
1 
 

Exploiting Clock Transitions for the chemical design of 
resilient molecular spin qubits 

Silvia Giménez-Santamarina1, Salvador Cardona-Serra1, Juan M. Clemente-
Juan1*, Alejandro Gaita-Ariño1*, Eugenio Coronado1* 

1ICMol. Universitat de València. C/ Catedrático José Beltrán nº 2, 46980 Paterna, Valencia, España. 

 

Supplementary information 

S1. Description of the algorithm and code flow _______________________________ 2 

a. From discrete to continuous Zeeman diagrams _____________________________ 2 

b. Characterization of the Clock Transitions __________________________________ 6 

S2. Vanadyl dithiolates complexes _________________________________________ 9 

a. Analytical solutions ___________________________________________________ 11 

S3. HoW10 ____________________________________________________________ 15 

a. Studies with the Radial Effective Charge (REC) model ______________________ 16 

S4. Cubic symmetry: expanding the anticrossing taxonomy ___________________ 17 

a. Potential CTs in a perfect cubic HoPd12 __________________________________ 84 

b. Potential CTs for X-band EPR along 1% compression of HoPd12 _____________ 87 

S5. Estimate of instantaneous vibrational distortions _________________________ 88 

S6. Probability of CTs for VO derivative ___________________________________ 89 
 

  

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2020



2 
 

S1. Description of the algorithm and code flow 

a. From discrete to continuous Zeeman diagrams 
The coexistence of crossings and avoided crossings possesses an intrinsic difficulty for numerical methods, 
in our case this is translated into how to correctly label and order the magnetic levels (see Fig. 2, main text). 
When analyzing the relative energies of a distribution of spin states varying with an external magnetic field, 
we need to keep track (and consistently label) the different energy levels. This is not trivial when the energy 
level set is calculated numerically and independently at each different magnetic field. A naïve ordering 
from lowest to highest magnetic field is physically meaningless, and this technical problem can arise from 
the numerical methods used to obtain these values from standard diagonalization routines. 

We have chosen to overcome this problem with a particular methodology: We start from a given input data 
set and evaluate the continuum evolution of each spin level with an increasing magnetic field. It is achieved 
by (1) fitting and (2) extrapolating the numerical function that defines the behavior of a variable or category 
as a function of another and find the equivalent value in the first data set (See Fig. S1). 

(1) The program fits a second order polynomial expression for the first set of five consecutive points (x 
variable, energy) of each variable (data group, spin level). The user should ensure that the first five points 
in the given input data set pertain to the same function in order to achieve the reliable estimation of the 
following value.  

(2) By extrapolation, it calculates the following point and maps the input set of values performing a 
numerical evaluation to scrutinize the analogous item. Then the column number of the match is mapped 
and written in an intermediate file. Then, this file is used as a ‘mask’ to finally re-order the input data set 
by creating a new matrix. There the continuity of the dependence of each group as a function of another 
variable are traced by the values in each column. Whenever the estimates and the data differ, the program 
generates a matrix with the input energies but reordered to guarantee the continuity of the energy levels 
(see Figure S2, S3, S4 center). 
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Figure S1: Workflow of the initial script designed with the functionality of mapping and reordering the 
energy values that traces the magnetic behavior of each spin level in the presence of a magnetic field.  

Finally, as a quality control check after the run of the script, a multiplot figure is created with the objective 
of providing a fast and easy graphical control of the results. At the upper panel of the multiplot the user 
will find the graphical representation of the raw input/initial data set; next to it, the polynomial estimated 
values after the fitting and extrapolation stages, and finally, the values from the input data set re-ordered as 
a continuous function. The coloring in the plots remarks very evidently which traces are correct and which 
are incorrect within all categories. In addition, we provide two extra plots at the bottom of the panel to 
numerically evaluate the order of magnitude of the mapping (difference between initial value and estimated 
value) and the range of error of this evaluation. (See Figs. S2, S3 and S4 as methodological examples)  
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Figure S2: Results of the mapping processes and quality control plots after running the first script of our 
code for the first calculation concerning the Vanadyl-like case study. See main text section “Vanadyl 
dithiolates complexes”. 

 

 

Figure S3: Results of the mapping processes and quality control plot of the fundamental octuplets after 
running the first script of our code for the first calculation concerning the case of HoW10. See main text 
section “Antiprismatic holmium POM complex”. 
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Figure S4: Results of the mapping processes and quality control plot after running the first script of our 
code for the first calculation concerning the cubic polyoxopaladate case. See main text section “Cubic 
holmium POM complex”. 
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b. Characterization of the Clock Transitions 
Starting from general data containing numerical values (y coordinate) as a function of an independent 
variable (x coordinate), the algorithm compares the evolution of each y curve and finds the regions where 
the numerical difference of values are inside a certain range (a threshold externally defined by the user), 
and identifies whether in these regions the first derivative is equal or close to zero. A second threshold, 
defined by default but modifiable by the user, deals with the difference between slopes of two specific 
levels. In principle, this later threshold will define quality and width of the search of transitions.  

Following the code workflow (Figure S5), first, the user externally defines the threshold to search for Clock 
Transitions. This is the energy difference (in units of cm-1) in which the user is interested. This specific 
range can come from technical limitations such for instance, availability of specific EPR-bands to study a 
given compound. Once the energies are ordered in columns and the magnetic field dependence 
(independent variable) is considered, the script calculates the numerical energy difference for each possible 
combination of levels. If such difference is lower or equal to the energy threshold, the first derivative (curve 
slope) for each level at the given magnetic field value is calculated and compared. If the difference between 
the calculated slopes is less or equal to the threshold, we have encountered a potential Clock transition. To 
identify the character of the potential transition, meaning, to evaluate if the evolution of the spin levels will 
rise to a crossing or to an anticrossing, other variables are calculated as needed such as absolute value of 
the gap energy, difference of absolute energy values and the ratio of first derivatives.  

Once we have identify which levels and in which regions of the function we could find a target for obtaining 
a possible CTs, we classify them as crossing or anticrossings by evaluating the sign of the curve slopes: A 
crossing will never change it sign while an anticrossing will vary it approaching to zero and then continue 
with the opposite sign. An anticrossing can be locally approximated by a mathematical quadratic function, 
so it is easy to calculate the vertex of the parabola from this polynomial expression. In this point, the script 
ensures the good extrapolation and polynomial fitting of the function every 5 points.  

In this point of the workflow, the second derivative is calculated. The script then evaluates whether this 
second derivative is equal or very close to zero, and the vertex of the parabola, in order to get the minimum 
and the maximum of the function.  

The curvature is quantified as follows: given the quadratic expression (𝑦 = 𝑎𝑥% + 𝑏𝑥 + 𝑐) defining the 
CTs, one can calculate the curvature at the vertex of the parabola with the following formula: 

𝑘 = 	
𝑦′′

(1 + 𝑦.	%)0/% 

Then, substituting first and second derivatives we obtain: 

𝑘 = 	
2𝑎

(1 + (2𝑎𝑥3 + 𝑏)%)0/%
 

where 𝑥3 is the maximum or minimum	value at the vertex of the quadratic function. 

The output produced by the script contains the labelling of the levels mixing, the value of the magnetic 
field at which they appear (x coordinate), the maximum or minimum energy value of each of curves 
involved in the transition, the energy gap difference and finally the curvature of both transitions.  
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Figure S5: General workflow of the second script that classifies the avoided and non-avoided crossings. 
Two different thresholds are applied (transition frequency and slopes difference), to ensure the direct and 
reliable search of Clock transitions in a frequency window. Certain number of intermediate files are created 
for data storage and quality control.  

An example of the information produced by the program is given at table S1. The columns i and j refer to 
the levels involved in the transition, after re-ordering as explained in section S1a, with energies “E_cross1”, 
“E_cross2”, respectively. The "Type" column serves to identified the crossings as avoided ("anticrossings" 
in the main text). “H_cross” is the magnetic field at which the anticrossing is appearing, labeled as BCT in 
the main text. “AE_ij” is the tunneling splitting labelled in the main text as D, or, generally, the energy 
difference at the anticrossing. “Curvature 1” and “Curvature 2” correspond to the second derivatives of the 
polynomial functions that fit the curves of levels i and j in the vicinity of the anticrossing; these are labelled 
as ki, kj in the main text. 
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Table S1: Output information obtained after running the program. The example corresponds to the first 
calculation of Vanadyl-like complex study. See main text section “Vanadyl dithiolates complexes” for 
more detailed information on the chemical system. The results are written in plain text in a matrix format. 
I, j are referred to the levels involved (sorted from lowest to highest energy at magnetic field negative limit); 
type of crossing; HCT is the value of magnetic field where the CT appears (T); Ei and Ej is the energy at the 
maximum or minum of the spin level where the transition is found (cm-1); DEij corresponds to tunneling 
splitting of the transition (cm-1) and ki, , kj mean the value of the curvature. 

i j Type HCT Ei Ej DEij ki kj 

1 15 Avoided 0.03797 -0.0087192 0.0028692 0.0115884 36.74286 36.74286 

2 14 Avoided 0.02531 -0.0105114 0.0046614 0.0151727 28.05714 28.05714 

3 13 Avoided 0.01266 -0.0114068 0.0055568 0.0169637 25.25714 25.25714 

4 12 Avoided 0.00000 -0.0116850 0.0058350 0.0175200 24.28571 24.28571 

5 11 Avoided -0.01266 -0.0114068 0.0055568 0.0169637 25.20000 25.20000 

6 10 Avoided -0.02531 -0.0105113 0.0046613 0.0151727 28.17143 28.17143 

7 9 avoided -0.03797 -0.0087192 0.0028692 0.0115883 36.91429 36.91429 

 

  



9 
 

 
S2. Vanadyl dithiolates complexes 

We evaluated the robustness of the CTs appearing in vanadium-based dithiolate complexes, such as 
[VO(CxSy)2]2-)] and [V(CxSx)3]2-)]. We have selected such families because of their interesting performance 
acting as molecular spin qubits (i.e. high coherence time T2) 

In this section we will focus on the different behavior of anticrossings in the typical range of 𝐴∥/𝐴6 ratios 
for vanadyl and vanadium complexes. Starting from the hyperfine parameters given for the four V(IV)-
based complexes in [1,2], we calculated the average value corresponding to the hyperfine coupling 
components where: 𝐴∥777 	= 414.5	MHz = 0.013825	cmCD;	𝐴67777 = 131.25	MHz = 0.004385	cmCD for 
vanadyl complexes [1] and 𝐴∥777	 = -307GHz  = 0.010234 cm-1 ; 	𝐴67777 = 51GHz = 0.001736 cm-1 for vanadium 
complexes [2]. We chose vanadyl family of complexes as a reason as the lower dispersion in the hyperfine 
parameters, but this study could be extended to vanadium family as well.   

Table S2: Vanadyl and vanadium hyperfine coupling values (𝐴∥, parallel; 𝐴6, perpendicular).  

VO Complex 𝑨∥ 𝑨6 

1 411 MHz = 0.01371 cm-1 131 MHz = 0.00437 cm-1 

2 414 MHz = 0.01381 cm-1 131 MHz = 0.00437 cm-1 

3 418 MHz = 0.01384 cm-1 132 MHz = 0.00440 cm-1 

4 415 MHz = 0.01394 cm-1 131 MHz = 0.00437 cm-1 

V Complex   

1 -265 MHz = -0.00884 cm-1 46 MHz = 0.00153 cm-1 

2 -270 MHz = -0.00901 cm-1 45 MHz = 0.00155 cm-1 

3 -340 MHz = -0.01134 cm-1 65 MHz = 0.00217 cm-1 

4 -329 MHz = -0.01097 cm-1 46 MHz = 0.00153 cm-1 

5 -330 MHz = -0.01101 cm-1 57 MHz = 0.00190 cm-1 

 

We varied both 𝐴∥ and 𝐴6 parameters by ±15% sequentially, this means vary one of them while keeping 
the other in its typical value in order to have a good analysis of the influence of each parameter. The study 
consists on a numerical processing of 658 calculated curves, of which we represent a selection in Fig. 4, 
coincides with the analytical solution that is possible in this case (see SI section S4) in the linear 
dependence, for all CTs, of the transition frequency and its curvature as a function of 	𝐴6 and of the 
magnetic field where the CT appears as a function of 𝐴∥.The tunneling gap of each CT appearing at the 
following magnetic fields (B1 = 0.00, B2 = ±0.01493, B3= ± 0.02986, B4= ± 0.04478 T) take values of: ∆1 
=[0.05800], ∆2 = [0.05616], ∆3 = [0.05023], ∆4 = [0.00986-0.03836] (cm-1). And the curvature of each CT 
is quantified: k1 = 30.34, k2 = 31.37, k3 = 35.09, k4 = 46.10 (cm-1/T)2. 
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Figure S6: a) Full Zeeman diagram showing the effects of a ±15% variation in 𝐴∥. b) Full Zeeman 
diagram showing the effects of a ±15% variation in 𝐴6 . 

 

Figure S7: Dependencies of a) tunneling splitting, D; b) curvature, k; and c) magnetic field BCT in a ±15% 
variation in 𝐴6.  
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a. Analytical solutions  
We extracted analytical solution for the dependence of energy spin levels as a function of 𝐴∥, 𝐴6. The case 
of vanadyl complexes is especially interesting due to the possibility of obtaining analytical expression 
where is possible to obtain the energy of a given spin level as a function of 𝐴∥, 𝐴6 parameters.  

Starting from a molecular complex with S = 1/2 and I = 7/2; Heisenberg and hyperfine Hamiltonian can be 
applied to obtain the eigenvalues and eigenvectors corresponding to the wave function and energy of each 
spin energy level.  

𝐻" =	𝐴∥𝐼(𝑆( + 𝐴+,𝐼-𝑆- + 𝐼.𝑆./ + 𝑔1𝜇3𝑆(𝐵 

Where 𝐻 is the magnetic field, 𝜇K is the Bohr magneton, 𝑔 is electronic g-tensor, 𝐴 is the hyperfine vector 
(components decomposed in 𝐴∥ and 𝐴6.), S is the electronic spin projection and I the nuclear spin 
projection.  

Then, a matrix can be created where the basis functions are all the possible combination of electronic and 
nuclear spin projections (MS, MI). Once the H is applied, the obtained matrix will present all the 
extradiagonal terms equal to zero and the diagonal will contain the expressions relative to each 
combination.  

< 𝑀1𝑀7	8	𝐻"	8𝑀1𝑀7 >	= 	𝜇3 ∙ 𝑔 ∙ 𝑀1 ∙ 𝐻 ∙ δ𝑀7𝑀7< 

Through the analytical diagonalization of the energy matrix we can obtain the expression of the 16 energy 
levels: 
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To calculate the position of the clock-transitions we derive the energies against the applied magnetic field: 
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By zeroing these derivatives, we can obtain the positions of the transitions and the energy gap between the 
lower and higher levels at a certain field. Levels 1 and 2 are just straight lines. The remaining 14 levels 
always present a maximum or minimum at a discrete magnetic field value. 

In the following table we represent these 14 levels in 7 pairs. These pairs represent the two energy levels 
that have a minimum and a maximum respectively at a specific magnetic field. In addition, we give the 
energy difference between both curves and the curvature in the minimum gap field. 
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S3. HoW10 
For the simplest test-case study, [Ho(W5O18)2]9- (hereafter HoW10 for simplicity), from the previously 
reported crystal field parameters (see Table S2) we varied 𝐵NN parameter in a range of ∆𝐵NN𝑂PNN = 𝐵NN𝑂PNN ±
2𝜎, where 𝜎K== = 2.1 × 10CS cm-1 responsible for the inhomogeneous broadening. [3] 

Table S2: Empirical values of CFP in Stevens notation of HoW10.  

𝑩𝟐𝟎 0.60141602cm-1 18.03GHz 

𝑩𝟒𝟎 0.00697149cm-1 209MHz 

𝑩𝟒𝟒 0.00314551cm-1 0.09GHz 

𝑩𝟔𝟎 0.00005104cm-1 −1.53 MHz 

 

𝑂PNN consists in fourth order ladder operators which mix levels presenting 𝑚Z that differ in 4, or multiples of 
4. In the Stevens Extended Operator notations 𝑂P[

\(𝐽) it is defined as: 

𝑂NN ≡ 𝑂NN(𝑐) =
1
2
[𝐽N + 𝐽CN] 

However, in this small parameter range we did find a locally linear dependence both of the energy gap and 
of the curvature of all eight anticrossings as a function of the crystal field parameter 𝐵NN (see SI section S3) 
which evolve approximately according to the equations ∆= 194.42 · 𝐵NN − 0.31 cm-1, 𝑘 = −22446.81 ·
𝐵NN + 106.18 cm-1/T2. In practice, molecules that in the timescale of the pulsed EPR experiment present an 
extradiagonal parameter that deviates 𝜎K== = 2.1 · 10CS cm-1 from the average value of 𝐵NN𝑂PNN = 3.14 · 10C0 
cm-1 present a larger (or smaller) transition frequency; this effect is comparable to a relatively large local 
magnetic field of over 25 mT. This serves as a first numerical estimate of the sensitivity of these CTs to 
structural or vibrational noise and could be related to the intense thermal dependence of T2 in this system. 
[3] 

The dependences of tunneling gap (∆) and curvature (k) as a function of 𝐵NN were investigated. We find a 
local linear dependence in the variational range we applied, which follow the next linear equations: 
∆= 194.42𝐵NN − 0.31 cm-1, 𝑘 = −22446.81𝐵NN + 106.18 cm-1/T2.  

 

Figure S8: Dependences of ∆ and k as a function of 𝐵NN. In this variational region both ∆ and k follow a 
linear dependence, with opposite signs.  

We also checked the validity of the results comparing the estimated magnetic field values where the CTs 
are predicted to appear, and the same values empirically obtained in [3].  
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Table S3: Position of CTs for HoW10 complex. We compare the position at magnetic field the CTs were 
observed experimentally in a previous study [3] and the position obtained in the present study.  

H(experiment [3]) H(theory)  

23.5 mT 23.73 mT 

70.9 mT 71.2 mT 

118 mT 118.67 mT 

165 mT 166.13 mT 

 
a. Studies with the Radial Effective Charge (REC) model 

In the REC model, the ligand effect is modelled by substituting each atom of the coordination sphere 
through an effective point charge situated between the lanthanoid ion, in this  case Ho3+, and the 
coordinating atom at a distance Ri from the magnetic center, which is smaller than the real metal-ligand  
distance (ri).  To account for the effect of covalent electron sharing, a radial displacement vector (Dr) is 
defined, in which the polar coordinate r of each coordinated atom is collectively varied, Ri= ri - Dr, and at 
the same time the charge value (Zi) is scanned in order to achieve a minimum deviation between calculated 
and experimental data, whereas 𝜃i and 𝜑i remain constant. 
 
In the present case, we employed the REC parameters Dr =0.8, Zi =0.197 obtained in a previous work as 
the result of a simultaneous and satisfactory fit of the tunneling splitting as determined by EPR 
measurements and the first two excited doublets as obtained by Inelastic Neutron Scattering experiments. 
[4] 
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S4. Cubic symmetry: expanding the anticrossing taxonomy 
We performed a moderate axial compression up to 1% (∆𝑧/𝑧, where the field is applied in 𝐵i). We extracted 
the initial the REC corrected parameters from [5]. 

The following collection of graphs show the results of the vertical compression for each calculation, from 
the maximum compressed structure (1% of compression in z axis), to the minimum compressed structure. 
The maximum and minimum of the region which follows a quadratic dependence of each spin level is 
depicted with diamonds, and the CTs detected are marked with dashed lines of the same color.  

Figure S9: Energy levels splitting for a vertical compression of 1% 
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Figure S10: Energy levels splitting for a vertical compression of 0.985% 
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Figure S11: Energy levels splitting for a vertical compression of 0.970% 
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Figure S12: Energy levels splitting for a vertical compression of 0.955% 
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Figure S13: Energy levels splitting for a vertical compression of 0.941% 
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Figure S14: Energy levels splitting for a vertical compression of 0.926% 
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Figure S15: Energy levels splitting for a vertical compression of 0.911% 
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Figure S16: Energy levels splitting for a vertical compression of 0.897% 
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Figure S17: Energy levels splitting for a vertical compression of 0.882% 
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Figure S18: Energy levels splitting for a vertical compression of 0.867% 
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Figure S19: Energy levels splitting for a vertical compression of 0.852% 
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Figure S20: Energy levels splitting for a vertical compression of 0.838% 
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Figure S21: Energy levels splitting for a vertical compression of 0.823% 
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Figure S22: Energy levels splitting for a vertical compression of 0.808% 
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Figure S23: Energy levels splitting for a vertical compression of 0.794% 
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Figure S24: Energy levels splitting for a vertical compression of 0.779% 
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Figure S25: Energy levels splitting for a vertical compression of 0.764% 
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Figure S26: Energy levels splitting for a vertical compression of 0.750% 
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Figure S27: Energy levels splitting for a vertical compression of 0.735% 
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Figure S28: Energy levels splitting for a vertical compression of 0.720% 
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Figure S29: Energy levels splitting for a vertical compression of 0.705% 
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Figure S30: Energy levels splitting for a vertical compression of 0.691% 
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Figure S31: Energy levels splitting for a vertical compression of 0.676% 
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Figure S32: Energy levels splitting for a vertical compression of 0.661% 
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Figure S33: Energy levels splitting for a vertical compression of 0.647% 

 



42 
 

 
Figure S34: Energy levels splitting for a vertical compression of 0.632% 
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Figure S35: Energy levels splitting for a vertical compression of 0.617% 
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Figure S36: Energy levels splitting for a vertical compression of 0.603% 
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Figure S37: Energy levels splitting for a vertical compression of 0.588% 
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Figure S38: Energy levels splitting for a vertical compression of 0.573% 
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Figure S39: Energy levels splitting for a vertical compression of 0.559% 
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Figure S40: Energy levels splitting for a vertical compression of 0.544% 
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Figure S41: Energy levels splitting for a vertical compression of 0.529% 
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Figure S42: Energy levels splitting for a vertical compression of 0.514% 
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Figure S43: Energy levels splitting for a vertical compression of 0.500% 

 



52 
 

 
Figure S44: Energy levels splitting for a vertical compression of 0.485% 
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Figure S45: Energy levels splitting for a vertical compression of 0.470% 
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Figure S46: Energy levels splitting for a vertical compression of 0.455% 
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Figure S47: Energy levels splitting for a vertical compression of 0.441% 
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Figure S48: Energy levels splitting for a vertical compression of 0.426% 
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Figure S49: Energy levels splitting for a vertical compression of 0.411% 
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Figure S50: Energy levels splitting for a vertical compression of 0.397% 
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Figure S51: Energy levels splitting for a vertical compression of 0.382% 
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Figure S52: Energy levels splitting for a vertical compression of 0.367% 
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Figure S53: Energy levels splitting for a vertical compression of 0.352% 
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Figure S54: Energy levels splitting for a vertical compression of 0.338% 



63 
 

 
Figure S55: Energy levels splitting for a vertical compression of 0.323% 
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Figure S56: Energy levels splitting for a vertical compression of 0.308% 
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Figure S57: Energy levels splitting for a vertical compression of 0.294% 
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Figure S58: Energy levels splitting for a vertical compression of 0.279% 
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Figure S59: Energy levels splitting for a vertical compression of 0.264% 
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Figure S60: Energy levels splitting for a vertical compression of 0.250% 
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Figure S61: Energy levels splitting for a vertical compression of 0.235% 
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Figure S62: Energy levels splitting for a vertical compression of 0.220%
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Figure S63: Energy levels splitting for a vertical compression of 0.205% 
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Figure S64: Energy levels splitting for a vertical compression of 0.191% 
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Figure S65: Energy levels splitting for a vertical compression of 0.176% 
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Figure S66: Energy levels splitting for a vertical compression of 0.161% 
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Figure S67: Energy levels splitting for a vertical compression of 0.147% 
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Figure S68: Energy levels splitting for a vertical compression of 0.132% 
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Figure S69: Energy levels splitting for a vertical compression of 0.117% 
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Figure S70: Energy levels splitting for a vertical compression of 0.102% 
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Figure S71: Energy levels splitting for a vertical compression of 0.088% 
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Figure S72: Energy levels splitting for a vertical compression of 0.074% 
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Figure S73: Energy levels splitting for a vertical compression of 0.059%
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Figure S74: Energy levels splitting for a vertical compression of 0.044% 
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Figure S75: Energy levels splitting for a vertical compression of 0.029% 
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Figure S76: Energy levels splitting for a vertical compression of 0.015% 

 

a. Potential CTs in a perfect cubic HoPd12 
Here we report the identified CTs in HoPd12 system, for a given range of frequencies. We focused the 
search of CTs for the most common EPR-bands: L-band [0.8-1.4 GHz (0.03-0.04 cm-1)], X-band [9 GHz 
(0.33 cm-1)], Q-band [35 GHz (1.167 cm-1)], W-band [95 GHz (3.1688 cm-1)]. This search is traduced on 
the objective of finding spin levels that accomplish a energy splitting between them equal or in the range 
of the energy of a EPR-band.  
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Starting from the perfect cubic geometry for which spin levels scheme is depicted in Fig. 6b, we give 
detailed information for the identified CTs at different energy ranges: 

 

Figure S77: Identified transitions with tunneling splitting energies in the range ~0.8-1.4 GHz (0.03-0.05 
cm-1). Left: Zoom in of transitions appearing at the 16th fundamental levels, for simplicity only positive 
values of magnetic field are show; right: Zoom in of the transition appearing at the next 24th fundamental 
levels, for simplicity only negative values of magnetic field are shown.  See table S4. 

Table S4: Detailed information about the transitions depicted in Fig. S77. 

i j Type HCT Ei Ej DEij ki kj 

10 15 Avoided 0.0741 -195.9667 -195.9237 0.043 26.70 3.78 

5 14 Avoided 0.0642 -195.9918 -195.9471 0.044 2.96 24.61 

29 30 Avoided -0.149 -193.7196 -193.6831 0.036 13.13 70.90 
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Figure S78: Identified transitions with tunneling splitting energies in the range ~9-15 GHz (0.3-0.51 cm-1). 
Right: complete Zeeman diagram for the fundament 40 spin levels. Left: Zoom in of the CTs, for simplicity 
and because of symmetry only positive values of magnetic field are shown. See table S5.  

Table S5: Detailed information about the transitions depicted in Fig. S78. 

i j Type H_cross Emaxi Emaxj DEij ki kj 

17 26 Avoided 0.0140 -194.175 -193.701 0.473 27.57 4.94 

18 27 Avoided -0.0140 -194.175 -193.701 0.47 27.0 4.94 

19 26 Avoided 
(*) 

0.0149 -194.150 -193.701 0.450 5.21 5.27 

20 27 Avoided -0.0149 -194.150 -193.701 0.448 5.27 5.49 

21 30 Avoided 
(*) 

0.0247 -194.156 -193.652 0.504 0.82 0.40 

22 32 Avoided -0.0295 -194.156 -193.652 0.504 0.88 0.47 

23 27 Avoided  0.100 -194.074 -193.713 0.360 1.32 10.07 

23 32 Avoided 0.1224 -194.0746 -193.683 0.391 1.76 8.46 

The composition of both level 21 and level 30 are a mixture with contributions of all MJ from -8 to +8, but 
for each MJ only a few MI values contribute, giving a very clear structure of non-zero components that are 
slightly displaced with respect to each other (see table S5). Examining the compositions of wavefunctions 
of levels 21, 30, one can easily verify that, for every non-zero component of level 21 in terms of |MJ, MI>, 
one finds a non-zero component of level 30 after applying either the ladder operator J- or, equivalently, the 
ladder operator I-. The EPR transition between these levels is therefore expected to be allowed. For 
example, in level 21 the wave function coefficient for MJ-4, MI-1/2 is -0.48, which transits to level 30 with 
MJ -4, MI -3/2 with coefficient 0.08+0.127i. However, no transitions were found in ranges from 30-45 GHz 
(1.0-1.5 cm-1) neither from 90-105 GHz (3-3.5 cm-1). 
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b. Potential CTs for X-band EPR along 1% compression of HoPd12 
Here we provide detailed information about interesting transitions with a reange of ∆ suitable for X-band 
EPR, found in different steps along the compression procedure. 

Table S6: Detailed information about transitions for c = 0.06 (Fig. 6d). 

i j Type H_cross Emaxi Emaxj DEij ki kj 

23 26 Avoided 0.051 -194.100 -193.714 0.385 1.87 13.56 

23 27 Avoided 0.134 -194.101 -193.724 0.376 0.93 12.39 

23 29 Avoided  0.204 -194.100 -193.715 0.385 0.66 3.82 

23 31 Avoided 0.194 -194.100 -193.732 0.368 0.93 12.37 

24 26 Avoided -0.132 -194.101 -193.724 0.377 1.10 12.57 

24 27 Avoided -0.051 -194.100 -193.714 0.385 1.88 13.51 

24 29 Avoided -0.197 -194.100 -193.732 0.368 0.82 11.91 

24 31 Avoided -0.204 -194.100 -193.715 0.385 0.66 3.85 

 

Table S7: Detailed information about transitions for c = 0.65 (Fig. 6e). 

i j Type H_cross Emaxi Emaxj DEij ki kj 

13 1826 Avoided  0.057 -195.051 -194.716 0.335 0.60 4.54 

13 19 Avoided 0.049 -195.051 -194.706 0.345 0.66 3.14 

13 20 Avoided  0.068 -195.051 -194.706 0.345 0.55   6.69 

14 17 Avoided -0.050 -195.051 -194.716 0.335 0.66 4.78 

14 19 Avoided -0.068 -195.051 -194.706 0.345 0.60 6.64 

14 20 Avoided -0.049 -195.051 -194.706 0.345 0.66 3.14 

 

Table S8: Detailed information about transitions for c = 0.95 (Fig. 6f). 

i j Type H_cross Emaxi Emaxj DEij ki kj 

10 21 Avoided 0.024 -195.063 -194.652 0.412 6.70 0.55 

10 25 Avoided -0.164 -194.985 -194.556 0.429 5.99 0.38 

11 16 Avoided  0.048 -195.012 -194.653 0.359 46.19 0.60 

11 20 Avoided 0.048 -195.012 -194.617 0.395 44.65 0.66 

12 21 Avoided -0.048 -195.012 -194.653 0.359 46.58 0.60 

12 23 Avoided -0.048 -195.012 -194.617 0.395 44.93 0.49 

9 16 Avoided -0.024 -195.063 -194.652 0.412 6.65 0.55 

9 24 Avoided 0.164 -194.985 -194.554 0.431 5.88 0.27 
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S5. Estimate of instantaneous vibrational distortions 
We employ here the output files of a previous work by some of us. [6] In said work, we estimated the time-
dependent evolution of spin energy levels in a lanthanide metallopeptide by combining molecular dynamics 
(AMBER force field) with crystal field analysis (the REC model, like in the present work). Fluctuations of 
tens of cm−1 for spin energy levels at fs times were found. We represent here the time-dependent metal-
oxygen distance for a sample 1000 fs trajectory at 3 K (see Fig. S79). The amplitude of the instantaneous 
vibrational distortions at this timescale is of the order of 0.01 – 0.02 Å. Following the results of the cited 
work, we can assume that, as happened in the energies, one will find a reduction in the distance fluctuations 
following a square root law, meaning that averaging over a period of time that is a hundred times 
longer translates into one tenth of the noise amplitude.  

 

Figure S79: Time evolution of the metal-oxygen distances for each of the 8 atoms in the coordination 
sphere of the case study, the metallopeptide TbLBT. 
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S6. Probability of CTs for VO derivative 
Here we deepen in the study of wavefunctions for the CTs found in VO derivative complex.  

 

Figure S80: General structure of the anticrossings in terms of the electron spin states and nuclear spin states 
involved. Since the anticrossings result from the (S+I- + S-I+) perpendicular hyperfine term, each 
anticrossing involves a change in a single unit of the electron spin quantum number together with a change 
in a single unit but with opposite sign in the nuclear spin quantum number. 

Let us begin by constructing the Hamiltonian when a magnetic field in z direction is applied, (Bz): 

 

If we suppose a microwave radiation incident perpendicular to the sample, B1: 

 

In contrast if we suppose a radiation incident parallel to the sample, B1: 

 

Where P12 is the transition probability.  

 

In the case study of the vanadium complex, CTs appearing at, B1 = 0 occurs between two functions with 
vectors: 
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Where,  

 

Then, probabilities for microwave radiation perpendicular to the sample would be: 
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And CTs probability for microwave radiation parallel to the sample would be: 

 

 

 

Figure S81: (Up) Energies and probability for CT at B=0. (Down) Coefficients involved in the transition.  

This probability is not assuming any particular frequency but an upper limit assuming the resonance 
condition is met. So, it means that, for a given frequency, it has to be multiplied by another Gaussian or 
Lorentzian function that takes into account the width of the incident microwave, vibrations or any other 
relaxation in the DE. 
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