

Supporting results

Figure S1. The effects of solvents and Cu salt catalysts on the C(aryl)–C bond thioetherification reaction. Reaction condition **a**: 0.2 mmol substrate **1a**, 0.4 mmol diphenyldisulfane, 0.06 mmol CuSO₄, 0.08 mmol phen, 0.8 mmol K₂CO₃, 200 mg 4Å, 2 mL **solvent**, 0.5 MPa O₂, 140 °C, 12 h. Reaction condition **b**: 0.2 mmol substrate **1a**, 0.4 mmol diphenyldisulfane, 0.06 mmol **Cu salts**, 0.08 mmol phen, 0.8 mmol K₂CO₃, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 12 h.

Figure S2. The effects of base and amount of $CuSO_4$ on the C(aryl)–C bond thioetherification reaction. Reaction condition **a**: 0.2 mmol substrate **1a**, 0.4 mmol diphenyldisulfane, 0.06 mmol CuSO₄, 0.08 mmol phen, **0.8 mmol base**, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 12 h. Reaction condition **b**: 0.2 mmol substrate **1a**, 0.4 mmol diphenyldisulfane, **0.04-0.12 mmol CuSO₄**, 0.08 mmol phen, 0.8 mmol K₂CO₃, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 12 h.

Figure S3. The effects of amounts of phen and K_2CO_3 on the C(aryl)–C bond thioetherification reaction. Reaction condition **a**: 0.2 mmol substrate **1a**, 0.4 mmol diphenyldisulfane, 0.08 mmol CuSO₄, **0-0.08 mmol phen**, 0.8 mmol K₂CO₃, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 12 h. Reaction condition **b**: 0.2 mmol substrate **1a**, 0.4 mmol diphenyldisulfane, 0.08 mmol CuSO₄, 0.04 mmol phen, **0.12-1.2 mmol K₂CO₃**, 200 mg 4Å, 2 mg 4Å, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 12 h.

Figure S4. The Effect of reaction time and pressure of O₂ on the C(aryl)–C bond thioetherification reaction. Reaction condition **a**: 0.2 mmol substrate **1a**, 0.4 mmol diphenyldisulfane, 0.08 mmol CuSO₄, 0.04 mmol phen, 0.8 mmol K₂CO₃, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O₂, 140 °C, **2-12 h**. Reaction condition **b**: 0.2 mmol substrate **1a**, 0.4 mmol diphenyldisulfane, 0.08 mmol CuSO₄, 0.04 mmol phen, 0.8 mmol K₂CO₃, 200 mg 4Å, 2 mL diphenyldisulfane, 0.08 mmol CuSO₄, 0.04 mmol phen, 0.8 mmol K₂CO₃, 200 mg 4Å, 2 mL DMSO, **0-5 MPa O₂**, 140 °C, **2-12 h**.

The reactions were carried out in a stainless-steel reactor with 10 mL Teflon tube. 5 atm O_2 is required to guarantee enough solute O_2 in DMSO, which is necessary to achieve satisfactory catalytic performances.

Figure S5. The Effect of different ligands on the C(aryl)–C bond thioetherification reaction. Reaction condition: 0.2 mmol substrate **1a**, 0.4 mmol diphenyldisulfane, 0.08 mmol CuSO₄, 0.04 mmol phen, 0.8 mmol K₂CO₃, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 12 h.

We also tested different organic ligands for the C(aryl)–C bond thioetherification reaction. Derivatives of phen ligands with electron-donating group Methyl **L2** significantly decreased the yield of thioether products. Bidentate ligand **L4** led to a moderate yield of 52%. Both monodentate N or P containing ligands (**L5** and **L6**) showed no activity for the reaction.

Figure S6. Substrate scope investigation using diphenyldisulfane derivatives and diphenyldiselane. Reaction condition: 0.2 mmol substrate **1a**, 0.4 mmol **diphenyldisulfane** or **diphenyldiselane**, 0.08 mmol CuSO₄, 0.04 mmol phen, 0.8 mmol K₂CO₃, 200 mg 4Å molecular sieve, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 12 h, *24 h.

Figure S7. The effects of amounts of Cu salts and Ag salts on the C(aryl)–C bond hydrogenation reactions. Reaction condition **a**: 0.2 mmol substrate **1a**, **0-0.16 mmol CuCl**, 0.08 mmol AgNO₃, 0.8 mmol NaOH, 0.08 mmol phen, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 8 h. Reaction condition **b**: 0.2 mmol substrate **1a**, 0.12 mmol CuCl, **0-0.16 mmol AgNO₃**, 0.8 mmol NaOH, 0.08 mmol phen, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 8 h.

Figure S8. The effects of solvents and Cu salts on the C(aryl)–C bond hydrogenation reactions. Reaction condition **a**: 0.2 mmol substrate **1a**, 0.12 mmol CuCl, 0.08 mmol AgNO₃, 0.8 mmol NaOH, 0.08 mmol phen, **2 mL solvent**, 0.5 MPa O₂, 140 °C, 8 h. Reaction condition **b**: 0.2 mmol substrate **1a**, **0.12 mmol Cu salts**, 0.08 mmol AgNO₃, 0.8 mmol NaOH, 0.08 mmol phen, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 8 h. CuAc₂: anhydrous copper acetate.

Figure S9. The effects of Ag salts and bases on the C(aryl)–C bond hydrogenation reactions. Reaction condition **a**: 0.2 mmol substrate **1a**, 0.12 mmol CuAc₂, **0.08 mmol Ag salts**, 0.8 mmol NaOH, 0.08 mmol phen, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 8 h. Reaction condition **b**: 0.2 mmol substrate **1a**, 0.12 mmol CuAc₂, 0.08 mmol AgNO₃, **0.8 mmol base**, 0.08 mmol phen, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 8 h.

Figure S10. The effects of amounts of NaOH and phen on the C(aryl)–C bond hydrogenation reactions. Reaction condition **a**: 0.2 mmol substrate **1a**, 0.12 mmol CuAc₂, 0.08 mmol AgNO₃, **0.2-1.6 mmol NaOH**, 0.08 mmol phen, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 8 h. Reaction condition **b**: 0.2 mmol substrate **1a**, 0.12 mmol CuAc₂, 0.08 mmol AgNO₃, 1.2 mmol NaOH, **0.04-0.32 mmol phen**, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 8 h.

Figure S11. The effect of reaction time on the C(aryl)–C bond hydrogenation reactions. Reaction condition **a**: 0.2 mmol substrate **1a**, 0.12 mmol CuAc₂, 0.08 mmol AgNO₃, 1.2 mmol NaOH, 0.16 mmol phen, 2 mL DMSO, 0.5 MPa O₂, 140 °C, **2-12 h**.

Figure S12. The effects of Ag slats and Cu salts on the C(aryl)–C bond carbonization reactions. Reaction condition **a**: 0.2 mmol **1a**, 0.5 mmol benzothiazole, 0.15 mmol CuCl, **0.25 mmol Ag salts**, 0.125 mmol phen, 0.2 mmol Cs₂CO₃, 200 mg 4Å, 2 mL DMF, 0.5 MPa O₂, 140 °C, 12 h. Reaction condition **b**: 0.2 mmol **1a**, 0.5 mmol benzothiazole, **0.15 mmol Cu salts**, 0.25 mmol Ag₂O, 0.125 mmol phen, 0.2 mmol Cs₂CO₃, 200 mg 4Å, 2 mL DMF, **0.5 mmol Cu salts**, 0.25 mmol Ag₂O, 0.125 mmol phen, 0.2 mmol Cs₂CO₃, 200 mg 4Å, 2 mL DMF, 0.5 MPa O₂, 140 °C, 12 h.

Figure S13. The effects of solvents and amounts of Ag₂O on the C(aryl)–C bond carbonization reactions. Reaction condition **a**: 0.2 mmol **1a**, 0.5 mmol benzothiazole, 0.15 mmol CuCl, 0.25 mmol Ag₂O, 0.125 mmol phen, 0.2 mmol Cs₂CO₃, 200 mg 4Å, **2 mL solvent**, 0.5 MPa O₂, 140 °C, 12 h. Reaction condition **b**: 0.2 mmol **1a**, 0.5 mmol benzothiazole, 0.15 mmol CuCl, **0**-0.35 mmol Ag₂O, 0.125 mmol phen, 0.2 mmol Cs₂CO₃, 200 mg 4Å, **2 mL** benzothiazole, 0.15 mmol CuCl, **0**-0.35 mmol Ag₂O, 0.125 mmol phen, 0.2 mmol Cs₂CO₃, 200 mg 4Å, 2 mL benzothiazole, 0.5 MPa O₂, 140 °C, 12 h.

Figure S14. The effects of amounts of CuCl and Cs_2CO_3 on the C(aryl)-C bond carbonization reactions. Reaction condition **a**: 0.2 mmol **1a**, 0.5 mmol benzothiazole, **0**-0.25 mmol CuCl, 0.25 mmol Ag₂O, 0.125 mmol phen, 0.2 mmol Cs₂CO₃, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 12 h. Reaction condition **b**: 0.2 mmol **1a**, 0.5 mmol benzothiazole, 0.15 mmol CuCl, 0.25 mmol Ag₂O, 0.125 mmol phen, **0**.102 mmol **1a**, 0.5 mmol cuCl, 0.25 mmol Ag₂O, 0.125 mmol phen, 0.2 mmol **1a**, 0.5 mmol benzothiazole, 0.15 mmol CuCl, 0.25 mmol Ag₂O, 0.125 mmol phen, **0**.103 mmol cuCl, 0.25 mmol Ag₂O, 0.125 mmol phen, 0.200 mg 4Å, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 12 h.

Figure S15. The effects of amounts of 4 Å and phen on the C(aryl)–C bond carbonization reactions. Reaction condition **a**: 0.2 mmol **1a**, 0.5 mmol benzothiazole, 0.15 mmol CuCl, 0.25 mmol Ag₂O, 0.125 mmol phen, 0.2 mmol Cs₂CO₃, **0-200 mg 4Å**, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 12 h. Reaction condition **b**: 0.2 mmol **a**, 0.5 mmol benzothiazole, 0.15 mmol CuCl, 0.25 mmol Ag₂O, **0-0.2 mmol phen**, 0.2 mmol Cs₂CO₃, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 12 h.

Figure S16. The effects of bases and reaction time on the C(aryl)–C bond carbonization reactions. Reaction condition **a**: 0.2 mmol **1a**, 0.5 mmol benzothiazole, 0.15 mmol CuCl, 0.25 mmol Ag₂O, 0.1 mmol phen, **0.2 mmol base**, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O₂, 140 °C, 12 h. Reaction condition **b**: 0.2 mmol **a**, 0.5 mmol benzothiazole, 0.15 mmol CuCl, 0.25 mmol Ag₂O, 0.1 mmol phen, 0.2 mmol Cs₂CO₃, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O₂, 140 °C, **2-12 h**.

Figure S17. Kinetic study of the transformation of probable intermediates. We tested probable intermediates including aldehyde and derivatives acid of (1-(2nitrophenyl)ethanol under the optimized conditions (as illustrated in Fig. 3b). The temporal evolution of corresponding products was monitored by GC. In comparison to the transformation of alcohol to thioether, aldehyde to thioether, and aldehyde to acid, the transformation rate of acid to thioether is obviously higher. Hence, the conversion of aldehyde to acid represents the rate-determining step in the reaction, rather than the decarboxylation step.

Figure S18. Plausible reaction pathway for the oxidative C(aryl)–C(OH) bonds hydrogenation reaction.

Starting from the acid intermediates, acid-base reaction between acid intermediates and Ag salts generates Ag carboxylate **12** followed by decarboxylation to aryl Ag species **13**. **13** is mediated with protodemetallation to afford the arene product. In comparison to Cu, Ag is a more efficient catalyst for decarboxylation. The presence of catalytic amount of Ag effectively promotes the decarboxylative hydrogenation of acid intermediates.¹⁻³

Figure S19. Plausible reaction pathway for the oxidative C(aryl)–C(OH) bonds carbonization reaction.

Starting from the acid intermediates, carbonization reaction is mediated with the same decarboxylation step for thioetherification reaction and generates intermediate **5**. **5** is further converted into a bifunctional aryl metal species **15** via transmetalation. The final products are generated by oxidation of **15** with Ag salts and reductive elimination of **16**. Stoichiometric amounts of Ag salt in carbonization reactions acts as a stronger oxidant than O_2 and oxidizes the Cu^(II) **15** into Cu^(III) **16**.⁴⁻⁶

Reference

- 1. J. Cornella, C. Sanchez, D. Banawa and I. Larrosa, *Chem. Commun.*, 2009, DOI: 10.1039/B916646G, 7176-7178.
- 2. P. Lu, C. Sanchez, J. Cornella and I. Larrosa, Org. Lett., 2009, 11, 5710-5713.
- 3. R. A. Crovak and J. M. Hoover, J. Am. Chem. Soc., 2018, 140, 2434-2437.
- 4. K. Xie, Z. Yang, X. Zhou, X. Li, S. Wang, Z. Tan, X. An and C.-C. Guo, *Org. Lett.*, 2010, **12**, 1564-1567.
- 5. L. Chen, L. Ju, K. A. Bustin and J. M. Hoover, *Chem. Commun.*, 2015, **51**, 15059-15062.
- 6. T. Patra, S. Nandi, S. K. Sahoo and D. Maiti, Chem. Commun., 2016, 52, 1432-1435.

115:008 113:773 113:754 113:754 113:754 113:405 113:405 111:322 110:777 106:777

ò

ppm

