Supporting Information For

Trends in Trigonal Prismatic Ln-[1]ferrocenophane Complexes Complexes and Discovery of a Ho³⁺ Single-Molecule Magnet

Trevor P. Latendresse, Veacheslav Vieru, Apoorva Upadhyay, Nattamai S. Bhuvanesh, Liviu F. Chibotaru, and Michael Nippe

Table of Contents

Crystallography

Data Collection	S4
Data Reduction, Structure Solution, and Refinement	S4
Table S1 Crystallographic data for 1	S 5
Fig S1 Molecular structure of 1	S5
Table S2 Crystallographic data for 2	55 56
Fig. S2. Molecular structure of 2	50
Fig. 52. Molecular structure of 2	50
Figure S3. Crystanographic data for 2-py	57
Fig. S3. Molecular structure of 2-py.	57
Table S4. Crystallographic data for 2-THF*	58
Fig. S4. Molecular structure of 2-THF*	S8
Table S5. Crystallographic data for 3	S9
Fig. S5. Molecular structure of 3.	S9
Table S6. Crystallographic data for 4	S10
Fig. S6. Molecular structure of 4	S10
Table S7. Crystallographic data for 5	S11
Fig. S7. Molecular structure of 5	S11
Table S8. Crystallographic data for 5 ^{Iso}	S12
Fig. S8. Molecular structure of 5 ^{Iso}	S12
Table S9. Crystallographic data for 6	S13
Fig. S9 . Molecular structure of 6	S13
Table S10. Crystallographic data for 6 ^{Iso}	S14
Fig. S10 . Molecular structure of 6 ^{Iso}	S14
Table S11. Selected Interatomic distances and angles for 1-6.	S15
Table S12. Selected Interatomic distances and angles for 5 ^{Iso} and 6 ^{Iso}	S16
Table S13 Selected Interatomic distance and angles for 2-ny and 2-THF*	S17
Table S14 Closest intermolecular distances for 2. 2-ny 2-THF*	S18
rable 514. Crosest intermolecular distances for 2, 2-py, 2-fiff	010

<u>Magnetism</u>

Static Magnetic Properties

Fig. S11. χ _M T vs. T plot for 2-py	S19
Fig. S12. M vs. H plots of 1-5/5 ^{Iso}	S19
Fig. S13. M vs. H/T plots of 1-5/5 ^{Iso}	S20
Fig. S14. M vs. H plots of 2-py	S20
Fig. S15. M vs. H/T plots of 2-py	S21
Fig. S16. Hysteresis plots of 2	S21

Dynamic Magnetic Properties

Fig. S17 . χ_M ' vs. Frequency plot of 2 (H = 0 T)	S22
Fig. S18 . χ_M '' vs. Frequency plots of resolved 2 (T = 2K - 7K, H = 0T)	S23
Fig. S19 . χ_M '' vs. Frequency plots of resolved 2 (T = 8K - 11K, H = 0T)	S24
Fig. S20 . χ_M ' vs. Frequency plots of resolved 2 (T = 2K - 7K, H = 0T)	S25
Fig. S21 . χ_M ' vs. Frequency plots of resolved 2 (T = 8K - 11K, H = 0T)	S26
Fig. S22 . χ_M ' vs. Frequency plot of resolved SR of 2 (H = 0T)	S27
Fig. S23 . χ_M ' vs. Frequency plot of resolved FR of 2 (H = 0T)	S27
Fig. S24 . Cole-Cole plot of 2 (H = 0T)	S28
Table S15. Cole-Cole fitting parameters for $2 (H = 0T)$.	S28
Fig. S25 . χ_M '' vs. Frequency plot of 2 (H = 0.02T - 0.35T, T = 8K)	S29
Fig. S26 . χ_M ' vs. Frequency plot of 2 (H = 0.02T – 0.35T, T = 8K)	S29
Fig. S27 . χ_{M} '' vs. Frequency plot of 2 (H = 0.4T – 2T, T = 8K)	S30
Fig. S28 . χ_{M} ' vs. Frequency plot of 2 (H = 0.4T – 2T, T = 8K)	S30
Fig. S29 . Cole-Cole plot of 2 (H = $0.02T - 0.35T$, T = 8K)	S31
Fig. S30 . Cole-Cole plot of 2 ($H = 0.4T - 2T$, $T = 8K$)	S31
Fig. S31 . τ vs. H plot of 2 (H = 0T – 2T, T = 8K)	S32
Fig. S32 . χ_{M} ' vs. Frequency plot of 2 (H = 0.35 T)	S32
Fig. S33 . Cole-Cole plot of 2 (H = 0.35 T)	S33
Table S16. Cole-Cole fitting parameters for $2 (H = 0.35 T)$	S33
Fig. S34 . χ_M ' vs. Frequency plot of 2-dilute (H = 0T)	S34
Fig. S35 . χ_M '' vs. Frequency plots of resolved 2-dilute (T = 2K - 7K, H = 0T)	S35
Fig. S36 . χ_M '' vs. Frequency plots of resolved 2-dilute (T = 8K - 11K, H = 0T)	S36
Fig. S37 . χ_M ' vs. Frequency plots of resolved 2-dilute (T = 2K - 7K, H = 0T)	S37
Fig. S38 . χ_M ' vs. Frequency plots of resolved 2-dilute (T = 8K - 11K, H = 0T)	S38
Fig. S39 . χ_M ' vs. Frequency plot of resolved SR of 2-dilute (H = 0T)	S39
Fig. S40 . χ_M ' vs. Frequency plot of resolved FR of 2-dilute (H = 0T)	S39
Fig. S41 . Cole-Cole plot of 2-dilute (H = 0T)	S40

Table S17. Cole-Cole fitting parameters for 2-dilute $(H = 0T)$	S40
Fig. S42 . χ_{M} ' vs. Frequency plot of 2-py (H = 0T)	S41
Fig. S43 . χ_M '' vs. Frequency plot of 5 (H = 0.02T – 0.08T, T = 2K)	S42
Fig. S44 . χ_{M} '' vs. Frequency plot of 5 (H = 0.1T – 0.35T, T = 2K)	S42
Fig. S45 . χ_M ' vs. Frequency plot of 5 (H = 0.02T - 0.08T, T = 2K)	S43
Fig. S46 . χ_M ' vs. Frequency plot of 5 (H = 0.1T – 0.35T, T = 2K)	S43
Fig. S47 . Cole-Cole plot of 5 ($H = 0.02T - 0.08T$, $T = 2K$)	S44
Fig. S48 . Cole-Cole plot of 5 ($H = 0.1T - 0.35T$, $T = 2K$)	S44
Fig. S49 . τ vs. H plot of 5 (H = 0T – 0.35T, T = 2K)	S45
Fig. S50 . χ_{M} ' vs. Frequency plot of 5 (H = 0.2T)	S45
Fig. S51 . Cole-Cole plot of 5 ($H = 0.2 \text{ T}$)	S46
Table S18. Cole-Cole fitting parameters for $5/5^{Iso}$ (H = 0.2T)	S46
Table S19. Arrhenius fitting parameters for $5/5^{Iso}$ where $H = 0.2 T$	S46

Ab Initio Calculations

Computational Details

Table S20. Employed Basis Sets For 2-5	S47
Table S21. Energy of low-lying Ising doublets of 2	S48
Table S22. The g-tensor of the lowest four doublets of 2	S48
Table S23. Energy of low-lying Kramers doublets of 3	S49
Table S24. The g-tensor of the lowest four doublets of 3	S49
Table S25. Energy of low-lying Ising doublets of 4	S50
Table S26. Energy of low-lying Kramers doublets of 5.	S50
Table S27. The g-tensor of the lowest four doublets of 5.	S51
Fig. S52. Experimental vs. calculated $\chi_M T$ vs. T plot of 2	S52
Fig. S53. Experimental vs. calculated $\chi_M T$ vs. T plot of 3	S52
Fig. S54. Experimental vs. calculated $\chi_M T$ vs. T plot of 4.	S53
Fig. S55. Experimental vs. calculated $\chi_M T$ vs. T plot of 5	S53
Fig. S56. Experimental vs. calculated M vs. H curves of 2-5.	S54
Fig. S57. Experimental vs. calculated M vs. H/T curves of 2-5.	S54
References	S55

Crystallography:

Data Collection

A Leica MZ 75 microscope was used to identify a crystal suitable for X-ray analysis. The crystal mounted on a nylon loop which was then placed in a cold nitrogen stream (Oxford) maintained between 100 - 120 K.

A BRUKER Quest X-ray (fixed-Chi geometry) diffractometer was employed for crystal screening, unit cell determination, and data collection. The goniometer was controlled using the APEX3 software suite.¹ The sample was optically centered with the aid of a video camera such that no translations were observed as the crystal was rotated through all positions. The X-ray radiation employed was generated from a Mo-Iµs X-ray tube ($K_{\alpha} = 0.71073$ Å).

45 data frames were taken at widths of 1°. These reflections were used to determine the unit cell. The unit cell was verified by examination of the h k l overlays on several frames of data. No super-cell or erroneous reflections were observed. For compounds **1-6** the unit cell showed two short and one extremely long (> 60 Å) axes, causing significant overlap. The data was, hence, collected at a crystal to detector length between 200-220 mm, to better resolve the peaks. After careful examination of the unit cell, an extended data collection procedure was initiated using omega scans.

Data Reduction, Structure Solution, and Refinement

Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX3.¹ The integration method employed a three dimensional profiling algorithm and all data were corrected for Lorentz and polarization factors, as well as for crystal decay effects. Finally, the data was merged and scaled to produce a suitable data set. The absorption correction program SADABS² was employed to correct the data for absorption effects. For compounds **1-3** and **6** not many reflections were observed above 40 degrees two-theta; final least squares refinement was restricted to that angle.

A solution was obtained readily using XT/XS in APEX3.^{1,3} Hydrogen atoms were placed in idealized positions and were set riding on the respective parent atoms. All non-hydrogen atoms were refined with anisotropic thermal parameters. For compounds **1-6**, thermal ellipsoids on two of the THFs indicated strong possibility of disorder which were modeled between two positions each with occupancy ratio of 0.62:0.38 and 0.71:0.29 (for **1**), 0.77:0.23 and 0.66:0.34 (for **2**), 0.72:0.28 and 0.53:0.47 (for **3**), 0.63:0.37 and 0.51:0.49 (for **4**) and 50:50 and 60:40 (for **6**). Appropriate restraints and / or constraints were added to keep the bond distances, angles, and thermal ellipsoids meaningful. Several atoms showed unusual thermal ellipsoids (flattened, or nonpositive definites); restraints or constraints were added to make them meaningful. Absence of additional symmetry and voids were confirmed using PLATON (ADDSYM).⁴ The structure was refined (weighted least squares refinement on F^2) to convergence.^{3,5} Olex2 was employed for the final data presentation and structure plots.⁵

Compound	{Gd[(C5H4)2Fe]3[Li(THF)]2}·Li(THF)4
Formula	$C_{54}H_{72}GdFe_3Li_3O_6$
Crystal system	monoclinic
Space group	P21/c
a, Å	11.3774(12)
b, Å	63.872(7)
c, Å	13.7293(15)
α ,°	90
β,°	92.491(4)
γ, °	90
Volume, Å ³	9967.6(18)
Z	8
Т, К	110.0
ρ_{calcd} (mg/m ³)	1.550
F(000)	4760
$\theta_{\min}, \theta_{\max}, \circ$	2.179, 24.999
R_1^a, WR_2^b	0.0685, 0.1267
$(I > 2\sigma(I))$,
R_1^a, WR_2^b	0.0802 0.1323
(all data)	0.0002, 0.1323

Table S1. Crystallographic Data for [Li(THF)4][GdFc3(THF)2Li2] (1).

 ${}^{a}R_{1} = \overline{3||F_{o}| - |F_{c}||/3|F_{o}|} \cdot {}^{b}wR_{2} = [3[w(F_{o}^{2} - F_{c}^{2})^{2}]/3[w(F_{o}^{2})^{2}]]^{\frac{1}{2}}, w = 1/\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP, \text{ where } P$ $= [\max(0 \text{ or } F_{o}^{2}) + 2(F_{c}^{2})]/3.$

Fig. S1. Molecular structure of two independent molecules of monoanionic **1**. Atom labels are green = Gd, orange = Fe, light blue = Li, red = O, and grey = C. Hydrogen atoms and counter cations removed for clarity.

Compound	{H0[(C5H4)2Fe]3[Li(THF)]2}·Li(THF)4
Formula	$C_{54}H_{72}H_{0}Fe_{3}Li_{3}O_{6}$
Crystal system	monoclinic
Space group	$P2_1/c$
a, Å	11.3991(7)
b, Å	63.596(3)
c, Å	13.7285(8)
α,°	90
β,°	92.383(2)
γ, °	90
Volume, Å ³	9943.8(10)
Z	8
Т, К	100
$\rho_{calcd} (mg/m^3)$	1.564
F(000)	4784
$\theta_{\min}, \theta_{\max}, \circ$	2.184, 22.500
R_1^a , wR_2^b	0.0848, 0.1426
$(I > 2\sigma(I))$	
R_1^a , wR_2^b	0 1061 0 1511
(all data)	0.1001, 0.1511
$R_1 = \frac{3 F_0 - F_0 /3 F_0 }{ F_0 } \frac{b}{w}R_2 = \frac{13}{w}(F_0)^2$	$(E_{-}E_{+}^{2})^{2} /3[w(E_{+}^{2})^{2}] ^{\frac{1}{2}} w = 1/\sigma^{2}(E_{+}^{2}) + (aP)^{2} + bP$ where

Table S2. Crystallographic Data for [Li(THF)₄][HoFc₃(THF)₂Li₂] (2).

 ${}^{a}R_{1} = 3||F_{o}| - |F_{c}||/3|F_{o}|. {}^{b}wR_{2} = [3[w(F_{o}^{2} - F_{c}^{2})^{2}]/3[w(F_{o}^{2})^{2}]]^{\frac{1}{2}}, w = 1/\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP, \text{ where } P$ $= [\max(0 \text{ or } F_{o}^{2}) + 2(F_{c}^{2})]/3.$

Fig. S2. Molecular structure of two independent molecules of monoanionic **2**. Atom labels are pink = Ho, orange = Fe, light blue = Li, red = O, and grey = C. Hydrogen atoms and counter cations removed for clarity.

Compound	{Ho[(C5H4)2Fe]3[Li(py)]2}·Li(THF)4
Formula	C _{64.38} H _{58.38} HoFe ₃ Li ₃ N _{6.88}
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a, Å	21.2060(9)
b, Å	22.6446(10)
c, Å	23.1321(11)
$\alpha,^{\circ}$	90
β,°	90
γ, °	90
Volume, Å ³	11108.1(9)
Z	8
Т, К	110
$\rho_{calcd} (mg/m^3)$	1.533
F(000)	5174
$\theta_{\min}, \theta_{\max}, \circ$	1.303, 24.999
$\mathbf{R}_1^{a}, \mathbf{w}\mathbf{R}_2^{b}$	0.0494, 0.0932
$(I > 2\sigma(I))$	
R_1^a, WR_2^{b}	0.0920.0.1135
(all data)	0.0720, 0.1135
$ E = 2 E + E /2 E + \frac{b_{11}}{b_{12}} = -\frac{b_{12}}{b_{12}} = \frac{b_{12}}{b_{12}} = \frac{b_{12}}{b_{12}}$	$E^{2}\sqrt{2}/(2E^{2}) + (aD)^{2} + bD$ where

Table S3. Crystallographic Data for [Li(py)4][HoFc3(py)2Li2] (2-py).

 ${}^{a}R_{1} = \overline{3||F_{o}| - |F_{c}||/3|F_{o}|} \cdot {}^{b}wR_{2} = [3[w(F_{o}^{2} - F_{c}^{2})^{2}]/3[w(F_{o}^{2})^{2}]]^{\frac{1}{2}}, w = 1/\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP, \text{ where } P$ $= [\max(0 \text{ or } F_{o}^{2}) + 2(F_{c}^{2})]/3.$

Fig. S3. Molecular structure of two independent molecules of monoanionic **2-py**. Atom labels are pink = Ho, orange = Fe, light blue = Li, dark blue = N, and grey = C. Hydrogen atoms, counter cations, and pyridine solvate molecules removed for clarity.

Compound	{H0[(C5H4)2Fe]3[Li(THF*)]2}·Li(THF)4
Formula	C ₆₀ H ₈₄ Fe ₃ HoLi ₃ O ₆
Crystal system	Monoclinic
Space group	$P2_1/n$
a, Å	11.3389(4)
b, Å	13.7172(5)
c, Å	36.2329(12)
α,°	90
β,°	95.3440(10)
γ, °	90
Volume, Å ³	5611.1(3)
Z	4
Т, К	110
ρ_{calcd} (mg/m ³)	1.485
F(000)	2584
$\theta_{\min}, \theta_{\max}, \circ$	2.336, 24.999
R_1^a , wR_2^b	0.0931, 0.1648
$(I > 2\sigma(I))$,
R_1^a, wR_2^b	0.0008 0.1666
(all data)	0.0996, 0.1000
$1 = 3 F_0 - F_c /3 F_0 $, ${}^{b}wR_2 = [3]w(F_0)$	$(2 - F_c^2)^2 [1/3] [w(F_c^2)^2] [1/2], w = 1/\sigma^2 (F_c^2) + (aP)^2 + bP$, where

Table S4. Crystallographic Data for [Li(THF*)4][HoFc3(THF*)2Li2] (2-THF*).

^a $R_1 = 3||F_0| - |F_c||/3|F_0|$. ^b $wR_2 = [3[w(F_0^2 - F_c^2)^2]/3[w(F_0^2)^2]]^{\frac{1}{2}}, w = 1/\sigma^2(F_0^2) + (aP)^2 + bP$, where $P = [\max(0 \text{ or } F_0^2) + 2(F_c^2)]/3$.

Fig. S4. Molecular structure of two independent molecules of monoanionic **2-THF***. Atom labels are pink = Ho, orange = Fe, light blue = Li, red = O, and grey = C. Hydrogen atoms and counter cations removed for clarity.

Compound	{Er[(C5H4)2Fe]3[Li(THF)]2}·Li(THF)4
Formula	$C_{54}H_{72}ErFe_3Li_3O_6$
Crystal system	monoclinic
Space group	$P2_1/c$
a, Å	11.4007(11)
b, Å	63.598(6)
c, Å	13.7293(14)
$\alpha,^{\circ}$	90
β,°	92.262(4)
γ, °	90
Volume, Å ³	9946.9(17)
Z	8
Т, К	110.0
$\rho_{calcd} (mg/m^3)$	1.566
F(000)	4792
$\theta_{\min}, \theta_{\max}, \circ$	2.183, 19.999
$\mathbf{R}_{1}^{a}, \mathbf{w}\mathbf{R}_{2}^{b}$	0.0493, 0.0938
$(I > 2\sigma(I))$	
$\mathbf{R}_{1}^{a}, \mathbf{W}\mathbf{R}_{2}^{b}$	0.0567.0.0967
(all data)	0.0507, 0.0707

Table S5. Crystallographic Data for [Li(THF)₄][ErFc₃(THF)₂Li₂] (3).

^a $R_1 = 3||F_0| - |F_c||/3|F_0|$. ^b $wR_2 = [3[w(F_0^2 - F_c^2)^2]/3[w(F_0^2)^2]]^{\frac{1}{2}}, w = 1/\sigma^2(F_0^2) + (aP)^2 + bP$, where $P = [\max(0 \text{ or } F_0^2) + 2(F_c^2)]/3$.

Fig. S5. Molecular structure of two independent molecules of monoanionic **3**. Atom labels are purple = Er, orange = Fe, light blue = Li, red = O, and grey = C. Hydrogen atoms and counter cations removed for clarity.

Compound	{Tm[(C5H4)2Fe]3[Li(THF)]2}·Li(THF)4
Formula	$C_{54}H_{72}TmFe_3Li_3O_6$
Crystal system	monoclinic
Space group	P2 ₁ /c
a, Å	11.4199(15)
b, Å	63.606(8)
c, Å	13.7467
α,°	90
β,°	92.280(3)
γ, °	90
Volume, Å ³	9977(2)
Z	8
Т, К	120
$\rho_{calcd} (mg/m^3)$	1.564
F(000)	4800
$\theta_{\min}, \theta_{\max}, \circ$	2.182, 25.000
R_1^a, wR_2^b	0.0400, 0.0919
$(I > 2\sigma(I))$	
R_1^a, wR_2^b	0.0404 0.0920
(all data)	0.0404, 0.0720
$P_1 = 3 F_2 - F_2 /3 F_2 - b_W R_2 = [3]w(F_2)^2$	$(E_{1}^{2}-E_{2}^{2})^{2}/3[w(E_{2}^{2})^{2}]^{\frac{1}{2}}$ $w = 1/\sigma^{2}(E_{2}^{2}) + (aP)^{2} + bP$ where

 Table S6. Crystallographic Data for [Li(THF)4][TmFc3(THF)2Li2] (4).

^a $R_1 = 3||F_0| - |F_c||/3|F_0|$. ^b $wR_2 = [3[w(F_0^2 - F_c^2)^2]/3[w(F_0^2)^2]]^{\frac{1}{2}}, w = 1/\sigma^2(F_0^2) + (aP)^2 + bP$, where $P = [\max(0 \text{ or } F_0^2) + 2(F_c^2)]/3$.

Fig. S6. Molecular structure of two independent molecules of monoanionic **4**. Atom labels are green = Tm, orange = Fe, light blue = Li, red = O, and grey = C. Hydrogen atoms and counter cations removed for clarity.

Compound	{Yb[(C5H4)2Fe]3[Li(THF)]2}·Li(THF)4
Formula	$C_{54}H_{72}YbFe_3Li_3O_6$
Crystal system	monoclinic
Space group	$P2_1/c$
a, Å	11.4155(6)
b, Å	63.489(3)
c, Å	13.7300(7)
$\alpha,^{\circ}$	90
β,°	92.170(2)
γ, °	90
Volume, Å ³	9943.9(9)
Z	8
Т, К	110.0
ρ_{calcd} (mg/m ³)	1.574
F(000)	4808
$\theta_{\min}, \theta_{\max}, \circ$	2.199, 20.000
R_1^a , wR_2^b	0.0774 0.1571
$(I > 2\sigma(I))$	0.0774, 0.1371
R_1^a, wR_2^b	0.0862 0.1617
(all data)	0.0002, 0.1017

Table S7. Crystallographic Data for [Li(THF)4][YbFc3(THF)2Li2] (5).

 ${}^{a}R_{1} = 3||F_{o}| - |F_{c}||/3|F_{o}|. {}^{b}wR_{2} = [3[w(F_{o}^{2} - F_{c}^{2})^{2}]/3[w(F_{o}^{2})^{2}]]^{\frac{1}{2}}, w = 1/\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP, \text{ where } P = [\max(0 \text{ or } F_{o}^{2}) + 2(F_{c}^{2})]/3.$

Fig. S7. Molecular structure of two independent molecules of monoanionic **5**. Atom labels are yellow = Yb, orange = Fe, light blue = Li, red = O, and grey = C. Hydrogen atoms and counter cations removed for clarity.

Compound	{Yb[(C5H4)2Fe]3[Li(THF)]2}·Li(THF)4
Formula	$C_{54}H_{72}$ YbFe ₃ Li ₃ O ₆ · C ₄ H ₈ O
Crystal system	monoclinic
Space group	Cc
a, Å	28.077(3)
b, Å	32.756(4)
c, Å	20.619(2)
α,°	90
β,°	120.475(2)°
γ, °	90
Volume, Å ³	16344(3)
Z	12
Т, К	110.0
ρ_{calcd} (mg/m ³)	1.525
F(000)	7692
$\theta_{\min}, \theta_{\max}, \circ$	2.093, 27.500
R_1^a , wR_2^b	0.0414.0.0063
$(I > 2\sigma(I))$	0.0414, 0.0905
R_1^a, WR_2^b	0.0485.0.1054
(all data)	0.0405, 0.1054
	$2 = \frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2$

 Table S8. Crystallographic Data for [Li(THF)4][YbFc3(THF)2Li2] (5^{Iso}).

^a $R_1 = 3||F_o| - |F_c||/3|F_o|$. ^b $wR_2 = [3[w(F_o^2 - F_c^2)^2]/3[w(F_o^2)^2]]^{\frac{1}{2}}, w = 1/\sigma^2(F_o^2) + (aP)^2 + bP$, where $P = [\max(0 \text{ or } F_o^2) + 2(F_c^2)]/3$.

Fig. S8. Molecular structure of three independent molecules of monoanionic 5^{Iso} and THF lattice solvate molecules. Atom labels are yellow = Yb, orange = Fe, light blue = Li, red = O, and grey = C. Hydrogen atoms and counter cations removed for clarity.

Compound	$Lu[(C_5H_4)_2Fe]_3[Li(THF)]_2$ ·Li(THF)4
Formula	$C_{54}H_{72}LuFe_3Li_3O_6$
Crystal system	monoclinic
Space group	$P2_1/c$
a, Å	11.4149(16)
b, Å	63.246(9)
c, Å	13.7430(19)
$\alpha,^{\circ}$	90
β,°	92.282(4)
γ , °	90
Volume, Å ³	9914(2)
Z	8
Т, К	110.0
ρ_{calcd} (mg/m ³)	1.582
F(000)	4816
$\theta_{\min}, \theta_{\max}, \circ$	2.189, 25.000
\mathbf{R}_1^a , $\mathbf{w}\mathbf{R}_2^b$	0.0666, 0.1537
$(I > 2\sigma(I))$,
$\mathbf{R}_1^a, \mathbf{w} \mathbf{R}_2^b$	0.0749 0.1603
(all data)	0.0749, 0.1005

Table S9. Crystallographic Data for [Li(THF)4][LuFc3(THF)2Li2] (6).

 ${}^{a}R_{1} = \overline{3||F_{o}| - |F_{c}||/3|F_{o}|} \cdot {}^{b}wR_{2} = [3[w(F_{o}^{2} - F_{c}^{2})^{2}]/3[w(F_{o}^{2})^{2}]]^{\frac{1}{2}}, w = 1/\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP, \text{ where } P$ $= [\max(0 \text{ or } F_{o}^{2}) + 2(F_{c}^{2})]/3.$

Fig. S9. Molecular structure of two independent molecules of monoanionic **6**. Atom labels are navy = Lu, orange = Fe, light blue = Li, red = O, and grey = C. Hydrogen atoms and counter cations removed for clarity.

Compound	$Lu[(C_5H_4)_2Fe]_3[Li(THF)]_2]\cdot Li(THF)_4$
Formula	$C_{54}H_{72}LuFe_3Li_3O_6 \cdot C_4H_8O$
Crystal system	monoclinic
Space group	I_a
a, Å	20.620(3)
b, Å	32.856(4)
c, Å	25.081(4)
α,°	90
β,°	104.923(10)
γ, °	90
Volume, Å ³	16419(4)
Z	12
Т, К	120.0
$\rho_{calcd} (mg/m^3)$	1.520
F(000)	7704
$\theta_{\min}, \theta_{\max}, \circ$	2.041, 34.356
R_1^a , wR_2^b	0.0876, 0.2237
$(I > 2\sigma(I))$	
R_1^a, wR_2^b	0 1014 0 2475
(all data)	0.1017, 0.2775
$P_{1} = 2 E + E /2 E + b_{10} P_{2} = [2[w(E)]^{2}$	$2 = E^{2} \sqrt{2} \sqrt{2} \left[\frac{1}{2} \left[\frac{1}{2} \left(\frac{E^{2}}{2} \right)^{2} \right] \frac{1}{2} \right] \left[\frac{1}{2} \left(\frac{E^{2}}{2} \right)^{2} + \frac{1}{2} \left(\frac{E^{2}}{2} \right)^{2} + \frac{1}{2} \left(\frac{E^{2}}{2} \right)^{2} \right] \left[\frac{1}{2} \left(\frac{E^{2}}{2} \right)^{2} + \frac{1}{2} \left(\frac{E^{2}}{2} \right)^{2} \right] \left[\frac{1}{2} \left(\frac{E^{2}}{2} \right)^{2} + \frac{1}{2} \left(\frac{E^{2}}{2} \right)^{2} \right] \left[\frac{1}{2} \left(\frac{E^{2}}{2} \right)^{2} + \frac{1}{2} \left(\frac{E^{2}}{2} \right)^{2} + \frac{1}{2} \left(\frac{E^{2}}{2} \right)^{2} \right] \left[\frac{1}{2} \left(\frac{E^{2}}{2} \right)^{2} + \frac{1}{2} \left(\frac{E^{2}}{2} \right)^{2} + \frac{1}{2} \left(\frac{E^{2}}{2} \right)^{2} \right] \left[\frac{1}{2} \left(\frac{E^{2}}{2} \right)^{2} + \frac{1}{2} \left(\frac{E^{2}}{2} $

 Table S10. Crystallographic Data for [Li(THF)4][LuFc3(THF)2Li2] (6^{Iso}).

 ${}^{a}R_{1} = 3||F_{o}| - |F_{c}||/3|F_{o}|. {}^{b}wR_{2} = [3[w(F_{o}^{2} - F_{c}^{2})^{2}]/3[w(F_{o}^{2})^{2}]]^{\frac{1}{2}}, w = 1/\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP, \text{ where } P$ $= [\max(0 \text{ or } F_{o}^{2}) + 2(F_{c}^{2})]/3.$

Fig. S10. Molecular structure of three independent molecules of monoanionic 6^{Iso} and THF lattice solvate molecules. Atom labels are navy = Lu, orange = Fe, light blue = Li, red = O, and grey = C. Hydrogen atoms and counter cations removed for clarity.

	Selected Interatomic Distances and Angles									
Compound	1 (Gd)	2 (Ho)	3 (Er)	4 (Tm)	5 (Yb)	6 (Lu)				
Ln(1)-C, Å	2.566(9)	2.520(13)	2.525(9)	2.515(5)	2.474(17)	2.489(11)				
Average	2.576(8)	2.524(12)	2.512(10)	2.539(5)	2.447(17)	2.513(10)				
	2.564(8)	2.538(14)	2.513(9)	2.521(5)	2.520(16)	2.482(11)				
	2.579(8)	2.531(13)	2.515(9)	2.504(5)	2.503(16)	2.517(10)				
	2.582(8)	2.555(13)	2.507(10)	2.529(5)	2.503(17)	2.492(11)				
	2.563(8)	2.523(13)	2.552(9)	2.513(5)	2.548(16)	2.511(11)				
	2.572[8]	2.532[13]	2.521[9]	2.520[5]	2.499[17]	2.501[11]				
Ln(2)-C, Å	2.568(8)	2.512(12)	2.500(9)	2.509(5)	2.501(16)	2.501(11)				
Average	2.583(8)	2.543(13)	2.525(9)	2.515(5)	2.478(16)	2.497(10)				
	2.555(8)	2.536(13)	2.538(9)	2.519(5)	2.501(16)	2.489(11)				
	2.581(8)	2.547(12)	2.518(9)	2.509(5)	2.517(16)	2.505(11)				
	2.561(8)	2.528(12)	2.539(9)	2.533(5)	2.524(16)	2.511(10)				
	2.564(9)	2.569(12)	2.514(10)	2.518(5)	2.495(17)	2.481(10)				
	2.569[8]	2.539[12]	2.522[9]	2.517[5]	2.503[16]	2.497[11]				
Ln(1)Fe,	3.1953(12)	3.1846(19)	3.1844(14)	3.2538(8)	3.177(2)	3.2531(16)				
Å	3.2201(12)	3.212(2)	3.2137(14)	3.1806(8)	3.208(2)	3.1736(15)				
Average	3.2688(12)	3.263(2)	3.2606(14)	3.2083(8)	3.253(2)	3.2057(16)				
	3.2281[12]	3.229[8]	3.2196[14]	3.214[8]	3.213[2]	3.2108[16]				
Ln(2)Fe,	3.2187(12)	3.2202(19)	3.2251(14)	3.2169(8)	3.220(2)	3.1944(16)				
Å	3.2306(12)	3.234(2)	3.2024(13)	3.2193(8)	3.212(2)	3.2085(16)				
Average	3.2408(12)	3.2078(19)	3.2241(14)	3.1988(8)	3.195(2)	3.2176(15)				
	3.2300[12]	3.221[13]	3.2172[14]	3.212[8]	3.209[2]	3.2068[16]				
C1-Fe-C1	106.6(3)	104.4(5)	104.3(4)	101.8(2)	101.5(7)	100.4(4)				
For $Ln(1)$	105.6(3)	103.9(5)	102.7(4)	104.1(2)	103.0(7)	103.7(4)				
	103.6(3)	102.1(5)	101.7(4)	103.4(2)	101.8(7)	102.4(4)				
	105.3[3]	103.5[5]	102.9[4]	103.1[2]	102.1[7]	102.2[4]				
C1-Fe-C1	105.7(3)	103.2(5)	102.2(4)	102.5(2)	101.1(7)	102.7(4)				
For $Ln(2)$	104.9(3)	103.4(5)	104.0(4)	102.6(2)	102.5(7)	102.0(4)				
	104.2(3)	104.8(5)	103.0(4)	103.9(2)	103.3(6)	101.7(4)				
	104.9[3]	103.8[5]	103.1[4]	103.0[2]	102.3[7]	102.1[1]				
C-Ln(1)-C	82.0(3)	82.4(4)	81.6(3)	79.8(2)	81.3(6)	79.8(3)				
(°)	81.0(3)	81.2(4)	80.8(3)	81.9(2)	81.0(6)	81.8(3)				
Average	79.7(3)	80.2(4)	79.7(3)	81.0(2)	80.6(6)	80.7(4)				
	80.9[3]	81.3[4]	80.7[3]	80.9[2]	81.0[6]	80.8[4]				
C-Ln(2)-C	81.4(3)	81.5(4)	80.2(3)	80.5(2)	81.7(6)	81.6(3)				
(°)	81.6(2)	81.0(4)	81.2(3)	81.0(2)	80.1(6)	81.0(4)				
Average	79.9(3)	81.5(4)	80.9(3)	81.5(2)	81.5(5)	80.8(4)				
	81.0[3]	81.3[4]	80.8[3]	81.0[2]	81.1[6]	81.1[4]				

 Table S11. Selected distances and angles in the molecular structure of 1-6.

Ln(1)	8.16	10.67	11.57	12.76	13.18	14.24
Fc ²⁻ Twist	Min:	Min:	Min:	Min:	Min:	Min:
(°)	7.42	10.37	11.39	12.47	12.68	14.11
Average	Max:	Max:	Max:	Max:	Max:	Max:
Range	9.31	11.16	11.75	13.22	13.49	14.46
Ln(2)	9.64	12.67	14.49	16.23	16.65	18.56
Fc ²⁻ Twist	Min:	Min:	Min:	Min:	Min:	Min:
(°)	9.36	12.09	13.89	15.60	16.31	17.67
Average	Max:	Max:	Max:	Max:	Max:	Max:
Range	10.00	13.58	15.32	17.21	17.13	19.69

Table S12. Selected distances and angles in the molecular structure of 5^{Iso} and 6^{Iso}.

Selected Interatomic Distances and Angles								
Compound	5	5 ^{Iso}	6	6 ^{Iso}				
Ln-C, Å	Ln(1): 2.499[17]	Ln(1): 2.499[8]	Ln(1): 2.501[11]	Ln(1): 2.494[9]				
Average	Ln(2): 2.503[16]	Ln(2): 2.492[7]	Ln(2): 2.497[11]	Ln(2): 2.494[8]				
		Ln(3): 2.493[7]		Ln(3): 2.488[9]				
Ln…Fe, Å	Ln(1): 3.213[2]	Ln(1): 3.2167[11]	Ln(1): 3.2108[16]	Ln(1): 3.2103 [13]				
Average	Ln(2): 3.209[2]	Ln(2): 3.1899[11]	Ln(2): 3.2068[16]	Ln(2): 3.1945 [13]				
		Ln(3): 3.1916[11]		Ln(3): 3.1962 [13]				
C-Ln-C	Ln(1): 81.0[6]	Ln(1): 80.9[3]	Ln(1): 80.8[4]	Ln(1): 80.7[2]				
(°)	Ln(2): 81.1[6]	Ln(2): 81.4[3]	Ln(2): 81.1[4]	Ln(2): 81.3[3]				
Average		Ln(3): 81.4[3]		Ln(3): 81.3[3]				
Ln Fc ²⁻	Ln(1): 13.21	Ln(1): 16.33	Ln(1): 14.25	Ln(1): 17.35				
Twist	Ln(2): 16.62	Ln(2): 19.77	Ln(2): 18.55	Ln(2): 20.81				
(°)		Ln(3): 19.88		Ln(3): 20.92				
Average								

5	Selected Interatomic Distances and Angles							
Compound	2	2-ру	2-THF*					
Ln(1)-C, Å	2.532[13]	2.512(13)	2.554(8)					
Average		2.530(13)	2.522(9)					
		2.520(12)	2.530(8)					
		2.512(13)	2.540(9)					
		2.526(13)	2.527(8)					
		2.523(13)	2.546(9)					
		2.521[13]	2.537[9]					
Ln(2)-C, Å	2.539[12]	2.517(12)						
Average		2.512(12)						
		2.532(12)						
		2.504(12)						
		2.506(13)						
		2.528(12)						
0		2.517[12]						
Ln(1)…Fe, Å	3.229[8]	3.1837(15)	3.2180(12)					
Average		3.2187(15)	3.1978(13)					
		3.1885(16)	3.2136(13)					
0		3.1970[15]	3.2098[13]					
Ln(2)···Fe, A	3.221[13]	3.1768(16)						
Average		3.1454(16)						
		3.1630(16)						
		3.1617[16]						
C-Ln(1)-C	80.9[3]	82.0(5)	80.4(3)					
(°)		80.8(4)	81.4(3)					
Average		82.2(4)	81.2(3)					
		81.7[4]	81.0[3]					
C-Ln(2)-C	81.0[3]	81.9(4)						
(°)		82.8(4)						
Average		82.7(4)						
		82.5[4]						
Ln(1) Fc ²⁻ Twist	10.64	19.24	16.52					
(°)	Min:	Min:	Min:					
Average	10.37	17.85	15.11					
 Range	Max:	Max:	Max:					
	11.16	21.45	17.68					
Ln(2) Fc ²⁻ Twist	12.67	23.69						
(°)	Min:	Min:						
Average	12.09	22.95						
 Range	Max:	Max:						
	13.58	24.40						

 Table S13. Selected distances and angles in the molecular structure of 2-py and 2-THF*.

Closest Intermolecular Distance Between Ho(III) Ions, Å								
2 (Ho(2)-Ho(2)) 2-py (Ho(1)-Ho(2)) 2-THF*								
10.586	8.941	11.069						

 Table S14. The closest intermolecular distances in 2, 2-py, and 2-THF*.

Magnetism:

Static Magnetic Properties

Fig. S11. Temperature dependence of the molar magnetic susceptibility temperature product $(\chi_M T)$ of **2-py**, where H = 0.1 T and T = 300 K – 2K.

Fig. S12. M vs. H curves of $1-5/5^{Iso}$ where H = 0 - 7 T and T = 8 K - 2K.

Fig. S14. M vs. H curves of **2-py** where H = 0 - 7 T and T = 8 K - 2K.

Fig. S16. M vs. H curve of **2** where H = 0 - 4 T and T = 2 K.

Dynamic Magnetic Properties

Fig. S17. Temperature dependence of the in-phase component of the molar ac magnetic susceptibility (χ_M ') of 2 where H = 0 T and T = 2- 11 K. Lines represent fits to experimental data (solid circles).

Fig. S18. Frequency dependence of the resolved components of the out-of-phase component of the ac magnetic susceptibility (χ_M '') between 2 K – 7 K for **2**. Orange circles represent experiment data and lines represent full fit (violet) and resolved fast (red) and slow (blue) relaxation processes.

Fig. S19. Frequency dependence of the resolved components of the out-of-phase component of the ac magnetic susceptibility (χ_M '') between 8 K – 11 K for **2**. Orange circles represent experiment data and lines represent full fit (violet) and resolved fast (red) and slow (blue) relaxation processes.

Fig. S20. Frequency dependence of the resolved components of the in-phase component of the ac magnetic susceptibility (χ_M ') between 2 K – 7 K for **2**. Orange circles represent experiment data and lines represent full fit (violet) and resolved fast (red) and slow (blue) relaxation processes.

Fig. S21. Frequency dependence of the resolved components of the in-phase component of the ac magnetic susceptibility (χ_M ') between 8 K – 11 K for **2**. Orange circles represent experiment data and lines represent full fit (violet) and resolved fast (red) and slow (blue) relaxation processes.

Fig. S22. Temperature dependence of resolved slow relaxation process (**SR**) of the in-phase component of the molar ac magnetic susceptibility (χ_M '') of **2** where H = 0 T and T = 2 - 11 K.

Fig. S23. Temperature dependence of resolved fast relaxation process (**FR**) of the in-phase component of the molar ac magnetic susceptibility (χ_M '') of **2** where H = 0 T and T = 2 - 11 K.

Fig. S24. Cole-Cole plot (χ_M ''vs. χ_M ') of **2** where H = 0 T and T = 2 – 11 K. Lines represent fits to experimental data (circles).

T(K)	Xs,tot	Δχ1	τ1	α1	Δχ2	τ2	α2
2	0.837065	2.44042	0.01387	0.320696	2.08576	0.000581	0.537794
3	0.672596	1.46811	0.011056	0.248379	1.39345	0.000598	0.478818
4	0.555655	1.03506	0.009609	0.210351	1.06285	0.000586	0.444177
5	0.471506	0.821297	0.007663	0.180637	0.833489	0.000505	0.412631
6	0.423399	0.67896	0.005522	0.145687	0.670095	0.000439	0.369098
7	0.388803	0.567887	0.003664	0.107807	0.562929	0.000382	0.31671
8	0.359154	0.506863	0.002228	0.083516	0.465679	0.000291	0.25728
9	0.31528	0.519729	0.001115	0.058846	0.350163	0.000153	0.176574
10	0.276774	0.43338	0.000501	1.4E-07	0.358707	0.000104	0.127445
11	0.110725	0.405319	0.000188	4.35E-07	0.458762	0.0000368	0.001683

Table S15. Cole-Cole fitting parameters for [HoFc₃(THF)₂Li₂]⁻(H = 0 T)

$\chi_{s,tot} = adiabatic susceptibilty$

 $\Delta \chi_1$ and $\Delta \chi_2$ = Difference between the adiabatic susceptibility (χ_s) and isothemeral susceptibility (χ_T) for relaxation process 1 and 2.

 α_1 and α_2 = Magnetic relaxation time distribution parameter for relaxation process 1 and 2. τ_1 and τ_2 = Magnetic relaxation times for relaxation process 1 and 2.

Fig. S25. Field dependence of the out-of-phase component of the molar ac magnetic susceptibility $(\chi_M")$ of **2** where H = 0.02 T - 0.35 T and T = 8 K. Lines represent fits to experimental data (circles).

Fig. S26. Field dependence of the in-phase component of the molar ac magnetic susceptibility (χ_M) of 2 where H = 0.02 T - 0.35 T and T = 8 K. Lines represent fits to experimental data (circles).

Fig. S27. Field dependence of the out-of-phase component of the molar ac magnetic susceptibility $(\chi_M)^{\prime\prime}$ of **2** where H = 0.4 T – 2 T and T = 8 K. Lines represent fits to experimental data (circles).

Fig. S28. Field dependence of the in-phase component of the molar ac magnetic susceptibility (χ_M) of **2** where H = 0.4 T – 2 T and T = 8 K. Lines represent fits to experimental data (circles).

Fig. S29. Cole-Cole plot (χ_M '' vs. χ_M ') of **2** where H = 0.02 T - 0.35 T and T = 8 K. Lines represent fits to experimental data (circles).

Fig. S30. Cole-Cole plot (χ_M '' vs. χ_M ') of **2** where H = 0.4 T - 2 T and T = 8 K. Lines represent fits to experimental data (circles).

Fig. S31. Plot of the magnetic relaxation time vs. field (τ vs. H) of **2** where T = 8 K and H = 0 - 2 T. Line represents fit to the experimental data (circles). Data modeled using $\tau^{-1} = AH^2T + (B_1)/(1+B_2H^2) + D$.

Fig. S32. Temperature dependence of the in-phase component of the molar ac magnetic susceptibility (χ_M ') of 2 where H = 0.35 T and T = 2 – 11 K. Lines represent fits to the experimental data (circles).

 $\chi_{\rm M}$ (emu mol⁻¹) **Fig. S33.** Cole-Cole plot ($\chi_{\rm M}$ ''vs. $\chi_{\rm M}$ ') of **2** where H = 0.35 T and T = 2 – 11 K. Lines represent fits to experimental data (solid circles).

T(K)	Xs,tot	Δχ1	τ1	α1	Δχ2	τ2	α2
1.8	0.121267	1.10824	0.136228	0.452703	0.318101	0.000354	0.405668
1.9	0.129339	1.34716	0.16487	0.533196	0.226433	0.000296	0.305769
2	0.118247	1.31795	0.127375	0.535112	0.237446	0.000296	0.320223
2.5	1.53E-07	1.08145	0.048962	0.437682	0.550042	0.00044	0.583627
3	9.59E-15	1.22486	0.028732	0.340974	0.539796	0.000385	0.561675
3.5	1.33E-08	1.44315	0.025329	0.296937	0.475304	0.000254	0.525791
4	0.009325	1.58636	0.022038	0.27885	0.37512	0.000145	0.417131
5	0.125443	1.55112	0.015372	0.238237	0.18023	0.000214	0.067031
6	0.091146	1.322	0.009706	0.17691	0.226382	0.00016	0.221839
7	0.072171	1.09149	0.005769	0.120676	0.279607	0.000163	0.372363
9	0.150706	0.809643	0.001774	0.037495	0.199738	0.00027	0.18207
10	0.171263	0.536739	0.00082	0.001607	0.348674	0.000378	0.099377
11	0.130616	0.462177	0.000307	3.4E-11	0.376737	0.000135	0.083831

Table S16. Cole-Cole fitting parameters for [HoFc₃(THF)₂Li₂]⁻ (H = 0.35 T)

Fig. S34. Temperature dependence of the in-phase component of the molar ac magnetic susceptibility (χ_M ') of **2-dilute** where H = 0 T and T = 2 – 11 K. Lines represent fits to experimental data (circles).

Fig. S35. Frequency dependence of the resolved components of the out-of-phase component of the ac magnetic susceptibility (χ_M '') between 2 K – 7 K for **2-dilute**. Orange circles represent experiment data and lines represent full fit (violet) and resolved fast (red) and slow (blue) relaxation processes.

Fig. S36. Frequency dependence of the resolved components of the out-of-phase component of the ac magnetic susceptibility (χ_M '') between 8 K – 11 K for **2-dilute**. Orange circles represent experiment data and lines represent full fit (violet) and resolved fast (red) and slow (blue) relaxation processes.

Fig. S37. Frequency dependence of the resolved components of the out-of-phase component of the ac magnetic susceptibility (χ_M ') between 2 K – 7 K for **2-dilute**. Orange circles represent experiment data and lines represent full fit (violet) and resolved fast (red) and slow (blue) relaxation processes.

Fig. S38. Frequency dependence of the resolved components of the out-of-phase component of the ac magnetic susceptibility (χ_M ') between 8 K – 11 K for **2-dilute**. Orange circles represent experiment data and lines represent full fit (violet) and resolved fast (red) and slow (blue) relaxation processes.

Fig. S39. Temperature dependence of resolved slow relaxation process (SR) of the in-phase component of the molar ac magnetic susceptibility (χ_M ') of 2-dilute where H = 0 T and T = 2 - 11 K.

Fig. S40. Temperature dependence of resolved slow relaxation process (FR) of the in-phase component of the molar ac magnetic susceptibility (χ_M ') of 2-dilute where H = 0 T and T = 2 - 11 K.

Fig. S41. Cole-Cole plot $(\chi_M" vs. \chi_M")$ of **2-dilute** where H = 0 T and T = 2 - 11 K. Lines represent fits to experimental data (circles).

T(K)	Xs,tot	Δχ1	τ1	α1	Δχ2	τ2	α2
2	0.597891	0.652407	0.135	0.0630	1.81183	0.00109	0.275114
3	0.447379	0.48674	0.128	0.125	1.17831	0.000791	0.213673
4	0.357545	0.396793	0.0799	0.145	0.869563	0.000552	0.17854
5	0.305	0.329	0.0383	0.158	0.688	0.000359	0.156
6	0.258653	0.260018	0.0156	0.139	0.583394	0.000206	0.159373
7	0.116556	0.208469	0.00747	0.114	0.619627	0.0000784	0.224438
8	0.154	0.195	0.00307	0.113	0.478	0.0000466	0.123
9	0.0595782	0.174088	0.00138	0.0676	0.508862	0.0000200	0.055366
10	0.0689228	0.136346	0.000585	0.00736	0.457562	0.0000126	6.06E-08
11	1.40E-08	0.107422	0.000172	0.0360	0.49821	0.00000383	0.089157

Table S17. Cole-Cole fitting parameters for [Ho0.06Y0.94Fc3(THF)2Li2]

Fig. S42. Temperature dependence of the in-phase component of the molar ac magnetic susceptibility (χ_M ') of **2-py** where H = 0 T and T = 2 K - 10 K.

Fig. S43. Field dependence of the out-of-phase component of the molar ac magnetic susceptibility (χ_M '') of 5 where H = 0.02 T – 0.08 T and T = 2 K. Lines represent fit to the experimental data (circles).

Fig. S44. Field dependence of the out-of-phase component of the molar ac magnetic susceptibility (χ_M '') of **5** where H = 0.1 T – 0.35 T and T = 2 K. Lines represent fit to the experimental data (circles).

Fig. S45. Field dependence of the in-phase component of the molar ac magnetic susceptibility (χ_M ') of 5 where H = 0.02 T – 0.08 T and T = 2 K. Lines represent fit to the experimental data (circles).

Fig. S46. Field dependence of the in-phase component of the molar ac magnetic susceptibility (χ_M) of 5 where H = 0.1 T – 0.35 T and T = 2 K. Lines represent fit to the experimental data (circles).

Fig. S47. Cole-Cole plot (χ_M ''vs. χ_M ') of **5** where H = 0.02 T - 0.08 T and T = 2 K. Lines represent fits to experimental data (solid circles).

Fig. S48. Cole-Cole plot (χ_M ''vs. χ_M ') of **5** where H = 0.1 T - 0.35 T and T = 2 K. Lines represent fits to experimental data (solid circles).

Fig. S49. Plot of the magnetic relaxation time vs. external magnetic field (τ vs. H) of 5 where T = 2 K.

Fig. S50. Temperature dependence of the in-phase component of the molar ac magnetic susceptibility (χ_M ') of 5 where H = 0.2 T and T = 1.8 K – 3.9 K. Lines represent fits to experimental data (solid circles).

 χ_{M} (emu mol⁻¹) **Fig. S51.** Cole-Cole plot (χ_{M} ''vs. χ_{M} ') of **5** where H = 0.2 T and T = 1.8 K – 3.9 K. Lines represent fits to experimental data (solid circles).

T(K)	χт	χs	τ1	α1
1.8	0.283287	0.019272	0.001974	0.292872
1.9	0.283902	0.021639	0.001895	0.2744
2	0.280444	0.024319	0.001713	0.249802
2.1	0.274563	0.025809	0.001542	0.232093
2.2	0.267422	0.027475	0.001396	0.213728
2.3	0.26142	0.028692	0.001264	0.19988
2.5	0.246849	0.03085	0.000994	0.16881
2.7	0.233332	0.032114	0.000751	0.141291
2.9	0.220433	0.032736	0.000545	0.115327
3	0.213904	0.034628	0.000462	0.094887
3.1	0.208131	0.034017	0.000386	0.087193
3.3	0.197373	0.033187	0.000266	0.072814
3.5	0.1874	0.031585	0.000181	0.062496

Table S19. Arrhenius fitting parameters for compounds $5/5^{Iso}$ where H = 0.2 T.

$[YbFc_3(THF)_2Li_2]^{-}(H = 0.2 T)$				
A $(S^{-1}T^{-2}K^{-1})$	0.304			
n 1	4			
$\tau_{\rm QTM}(s)$	0.00269			
$C(s^{-1}K^{-n})$	0.00812			
n ₂	4.25			
$\tau_{o}(s)$	9.04 x 10 ⁻⁵			
U (cm ⁻¹)	6			

Multi-configuration Ab Initio Computational Methods

The calculations were carried out using the Molcas 8.2 package program. The Cholesky decomposition threshold was set to $1.0 \cdot 10^{-8}$ to save disk space. The spin-free wave functions and corresponding energies were calculated within multiconfigurational self-consistent field (CASSCF) method. Dynamical electron correlation effects were considered within XMS-CASPT2 calculations. The spin-orbit interaction was taken into account within the restricted active space state interaction (SO-RASSI) method. Magnetic properties were calculated within SINGLE_ANISO program by using the spin-orbital states obtained earlier.

The investigated complexes were calculated in two basis set approximations (Table S20). The active space of the CASSCF method included 10 electrons for Ho complex, 11 electrons for the Er complex, 12 electrons for Tm complex and 13 electrons for the Yb complex, respectively, spanned by seven 4-*f* orbitals. XMS-CASPT2 calculations were performed only on the ground multiplet ⁵I of Ho(III) (13 roots) and ⁴I of Er(III) (13 roots), due to high computational cost of CASPT2. Nevertheless, this is justified as these multiplets are well-separated from the excited states.

In case of CASSCF calculations, 35 quintet (all), 106 (out of 210) triplet and 75 (out of 196) singlet states of Ho(III) and 35 quartet (all) and 112 (all) doublet states were mixed by spinorbit coupling within the module RASSI. In case of CASPT2 calculation, only 13 roots were mixed by spin-orbit coupling. For Tm and Yb complexes all multiplets were mixed by spin-orbit coupling within the module RASSI.

Basis Set 1	Basis Set 2
Ln.ANO-RCC-VDZP	Ln.ANO-RCC-VTZP
C.ANO-RCC-VDZP (closest atoms)	C.ANO-RCC-VTZP (closest atoms)
Li.ANO-RCC-VDZP	Li.ANO-RCC-VTZP
Fe.ANO-RCC-VDZ	Fe.ANO-RCC-VDZP
O.ANO-RCC-VDZ	O.ANO-RCC-VDZP
C.ANO-RCC-VDZ (the rest)	C.ANO-RCC-VDZP (the rest)
H.ANO-RCC-VDZ	H.ANO-RCC-VDZP

Table S20. Employed Basis Sets For 2-5

	Ho(1)		Ho(2)			
CASSCF/	SO-RASSI	XMS-	CASSCF/S	SO-RASSI	XMS-	
		CASPT2/SO-			CASPT2/SO-	
		RASSI			RASSI	
Basis Set 1	Basis Set 2	Basis Set 1	Basis Set 1	Basis Set 2	Basis Set 1	
0	0	0	0	0	0	
0.0163	0.0146	0.1325	0.0058	0.0040	0.0591	
87.7640	89.9123	137.0824	87.2834	89.1908	130.6269	
88.0859	90.2286	137.1925	87.6955	89.5925	131.3987	
123.7440	126.6218	227.7217	108.1905	110.8759	203.2110	
123.7725	126.6497	228.2524	108.2036	110.8884	203.4200	
248.4775	254.4482	389.3542	252.4162	258.7200	397.3983	
248.8462	254.8210	390.5907	252.6976	258.9938	397.8657	
302.7721	309.1171	424.9725	294.3894	300.1872	407.3960	
307.2236	312.9093	433.2938	295.9709	301.7161	421.0204	
311.0652	317.1463	447.0406	296.8573	302.4243	425.4788	
344.4284	351.1120	504.8665	339.0885	345.1940	492.3853	
351.5471	357.9034	516.2164	341.9988	348.2468	498.7415	
354.5961	360.9895	522.8741	349.0398	355.6887	515.0601	
360.6889	367.2209	537.9741	351.4742	358.1419	524.3168	
365.3192	371.7621	540.7899	353.0931	359.3979	527.0679	
371.8681	378.7497	565.8972	367.0136	374.1872	553.4065	
	•••	•••		•••	•••	

Table S21. Energy of low-lying Ising doublets of 2.

Table S22. The g-tensor of the lowest four doublets of 2.

Doublet			Ho(1)		Ho(2)		
		CASSCF/SO-RASSI		XMS-	CASSCF/SO-RASSI		XMS-
				CASPT2/S			CASPT2/S
				O-RASSI			O-RASSI
		Basis Set 1	Basis Set 2	Basis Set 1	Basis Set 1	Basis Set 2	Basis Set 1
1	g _x	0	0	0	0	0	0
	gy	0	0	0	0	0	0
	gz	17.256	17.255	17.400	17.154	17.150	17.313
2	gx	0	0	0	0	0	0
	gy	0	0	0	0	0	0
	gz	15.183	15.140	15.025	14.826	14.807	14.864
3	g _x	0	0	0	0	0	0
	gy	0	0	0	0	0	0
	gz	18.161	18.146	17.774	17.837	17.804	17.364
4	g _x	0	0	0	0	0	0
	gy	0	0	0	0	0	0
	gz	13.837	13.877	14.354	14.292	14.334	14.737

	Er(1)		Er (2)			
CASSCF/SO-RASSI		XMS-	CASSCF/S	CASSCF/SO-RASSI		
		CASPT2/SO-			CASPT2/SO-	
		RASSI			RASSI	
Basis Set 1	Basis Set 2	Basis Set 1	Basis Set 1	Basis Set 2	Basis Set 1	
0	0	0	0	0	0	
15.5838	15.5437	28.3174	22.8589	23.1214	44.5408	
24.2677	24.6167	52.3575	29.4734	30.7615	59.3961	
67.9016	68.9957	133.0082	78.6221	80.2467	130.1299	
125.6077	129.2564	151.2557	115.9929	119.5765	153.2307	
291.7105	300.5894	372.2061	305.2271	312.4205	406.8919	
309.4177	316.8159	433.3370	312.2808	321.6642	442.3643	
418.3933	427.6462	603.7203	418.4531	427.7902	608.1374	

Table S23. Energy of low-lying Kramers doublets of **3**.

Table S24. The g-tensor of the lowest four doublets of 3.

Doublet			Er (1)		Er (2)		
		CASSCF/SO-RASSI		XMS-	CASSCF/	SO-RASSI	XMS-
				CASPT2/S			CASPT2/S
				O-RASSI			O-RASSI
		Basis Set 1	Basis Set 2	Basis Set 1	Basis Set 1	Basis Set 2	Basis Set 1
1	g _x	1.325	1.398	9.997	8.919	8.812	9.259
	gy	3.578	3.711	7.516	8.206	8.366	8.935
	gz	11.598	11.386	0.150	0.618	0.574	1.346
2	gx	0.177	0.198	2.156	4.415	4.063	9.493
	gy	3.612	3.209	4.736	3.189	3.284	7.142
	gz	10.464	10.287	8.965	1.482	1.539	0.039
3	gx	0.979	0.902	4.983	0.163	0.024	0.694
	gy	3.797	3.332	3.382	3.934	4.191	1.205
	gz	8.451	8.631	0.736	9.280	8.974	5.426
4	gx	4.525	4.701	10.797	7.787	7.663	1.505
	gy	6.410	6.368	6.514	7.643	7.581	1.737
	gz	8.337	8.090	1.797	4.233	4.345	11.780

	Tm(1)	Tm(2)		
CASSCF/S	SO-RASSI	XMS-	CASSCF/	SO-RASSI
		CASPT2/SO-		
		RASSI		
Basis set 1	Basis set 2	Basis Set 1	Basis set 1	Basis set 2
0	0	0	0	0
53.7197	54.1470	86.9322	64.8622	63.9215
77.4835	75.8293	115.6344	67.1481	67.4462
229.0314	227.2171	348.8809	231.8079	230.6903
235.1374	233.4589	359.4642	234.9476	233.9113
425.2806	423.2648	614.8964	418.4029	416.9864
427.1032	424.7643	628.4261	430.6369	429.1841
587.8185	587.0609	793.9510	581.4877	581.3949
588.0892	587.3857	794.4556	581.6486	581.6125
729.4138	731.0481	912.2663	714.4138	716.3315
729.4599	731.0980	912.3256	714.4469	716.3688
976.3267	975.4922	1196.5839	939.2977	938.2321
976.3328	975.4987	1196.5971	939.3018	938.2370
7033.6717	7084.8159	6103.0014	7008.3906	7058.7104
7034.5591	7085.7176	6106.8661	7009.0430	7059.4685

Table S25. Energy of low-lying Ising doublets of 4.

Table S26. Energy of low-lying Kramers doublets of **5**.

	Yb(1)	Yt	b (2)	
CASSCF/SO-RASSI		XMS-CASPT2/SO-	CASSCF/SO-RASSI	
		RASSI		1
Basis set 1	Basis set 2	Basis set 1	Basis set 1	Basis set 2
0	0	0	0	0
87.9764	122.7001	122.7001	17.0556	18.8225
350.4011	475.9593	475.9593	308.9726	308.0120
911.6152	1208.0192	1208.0192	862.8261	864.1961
10437.7246	10479.2524	10479.2524	10415.9948	10287.2058
10589.8561	10636.9361	10636.9361	10539.8952	10413.0392
11219.6615	11490.9949	11490.9949	11172.3365	11046.4576

Doublet			Yb(1)		Yb	0(2)
		CASSCF/SO-RASSI		XMS-	CASSCF/S	SO-RASSI
				CASPT2/SO-		
				RASSI		
		Basis Set 1	Basis Set 2	Basis Set 1	Basis Set 1	Basis Set 2
1	gx	1.229	0.949	1.847	0.369	0.790
	gy	1.948	1.646	2.645	1.229	2.530
	gz	6.883	7.135	4.920	6.271	5.781
2	gx	1.074	1.352	0.425	4.724	0.499
	gy	2.577	2.830	0.677	3.375	2.016
	gz	6.283	6.002	6.893	0.884	4.038
3	g _x	0.001	0.001	0.042	0.044	0.051
	gy	0.184	0.152	0.336	0.300	0.278
	gz	5.491	5.491	5.298	5.375	5.364
4	g _x	0.031	0.046	0.084	0.033	0.048
	gy	0.032	0.048	0.087	0.033	0.048
	g_{z}	7.992	7.992	7.987	7.991	7.991

Table S27. The g-tensor of the lowest four doublets of 5.

Fig. S52. Experimental (circles) vs. CASPT2 calculated (solid line) temperature dependence of the molar magnetic susceptibility temperature product ($\chi_M T$) of **Ho(1)** of **2** where H = 0.1 T and T = 300 K - 2K

Fig. S53. Experimental (circles) vs. CASPT2 calculated (solid line) temperature dependence of the molar magnetic susceptibility temperature product ($\chi_M T$) of **Er(2**) of **3** where H = 0.1 T and T = 300 K - 2K.

Fig. S54. Experimental (circles) vs. CASPT2 calculated (solid line) temperature dependence of the molar magnetic susceptibility temperature product ($\chi_M T$) of **Tm(1**) of **4** where H = 0.1 T and T = 300 K - 2K.

Fig. S55. Experimental (circles) vs. CASPT2 calculated (solid line) temperature dependence of the molar magnetic susceptibility temperature product ($\chi_M T$) of **Yb(1)** of **5** where H = 0.1 T and T = 300 K - 2K.

Fig. S56. Experimental (circles) vs. CASPT2 calculated (solid lines) M vs. H curves for the 2, 4 and 5 of Ln(1) and 3 of Er (2) where H = 0 - 7 T and T = 8 K - 2K.

Fig. S57. Experimental (circles) vs. CASPT2 calculated (solid lines) M vs. H/T curves for the 2, 4 and 5 of Ln(1) and 3 of Er (2) where H = 0 - 7 T and T = 8 K - 2K.

References

- (1) APEX3 "Program for Data Collection on Area Detectors" BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.
- (2) SADABS, Sheldrick, G.M. "Program for Absorption Correction of Area Detector Frames", BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.
- (3) a).G.M. Sheldrick, *Acta Cryst.* 2008, A64, 112-122. b) G.M. Sheldrick, *Acta Cryst.* 2015, A71, 3-8. G.M. Sheldrick, Acta Cryst. 2015, C71, 3-8. XT, XS, BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.
- (4) A.L. Spek, "PLATON A Multipurpose Crystallographic Tool" *J. Appl. Cryst.* 2003, **36**, 7-13.; Spek, A. L., Utrecht University, Utrecht, The Netherlands 2008.
- (5) O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, "OLEX2: A Complete Structure Solution, Refinement and Analysis Program", *J. Appl. Cryst.* 2009, **42**, 339-341.