Supplementary Information

Cationic indium catalysts for ring opening polymerization: Tuning reactivity with hemilabile ligands

Chatura Goonesinghe, Hootan Roshandel, Carlos Diaz, Hyuk-Joon Jung, Kudzanai Nyamayaro, Maria Ezhova, and Parisa Mehrkhodavandi*^a

Department of Chemistry, University of British Columbia, Vancouver, BC, Canada mehr@chem.ubc.ca

Table of Contents

A.	Experimental procedures	2
B.	Characterization of metal complexes and ligands in solution	8
C.	Characterization of metal complexes in the solid state	. 50
D.	Characterization of complex behavior	. 54
E.	References	. 67

A. Experimental procedures

General Considerations. Unless otherwise indicated, all air- and/or water-sensitive reactions were carried out under dry nitrogen using either an MBraun glove box or standard Schlenk line techniques. NMR spectra were recorded on a Bruker Avance 300 MHz, 400 MHz and 600 MHz spectrometers. ¹H NMR chemical shifts are reported in ppm versus residual protons in deuterated solvents as follows: δ 7.27 CDCl₃, δ 7.16 C₆D₆, δ 7.16 C₆D₅Br ¹³C{¹H} NMR chemical shifts are reported in ppm versus residual ¹³C in the solvent: δ 77.2 CDCl₃. ¹⁹F{¹H} NMR chemical shifts are reported in ppm and externally referenced to neat CFCl₃ at 0 ppm. ³¹P{¹H} NMR chemical shifts are reported in ppm and externally referenced to 85% H₃PO₄ at 0 ppm.

Diffraction measurements for X-ray crystallography were made on a Bruker X8 APEX II diffraction and a Bruker APEX DUO diffraction with graphite monochromated Mo-K α radiation. The structures were solved by direct methods and refined by full-matrix least-squares using the SHELXTL crystallographic software of Bruker-AXS. Unless specified, all non-hydrogens were refined with anisotropic displacement parameters, and all hydrogen atoms were constrained to geometrically calculated positions but were not refined.

EA CHN analysis was performed using a Carlo Erba EA1108 elemental analyzer. The elemental composition of unknown samples was determined by using a calibration factor. The calibration factor was determined by analyzing a suitable certified organic standard (OAS) of a known elemental composition.

Polymer molecular weights were determined by triple detection gel permeation chromatography (GPC-LLS) using a Waters liquid chromatograph equipped with a Water 515 HPLC pump, Waters 717 plus autosampler, Waters Styragel columns (4.6 × 300 mm) HR5E, HR4 and HR2, Water 2410 differential refractometer, Wyatt tristar miniDAWN (laser light scattering detector) and a Wyatt ViscoStar viscometer. A flow rate of 0.5 mL min⁻¹ was used and samples were dissolved in THF (2 mg mL⁻¹). Narrow molecular weight polystyrene standards were used for calibration purposes. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometric analysis of isolated polymers was performed on a Bruker Autoflex MALDI-TOF equipped with a nitrogen laser (337 nm). The accelerating potential of the Bruker instrument was 19.5 kV. The polymer samples were dissolved in tetrahydrofuran (ca. 1 g/mL). The concentration of a cationization agent, sodium trifluoroacetate, in tetrahydrofuran was 1 mM. The matrix used *trans*-[3-(4-*tert*-butylphenyl)2-methyl-2-propenylidene]malononitrile (DCTB) was at the concentration of 20 mg/mL. A sample solution was prepared by mixing polymer, matrix, and salt in a volume ratio of 5:5:1, respectively.

Materials. Solvents (THF, pentane, toluene, hexane and diethyl ether) were collected from a Solvent Purification System from Innovative Technology, Inc. whose columns were packed with activated alumina. CDCl₃ was dried over CaH₂, collected by vacuum distillation and degassed through series freeze-pump-thaw cycles. Dimethylanilinium Tetrakis(3.5a of bis(trifluoromethyl)phenyl)borate $([HNMe_2Ph][BAr^F])$ was generated by reacting dimethylanilinium chloride with sodium BAr^F in diethyl ether at room temperature for 4 h.¹ The solvent was removed under high vacuum, and addition of hexane to the residual precipitated a white solid. The white solid was isolated by vacuum filtration and dried in *vacuo* for 4 h. InCl₃ was purchased from Strem Chemicals and used without further purification. IsobutyImagnesium chloride (2.0 M in Et₂O) and dimethylanilinium chloride ([HNMe₂Ph]Cl) were purchased from Aldrich and Alfa Aesar, respectively, and used as received. *Rac*-lactide was recrystallized 3 times from dry toluene and dried under vacuum. ε -caprolactone were dried over CaH₂, distilled and stored under molecular sieves. In(^{*i*}Bu)₃ was synthesized according to a previously reported procedure.² Proligands L_{a-d} were synthesized by the modification of a previously reported procedure.³

Syntheais of proligand L_a

(±)- trans-N-(thiophen-2-ylmethyl)cyclohexane-1,2-diamine (4.38 g, 20.8 mmol) was dissolved in 50 ml of acetonitrile (ACN) and 3,5-dicumylsalicylaldehyde (7.45 g, 20.8 mmol) was added while stirring. The solution was heated under reflux for 8 hours, and the solvent was removed under reduced pressure. The residue was dissolved in a minimum amount of ethyl acetate and crystallized by slow evaporation at low temperature to yield a pale yellow solid (yield 63%). HRMS [M+H]⁺, calculated m/z = 551.3096. Found m/z = 551.3100. ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 13.23 (1H, br. s., Ar-OH), 8.33 (1H, s, -N=CH-Ar), 7.03 - 7.41 (11H, m, ArH), 7.05 (1H, s, ArH), 7.13 (1H, m,Thioph α), 6.89 (1H, m, Thioph β), 6.74 (1H, m, Thioph γ), 3.97 (1H, d, ²*J*_{H-H} = 14 Hz, -CH₂- of thiophenyl), 3.86 (1H, d, ²*J*_{H-H} = 14 Hz, -CH₂- of thiophenyl), 2.95 (1H, m, -CH- of DACH), 2.63 (1H, m, -CH- of DACH), 1.02 - 1.74 (17H, m, -CH₂- of DACH and -CH₃ of cumyl), ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 165.7 (N=CH-Ar), 157.8 (Ar C), 150.9 (Ar C), 139.8 (Ar C), 129.2 (Ar C-H), 128.2 (Ar C-H), 128.1 (Ar C-H), 126.9 (Ar C-H), 125.0 (Ar C-H), 124.3 (Thioph α), 126.8 (Thioph β), 125.2 (Thioph γ), 74.4 (C-H of DACH), 59.5 (C-H of DACH), 42.8 (-CH₂- of thiophenyl) 31.1 (-CH₃ of cumyl), 30.0 (-CH₃ of cumyl), 29.3 (-CH₃ of cumyl).

Synthesis of proligand L_b

(±)- trans-N-(furan-2-ylmethyl)cyclohexane-1,2-diamine (6.28 g, 32.3 mmol) was dissolved in 100 ml of acetonitrile (ACN) and 3,5-dicumylsalicylaldehyde (11.6 g, 32.3 mmol) was added while stirring. The solution was heated under reflux for 8 hours, and the solvent was removed under reduced pressure. The residue was dissolved in a minimum amount of hot hexane and crystallized by slow evaporation at low temperature to yield a yellow solid (yield 61%). HRMS $[M+H]^+$, calculated m/z = 535.3325. Found m/z = 535.3334. ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 13.22 (1H, br. s., Ar-OH), 8.35 (1H, s, -N=CH-Ar), 7.02 - 7.43 (11H, m, ArH), 7.07 (1H, s, ArH), 7.16 (1H, m, furan α), 6.24 (1H, m, furan β), 5.98 (1H, m, furan γ), 3.73 (1H, d, ²J_{H-H} = 15 Hz, -CH₂- of furfuryl), 3.69 (1H, d, ²J_{H-H} = 15 Hz, -CH₂- of furfuryl), 2.95 (1H, m, -CH- of DACH), 2.57 (1H, m, -CH- of DACH), 1.06 – 2.12 (17H, m, -CH₂- of DACH and -CH₃ of cumyl), ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 165.8 (N=CH-Ar), 157.8 (Ar C), 153.8 (Ar C), 150.8 (Ar C), 139.8 (Ar C), 136.2 (Ar C), 142.0 (Ar C-H), 128.2 (Ar C-H), 128.1 (Ar C-H), 126.9 (Ar C-H), 125.2 (Furan α), 110.1 (Furan β), 107.0 (Furan γ), 74.2 (C-H of DACH), 59.3 (C-H of DACH), 43.1 (-CH₂- of furfuryl), 31.1 (-CH₃ of cumyl), 29.8 (-CH₃ of cumyl), 29.2 (-CH₃ of cumyl).

Synthesis of proligand L_c

(±)- trans-N-(pyridin-2-ylmethyl)cyclohexane-1,2-diamine (7.54 g, 36.8 mmol) was dissolved in 100 ml of acetonitrile (ACN) and 3,5-dicumylsalicylaldehyde (13.2 g, 36.8 mmol) was added while stirring. The solution was heated under reflux for 8 hours, and the solvent was removed under reduced pressure. The residue was dissolved in a minimum amount of hot pentane and crystallized by slow evaporation at low temperature to yield a bright yellow solid (yield 64%). HRMS $[M+H]^+$, calculated m/z = 546.3484. Found m/z = 546.3483. ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.37 (1H, s, -N=CH-Ar), 7.03 - 7.41 (12H, m, ArH),

7.42 (1H, m,Pyr. α), 7.08 (1H, m, Pyr β), 8.25 (1H, m, Pyr γ), 7.01 (1H, m, Pyr δ), 3.88 (1H, d, ${}^{2}J_{H-H}$ = 15 Hz, -CH₂- of pyridyl), 3.82 (1H, d, ${}^{2}J_{H-H}$ = 15 Hz, -CH₂- of pyridyl), 3.05 (1H, m, -CH- of DACH), 2.52 (1H, m, -CH- of DACH), 1.09 – 2.14 (20H, m, -CH₂- of DACH and -CH₃ of cumyl), ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 165.3 (N=CH-Ar), 159.7 (Ar C), 157.6 (Ar C), 150.8 (Ar C), 139.6 (Ar C), 128.9 (Ar C-H), 126.7 (Ar C-H), 125.6 (Ar C-H), 125.1 (Ar C-H), 136.3 (Pyr α), 127.9 (Pyr β), 149.2 (Pyr γ), 122.0 (Pyr δ), 74.4 (C-H of DACH), 59.5 (C-H of DACH), 51.8 (-CH₂- of pyridyl), 30.9 (-CH₃ of cumyl), 30.1 (-CH₃ of cumyl).

Synthesis of proligand L_d

(±)- trans-N-benzylcyclohexane-1,2-diamine (5.62 g, 27.4 mmol) was dissolved in 100 ml of acetonitrile (ACN) and 3,5-dicumylsalicylaldehyde (9.83 g, 27.4 mmol) was added while stirring. The solution was heated under reflux for 8 hours, and the solvent was removed under reduced pressure. The residue was dissolved in a minimum amount of pentane and crystallized by slow evaporation at low temperature to yield a bright yellow solid (yield 71%). HRMS [M+H]⁺, calculated m/z = 545.3532. Found m/z = 545.3543.¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.35 (1H, s, -N=CH-Ar), 7.03 - 7.45 (17H, m, ArH, 3.81 (1H, d, ²J_{H-H} = 14 Hz, -CH₂- of benzyl), 3.61 (1H, d, ²J_{H-H} = 14 Hz, -CH₂- of benzyl), 3.61 (1H, d, ²J_{H-H} = 14 Hz, -CH₂- of benzyl), 2.97 (1H, m, -CH- of DACH), 2.61 (1H, m, -CH- of DACH), 1.00 – 2.24 (20H, m, -CH₂- of DACH and -CH₃ of cumyl), ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 165.6 (N=CH-Ar), 157.8 (Ar C), 150.7 (Ar C), 140.4 (Ar C), 139.7 (Ar C), 136.0 (Ar C), 129.1 (Ar C-H), 128.5 (Ar C-H), 127.9 (Ar C-H), 126.7 (Ar C-H), 125.6 (Ar C-H), 125.0 (Ar C-H), 74.2 (C-H of DACH), 59.8 (C-H of DACH), 50.9 (-CH₂- of benzyl), 30.9 (-CH₃ of cumyl), 29.7 (-CH₃ of cumyl), 29.2 (-CH₃ of cumyl).

Synthesis of complex 1a

A 20 mL scintillation vial was charged with proligand L_a (186 mg, 0.345 mmol) in hexane (5 ml). triisobutylindium, In(CH₂CH(CH₃)₂)₃ (100 mg, 0.345 mmol) was added to the stirring mixture. The reaction mixture was stirred for 4 h at room temperature. The concentrated in vacuo, the residue was cooled to -30 °C give yellow crystals. The solid was washed with hexane (3 × 3 mL) and dried under high vacuum for 4 hours. (Yield 94%) Anal. Calcd. For C₄₄H₅₉InN₂OS: C 67.84; H 7.65; N 3.60. Found: C 67.56; H 7.55; N 3.70.¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.02 (1H, s, -N=CH-Ar), 7.10 - 7.32 (11H, m, ArH), 7.18 (1H, m,Thioph α), 6.93 (1H, m, Thioph β), 6.86 (1H, m, Thioph γ), 6.79 (1H, s, ArH), 3.96 (1H, dd, ²*J*_{H-H}=7, 15 Hz, -CH₂- of thiophenyl), 3.69 (1H, d, ²*J*_{H-H}=7, 15 Hz, -CH₂- of thiophenyl), 3.69 (1H, d, ²*J*_{H-H}=7, 15 Hz, -CH₂- of DACH, -CH₃ of cumyl and -CH- of ⁱBu), 0.84 (6H, d, ³*J*_{H-H}=6 Hz, -CH₃ of ⁱBu), 0.75 (6H, d, ³*J*_{H-H}=6 Hz, -CH₃ of ⁱBu), 0.47 (2H, d, ³*J*_{H-H}=7 Hz, -CH₂- of ⁱBu), 0.24 (2H, d, ³*J*_{H-H}=7 Hz, -CH₂- of ⁱBu), ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 171.2 (N=CH-Ar), 168.1 (Ar C), 151.8 (Ar C), 151.5 (Ar C), 143.1 (Ar C), 141.3 (Ar C), 132.0 (Ar C-H), 131.7 (Ar C-H), 127.9 (Thioph α), 127.5 (Thioph β), 125.4 (Thioph γ), 72.4 (C-H of DACH), 60.9 (C-H of DACH), 44.6 (-CH₂- of thiophenyl) 31.0 (-CH₃ of cumyl), 29.6 (-CH₃ of cumyl), 28.1 (-CH₃ of ⁱBu), 27.9 (-CH₃ of ⁱBu), 29.3 (-CH₂- of ⁱBu).

Synthesis of complex 1b

Complex **1b** was generated using a similar procedure to complex **1a** (187 mg of L_b, 0.350 mmol, yield=95%). Anal. Calcd. For C₄₄H₅₉InN₂O₂: C 69.27; H 7.81; N 3.67. Found: C 69.10; H 7.69; N 3.64.¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.06 (1H, s, -N=CH-Ar), 7.02 - 7.36 (11H, m, ArH), 7.34 (1H, m, Furan α), 6.80 (1H, ArH), 6.28 (1H, m, Furan β), 6.14 (1H, m, Furan γ), 3.81 (1H, dd, ²*J*_{H-H}=6, 14 Hz, -CH₂- of furfuryl), 3.71 (1H, d, ²*J*_{H-H}=6, 14 Hz, -CH₂- of furfuryl), 2.94 (1H, m, -CH- of DACH), 2.58 (1H, m, -CH₂- of DACH, -CH₃ of cumyl and -CH- of ^{*i*}Bu), 0.88 (6H, m, -CH₃

of ^{*i*}Bu), 0.74 (6H, m, -CH₃ of ^{*i*}Bu), 0.50 (2H, m, -CH₂- of ^{*i*}Bu), 0.11 (2H, m, -CH₂- of ^{*i*}Bu), ${}^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃) δ 171.7 (N=CH-Ar), 168.8 (Ar C), 152.9 (Ar C), 151 (Ar C), 152.0 (Ar C), 151.8 (Ar C), 142.3 (Furan α), 141.5 (Ar C), 132.2 (Ar C-H), 131.8 (Ar C-H), 128.2 (Ar C-H), 127.8 (Ar C-H), 127.1 (Ar C-H), 124.6 (Ar C-H), 110.8 (Furan β), 107.8 (Furan γ), 70.6 (C-H of DACH), 61.1 (C-H of DACH), 42.5(-CH₂- of furfuryl) 31.1 (-CH₃ of cumyl), 29.8 (-CH₃ of cumyl), 29.5 (-CH₃ of cumyl), 28.5 (-CH₃ of ^{*i*}Bu), 28.4(-CH₃ of ^{*i*}Bu), 28.9 (-CH₂- of ^{*i*}Bu), 29.4 (-CH₂- of ^{*i*}Bu).

Synthesis of complex 1c

Complex **1c** was generated using a similar procedure to complex **1a** (191 mg of L_c, 0.350 mmol, yield=95%). Anal. Calcd. For C₄₅H₆₀InN₃O: C 68.83; H 7.83; N 5.43. Found: C 69.87; H 7.61; N 5.70.¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.52 (1H, m, Pyr γ), 8.11 (1H, s, -N=CH-Ar), 7.09 - 7.35 (11H, m, ArH), 7.61 (1H, m, Pyr α), 7.16 (1H, m, Pyr δ), 7.03 (1H, m, Pyr β), 6.79 (1H, ArH), 3.84 (2H, m, -CH₂- of pyridyl), 3.01 (1H, m, -CH- of DACH), 2.63 (1H, m, -CH- of DACH), 0.93 – 2.18 (17H, m, -CH₂- of DACH, -CH₃ of cumyl and -CH- of ^{*i*}Bu), 0.88 (6H, m, -CH₃ of ^{*i*}Bu), 0.60 (6H, m, -CH₃ of ^{*i*}Bu), 0.52 (2H, m, -CH₂- of ^{*i*}Bu), -0.07 (2H, m, -CH₂- of ^{*i*}Bu), ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 171.3 (N=CH-Ar), 169.3 (Ar C), 158.4 (Ar C), 151 (Ar C), 152.0 (Ar C), 142.3 (Pyr γ), 141.3 (Ar C), 136.6 (Pyr α), 131.9 (Ar C-H), 131.4 (Ar C-H), 128.0 (Ar C-H), 127.1 (Ar C-H), 125.4 (Pyr δ), 124.4 (Pyr β), 68.4 (C-H of DACH), 61.5 (C-H of DACH), 49.5 (-CH₂- of pyridyl) 31.0 (-CH₃ of cumyl), 29.9 (-CH₃ of cumyl), 29.0 (-CH₃ of cumyl), 28.3 (-CH₃ of ^{*i*}Bu), 27.9(-CH₃ of ^{*i*}Bu), 28.2 (-CH₂- of ^{*i*}Bu), 28.1 (-CH₂- of ^{*i*}Bu).

Synthesis of complex 1d

Complex **1d** was generated using a similar procedure to complex **1a** (191 mg of L_d, 0.350 mmol, yield=96%). Anal. Calcd. For C₄₆H₆₁InN₂O: C 71.48; H 7.97; N 3.63. Found: C 71.74; H 7.99; N 3.57.¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.85 (1H, s, -N=CH-Ar), 6.80 - 7.20 (11H, m, ArH), 6.61 (1H, m, ArH), 3.61 (1H, dd, ²J_{H-H}=7, 13 Hz -CH₂- of benzyl), 3.50 (1H, dd, ²J_{H-H}=7, 13 Hz -CH₂- of benzyl), 2.75 (1H, m, -CH- of DACH), 2.41 (1H, m, -CH- of DACH), 0.77 - 2.13 (17H, m, -CH₂- of DACH, -CH₃ of cumyl and -CH- of ^{*i*}Bu), 0.68 (6H, d, ³J_{H-H}=7 Hz, -CH₃ of ^{*i*}Bu), 0.53 (6H, d, ³J_{H-H}=7 Hz, -CH₃ of ^{*i*}Bu), 0.32 (2H, d, ³J_{H-H}=7 Hz, -CH₂- of ^{*i*}Bu), -0.01 (2H, d, ³J_{H-H}=7 Hz, -CH₂- of ^{*i*}Bu), ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 171.0 (N=CH-Ar), 168.2 (Ar C), 151.7 (Ar C), 151.5 (Ar C), 141.2 (Ar C), 139.8 (Ar C), 132.0 (Ar C-H), 131.5 (Ar C-H), 128.7 (Ar C-H), 127.9 (Ar C-H), 124.4 (Ar C-H), 71.7 (C-H of DACH), 61.1 (C-H of DACH), 50.1 (-CH₂- of benzyl) 30.9(-CH₃ of cumyl), 29.4 (-CH₃ of cumyl), 29.5 (-CH₃ of cumyl), 27.8 (-CH₃ of ^{*i*}Bu), 28.1 (-CH₃ of ^{*i*}Bu), 29.4 (-CH₂- of ^{*i*}Bu).

Synthesis of complex 2a

A 20 mL scintillation vial was charged with **1a** (200 mg, 0.257 mmol) in C₆H₆ (3 ml). [HNMe₂Ph][BAr^F₂₄] (253 mg, 0.266 mmol) in C₆H₆ (2 ml) was added to the stirring solution of **1a**. The reaction mixture was stirred for 4 h at r.t. The solvent was removed in vacuo to obtain a yellow residue and cold hexane (3 ml) was added to the residue. After stirring for 1 h, the supernatant was decanted off to remove the byproduct NMe₂Ph. This step was repeated at least 3 times until a pale-yellow solid precipitate formed. The product was washed with hexane (2 × 3 ml) and dried under high vacuum for a few hours. (70%). Anal. Calcd. For C₇₂H₆₂BF₂₄InN₂OS: C 54.79; H 4.10; N 1.75. Found: C 55.16; H 4.57; N 2.02. ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.22 (1H, s, -N=CH-Ar), 7.76 (8H, br. s., *ortho* H of BAr^F), 7.62 (1H, m, ArH), 7.57 (4H, br. s., *para* H of BAr^F), 6.94 - 7.42 (14H, m, ArH), 7.36 (1H, m, Thioph α), 7.05 (1H, m, Thioph β), 6.86 (1H, m, Thioph γ), 4.38 (1H, d, ²J_{H-H}=13 Hz, -CH₂- of thiophenyl), 3.75 (1H, m, -CH₂- of DACH), 2.29 (1H, m, -CH₂- of DACH), 0.83 - 2.04 (16H, m, -CH₂- of DACH, -CH₃ of cumyl and -CH- of ⁱBu), 0.66 (6H, m, -CH₃ of ⁱBu), 0.73 (2H, m, -CH₂- of ⁱBu), ¹³C {¹H} NMR (101 MHz, CDCl₃)

δ 169.3 (N=CH-Ar), 163.9 (Ar C), 161.3-162.4 (B-C), 151.7 (Ar C), 150.0 (Ar C), 141.8 (Ar C), 140.2 (Ar C), 138.8 (Ar C), 134.9 (*ortho* C-H of BAr^F), 134.4 (ArC-H), 131.7 (ArC-H), 130.9 (ArC-H), 129.6 (Thioph γ), 128.6-129.4 (qq, ${}^{2}J_{C-F}$ = 3, 32 Hz, *meta* C of BAr^F), 127.4,125.6,123.8,121.9 (q, ${}^{1}J_{C-F}$ = 273 Hz, -CF₃), 128.8 Thioph β), 128.3 (Thioph α), 118.1 (Ar C), 117.6 (*para* C-H of BAr^F), 65.5 (C-H of DACH), 62.6 (C-H of DACH), 46.6 (-CH₂- of furfuryl) 32.2 (-CH₂- of ⁱBu), 30.7 (-CH₃ of cumyl), 30.8 (-CH₃ of cumyl), 28.7 (-CH₃ of cumyl), 27.6 (-CH₃ of ⁱBu), ¹⁹F{¹H} NMR (282 MHz, CDCl₃): δ -61.9.

Synthesis of complex 2b

Complex **2b** was generated using a similar procedure to complex **2a** (200 mg of **1b**, 0.262 mmol, yield=75%). Anal. Calcd. For $C_{72}H_{62}BF_{24}InN_2O_2$: C 55.35; H 4.15; N 1.77. Found: C 54.86; H 4.18; N 1.89.¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.19 (1H, s, -N=CH-Ar), 7.71 (8H, br. s., *ortho* H of BAr^F), 7.62 (1H, m, ArH), 7.53 (4H, br. s., *para* H of BAr^F), 6.90 - 7.36 (12H, m, ArH), 6.21 (1H, m, Furan α), 6.14 (1H, m, Furan β), 6.13 (1H, m, Furan γ), 4.03 (1H, d, ²J_{H-H}=15 Hz, -CH₂- of furfuryl), 3.80 (1H, m, -CH₂- of furfuryl), 3.12 (1H, m, -CH- of DACH), 2.33 (1H, m, -CH- of DACH), 0.85 – 2.29 (19H, m, -CH₂- of furfuryl), 3.12 (1H, m, -CH- of DACH), 2.33 (1H, m, -CH- of DACH), 0.85 – 2.29 (19H, m, -CH₂- of DACH, -CH₃ of cumyl, -CH- of ^{*i*}Bu and -CH₂- of ^{*i*}Bu), 0.83 (6H, m, -CH₃ of ^{*i*}Bu), ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 170.7 (N=CH-Ar), 165.7 (Ar C), 161.2-162.4 (B-C), 150.0 (Ar C), 146.1 (Furan δ), 144.2.0 (Furan γ), 141.5 (Ar C), 139.4 (Ar C), 134.9 (*ortho* C-H of BAr^F), 134.8 (ArC-H), 132.4 (ArC-H), 128.7-129.4 (qq, ²J_{C-F} = 3, 32 Hz, *meta* C of BAr^F), 127.4,125.6,123.8,121.9 (q, ¹J_{C-F} = 273 Hz, -CF₃), 126.2 (Ar C-H), 125.5 (Ar C-H), 122.0 (Ar C), 117.6 (*para* C-H of BAr^F), 117.3 (Ar C),112.3 (Furan β), 110.9 (Furan α), 64.7 (C-H of DACH), 61.6 (C-H of DACH), 42.5 (-CH₂- of furfuryl) 31.3 (-CH₃ of cumyl), 30.9 (-CH₃ of cumyl), 30.8 (-CH₂- of DACH), 30.3 (-CH₂- of ^{*i*}Bu), 28.4 (-CH₃ of cumyl), 27.9 (-CH₂- of DACH), 27.8 (-CH₃ of ^{*i*}Bu), 23.9 (-CH₂- of DACH), 23.5 (-CH- of ^{*i*}Bu), ¹⁹F {¹H} NMR (282 MHz, CDCl₃): δ -62.0.

Synthesis of complex 2c

Complex **2c** was generated using a similar procedure to complex **2a** (200 mg of **1c**, 0.259 mmol, yield=86%). Anal. Calcd. For C₇₃H₆₃BF₂₄InN₃O: C 55.72; H 4.18; N 2.64. Found: C 55.60; H 4.28; N 2.82.¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.20 (1H, s, -N=CH-Ar), 7.76 (9H, br. s., *ortho* H of BAr^F and Pyr γ), 7.61 (1H, m, ArH), 7.54 (4H, br. s., *para* H of BAr^F), 7.19 - 7.39 (10H, m, ArH), 7.16 (1H, m, Pyr α), 7.10 (1H, m, Pyr δ), 6.95 (2H, m, Pyr β and ArH), 4.02 (2H, m, -CH₂- of pyridyl), 3.12 (1H, m, -CH₂- of thiophenyl), 3.17 (1H, m, -CH- of DACH), 0.95 – 2.56 (20H, m, -CH₂- of DACH, -CH₃ of cumyl, -CH- of ⁱBu and -CH₂- of ⁱBu), 0.87 (6H, m, -CH₃ of ⁱBu), ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 171.0 (N=CH-Ar), 167.1 (Ar C), 161.8 (B-C), 152.2 (Ar C), 152.1 (Ar C), 150.0 (Pyr β), 149.9 (Ar C), 141.9 (Pyr γ), 135.1 (*ortho* C-H of BAr^F), 134.2 (ArC-H), 132.8 (Pyr δ), 128.7-129.4 (qq, ²*J*_{C-F} = 3, 32 Hz, *meta* C of BAr^F), 127.4,125.6,123.8,121.9 (q, ¹*J*_{C-F} = 273 Hz, -CF₃), 126.2 (Ar C-H), 125.5 (Ar C-H), 124.0 (Pyr α), 117.6 (*para* C-H of BAr^F), 64.2 (C-H of DACH), 60.6 (C-H of DACH), 47.3 (-CH₂- of pyridyl) 33.8 (-CH₃ of cumyl), 30.9 (-CH₃ of cumyl), 25.9 (-CH₃ of cumyl), 27.8 (-CH₃ of ⁱBu), 27.3 (-CH₂- of ⁱBu), ¹⁹F {¹H} NMR (282 MHz, CDCl₃): δ -61.8.

Synthesis of complex 2d

Complex **2d** was generated using a similar procedure to complex **2a** but was obtained in a mixture of decomposition products and could not be purified. Synthesis of **2d** in THF at -30 °C resulted in less decomposition products. However, **2d** could not be isolated. Anal. Calcd. For $C_{74}H_{64}BF_{24}InN_2O$: C 56.70; H 4.20; N 1.70. Found: C 55.10; H 4.50; N 1.71.¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.36 (1H, s, -N=CH-Ar), 7.70 (8H, br. s., *ortho H* of BAr^F), 7.52 (4H, br. s., *para H* of BAr^F), 7.07 - 7.45 (14H, m, ArH), 4.17 (1H, m, -CH₂- of benzyl), 3.98 (1H, m, -CH₂- of benzyl), 3.76 (-CH₂-of THF), 3.50 (1H, m, -CH-of

DACH), 3.14 (1H, m, -CH- of DACH), -0.22 – 2.31 (24H, m, -CH₂- of DACH, -CH₃ of cumyl, -CH- of ^{*i*}Bu, -CH₂- of ^{*i*}Bu and -CH₃ of ^{*i*}Bu).

Representative polymerization of epoxides using cationic complexes (2a)

A 7 mL scintillation vial was charged with a solution of complex **2a** (19.0 mg, 0.012 mmol) in 0.3 ml of C_6D_6 . Epichlorohydrin (0.30 mL, 3.8 mmol) was added directly to the vial by a syringe. The mixture was stirred at 25 °C for 24 h. The resulting solution was concentrated under vacuum for 3 h and then cold methanol was added to it (0 °C, 15 mL). The polymer precipitated from solution and was isolated by decantation or centrifugation. The isolated polymer was dried under high vacuum for at least 3 h prior to analysis.

Representative polymerization of ϵ -CL using cationic complexes (2b)

A 20 ml scintillation vial was charged with a solution of complex **2b** (20.0 mg, 0.013 mmol) in 0.5 ml of toluene. A solution of ε -CL (0.5 ml, 4.5 mmol) in 0.5 ml of toluene was added to the vial. The mixture was stirred at 100 °C for 24 h. The resulting solution was concentrated under vacuum for 3 h and then cold methanol was slowly added to the vial (0 °C, 15 mL). The polymer precipitated from the solution and was isolated by decantation of the supernatant. The isolated polymer was dried under high vacuum for at least 3 h prior to analysis.

Representative polymerization of *rac*-LA using cationic complexes (2c)

A 20 ml scintillation vial was charged with a solution of complex 2c (10.1 mg, 0.006 mmol) in 1 ml of toluene. *Rac*-LA (230 mg, 1.6 mmol) was directly added to the vial. The mixture was stirred at 100 °C for 24 h. The resulting solution was concentrated under vacuum for 3 h and then cold methanol was slowly added to the vial (0 °C, 15 mL). The polymer precipitated from the solution and was isolated by decantation of the supernatant. The isolated polymer was dried under high vacuum for at least 3 h prior to analysis.

Complex	2a	2b	2c	2d
Pendant group donor strength $(D_s)^4$	endant group donor trength $(D_s)^4$ 11 10 33		33	38
Synthesis	Ambient	Ambient	Ambient temperature	-30 °C
temperature	temperature	temperature		
Synthesis solvents	THF, DCM, C ₆ D ₆	THF, DCM, C ₆ D ₆	THF, DCM, C ₆ D ₆	THF
Shelf life*	~48 h at r.t.	Stable up to	Stable up to 10	~20 mins at r.t.
	~ 2 weeks at -	10 weeks at	weeks at r.t.	$\sim 1 \text{ day at -}30$
	30 °C	r.t.	Up to 10 days	°C
			exposed to moist air	

|--|

*Stored under dry N₂ unless otherwise stated.

B. Characterization of metal complexes and ligands in solution

Figure S1 ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of L_a.

Figure S2 ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, CDCl₃, 25 °C) of L_a.

Figure S3 2D ¹H-¹H COSY NMR spectrum (400 MHz, CDCl₃, 25 °C) of L_a.

Figure S4 1 H- 13 C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl₃, 25 ${}^{\circ}$ C) of L_a.

Figure S5 ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of L_b

Figure S6 ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, CDCl₃, 25 °C) of L_b.

Figure S7 ¹H-¹H COSY NMR spectrum (400 MHz, CDCl₃, 25 °C) of L_b.

Figure S8 ¹H-¹³C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl₃, 25 °C) of L_b.

Figure S9 ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of L_c

Figure S10 ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, CDCl₃, 25 °C) of L_c.

Figure S11 ¹H-¹H COSY NMR spectrum (400 MHz, CDCl₃, 25 °C) of L_c.

Figure S12 1 H- 13 C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl₃, 25 °C) of L_c

Figure S13 1 H NMR spectrum (400 MHz, CDCl₃, 25 $^{\circ}$ C) of L_d

Figure S14 $^{13}C\{^{1}H\}$ NMR spectrum (101 MHz, CDCl₃, 25 °C) of L_d.

Figure S15 2D ¹H-¹H COSY NMR spectrum (400 MHz, CDCl₃, 25 °C) of L_d.

Figure S16 ¹H-¹³C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl₃, 25 °C) of L_d

Figure S17 $\,^1\text{H}$ NMR spectrum (400 MHz, CDCl₃, 25 °C) of 1a

Figure S18 ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃, 25 °C) of 1a

Figure S19 ¹H-¹H COSY NMR spectrum (400 MHz, CDCl₃, 25 °C) of 1a.

Figure S20 ¹H-¹³C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl₃, 25 °C) of **1a**.

Figure S21 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl₃, 25 °C) of 1a

Figure S22 ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of 1b.

Figure S23 $~^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum (101 MHz, CDCl₃, 25 °C) of 1b

Figure S24 ¹H-¹H COSY NMR spectrum (400 MHz, CDCl₃, 25 °C) of 1b

Figure S25 ¹H-¹³C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl₃, 25 °C) of **1b**.

Figure S26 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl₃, 25 °C) of 1b.

Figure S27 1 H NMR spectrum (400 MHz, CDCl₃, 25 $^{\circ}$ C) of 1c.

Figure S28 ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, CDCl₃, 25 °C) of 1c

Figure S29 ¹H-¹H COSY NMR spectrum (400 MHz, CDCl₃, 25 °C) of 1c

Figure S30 ¹H-¹³C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl₃, 25 °C) of **1c**.

Figure S31 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl₃, 25 °C) of 1c.

Figure S32 ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of 1d.

Figure S33 $~^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum (101 MHz, CDCl₃, 25 °C) of 1d

Figure S34 ¹H-¹H COSY NMR spectrum (400 MHz, CDCl₃, 25 °C) of 1d.

Figure S35 ¹H-¹³C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl₃, 25 °C) of **1d**.

Figure S36 ¹H NMR spectrum (300 MHz, CDCl₃, 25 °C) of **2a**. (Residual diethyl ether q, 3.48 and t, 1.22 ppm)

Figure S37 ¹³C{¹H} NMR spectrum (151 MHz, CDCl₃, 25 °C) of 2a

Figure S38 ¹H-¹H COSY NMR spectrum (400 MHz, CDCl₃, 25 °C) of 2a.

Figure S39 ¹H-¹³C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl₃, 25 °C) of **2a**.

Figure S40 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl₃, 25 °C) of 2a.

Figure S41 ¹H-¹³C Heteronuclear Multiple Bond Correlation (HMBC) NMR spectrum (CDCl₃, 25 °C) of **2b**.

Figure S42 ¹⁹F{¹H} NMR spectrum (282 MHz, CDCl₃, 25 °C) of 2a

Figure S43 ¹H NMR spectrum (300 MHz, CDCl₃, 25 °C) of 2b.

Figure S44 $~^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum (151 MHz, CDCl₃, 25 °C) of 2b

Figure S45 ¹H-¹H COSY NMR spectrum (400 MHz, CDCl₃, 25 °C) of 2b.

Figure S46 ¹H-¹³C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl₃, 25 °C) of **2b**.

Figure S47 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl₃, 25 °C) of **2b**.

Figure S48 ¹H-¹³C Heteronuclear Multiple Bond Correlation (HMBC) NMR spectrum (CDCl₃, 25 °C) of **2b**.

Figure S49 ¹⁹F{¹H} NMR spectrum (282 MHz, CDCl₃, 25 °C) of 2b

Figure S50 ¹H NMR spectrum (300 MHz, CDCl₃, 25 °C) of 2c

Figure S51 $^{13}C\{^{1}H\}$ NMR spectrum (151 MHz, CDCl₃, 25 °C) of 2c

Figure S52 ¹H-¹H COSY NMR spectrum (400 MHz, CDCl₃, 25 °C) of 2c.

Figure S53 ¹H-¹³C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl₃, 25 °C) of **2c**.

Figure S54 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl₃, 25 °C) of **2c**.

Figure S55 ¹⁹F{¹H} NMR spectrum (282 MHz, CDCl₃, 25 °C) of **2c**

Figure S56 ¹H NMR spectrum (300 MHz, CDCl₃, 25 °C) of 2d

C. Characterization of metal complexes in the solid state

Selected bond distance (Å) and angles (°) for complex 1a.					
Bond	In1-N1 In1-N2	2.510(3) 2.293(3)	In1-C32 In1-C36	2.165(4) 2.169(4)	
distances	In1-O1	2.205(3)		()	
Bond	O1-In1-C32A	98.0(1)	O1-In1-N1	147.4(1)	
Anglos	O1-In-C36	95.0(1)	N1-In1-C32	99.4(1)	
Aligies	C32-In1-C36	135.0(2)	N1-In1-C36	91.9(1)	
	N1-In1-N2	69.6(1)			

Figure S57 Molecular structure of complex **1a**. (depicted with thermal ellipsoids at 50% probability and H atoms, as well as solvent molecules omitted for clarity).

Selected bond distance (Å) and angles (°) for complex 1b.					
Bond distances	In1-N1 In1-N2 In1-O1	2.548(1) 2.269(2) 2.203(1)	In1-C32 In1-C36	2.178(2) 2.187(3)	
Bond Angles	O1-In1-C32A O1-In-C36 C32-In1-C36 N1-In1-N2	94.00(7) 101.95(8) 129.61(9) 70.31(6)	O1-In1-N1 N1-In1-C32 N1-In1-C36	148.60(6) 90.98(8) 98.52(8)	

Figure S58 Molecular structure of complex **1b**. (depicted with thermal ellipsoids at 50% probability and H atoms, minor disorders as well as solvent molecules omitted for clarity).

H

Selected bond distance (Å) and angles (°) for complex 1c.					
Dond	In1-N1	2.510(2)	In1-C32	2.174(2)	
distances	In1-N2	2.286(1)	In1-C36	2.170(2)	
uistances	In1-O1	2.209(2)			
Dond	O1-In1-C32A	94.72(7)	O1-In1-N1	148.01(6)	
Dullu Angles	O1-In-C36	97.68(7)	N1-In1-C32	92.82(7)	
Aligies	C32-In1-C36	135.39(8)	N1-In1-C36	98.55(7)	
	N1-In1-N2	69.95(6)			

Figure S59 Molecular structure of complex **1c**. (depicted with thermal ellipsoids at 50% probability and H atoms, as well as solvent molecules omitted for clarity).

Selected bond distance (Å) and angles (°) for complex 1d.					
Bond	In1-N1 In1-N2	2.516(2) 2.286(1)	In1-C32 In1-C36	2.170(1) 2.176(1)	
distances	In1-O1	2.206(1)	111-050	2.170(1)	
Bond	O1-In1-C32A	97.49(5)	O1-In1-N1	148.14(4)	
Angles	O1-In-C36	94.38(5)	N1-In1-C32	98.34(5)	
Aligits	C32-In1-C36	136.55(6)	N1-In1-C36	92.87(5)	
	N1-In1-N2	69.81(4)			

Figure S60 Molecular structure of complex **1d**. (depicted with thermal ellipsoids at 50% probability and H atoms, as well as solvent molecules omitted for clarity).

D. Characterization of complex behavior

Figure S61 ³¹P{¹H} NMR spectra (162 MHz, C₆D₆, 25 °C) of **1a**, **1b**, **1c** and **1d** after the addition of 0.8 equivalents of OPEt₃. The free triethylphosphine oxide shift is determined by the addition of a capillary inside the NMR tube containing a solution of triethylphosphine oxide in C₆D₆.

Figure S62 ¹H NMR spectra of **2c** before (time = 0 days) and after (time = 10 days) exposure to air for 10 days continuously. No significant changes were observed.

Figure S63 Variable temperature (VT) ¹H NMR spectra (400 MHz, C_6D_5Br , 25 to 125 °C) of **1a**. Shifts observed were reversible. C_6D_5Br is taken as a reference.

Shifts observed were reversible. C_6D_5Br is taken as a reference.

Figure S65 Variable temperature (VT) ¹H NMR spectra (400 MHz, C_6D_5Br , 25 to 85 °C) of **1c**. Shifts observed were reversible. C_6D_5Br is taken as a reference.

Figure S66 Variable temperature (VT) ¹H NMR spectra (400 MHz, C_6D_5Br , 30 to 105 °C) of **2a**. Shifts observed were irreversible. C_6D_5Br is taken as a reference.

Figure S67 Variable temperature (VT) ¹H NMR spectra (400 MHz, C₆D₅Br, 25 to 125 °C) of **2b** free ligand **L2**. Shifts observed were reversible. C₆D₅Br is taken as a reference.

Figure S68 Variable temperature (VT) ¹H NMR spectra (400 MHz, C_6D_5Br , 30 to 120 °C) of **2c**. Shifts observed were reversible. C_6D_5Br is taken as a reference.

Selected	Selected bond distance (Å) and angles (°) for complex 2b.2THF .					
Bond	In1-N1	2.468(5)	In1-O3	2.392(4)		
distance	In1-N2	2.179(5)	In1-O4	2.354(4)		
S	In1-O1	2.127(3)	In1-C32	2.128(7)		
Dond	O1-In1-C32	112.9(2)	O1-In1-N1	156.3(1)		
Angles	O3-In1-O4	166.3(1)	N1-In1-C32	90.4(2)		
Angles	N1-In1-N2	72.9(2)				

Figure S69 Molecular structures of complex **2b.2THF** (depicted with thermal ellipsoids at 50% probability and H atoms, minor disorders as well as solvent molecules omitted for clarity)

	1b	1d	1a	1c	2b.2THF
empirical formula	C44 H59 In N2 O2	C ₄₆ H ₆₁ In N ₂ O	C ₄₄ H ₅₉ In N ₂ O S	C45 H60 In N3 O	C ₈₈ H ₉₂ B F ₂₄ In N ₂ O ₆
Fw	762.75	772.78	778.81	773.78	1855.26
<i>T</i> (K)	296.15	273(2)	100	296.15	100
<i>a</i> (Å)	17.5732(15)	18.4020(6)	18.3672(15)	18.3804(16	12.616(3)
<i>b</i> (Å)	13.8493(11)	13.9008(5)	14.0583(12)	13.9887(12)	13.343(3)
<i>c</i> (Å)	18.4226(15)	18.4542(7)	17.9736(14)	18.328(2)	26.255(5)
α (deg)	90	90	90	90	80.163(3
β (deg)	117.891(2)	119.051(2)	118.8140(10)	119.839(2)	76.369(3
γ (deg)	90	90	90	90	85.869(3)
volume (Å ³)	3962.81	4126.72	4066.39	4087.71	4229.90
Ζ	4	4	4	4	2
cryst syst	monoclinic	monoclinic	monoclinic	monoclinic	triclinic
space group	$P 2_1 / c$	$P 2_1 / n$	$P 2_l/c$	$P 2_1/c$	<i>P</i> -1
$d_{\rm calc}$ (g/cm ³)	1.278	1.244	1.272	1.257	1.457
μ (Mo K α) (cm ⁻¹)	6.34	6.08	6.67	6.14	3.87
$2\theta_{\max}$ (deg)	61.3	61.2	55.8	61.0	54.6
absor corr (T_{\min} , T_{\max})	0.7005, 0.7461	0.909, 0.986	0.982, 0.997	0.6730, 0.7461	0.9887, 0.9977
total no. of reflns	63957	65464	9204	56696	18759
no. of indep reflns (R_{int})	12154 (0.0394)	12665 (0.0445)	9204 (0.0890)	12417 (0.0461)	18759(0.1605)
residuals (refined on F^2): R_1 ; wR_2	0.0523, 0887	0.0354, 0.0634	0.0773, 0.1436	0.0465, 0.0808	0.0983, 2141
GOF	1.023	1.032	1.067	1.094	1.036
no. obsrvns [$I > 2\sigma(I)$]	9858	9908	9510	9643	9841
residuals (refined on F^2 : R_1^a ; wR_2^b)	0.0524, 0.0802	0.0273, 0.0600	0.0550, 0.1339	0.0373, 0.0772	0.0794, 2047

Table S2 Selective crystal	data for 1b	b , 1d , 1a ,	1c and 2b.2THF.
----------------------------	-------------	------------------------------------	-----------------

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|.{}^{b} wR_{2} = [\Sigma (w (F_{o}{}^{2} - F_{c}{}^{2})^{2}) / \Sigma w (F_{o}{}^{2})_{2}]^{1/2}$

Figure S70 DOSY-NMR of the mixture of THF and 2a (400MHz, diffusion time (Δ) = 0.85 s, gradient length (δ) = 400 µs, C₆D₆, 25 °C).

Figure S71 DOSY-NMR of the mixture of THF and **2b** (400MHz, $\Delta = 1.2$ s, $\delta = 400 \ \mu$ s, C₆D₆, 25 °C).

Figure S72 DOSY-NMR of the mixture of THF and 2c (400MHz, $\Delta = 0.55$ s, $\delta = 400 \ \mu$ s, C₆D₆, 25 °C).

Figure S73 ¹H NMR of spectra of 2b in the presence of THF, pyridine, triethylphosphine oxide and epichlorohydrin (400 MHz in C_6D_6 at 25 °C).

Figure S74 MALDI-TOF spectrum of PLA isolated from polymerization of 250 equivalents of rac-LA with **2c** in toluene at 100 °C for 24 hours

Figure S75 ¹H{¹H} NMR spectrum (600 MHz, CDCl₃, 25 °C) of PLA as the product of the polymerization of 250 equivalents of rac-LA **2c** in toluene at 100 °C for 24 hours. The methine protons of the polymer are decoupled. ($P_m = 0.46$)

E. References

1. Jung, H. J.; Chang, C.; Yu, I.; Aluthge, D. C.; Ebrahimi, T.; Mehrkhodavandi, P., Coupling of Epoxides and Lactones by Cationic Indium Catalysts To Form Functionalized Spiro-Orthoesters. *ChemCatChem* **2018**, *10* (15), 3219-3222.

2. Beachley, O. T.; Rusinko, R. N., Preparation and properties of ((trimethylsilyl)methyl)indium(iii) compounds. *Inorg. Chem.* **1979**, *18* (7), 1966-1968.

3. Murphy, A.; Pace, A.; Stack, T. D. P., Ligand and pH influence on manganese-mediated peracetic acid epoxidation of terminal olefins. *Org. Lett.* **2004**, *6* (18), 3119-3122.

4. Sandstrom, M.; Persson, I.; Persson, P., A study of solvent electron-pair donor ability and lewis basicity scales. *Acta. Chem. Scand.* **1990**, *44* (7), 653-675.