# The structures of ordered defects in thiocyanate Prussian Blue analogues

Matthew J. Cliffe, \*a,b Evan N. Keyzer, Andrew D. Bond, Maxwell A. Astleb and Clare P. Greya

April 6, 2020

<sup>a</sup> Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;

<sup>b</sup> School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK;

\*To whom correspondence should be addressed; e-mail: matthew.cliffe@nottingham.ac.uk.

# Contents

| 1 | Synthetic Procedures           1.1         Synthesis of HSCN           1.2         Synthesis of H <sub>3</sub> [Bi(SCN) <sub>6</sub> ] solution           1.3         Synthesis of 1           1.4         Synthesis of 2           1.5         Synthesis of 3 and 4           1.6         Synthesis of 5 and 6 | <b>2</b><br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 2 | Single Crystal X-ray Diffraction                                                                                                                                                                                                                                                                                | 3                                                     |
| 3 | Powder X-ray Diffraction                                                                                                                                                                                                                                                                                        | 5                                                     |
| 4 | ICP-OES                                                                                                                                                                                                                                                                                                         | 6                                                     |
| 5 | STEM-EDX                                                                                                                                                                                                                                                                                                        | 6                                                     |
| 6 | Diffuse Reflectance                                                                                                                                                                                                                                                                                             | 8                                                     |

### **List of Figures**

| 1 | Rietveld refinement of mixed phase $\alpha$ - and $\beta$ Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>6</sub> . * indicates the presence of an |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------|
|   | impurity peak                                                                                                                                 |
| 2 | Representative EDX spectrum for compound 2                                                                                                    |
| 3 | Tauc normalised diffuse reflectance data for determination of band gap 1,2,4,5 & 6 8                                                          |
| 4 | Diffuse reflectance spectra for compounds <b>1,2,4,5 &amp; 6</b>                                                                              |

# **List of Tables**

| 1 | Summary of key crystallographic parameters for all compounds | 4 |
|---|--------------------------------------------------------------|---|
| 2 | STEM-EDX elemental ratios in sample 2                        | 6 |

# **1** Synthetic Procedures

The synthesis procedures were adapted from those reported in S1.

#### 1.1 Synthesis of HSCN

In a 250 mL round bottom flask, NH<sub>4</sub>SCN (5g, 65.7 mmol) was dissolved in 5 mL H<sub>2</sub>O and cooled to 0 °C in an ice bath. A H<sub>2</sub>SO<sub>4</sub> solution (ca. 7 ml of H<sub>2</sub>SO<sub>4</sub> in 12 ml H<sub>2</sub>O) was then added dropwise to the cooled NH<sub>4</sub>SCN solution. The reaction mixture was stirred for 30 mins before being warmed to room temperature. The aqueous mixture was subsequently extracted with diethyl ether (2×20 ml) and the organic phase was retrieved and its volume reduced by half using a stream of N<sub>2</sub>.

#### 1.2 Synthesis of H<sub>3</sub>[Bi(SCN)<sub>6</sub>] solution

 $Bi_2O_2(CO_3)$  (0.50 g, 0.98 mmol) was suspended in ca. 12 mL H<sub>2</sub>O followed by the addition of the HSCN/ether solution. The resulting reaction mixture was stirred vigorously under a slight flow of N<sub>2</sub> until all ether had been removed and the solution had turned bright orange. Any remaining solids were filtered off and the orange solution was placed under a slight vacuum to remove any excess HSCN.

#### 1.3 Synthesis of 1

1 mL of the prepared H<sub>3</sub>[Bi(SCN)<sub>6</sub>] was added to approximately 50 mg MnCO<sub>3</sub>, and left to react overnight. Any excess solids were removed by gravity filtration. The dark red solution was then left to evaporate in a watch glass covered by petri-dish for a period of approximate two weeks until diffraction quality dark orange single crystals formed.

#### 1.4 Synthesis of 2

1mL of the prepared  $H_3[Bi(SCN)_6]$  was added to approximately 50 mg  $(Co_5(CO_3)_2(OH)_6)$  and left to react overnight. Any excess solids were removed by gravity filtration. The dark red solution was then left to evaporate in a watch glass covered by petri-dish for a period of approximate two weeks until diffraction quality dark orange single crystals formed.

#### 1.5 Synthesis of 3 and 4

Bi(NO<sub>3</sub>)<sub>3</sub> · 2.5 H<sub>2</sub>O (3 mmol, 1.46 g) was dissolved in 1.5 mL 3M HNO<sub>3</sub>, and a solution of NH<sub>4</sub>SCN (13.1 mmol, 1.00 g) dissolved in 2 mL of distilled water was added to it, producing a vivid orange solution. Ni(NO<sub>3</sub>)<sub>2</sub> · 6 H<sub>2</sub>O (7 mmol, 2.036 g) was dissolved in 2 mL of water and then added to to bismuth thiocyanate solution, which on standing produced numerous small very dark orange single crystals of **4** over a period of 15 min. The same route can be used to produce **3**, substituting Co(NO<sub>3</sub>) · 6 H<sub>2</sub>O.

#### 1.6 Synthesis of 5 and 6

Bi(NO<sub>3</sub>)<sub>3</sub> · 2.5 H<sub>2</sub>O (3 mmol, 1.46 g) was dissolved in 1.5 mL 3M HNO<sub>3</sub>, and a solution of NH<sub>4</sub>SCN (13.1 mmol, 1.00 g) dissolved in 2 mL of distilled water was added to it, producing a vivid orange solution.  $Zn(NO_3)_2 \cdot 6 H_2O$  (7 mmol, 2.082 g) was dissolved in 2 mL of water and then added to to bismuth thiocyanate solution, which on standing produced an immediate precipitate of numerous orange single crystals of **5** and **6**.

### 2 Single Crystal X-ray Diffraction

Single crystals were selected and mounted using perfluorinated oil on a polymer-tipped micromount and cooled rapidly to measurement temperature 120 K or 180 K in a stream of cold  $N_2$  using an Oxford Cryosystems open flow cryostat. To enable variable temperature measurements, the crystal used for structures **1** and **1a** was mounted using varnish on a pin.

Single-crystal X-ray diffraction data for **2**, **4**, **5** and **6** were collected using a Nonius KappaCCD diffractometer, using graphite monochromated MoK $\alpha$  radiation ( $\lambda = 0.7107$  Å). Data for **1** and **1a** were collected using a on a Bruker D8-Quest PHOTON-100 diffractometer equipped with an Incoatec I $\mu$ S Cu microsource ( $\lambda = 1.54056$ Å). Data for **3** were collected using Single crystal X-ray diffraction data were collected on an Oxford Diffraction GV1000 (AtlasS2 CCD area detector, mirror-monochromated Cu-K $_{\alpha}$  radiation source ( $\lambda = 1.54184$ Å). Structure solution was carried out using SHELXT and refinement with SHELXL, within the OLEX2 graphical interface. <sup>S2-4</sup> For crystal **1**, hydrogen atoms were refined with constrained geometries and riding thermal parameters, however the disorder present in samples **2**–**4** meant that hydrogen atoms could not be located, aside from an NH<sub>4</sub> cation in **4**. Disordered sites in structures **1**, **2**, **3** and **4** were modelled at half occupancy.

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                            | , , ,                                                                                                                                                                                                                                                                                                                                                                            | ้1a                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mn <sub>2</sub> Bi(SCN) <sub>7</sub> 7 H <sub>2</sub> O                                                                      | Mn <sub>2</sub> Bi(SCN)                                                                                                                                                                                                                                                                                                                                                          | $_{7}7 H_{2}O$                    | Co <sub>9</sub> Bi <sub>6</sub> (SCN) <sub>36</sub> (H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sub>2</sub> O) <sub>38</sub>                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                       |
| Molar mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 851.54                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                  | 851.54                            | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.47                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| Crystal System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monoclinic                                                                                                                   | Mo                                                                                                                                                                                                                                                                                                                                                                               | noclinic                          | Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iclinic                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                       |
| Space Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $P2_1/n$                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                  | $P2_1/n$                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P1                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       |
| Crystal Colour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dark orange                                                                                                                  | dark                                                                                                                                                                                                                                                                                                                                                                             | orange                            | dark o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | range                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                  | 4                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |
| Radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $Cu K_{\alpha}$                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                  | $Cu K_{\alpha}$                   | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No K $_{\alpha}$                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                       |
| Temperature (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                  | 180                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                       |
| a (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.3698(3)                                                                                                                    | 8.3                                                                                                                                                                                                                                                                                                                                                                              | 3065(2)                           | 12.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 09 (2)                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       |
| b (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.0037(9)                                                                                                                   | 25.8                                                                                                                                                                                                                                                                                                                                                                             | 8428(6)                           | 12.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13 (2)                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       |
| c (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.2466(4)                                                                                                                   | 12.2                                                                                                                                                                                                                                                                                                                                                                             | 2664(3)                           | 23.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19 (4)                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       |
| lpha (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                  | 90                                | 94.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00 (1)                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       |
| β (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91.208(2)                                                                                                                    | 90.23                                                                                                                                                                                                                                                                                                                                                                            | 360(10)                           | 94.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03 (1)                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       |
| $\gamma$ (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                  | 90                                | 91.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52 (1)                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       |
| V (Å <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2664.83(16)                                                                                                                  | 2633                                                                                                                                                                                                                                                                                                                                                                             | 8.12(11)                          | 3464.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 (10)                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       |
| Measured reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30850                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                  | 33300                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21789                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| Independent reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4712                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                  | 4657                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3585                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                       |
| $R_{ m int}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1315                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                  | 0.080                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.035                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| $R[F^2 > 2\sigma(F^2)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0553                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                  | 0.038                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.059                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.013                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                  | 1.03                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.13                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                       |
| CCDC number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                       |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                |                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                     |
| Compound<br>Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Co <sub>5</sub> Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH <sub>4</sub> ·                                                      | 3<br>16 H₂O Nig                                                                                                                                                                                                                                                                                                                                                                  | ₅Bi <sub>6</sub> (SCN             | <b>4</b><br>I) <sub>30</sub> 3 NH <sub>4</sub> · 16 H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>α-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub>                                                                                                                                                                                                                                    | 6<br>β-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub>                                                                                                                                                                                                                                                            |
| Compound<br>Formula<br>Molar mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Co <sub>5</sub> Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH <sub>4</sub> ·<br>3                                                 | <b>3</b><br>16 H <sub>2</sub> O Nig<br>3438.91                                                                                                                                                                                                                                                                                                                                   | ₅Bi <sub>6</sub> (SCN             | <b>4</b><br>I) <sub>30</sub> 3 NH <sub>4</sub> · 16 H <sub>2</sub> O<br>3512.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>α-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03                                                                                                                                                                                                                         | <b>6</b><br>β-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03                                                                                                                                                                                                                                          |
| Compound<br>Formula<br>Molar mass<br>Crystal System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Co <sub>5</sub> Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH <sub>4</sub> .<br>3                                                 | 3<br>16 H₂O Nig<br>3438.91<br>Triclinic                                                                                                                                                                                                                                                                                                                                          | ₅Bi <sub>6</sub> (SCN             | 4<br>I) <sub>30</sub> 3 NH <sub>4</sub> · 16 H <sub>2</sub> O<br>3512.13<br>Triclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br>α-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03<br>Monoclinic                                                                                                                                                                                                           | 6<br>β-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03<br>Monoclinic                                                                                                                                                                                                                                   |
| Compound<br>Formula<br>Molar mass<br>Crystal System<br>Space Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Co <sub>5</sub> Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH <sub>4</sub> ·<br>3                                                 | 3<br>16 H₂O Ni<br>3438.91<br>Triclinic<br>P1                                                                                                                                                                                                                                                                                                                                     | <sub>5</sub> Bi <sub>6</sub> (SCN | 4<br>1) <sub>30</sub> 3 NH <sub>4</sub> · 16 H <sub>2</sub> O<br>3512.13<br>Triclinic<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>α-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03<br>Monoclinic<br>C2/c                                                                                                                                                                                                   | 6<br>β-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03<br>Monoclinic<br>P2 <sub>1</sub> /c                                                                                                                                                                                                             |
| Compound<br>Formula<br>Molar mass<br>Crystal System<br>Space Group<br>Crystal Colour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Co <sub>5</sub> Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH <sub>4</sub> · 3<br>3<br>dark                                       | 3<br>16 H₂O Niạ<br>3438.91<br>Triclinic<br><i>P</i> 1<br>orange                                                                                                                                                                                                                                                                                                                  | ₅Bi <sub>6</sub> (SCN             | 4<br>I) <sub>30</sub> 3 NH₄ · 16 H₂O<br>3512.13<br>Triclinic<br>P1<br>dark orange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5<br>α-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03<br>Monoclinic<br>C2/c<br>orange                                                                                                                                                                                         | 6<br>β-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03<br>Monoclinic<br>P2 <sub>1</sub> /c<br>orange                                                                                                                                                                                                   |
| Compound<br>Formula<br>Molar mass<br>Crystal System<br>Space Group<br>Crystal Colour<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Co₅Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH <sub>4</sub> · 3<br>3<br>dark                                                    | 3<br>16 H <sub>2</sub> O Nia<br>3438.91<br>Triclinic<br><i>P</i> 1<br>orange<br>1                                                                                                                                                                                                                                                                                                | ₅Bi <sub>6</sub> (SCN             | 4<br>I) <sub>30</sub> 3 NH₄ · 16 H₂O<br>3512.13<br>Triclinic<br>P1<br>dark orange<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>α-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03<br>Monoclinic<br>C2/c<br>orange<br>4                                                                                                                                                                                    | β-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03<br>Monoclinic<br>$P2_1/c$<br>orange<br>4                                                                                                                                                                                                             |
| Compound<br>Formula<br>Molar mass<br>Crystal System<br>Space Group<br>Crystal Colour<br>Z<br>Radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Co₅Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH <sub>4</sub> · 3<br>3<br>dark                                                    | $\begin{array}{c c} 3 \\ 16  \mathrm{H_2O} & \mathrm{Nis} \\ 3438.91 \\ \hline \mathrm{Triclinic} \\ P\overline{1} \\ \mathrm{orange} \\ 1 \\ \mathrm{Cu}  \mathrm{K}_{\alpha} \end{array}$                                                                                                                                                                                      | ₅Bi <sub>6</sub> (SCN             | 4<br>I) <sub>30</sub> 3 NH₄ · 16 H₂O<br>3512.13<br>Triclinic<br><i>P</i> 1<br>dark orange<br>1<br>Mo K <sub>α</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5<br>α-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03<br>Monoclinic<br>C2/c<br>orange<br>4<br>Mo K <sub>α</sub>                                                                                                                                                               | 6<br>β-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03<br>Monoclinic<br>P2 <sub>1</sub> /c<br>orange<br>4<br>Mo K <sub>α</sub>                                                                                                                                                                         |
| Compound<br>Formula<br>Molar mass<br>Crystal System<br>Space Group<br>Crystal Colour<br>Z<br>Radiation<br>Temperature (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Co₅Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH₄ ·<br>3<br>dark                                                                  | $\begin{array}{c c} 3 \\ 16  \mathrm{H_2O} & \mathrm{Ni}_{\mathrm{s}} \\ 3438.91 \\ \mathrm{Triclinic} \\ P\overline{1} \\ \mathrm{orange} \\ 1 \\ \mathrm{Cu}  \mathrm{K}_{\alpha} \\ 120 \end{array}$                                                                                                                                                                          | ₅Bi <sub>6</sub> (SCN             | $\begin{array}{c} & {\bf 4} \\ {1\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $3 \\ \alpha$ -Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03<br>Monoclinic<br>C2/c<br>orange<br>4<br>Mo K <sub><math>\alpha</math></sub><br>109                                                                                                                              | β-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03<br>Monoclinic<br>$P2_1/c$<br>orange<br>4<br>Mo K <sub>α</sub><br>180                                                                                                                                                                                 |
| Compound<br>Formula<br>Molar mass<br>Crystal System<br>Space Group<br>Crystal Colour<br>Z<br>Radiation<br>Temperature (K)<br>a (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Co₅Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH₄ ·<br>3<br>dark<br>11.9                                                          | $\begin{array}{c c} {\bf 3} \\ 16  {\rm H_2O} & {\rm Ni}_8 \\ 3438.91 \\ {\rm Triclinic} \\ P\overline{1} \\ {\rm orange} \\ 1 \\ {\rm Cu}  {\rm K}_\alpha \\ 120 \\ {\rm v106} \ (3) \end{array}$                                                                                                                                                                               | ₅Bi <sub>6</sub> (SCN             | $\begin{array}{c} & {\color{red} 4} \\ 1_{30}  3  \text{NH}_4 \cdot 16  \text{H}_2\text{O} \\ 3512.13 \\ \text{Triclinic} \\ P\overline{1} \\ \text{dark orange} \\ 1 \\ \text{Mo } \text{K}_{\alpha} \\ 111 \\ 11.8567 \ (2) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} {\bf 5} \\ \alpha \mbox{-} Zn_3 \mbox{Bi}_2(SCN)_{12} \\ 1311.03 \\ Monoclinic \\ C2/c \\ orange \\ 4 \\ Mo \ K_{\alpha} \\ 109 \\ 26.3104 \ (4) \end{array}$                                                                                                               | β-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03<br>Monoclinic<br>$P2_1/c$<br>orange<br>4<br>Mo K <sub>α</sub><br>180<br>17.7331 (6)                                                                                                                                                                  |
| Compound<br>Formula<br>Molar mass<br>Crystal System<br>Space Group<br>Crystal Colour<br>Z<br>Radiation<br>Temperature (K)<br>a (Å)<br>b (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Co₅Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH₄ ·<br>3<br>dark<br>11.9<br>11.9                                                  | $\begin{array}{c c} 3 \\ \hline 16  \mathrm{H_2O} & \mathrm{Ni}_{\mathrm{S}} \\ 3438.91 \\ \mathrm{Triclinic} \\ P\overline{1} \\ \mathrm{orange} \\ 1 \\ \mathrm{Cu}  \mathrm{K}_{\alpha} \\ 120 \\ \mathrm{1106} \ (3) \\ \mathrm{3822} \ (3) \end{array}$                                                                                                                     | ₅Bi <sub>6</sub> (SCN             | $\begin{array}{c} & {\color{black} 4} \\ 1 \\ 1 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} {\bf 5} \\ \alpha \mbox{-} Zn_3 Bi_2(SCN)_{12} \\ 1311.03 \\ Monoclinic \\ C2/c \\ orange \\ 4 \\ Mo K_{\alpha} \\ 109 \\ 26.3104 \ (4) \\ 8.4587 \ (1) \end{array}$                                                                                                        | β-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03<br>Monoclinic<br>$P2_1/c$<br>orange<br>4<br>Mo K <sub>α</sub><br>180<br>17.7331 (6)<br>13.6501 (4)                                                                                                                                                   |
| Compound<br>Formula<br>Molar mass<br>Crystal System<br>Space Group<br>Crystal Colour<br>Z<br>Radiation<br>Temperature (K)<br>a (Å)<br>b (Å)<br>c (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Co₅Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH₄ ·<br>3<br>dark<br>11.9<br>11.9<br>8.4                                           | $\begin{array}{c c} 3 \\ \hline 16 \ \mathrm{H_2O} & \mathrm{Ni}_{\mathrm{S}} \\ 3438.91 \\ \mathrm{Triclinic} \\ P\overline{1} \\ \mathrm{orange} \\ 1 \\ \mathrm{Cu} \ \mathrm{K}_{\alpha} \\ 120 \\ \mathrm{1106} \ (3) \\ 3822 \ (3) \\ .250 \ (5) \end{array}$                                                                                                              | ₅Bi <sub>6</sub> (SCN             | $\begin{array}{c} & {\color{black} 4} \\ {\color{black} 1} \\ {\color{black} 1} \\ {\color{black} 3} \\ {\color{black} 3} \\ {\color{black} 3} \\ {\color{black} 1} \\ {\color{black} 1} \\ {\color{black} 3} \\ {\color{black} 1} \\ {\color{black} 1}$  | $\begin{array}{c} & 5 \\ \hline \alpha \text{-Zn}_3 \text{Bi}_2(\text{SCN})_{12} \\ 1311.03 \\ \text{Monoclinic} \\ C2/c \\ \text{orange} \\ 4 \\ \text{Mo } \text{K}_{\alpha} \\ 109 \\ 26.3104 \ (4) \\ 8.4587 \ (1) \\ 15.7403 \ (3) \end{array}$                                          | $\frac{6}{\beta - Zn_3Bi_2(SCN)_{12}}$ 1311.03<br>Monoclinic<br>$P2_1/c$<br>orange<br>4<br>Mo K <sub>α</sub><br>180<br>17.7331 (6)<br>13.6501 (4)<br>16.4375 (4)                                                                                                                                                      |
| CompoundFormulaMolar massCrystal SystemSpace GroupCrystal ColourZRadiationTemperature (K) $a$ (Å) $b$ (Å) $c$ (Å) $\alpha$ (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Co₅Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH₄ ·<br>3<br>dark<br>11.9<br>11.9<br>8.4<br>83.                                    | $\begin{array}{c c} 3 \\ \hline 16 \ \mathrm{H_2O} & \mathrm{Ni}_{\mathrm{S}} \\ 3438.91 \\ \mathrm{Triclinic} \\ P\overline{1} \\ \mathrm{orange} \\ 1 \\ \mathrm{Cu} \ \mathrm{K}_{\alpha} \\ 120 \\ \mathrm{1106} \ \mathbf{(3)} \\ 3822 \ \mathbf{(3)} \\ .250 \ \mathbf{(5)} \\ 935 \ \mathbf{(2)} \end{array}$                                                             | ₅Bi <sub>6</sub> (SCN             | $\begin{array}{c} & {\color{black} 4} \\ 1 \\ 1 \\ 3 \\ 3 \\ 3 \\ 1 \\ 3 \\ 3 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} {\bf 5} \\ \alpha \mbox{-} Zn_3 Bi_2(SCN)_{12} \\ 1311.03 \\ Monoclinic \\ C2/c \\ orange \\ 4 \\ Mo K_{\alpha} \\ 109 \\ 26.3104 \ (4) \\ 8.4587 \ (1) \\ 15.7403 \ (3) \\ 90 \end{array}$                                                                                 | $\frac{6}{\beta - Zn_3Bi_2(SCN)_{12}}$ 1311.03<br>Monoclinic<br>$P2_1/c$<br>orange<br>4<br>Mo K <sub>α</sub><br>180<br>17.7331 (6)<br>13.6501 (4)<br>16.4375 (4)<br>90                                                                                                                                                |
| CompoundFormulaMolar massCrystal SystemSpace GroupCrystal ColourZRadiationTemperature (K) $a$ (Å) $b$ (Å) $c$ (Å) $\alpha$ (Å) $\beta$ (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Co₅Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH₄ ·<br>3<br>dark<br>11.9<br>11.9<br>8.4<br>83.<br>76.                             | $\begin{array}{c c} 3 \\ \hline 16 \ \mathrm{H_2O} & \mathrm{Ni}_{\mathrm{S}} \\ 3438.91 \\ \mathrm{Triclinic} \\ P\overline{1} \\ \mathrm{orange} \\ 1 \\ \mathrm{Cu} \ \mathrm{K}_{\alpha} \\ 120 \\ \mathrm{1106} \ \mathbf{(3)} \\ 3822 \ \mathbf{(3)} \\ .250 \ \mathbf{(5)} \\ 935 \ \mathbf{(2)} \\ 504 \ \mathbf{(2)} \end{array}$                                       | ₅Bi <sub>6</sub> (SCN             | $\begin{array}{c} & {\color{black} 4} \\ 1 \\ 1 \\ 3 \\ 3 \\ 3 \\ 1 \\ 3 \\ 3 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} {\bf 5} \\ \alpha \mbox{-} Zn_3 Bi_2(SCN)_{12} \\ 1311.03 \\ Monoclinic \\ C2/c \\ orange \\ 4 \\ Mo K_{\alpha} \\ 109 \\ 26.3104 \ (4) \\ 8.4587 \ (1) \\ 15.7403 \ (3) \\ 90 \\ 93.630 \end{array}$                                                                       | β-Zn <sub>3</sub> Bi <sub>2</sub> (SCN) <sub>12</sub><br>1311.03<br>Monoclinic<br>$P2_1/c$<br>orange<br>4<br>Mo K <sub>α</sub><br>180<br>17.7331 (6)<br>13.6501 (4)<br>16.4375 (4)<br>90<br>114.3971 (12)                                                                                                             |
| Compound<br>Formula<br>Molar mass<br>Crystal System<br>Space Group<br>Crystal Colour<br>Z<br>Radiation<br>Temperature (K)<br>a (Å)<br>b (Å)<br>c (Å)<br>$\alpha$ (Å)<br>$\beta$ (Å)<br>$\gamma$ (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Co₅Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH₄ · .<br>3<br>dark<br>11.9<br>11.9<br>8.4<br>83.<br>76.<br>85.                    | 3           16 H <sub>2</sub> O         Nia           3438.91         Triclinic $P\overline{1}$ orange           1         Cu K <sub><math>\alpha</math></sub> 120         106 (3)           1382 (3)         250 (5)           935 (2)         504 (2)           384 (2) $(2)$                                                                                                  | ₅Bi <sub>6</sub> (SCN             | $\begin{array}{c} & {\color{black} 4} \\ 1 \\ 1 \\ 3 \\ 3 \\ 3 \\ 1 \\ 3 \\ 3 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} {\bf 5} \\ \alpha \mbox{-} Zn_3 Bi_2(SCN)_{12} \\ 1311.03 \\ Monoclinic \\ C2/c \\ orange \\ 4 \\ Mo K_{\alpha} \\ 109 \\ 26.3104 \ (4) \\ 8.4587 \ (1) \\ 15.7403 \ (3) \\ 90 \\ 93.630 \\ 90 \end{array}$                                                                 | $\frac{6}{\beta - Zn_3Bi_2(SCN)_{12}}$ 1311.03<br>Monoclinic<br>$P2_1/c$<br>orange<br>4<br>Mo K <sub>α</sub><br>180<br>17.7331 (6)<br>13.6501 (4)<br>16.4375 (4)<br>90<br>114.3971 (12)<br>90                                                                                                                         |
| CompoundFormulaMolar massCrystal SystemSpace GroupCrystal ColourZRadiationTemperature (K) $a$ (Å) $b$ (Å) $c$ (Å) $\alpha$ (Å) $\beta$ (Å) $\gamma$ (Å) $V$ (Å) $V$ (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Co₅Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH₄ · .<br>3<br>dark<br>11.9<br>11.9<br>8.4<br>83.<br>76.<br>85.<br>2529.           | 3           16 H <sub>2</sub> O         Nia           3438.91         Triclinic $P\overline{1}$ orange           1         Cu K <sub><math>\alpha</math></sub> 120         106 (3)           1382 (3)         .250 (5)           935 (2)         .504 (2)           .384 (2)         .04 (12)                                                                                    | ₅Bi <sub>6</sub> (SCN             | $\begin{array}{c} \label{eq:2} \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 5 \\ \alpha\text{-Zn}_3\text{Bi}_2(\text{SCN})_{12} \\ 1311.03 \\ \text{Monoclinic} \\ C2/c \\ \text{orange} \\ 4 \\ \text{Mo K}_{\alpha} \\ 109 \\ 26.3104 (4) \\ 8.4587 (1) \\ 15.7403 (3) \\ 90 \\ 93.630 \\ 90 \\ 3496.00 (9) \end{array}$                              |                                                                                                                                                                                                                                                                                                                       |
| CompoundFormulaMolar massCrystal SystemSpace GroupCrystal ColourZRadiationTemperature (K) $a$ (Å) $b$ (Å) $c$ (Å) $\alpha$ (Å) $\beta$ (Å) $\gamma$ (Å) $\gamma$ (Å) $V$ (Å3)Measured reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Co₅Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH₄ ·<br>3<br>dark<br>11.9<br>11.9<br>8.4<br>83.<br>76.<br>85.<br>2529.             | $\begin{array}{c c} 3 \\ 16 \ \mathrm{H_2O} & \mathrm{Ni}_{\mathrm{s}} \\ 3438.91 \\ \mathbf{Triclinic} \\ P\overline{1} \\ \mathbf{orange} \\ 1 \\ \mathbf{Cu} \ \mathrm{K}_{\alpha} \\ 120 \\ 106 \ \mathbf{(3)} \\ 382 \ \mathbf{(3)} \\ 250 \ \mathbf{(5)} \\ 935 \ \mathbf{(2)} \\ 504 \ \mathbf{(2)} \\ 384 \ \mathbf{(2)} \\ 04 \ \mathbf{(12)} \\ 37154 \end{array}$     | ₅Bi <sub>6</sub> (SCN             | $\begin{array}{c} & {\color{black} 4} \\ {\color{black} 1} \\ {\color{black} 3} \\ {\color{black} 3} \\ {\color{black} 3} \\ {\color{black} 3} \\ {\color{black} 1} \\ {\color{black} 1}$  | $\begin{array}{c} & 5\\ \hline \alpha \text{-}Zn_3\text{Bi}_2(\text{SCN})_{12}\\ 1311.03\\ \text{Monoclinic}\\ C2/c\\ \text{orange}\\ 4\\ \text{Mo K}_{\alpha}\\ 109\\ 26.3104 \ (4)\\ 8.4587 \ (1)\\ 15.7403 \ (3)\\ 90\\ 93.630\\ 90\\ 3496.00 \ (9)\\ 7507 \end{array}$                    | $\frac{6}{\beta - Zn_3Bi_2(SCN)_{12}}$ 1311.03<br>Monoclinic<br>$P2_1/c$<br>orange<br>4<br>Mo K <sub>α</sub><br>180<br>17.7331 (6)<br>13.6501 (4)<br>16.4375 (4)<br>90<br>114.3971 (12)<br>90<br>3623.55 (19)<br>12934                                                                                                |
| Compound<br>Formula<br>Molar mass<br>Crystal System<br>Space Group<br>Crystal Colour<br>Z<br>Radiation<br>Temperature (K)<br>a (Å)<br>b (Å)<br>c (Å)<br>$\alpha$ (Å)<br>$\beta$ (Å)<br>$\gamma$ (Å)<br>V (Å <sup>3</sup> )<br>Measured reflections<br>Independent reflections                                                                                                                                                                                                                                                                                                                                                                                                                                      | Co₅Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH₄ ·<br>3<br>dark<br>11.9<br>11.9<br>8.4<br>83.<br>76.<br>85.<br>2529.             | $\begin{array}{c c} 3 \\ \hline 16 \ \mathrm{H_2O} & \mathrm{Ni}_{\mathrm{s}} \\ \hline 3438.91 \\ \hline \mathrm{Triclinic} \\ P\overline{1} \\ \mathrm{orange} \\ 1 \\ \mathrm{Cu} \ \mathrm{K}_{\alpha} \\ 120 \\ \mathrm{r106} \ (3) \\ 382 \ (3) \\ 250 \ (5) \\ 935 \ (2) \\ 504 \ (2) \\ 384 \ (2) \\ 04 \ (12) \\ 37154 \\ 9921 \\ \end{array}$                          | ₅Bi <sub>6</sub> (SCN             | $\begin{array}{r} & {\color{red} 4} \\ {\color{black} 1} \\ {\color{black} 3} \\ {\color{black} 3} \\ {\color{black} 3} \\ {\color{black} 3} \\ {\color{black} 1} \\$ | $\begin{array}{c} & 5\\ \hline \alpha \text{-}Zn_3\text{Bi}_2(\text{SCN})_{12}\\ 1311.03\\ \text{Monoclinic}\\ C2/c\\ \text{orange}\\ 4\\ \text{Mo K}_{\alpha}\\ 109\\ 26.3104 \ (4)\\ 8.4587 \ (1)\\ 15.7403 \ (3)\\ 90\\ 93.630\\ 90\\ 3496.00 \ (9)\\ 7507\\ 3975 \end{array}$             | $\begin{array}{c} 6 \\ \beta\text{-Zn}_3\text{Bi}_2(\text{SCN})_{12} \\ 1311.03 \\ \text{Monoclinic} \\ P2_1/c \\ \text{orange} \\ 4 \\ \text{Mo K}_{\alpha} \\ 180 \\ 17.7331 (6) \\ 13.6501 (4) \\ 16.4375 (4) \\ 90 \\ 114.3971 (12) \\ 90 \\ 3623.55 (19) \\ 12934 \\ 7822 \end{array}$                           |
| Compound<br>Formula<br>Molar mass<br>Crystal System<br>Space Group<br>Crystal Colour<br>Z<br>Radiation<br>Temperature (K)<br>a (Å)<br>b (Å)<br>c (Å)<br>$\alpha$ (Å)<br>$\beta$ (Å)<br>$\gamma$ (Å)<br>$\gamma$ (Å)<br>Weasured reflections<br>Independent reflections<br>$R_{int}$                                                                                                                                                                                                                                                                                                                                                                                                                                | Co₅Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH₄ ·<br>3<br>dark<br>11.9<br>11.9<br>8.4<br>83.<br>76.<br>85.<br>2529.             | $\begin{array}{c c} 3 \\ \hline 16 \ \mathrm{H_2O} & \mathrm{Ni}_{\mathrm{s}} \\ \hline 3438.91 \\ \hline \mathrm{Triclinic} \\ P\overline{1} \\ \mathrm{orange} \\ 1 \\ \mathrm{Cu} \ \mathrm{K}_{\alpha} \\ 120 \\ \mathrm{r106} \ (3) \\ 382 \ (3) \\ .250 \ (5) \\ 935 \ (2) \\ 504 \ (2) \\ .384 \ (2) \\ .04 \ (12) \\ .37154 \\ .9921 \\ 0.047 \\ \end{array}$            | ₅Bi <sub>6</sub> (SCN             | $\begin{array}{c} & {\color{black} 4} \\ {\color{black} 4} \\ {\color{black} 1} \\ {\color{black} 3} \\ {\color{black} 3} \\ {\color{black} 3} \\ {\color{black} 1} \\ {\color{black} 1}$  | $\begin{array}{c} & 5\\ \hline \alpha \text{-}Zn_3\text{Bi}_2(\text{SCN})_{12}\\ 1311.03\\ \text{Monoclinic}\\ C2/c\\ \text{orange}\\ 4\\ \text{Mo K}_{\alpha}\\ 109\\ 26.3104 (4)\\ 8.4587 (1)\\ 15.7403 (3)\\ 90\\ 93.630\\ 90\\ 3496.00 (9)\\ 7507\\ 3975\\ 0.029\\ \end{array}$           | $\begin{array}{c} 6 \\ \beta\text{-Zn}_3\text{Bi}_2(\text{SCN})_{12} \\ 1311.03 \\ \text{Monoclinic} \\ P2_1/c \\ \text{orange} \\ 4 \\ \text{Mo K}_{\alpha} \\ 180 \\ 17.7331 (6) \\ 13.6501 (4) \\ 16.4375 (4) \\ 90 \\ 114.3971 (12) \\ 90 \\ 3623.55 (19) \\ 12934 \\ 7822 \\ 0.052 \end{array}$                  |
| CompoundFormulaMolar massCrystal SystemSpace GroupCrystal ColourZRadiationTemperature (K) $a$ (Å) $b$ (Å) $c$ (Å) $\alpha$ (Å) $\beta$ (Å) $\gamma$ (Å) $V$ (Å <sup>3</sup> )Measured reflectionsIndependent reflections $R_{int}$ $R[F^2 > 2\sigma(F^2)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Co₅Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH <sub>4</sub> .<br>3<br>dark<br>11.9<br>11.9<br>8.4<br>83.<br>76.<br>85.<br>2529. | $\begin{array}{c c} 3 \\ \hline 16 \ \mathrm{H_2O} & \mathrm{Ni}_{\mathrm{s}} \\ \hline 3438.91 \\ \hline \mathrm{Triclinic} \\ P\overline{1} \\ \mathrm{orange} \\ 1 \\ \mathrm{Cu} \ \mathrm{K}_{\alpha} \\ 120 \\ \mathrm{old} \ (3) \\ \hline 382 \ (3) \\ 250 \ (5) \\ 935 \ (2) \\ 504 \ (2) \\ 37154 \\ 9921 \\ 0.047 \\ 0.031 \\ \end{array}$                            | ₅Bi <sub>6</sub> (SCN             | $\begin{array}{c} & {\color{black} 4} \\ {\color{black} 4} \\ {\color{black} 1} \\ {\color{black} 3} \\ {\color{black} 3} \\ {\color{black} 3} \\ {\color{black} 1} \\ {\color{black} 1}$  | $\begin{array}{c} & 5\\ \hline \alpha \text{-}Zn_3Bi_2(\text{SCN})_{12}\\ 1311.03\\ \text{Monoclinic}\\ & C2/c\\ \text{orange}\\ 4\\ \text{Mo K}_{\alpha}\\ 109\\ 26.3104 (4)\\ 8.4587 (1)\\ 15.7403 (3)\\ 90\\ 93.630\\ 90\\ 3496.00 (9)\\ 7507\\ 3975\\ 0.029\\ 0.026\\ \end{array}$        | $\begin{array}{c} 6 \\ \beta\text{-Zn}_3\text{Bi}_2(\text{SCN})_{12} \\ 1311.03 \\ \text{Monoclinic} \\ P2_1/c \\ \text{orange} \\ 4 \\ \text{Mo K}_{\alpha} \\ 180 \\ 17.7331 (6) \\ 13.6501 (4) \\ 16.4375 (4) \\ 90 \\ 114.3971 (12) \\ 90 \\ 3623.55 (19) \\ 12934 \\ 7822 \\ 0.052 \\ 0.051 \end{array}$         |
| $\label{eq:compound} \hline \begin{array}{c} \mbox{Compound} \\ \hline \mbox{Formula} \\ \mbox{Molar mass} \\ \mbox{Crystal System} \\ \mbox{Space Group} \\ \mbox{Crystal Colour} \\ \hline \mbox{$Z$} \\ \hline \mbox{Radiation} \\ \hline \mbox{Temperature (K)} \\ \mbox{$a$ (Å)} \\ \mbox{$b$ (Å)$} \\ \mbox{$c$ (Å)$} \\ \mbox{$c$ (Å)$} \\ \mbox{$\alpha$ (Å)$} \\ \mbox{$\beta$ (Å)$} \\ \mbox{$\gamma$ (Å)$} \\ \mbox{$\gamma$ (Å)$} \\ \mbox{$\gamma$ (Å)$} \\ \mbox{$\gamma$ (Å)$} \\ \mbox{$V$ (Å^3)$} \\ \hline \mbox{Measured reflections} \\ \hline \mbox{Independent reflections} \\ \hline \mbox{$R_{\rm int}$} \\ \mbox{$R[F^2 > 2\sigma(F^2)]$} \\ \mbox{$S$} \\ \hline \mbox{$S$} \end{array}$ | Co₅Bi <sub>6</sub> (SCN) <sub>30</sub> 3 NH <sub>4</sub> .<br>3<br>dark<br>11.9<br>11.9<br>8.4<br>83.<br>76.<br>85.<br>2529. | $\begin{array}{c c} 3 \\ \hline 16 \ \mathrm{H_2O} & \mathrm{Ni}_{\mathrm{s}} \\ \hline 3438.91 \\ \hline \mathrm{Triclinic} \\ P\overline{1} \\ \mathrm{orange} \\ 1 \\ \mathrm{Cu} \ \mathrm{K}_{\alpha} \\ 120 \\ \mathrm{106} \ (3) \\ 382 \ (3) \\ 250 \ (5) \\ 935 \ (2) \\ 504 \ (2) \\ 384 \ (2) \\ 04 \ (12) \\ 37154 \\ 9921 \\ 0.047 \\ 0.031 \\ 1.03 \\ \end{array}$ | ₅Bi <sub>6</sub> (SCN             | $\begin{array}{c} & {\color{black} 4} \\ {\color{black} 4} \\ {\color{black} 1} \\ {\color{black} 3} \\ {\color{black} 3} \\ {\color{black} 3} \\ {\color{black} 1} \\ {\color{black} 1}$  | $\begin{array}{c} & 5\\ \hline \alpha \text{-}Zn_3Bi_2(\text{SCN})_{12}\\ 1311.03\\ \text{Monoclinic}\\ & C2/c\\ \text{orange}\\ 4\\ \text{Mo K}_{\alpha}\\ 109\\ 26.3104 (4)\\ 8.4587 (1)\\ 15.7403 (3)\\ 90\\ 93.630\\ 90\\ 3496.00 (9)\\ 7507\\ 3975\\ 0.029\\ 0.026\\ 1.07\\ \end{array}$ | $\begin{array}{c} 6 \\ \beta\text{-Zn}_3\text{Bi}_2(\text{SCN})_{12} \\ 1311.03 \\ \text{Monoclinic} \\ P2_1/c \\ \text{orange} \\ 4 \\ \text{Mo K}_{\alpha} \\ 180 \\ 17.7331 (6) \\ 13.6501 (4) \\ 16.4375 (4) \\ 90 \\ 114.3971 (12) \\ 90 \\ 3623.55 (19) \\ 12934 \\ 7822 \\ 0.052 \\ 0.051 \\ 1.05 \end{array}$ |

ESI Table 1: Summary of key crystallographic parameters for all compounds

Cu K<sub> $\alpha$ </sub>,  $\lambda = 1.54056$ Å, Mo K<sub> $\alpha$ </sub>,  $\lambda = 0.71073$ Å.

### 3 Powder X-ray Diffraction

A high-resolution synchrotron X-ray powder diffraction measurement on a ground powder of  $Zn_3Bi_2(NCS)_{12}$  was carried out at beamline 11-BM at the Advanced Photon Source (APS) using a wavelength of 0.414537 Å. The sample was loaded into a 0.8 mm diameter Kapton capillary. Rietveld refinement of the data was carried out using Topas Academic 4.1.<sup>S5, S6</sup> Lattice parameters were allowed to refine freely along with isotropic displacement parameters for Bi atoms and terms accounting for crystallite size broadening and crystallographic strain. The presence of a minor tertiary phase was modelled using independently refining peaks, which we were unable to index as a separate phase.



ESI Fig. 1: Rietveld refinement of mixed phase  $\alpha$ - and  $\beta$  Zn<sub>3</sub>Bi<sub>2</sub>(SCN)<sub>6</sub>. \* indicates the presence of an impurity peak.

## 4 ICP-OES

Inductively coupled plasma optical emission spectroscopy (ICP-OES) was recorded on a Perkin Elmer, Optima 2000 DV ICP-OES with S10 autosampler. Samples and standards were prepared with a final solution composition of 2% nitric acid. Metal content was kept below 50 mg/L for ICP measurements as at higher concentrations a precipitate would form which would not dissolve in limited volumes of acids. Found for sample **2** Bi 27.35%, Co 17.97%, Ca 0.0%, Ni 0.0% and Ti 0.0%.

# 5 STEM-EDX

Energy dispersive X-ray (EDX) spectroscopy was acquired using dark field scanning transmission electron microscopy (STEM), performed using a JEOL JEM-2100+ microscope operated at 200 kV and an Oxford Instruments XMaxN 100TLE X-ray microanalysis system. Samples were deposited onto copper grid mounted "lacey" carbon films (Agar) and the beam was condensed to areas suspended over holes of the amorphous carbon to negate the contribution to the carbon signal from the support film. Copper contributions from the grid were discounted from the analysis. The measured proportions of light atoms (C, N and O) will have contributions from the carbon film and as these measurements were carried out under high vacuum, it is likely a significant proportion of lattice water will have been lost.

| Element | Wt%   | At%   | At. Ratio | At. Ratio (calc.) |
|---------|-------|-------|-----------|-------------------|
| Bi      | 19.87 | 2.02  | 2         | 2                 |
| Co      | 9.74  | 3.51  | 3.47      | 3                 |
| S       | 20.14 | 13.32 | 13.19     | 12                |
| С       | 23.9  | 42.18 | 41.76     | 12                |
| Ν       | 21.61 | 32.71 | 33.39     | 12                |
| 0       | 4.72  | 6.25  | 6.19      | 12.67             |
| Ca      | 0.02  | 0.01  | 0.01      | 0                 |
| Ti      | 0     | 0     | 0         | 0                 |
| Ni      | 0     | 0     | 0         | 0                 |

ESI Table 2: STEM-EDX elemental ratios in sample 2



ESI Fig. 2: Representative EDX spectrum for compound 2

### 6 Diffuse Reflectance

Diffuse reflectance measurements were carried out on finely ground powdered samples, diluted to 10 wt% with BaSO<sub>4</sub> to remove effects of strong absorption, using a Varian Cary 50 UV-vis spectrometer equipped with a diffuse reflectance accessory (DRA) probe (Barrelino, Harrick Scientific) measured over the range 350–1000 nm. All measurements were performed under standard ambient conditions. The absorption onsets were determined by extrapolation from a Tauc plot, using the Tauc exponent for a direct band gap.



ESI Fig. 3: Tauc normalised diffuse reflectance data for determination of band gap 1,2,4,5 & 6



ESI Fig. 4: Diffuse reflectance spectra for compounds 1,2,4,5 & 6

### References

- (S1) M. J. Cliffe, et al., Chemical Science 10, 793 (2019).
- (S2) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.* **42**, 339 (2009).
- (S3) G. M. Sheldrick, Acta Crystallogr. A71, 3 (2015).
- (S4) G. M. Sheldrick, Acta Crystallogr. C71, 3 (2015).
- (S5) H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
- (S6) A. Coelho, J. Appl. Crystallogr. 36, 86 (2003).