)	R1 = 0.0648, wR2 = 0.13	01
Largest diff. peak and hole	0.453 and -0.368 e.Å ⁻³	

X-ray structure of triyne 23 (CCDC-1920652)

 Table S9: Crystal data and structure refinement for 23.

Empirical formula	C34H26
Formula weight	434.55 g/mol
Temperature	150 K
Wavelength	0.71073 Å
Crystal system, space group	triclinic, P -1
Unit cell dimensions	$a = 8.5611(8)$ Å, $\alpha = 94.453(3)$ °,
	$b = 10.3957(10)$ Å, $\beta = 104.612(3)$ °,
	$c = 14.5334(13) \text{ Å}, \gamma = 98.456(3)^{\circ}$
Volume	$1229.1(2) Å^3$
Z, Calculated density	2, 1.174 g.cm ⁻³
Absorption coefficient	0.066 mm ⁻¹
F(000)	460
Crystal size	0.350 x 0.240 x 0.060 mm
Crystal color	colourless
Theta range for data collection	2.914 to 27.482 °
h_min, h_max	-11, 11
k_min, k_max	-13, 13
l_min, l_max	-17, 18
Reflections collected / unique	22961 / 5570 [R(int) = 0.0414]
Reflections [I>2sigma(I)]	4477
Completeness to theta_max	0.987
Absorption correction type	multi-scan
Max. and min. transmission	0.996 , 0.874
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5570 / 0 / 310
Goodness-of-fit	0.034
Final R indices [I>2sigma(I)]	R1 = 0.0479, wR2 = 0.1201
R indices (all data)	R1 = 0.0628, $wR2 = 0.1302$
Largest diff. peak and hole	0.321 and -0.215 e.Å ⁻³

References

[1] Wang R., Falck J. R., Org. Biomol. Chem. 2015, 13, 1624–1628.

[2] Constable E. C., Gusmeroli D., Housecroft C. E., Neuburger M., Schaffner S., *Acta Cryst.* **2006**, *62*, 505-509.

[3] Karlen S. D., Ortiz R., Chapman O. L., Garcia-Garibay M. A., J. Am. Chem. Soc. 2005, 127, 6554-6555.

[4] Fiandanese V., Bottalico D., Marchese G., Punzi A., *Tetrahedron* 2006, 62, 5126–5132.

[5] a) Heppekausen J.; Stade R.; Goddard R.; Fürstner A., *J. Am. Chem. Soc.* **2010**, *132*, 11045–11057; b) Heppekausen J.; Stade R.; Kondoh A.; Seidel G.; Goddard R.; Fürstner A., *Chem. Eur. J.* **2012**, *18*, 10281–10299.

[6] Kerisit N.; Ligny R.; Gauthier E. S.; Guegan J.-P.; Toupet L.; Guillemin J.-C.; Trolez Y. *Helv. Chim. Acta.* **2019**, *102*, e1800232.

[7] Métay E.; Hu Q.; Negishi. Org. Lett. 2006, 8, 5773–5776

[8] Li J., Park S., Miller R. L., Lee D., Org. Lett. 2009, 11, 571-574.

[9] Eisler S., Slepkov A. D., Elliott E., Luu T., Mcdonald R., Hegmann F. A., Tykwinski R. R., *J. Am. Chem. Soc.***2005**, *127*, 2666-2676