Supplementary Information

Cationic indium catalysts for ring opening polymerization: Tuning reactivity with hemilabile ligands

Chatura Goonesinghe, Hootan Roshandel, Carlos Diaz, Hyuk-Joon Jung, Kudzanai Nyamayaro, Maria Ezhova, and Parisa Mehrkhodavandi* a

Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
mehr@chem.ubc.ca

Table of Contents

A. Experimental procedures ... 2
B. Characterization of metal complexes and ligands in solution .. 8
C. Characterization of metal complexes in the solid state ... 50
D. Characterization of complex behavior ... 54
E. References .. 67
A. Experimental procedures

General Considerations. Unless otherwise indicated, all air- and/or water-sensitive reactions were carried out under dry nitrogen using either an MBraun glove box or standard Schlenk line techniques. NMR spectra were recorded on a Bruker Avance 300 MHz, 400 MHz and 600 MHz spectrometers. 1H NMR chemical shifts are reported in ppm versus residual protons in deuterated solvents as follows: δ 7.27 CDCl$_3$, δ 7.16 C$_6$D$_6$, δ 7.16 C$_6$D$_5$Br 13C{1H} NMR chemical shifts are reported in ppm versus residual 13C in the solvent: δ 77.2 CDCl$_3$. 19F{1H} NMR chemical shifts are reported in ppm and externally referenced to neat CFCl$_3$ at 0 ppm. 31P{1H} NMR chemical shifts are reported in ppm and externally referenced to 85% H$_3$PO$_4$ at 0 ppm.

Diffraction measurements for X-ray crystallography were made on a Bruker X8 APEX II diffraction and a Bruker APEX DUO diffraction with graphite monochromated Mo-K$_\alpha$ radiation. The structures were solved by direct methods and refined by full-matrix least-squares using the SHELXTL crystallographic software of Bruker-AXS. Unless specified, all non-hydrogens were refined with anisotropic displacement parameters, and all hydrogen atoms were constrained to geometrically calculated positions but were not refined.

EA CHN analysis was performed using a Carlo Erba EA1108 elemental analyzer. The elemental composition of unknown samples was determined by using a calibration factor. The calibration factor was determined by analyzing a suitable certified organic standard (OAS) of a known elemental composition.

Polymer molecular weights were determined by triple detection gel permeation chromatography (GPC-LLS) using a Waters liquid chromatograph equipped with a Water 515 HPLC pump, Waters 717 plus autosampler, Waters Styragel columns (4.6 x 300 mm) HR5E, HR4 and HR2, Water 2410 differential refractometer, Wyatt tristar miniDAWN (laser light scattering detector) and a Wyatt ViscoStar viscometer. A flow rate of 0.5 mL min$^{-1}$ was used and samples were dissolved in THF (2 mg mL$^{-1}$). Narrow molecular weight polystyrene standards were used for calibration purposes. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometric analysis of isolated polymers was performed on a Bruker Autoflex MALDI-TOF equipped with a nitrogen laser (337 nm). The accelerating potential of the Bruker instrument was 19.5 kV. The polymer samples were dissolved in tetrahydrofuran (ca. 1 g/mL). The concentration of a cationization agent, sodium trifluoroacetate, in tetrahydrofuran was 1 mM. The matrix used was trans-[3-(4-tert-butylphenyl)2-methyl-2-propenylidene]malononitrile (DCTB) at the concentration of 20 mg/mL. A sample solution was prepared by mixing polymer, matrix, and salt in a volume ratio of 5:5:1, respectively.

Materials. Solvents (THF, pentane, toluene, hexane and diethyl ether) were collected from a Solvent Purification System from Innovative Technology, Inc. whose columns were packed with activated alumina. CDCl$_3$ was dried over CaH$_2$, collected by vacuum distillation and degassed through a series of freeze-pump-thaw cycles. Dimethylanilinium Tetrakis(3,5-bis(trifluoromethyl)phenyl)borate ([HNMe$_2$Ph][BAR$_F^8$]) was generated by reacting dimethylanilinium chloride with sodium BAR$_F^8$ in diethyl ether at room temperature for 4 h.1 The solvent was removed under high vacuum, and addition of hexane to the residual precipitated a
white solid. The white solid was isolated by vacuum filtration and dried in vacuo for 4 h. InCl₃ was purchased from Stem Chemicals and used without further purification. Isobutylmagnesium chloride (2.0 M in Et₂O) and dimethylanilinium chloride ([HNMe₂Ph]Cl) were purchased from Aldrich and Alfa Aesar, respectively, and used as received. Rac-lactide was recrystallized 3 times from dry toluene and dried under vacuum. ε-caprolactone were dried over CaH₂, distilled and stored under molecular sieves. In(Bu)₃ was synthesized according to a previously reported procedure.² Proligands Lₐ-d were synthesized by the modification of a previously reported procedure.³

Synthesis of proligand Lₐ

(±)- trans-N-(thiophen-2-ylmethyl)cyclohexane-1,2-diamine (4.38 g, 20.8 mmol) was dissolved in 50 ml of acetonitrile (ACN) and 3,5-dicumylsalicylaldehyde (7.45 g, 32.3 mmol) was added while stirring. The solution was heated under reflux for 8 hours, and the solvent was removed under reduced pressure. The residue was dissolved in a minimum amount of ethyl acetate and crystallized by slow evaporation at low temperature to yield a yellow solid (yield 63%). HRMS [M+H]⁺ calculated m/z = 551.3096. Found m/z = 551.3100. ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 13.23 (1H, br. s., Ar-OH), 8.33 (1H, s, -N=CH-Ar), 7.03 - 7.41 (11H, m, ArH), 7.05 (1H, s, ArH), 7.13 (1H, m, Thioph α), 6.89 (1H, m, Thioph β), 6.74 (1H, m, Thioph γ), 3.97 (1H, d, JH,H = 14 Hz, -CH₂ of thiophenyl), 3.86 (1H, d, JH,H = 14 Hz, -CH₂ of thiophenyl), 2.95 (1H, m, -CH- of DACH), 2.63 (1H, m, -CH- of DACH), 1.02 - 1.74 (17H, m, -CH₂ of DACH and -CH₃ of cumyl), ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 165.7 (N=CH-Ar), 157.8 (Ar C), 150.9 (Ar C), 139.8 (Ar C), 129.2 (Ar C-H), 128.2 (Ar C-H), 128.1 (Ar C-H), 126.9 (Ar C-H), 125.0 (Ar C-H), 124.3 (Thioph α), 126.8 (Thioph β), 125.2 (Thioph γ), 74.4 (C-H of DACH), 59.5 (C-H of DACH), 42.8 (-CH₂ of thiophenyl) 31.1 (-CH₃ of cumyl), 30.0 (-CH₃ of cumyl), 29.3 (-CH₃ of cumyl).

Synthesis of proligand Lₐ

(±)- trans-N-(furan-2-ylmethyl)cyclohexane-1,2-diamine (6.28 g, 32.3 mmol) was dissolved in 100 ml of acetonitrile (ACN) and 3,5-dicumylsalicylaldehyde (11.6 g, 32.3 mmol) was added while stirring. The solution was heated under reflux for 8 hours, and the solvent was removed under reduced pressure. The residue was dissolved in a minimum amount of hot hexane and crystallized by slow evaporation at low temperature to yield a yellow solid (yield 61%). HRMS [M+H]⁺ calculated m/z = 535.3325. Found m/z = 535.3334. ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 13.22 (1H, br. s., Ar-OH), 8.35 (1H, s, -N=CH-Ar), 7.02 - 7.43 (11H, m, ArH), 7.07 (1H, s, ArH), 7.16 (1H, m, furan α), 6.24 (1H, m, furan β), 5.98 (1H, m, furan γ), 3.73 (1H, d, JH,H = 15 Hz, -CH₂- of furfuryl), 3.69 (1H, d, JH,H = 15 Hz, -CH₂- of furfuryl), 2.95 (1H, m, -CH- of DACH), 2.57 (1H, m, -CH- of DACH), 1.06 - 2.12 (17H, m, -CH₂- of DACH and -CH₃ of cumyl), ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 165.8 (N=CH-Ar), 157.8 (Ar C), 153.8 (Ar C), 150.8 (Ar C), 139.8 (Ar C), 136.2 (Ar C), 142.0 (Ar C-H), 128.2 (Ar C-H), 128.1 (Ar C-H), 126.9 (Ar C-H), 125.2 (Furan β), 110.1 (Furan β), 107.0 (Furan γ), 74.2 (C-H of DACH), 59.3 (C-H of DACH), 43.1 (-CH₂- of furfuryl), 31.1 (-CH₃ of cumyl), 29.8 (-CH₃ of cumyl), 29.2 (-CH₃ of cumyl).

Synthesis of proligand Lₐ

(±)- trans-N-(pyridin-2-ylmethyl)cyclohexane-1,2-diamine (7.54 g, 36.8 mmol) was dissolved in 100 ml of acetonitrile (ACN) and 3,5-dicumylsalicylaldehyde (13.2 g, 36.8 mmol) was added while stirring. The solution was heated under reflux for 8 hours, and the solvent was removed under reduced pressure. The residue was dissolved in a minimum amount of hot pentane and crystallized by slow evaporation at low temperature to yield a bright yellow solid (yield 64%). HRMS [M+H]⁺ calculated m/z = 546.3484. Found m/z = 546.3483. ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.37 (1H, s, -N=CH-Ar), 7.03 - 7.41 (12H, m, ArH),
7.42 (1H, m, Pyr. α), 7.08 (1H, m, Pyr β), 8.25 (1H, m, Pyr γ), 7.01 (1H, m, Pyr δ), 3.88 (1H, d, \(J_{HH} = 15\) Hz, -CH₂- of pyridyl), 3.82 (1H, d, \(J_{HH} = 15\) Hz, -CH₂- of pyridyl), 3.05 (1H, m, -CH- of DACH), 2.52 (1H, m, -CH- of DACH), 1.09 – 2.14 (20H, m, -CH₂- of DACH and -CH₃ of cumyl), 13C (¹H) NMR (101 MHz, CDCl₃) δ 165.3 (N=CH-Ar), 159.7 (Ar C), 157.6 (Ar C), 150.8 (Ar C), 139.6 (Ar C), 128.9 (Ar C-H), 126.7 (Ar C-H), 125.6 (Ar C-H), 125.1 (Ar C-H), 136.3 (Pyr α), 127.9 (Pyr β), 149.2 (Pyr γ), 122.0 (Pyr δ), 74.4 (C-H of DACH), 59.5 (C-H of DACH), 51.8 (-CH₂- of pyridyl), 30.9 (-CH₃ of cumyl), 30.1 (-CH₃ of cumyl).

Synthesis of complex 1a

(±)- trans-N-benzylcyclohexane-1,2-diamine (5.62 g, 27.4 mmol) was dissolved in 100 ml of acetonitrile (ACN) and 3,5-dicumylsalicylaldehyde (9.83 g, 27.4 mmol) was added while stirring. The solution was heated under reflux for 8 hours, and the solvent was removed under reduced pressure. The residue was dissolved in a minimum amount of pentane and crystallized by slow evaporation at low temperature to yield a bright yellow solid (yield 71%). HRMS [M+H]+, calculated m/z = 545.3532. Found m/z = 545.3543.

Synthesis of complex 1b

A 20 mL scintillation vial was charged with proligand Lₐ (186 mg, 0.345 mmol) in hexane (5 ml). triisobutylindium, In(CH₃)₃ (100 mg, 0.345 mmol) was added to the stirring mixture. The reaction mixture was stirred for 4 h at room temperature. The concentrated in vacuo, the residue was cooled to -30 °C give yellow crystals. The solid was washed with hexane (3 x 3 mL) and dried under high vacuum for 4 hours. (Yield 94%) Anal. Calcd. For C₄₄H₉₀InN₂O₂: C 67.84; H 7.65; N 3.60. Found: C 67.56; H 7.55; N 3.70.¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.02 (1H, s, -N=CH-Ar), 7.10 - 7.32 (11H, m, ArH), 7.18 (1H, m, Thioph α), 6.93 (1H, m, Thioph β), 6.86 (1H, m, Thioph γ), 6.79 (1H, s, ArH), 3.96 (1H, dd, \(J_{HH} = 7\), 15 Hz, -CH₂- of thiophenyl), 3.69 (1H, d, \(J_{HH} = 7\), 15 Hz, -CH₂- of thiophenyl), 2.94 (1H, m, -CH- of DACH), 2.58 (1H, m, -CH- of DACH), 0.95 – 2.29 (20H, m, -CH₂- of DACH, -CH₃ of cumyl and -CH- of ′Bu), 0.84 (6H, d, \(J_{HH} = 6\) Hz, -CH₃ of ′Bu), 0.75 (6H, d, \(J_{HH} = 6\) Hz, -CH₃ of ′Bu), 0.47 (2H, d, \(J_{HH} = 7\) Hz, -CH₂- of ′Bu), 0.24 (2H, d, \(J_{HH} = 7\) Hz, -CH₂- of ′Bu),¹³C (¹H) NMR (101 MHz, CDCl₃) δ 171.2 (N=CH-Ar), 168.1 (Ar C), 151.8 (Ar C), 151.5 (Ar C), 143.1 (Ar C), 141.3 (Ar C), 132.0 (Ar C-H), 131.7 (Ar C-H), 127.9 (Thioph α), 127.5 (Thioph β), 125.4 (Thioph γ), 72.4 (C-H of DACH), 60.9 (C-H of DACH), 44.6 (-CH₂- of thiophenyl) 31.0 (-CH₃ of cumyl), 29.6 (-CH₃ of cumyl), 28.1 (-CH₃ of ′Bu), 27.9 (-CH₃ of ′Bu), 29.5 (-CH₂- of ′Bu), 29.3 (-CH₂- of ′Bu).

Synthesis of complex 1b

Complex 1b was generated using a similar procedure to complex 1a (187 mg of Lₐ, 0.350 mmol, yield 95%). Anal. Calcd. For C₄₄H₉₀InN₂O₂: C 69.27; H 7.81; N 3.67. Found: C 69.10; H 7.69; N 3.64.¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.06 (1H, s, -N=CH-Ar), 7.02 - 7.36 (11H, m, ArH), 7.34 (1H, m, Furan α), 6.80 (1H, ArH), 6.28 (1H, m, Furan β), 6.14 (1H, m, Furan γ), 3.81 (1H, dd, \(J_{HH} = 6\), 14 Hz, -CH₂- of furfuryl), 3.71 (1H, d, \(J_{HH} = 6\), 14 Hz, -CH₂- of furfuryl), 2.94 (1H, m, -CH- of DACH), 2.58 (1H, m, -CH- of DACH), 0.97 – 2.31 (16H, m, -CH₂- of DACH, -CH₃ of cumyl and -CH- of ′Bu), 0.88 (6H, m, -CH₃
Synthesis of complex 1c

Complex 1c was generated using a similar procedure to complex 1a (191 mg of Lc, 0.350 mmol, yield = 95%). Anal. Calcd. For C_{45}H_{60}InN_2O: C 68.83; H 7.83; N 5.43. Found: C 69.87; H 7.61; N 5.70. 1H NMR (400 MHz, CDCl_3, 25 °C) δ 8.52 (1H, m, Pyr γ), 8.11 (1H, s, -N=CH-Ar), 7.09 - 7.35 (11H, m, ArH), 7.61 (1H, m, Pyr α), 7.16 (1H, m, Pyr δ), 7.03 (1H, m, Pyr β), 6.79 (1H, ArH), 3.84 (2H, m, -CH_2- of pyridyl), 3.01 (1H, m, -CH- of DACH), 2.63 (1H, m, -CH- of DACH), 0.93 - 2.18 (17H, m, -CH_2- of DACH, -CH_3 of cumyl and -CH_2- of 'Bu), 0.88 (6H, m, -CH_3 of 'Bu), 0.60 (6H, m, -CH_2 of 'Bu), 0.52 (2H, m, -CH_2 of 'Bu), 0.07 (2H, m, -CH_2 of 'Bu), 1.13 (1H, d, J_{H,H}=7 Hz, -CH_2 of benzyl), 3.50 (1H, d, J_{H,H}=7 Hz, -CH_2 of benzyl), 2.75 (1H, m, -CH- of DACH), 2.41 (1H, m, -CH- of DACH), 0.77 - 2.13 (17H, m, -CH_2- of DACH, -CH_3 of cumyl and -CH_2 of 'Bu), 0.68 (6H, m, J_{H,H}=7 Hz, -CH_3 of 'Bu), 0.53 (6H, d, J_{H,H}=7 Hz, -CH_3 of 'Bu), 0.32 (2H, d, J_{H,H}=7 Hz, -CH_2 of 'Bu), -0.01 (2H, d, J_{H,H}=7 Hz, -CH_2 of 'Bu), 13C{1H} NMR (101 MHz, CDCl_3) δ 171.3 (N=CH-Ar), 169.3 (Ar C), 158.4 (Ar C), 151.2 (Ar C), 152.0 (Ar C), 142.3 (Pyr γ), 141.3 (Ar C), 136.6 (Pyr α), 131.9 (Ar C-H), 131.4 (Ar C-H), 128.0 (Ar C-H), 127.1 (Ar C-H), 125.4 (Pyr δ), 124.4 (Pyr β), 68.4 (C-H of DACH), 61.5 (C-H of DACH), 49.5 (-CH_2 of pyridyl) 31.0 (-CH_3 of cumyl), 29.9 (-CH_3 of cumyl), 29.0 (-CH_3 of cumyl), 28.3 (-CH_3 of 'Bu), 27.9(-CH_3 of 'Bu), 28.2 (-CH_2 of 'Bu), 28.1 (-CH_2 of 'Bu).

Synthesis of complex 2a

A 20 mL scintillation vial was charged with 1a (200 mg, 0.257 mmol) in C_6H_6 (3 ml). [HNMe_2Ph][BARF_{24}] (253 mg, 0.266 mmol) in C_6H_6 (2 ml) was added to the stirring solution of 1a. The reaction mixture was stirred for 4 h at r.t. The solvent was removed in vacuo to obtain a yellow residue and cold hexane (3 ml) was added to the residue. After stirring for 1 h, the supernatant was decanted off to remove the byproduct NMe_2Ph. This step was repeated at least 3 times until a pale-yellow solid precipitate formed. The product was washed with hexane (2 x 3 ml) and dried under high vacuum for a few hours. (70%) Anal. Calcd. For C_{72}H_{60}BF_{24}InN_2O: C 54.79; H 4.10; N 1.75. Found: C 55.16; H 4.57; N 2.02. 1H NMR (400 MHz, CDCl_3, 25 °C) δ 8.22 (1H, s, -N=CH-Ar), 7.76 (8H, br. s., ortho H of BARF), 7.62 (1H, m, ArH), 7.57 (4H, br. s., para H of BARF), 6.94 - 7.42 (14H, m, ArH), 7.36 (1H, m, Thioph α), 7.05 (1H, m, Thioph β), 6.86 (1H, m, Thioph γ), 4.38 (1H, br. s., J_{H,H}=13 Hz, -CH_2 of thiophenyl), 3.75 (1H, m, -CH_2 of thiophenyl), 3.17 (1H, m, -CH- of DACH), 2.29 (1H, m, -CH- of DACH), 0.83 - 2.04 (16H, m, -CH_2 of DACH, -CH_3 of cumyl and -CH_2 of 'Bu), 0.66 (6H, m, -CH_3 of 'Bu), 0.73 (2H, m, -CH_2 of 'Bu), 13C{1H} NMR (101 MHz, CDCl_3)
δ 169.3 (N=CH-Ar), 163.9 (Ar C), 161.3-162.4 (B-C), 151.7 (Ar C), 150.0 (Ar C), 141.8 (Ar C), 140.2 (Ar C), 138.8 (Ar C), 134.9 (ortho C-H of BArF), 134.4 (ArC=H), 131.7 (ArC-H), 130.9 (ArC-H), 129.6 (Thioph γ), 128.6-129.4 (qq, J_αF = 3, 32 Hz, meta C of BArF), 127.4,125.6,123.8,121.9 (q, J_αF = 273 Hz, -CF3), 128.8 Thioph β), 128.3 (Thioph α), 118.1 (Ar C), 117.6 (para C-H of BArF), 65.5 (C-H of DACH), 62.6 (C-H of DACH), 46.6 (-CH2- of furfuryl) 32.2 (-CH2- of 'Bu), 30.7 (-CH3 of cumyl), 30.8 (-CH3 of cumyl), 28.7 (-CH3 of cumyl), 27.6 (-CH3 of 'Bu), 19F {^1}H NMR (282 MHz, CDC13): δ -61.9.

Synthesis of complex 2b

Complex 2b was generated using a similar procedure to complex 2a (200 mg of 1b, 0.262 mmol, yield=75%). Anal. Calcd. For C72H62BF24InN2O: C 55.35; H 4.15; N 1.77. Found: C 54.86; H 4.18; N 1.89. ^1H NMR (400 MHz, CDCl3, 25 °C) δ 8.19 (1H, s, -N=CH-Ar), 7.71 (8H, br. s., ortho H of BArF), 7.62 (1H, m, ArH), 7.53 (4H, br. s., para H of BArF), 6.90 - 7.36 (12H, m, ArH), 6.21 (1H, m, Furanyl α), 6.14 (1H, m, Furanyl β), 6.13 (1H, m, Furanyl γ), 4.03 (1H, d, J_H-H=15 Hz, -CH2- of furfuryl), 3.80 (1H, m, -CH2- of furfuryl), 3.12 (1H, m, -CH- of DACH), 2.33 (1H, m, -CH- of DACH), 0.85 – 2.29 (19H, m, -CH2- of DACH, -CH3 of cumyl, -CH- of 'Bu and -CH2- of 'Bu), 0.83 (6H, m, -CH3 of 'Bu), 13C {^1}H NMR (101 MHz, CDCl3) δ 170.7 (N=CH-Ar), 165.7 (Ar C), 161.2-162.4 (B-C), 150.0 (Ar C), 146.1 (Furan δ), 144.2 (Furan γ), 141.5 (Ar C), 139.4 (Ar C), 134.9 (ortho C-H of BArF), 134.8 (ArC=H), 132.4 (ArC-H), 128.7-129.4 (qq, J_αF = 3, 32 Hz, meta C of BArF), 127.4,125.6,123.8,121.9 (q, J_αF = 273 Hz, -CF3), 126.2 (Ar C-H), 125.5 (Ar C-H), 122.0 (Ar C), 117.6 (para C-H of BArF), 117.3 (Ar C), 112.3 (Furan β), 110.9 (Furan α), 64.7 (C-H of DACH), 61.6 (C-H of DACH), 42.5 (-CH2- of furfuryl) 31.3 (-CH3 of cumyl), 30.9 (-CH3 of cumyl), 30.8 (-CH2- of DACH), 30.3 (-CH2- of 'Bu), 28.4 (-CH3 of cumyl), 27.9 (-CH2- of DACH), 27.8 (-CH3 of 'Bu), 23.9 (-CH2- of DACH), 23.5 (-CH- of 'Bu), 19F {^1}H NMR (282 MHz, CDC13): δ -62.0.

Synthesis of complex 2c

Complex 2c was generated using a similar procedure to complex 2a (200 mg of 1c, 0.259 mmol, yield=86%). Anal. Calcd. For C73H63BF24InN2O: C 55.72; H 4.18; N 2.64. Found: C 55.60; H 4.28; N 2.82. ^1H NMR (400 MHz, CDCl3, 25 °C) δ 8.20 (1H, s, -N=CH-Ar), 7.76 (9H, br. s., ortho H of BArF and Pyr γ), 7.61 (1H, m, ArH), 7.54 (4H, br. s., para H of BArF), 7.19 - 7.39 (10H, m, ArH), 7.16 (1H, m, Pyr α), 7.10 (1H, m, Pyr δ), 6.95 (2H, m, Pyr β and ArH), 4.02 (2H, m, -CH2- of pyridyl), 3.12 (1H, m, -CH2- of thiophenyl), 3.17 (1H, m, -CH- of DACH), 0.95 – 2.56 (20H, m, -CH2- of DACH, -CH3 of cumyl, -CH3 of 'Bu and -CH2- of 'Bu), 0.87 (6H, m, -CH3 of 'Bu), 13C {^1}H NMR (101 MHz, CDCl3) δ 171.0 (N=CH-Ar), 167.1 (Ar C), 161.8 (B-C), 152.2 (Ar C), 152.1 (Ar C), 150.0 (Pyr β), 149.9 (Ar C), 141.9 (Pyr γ), 135.1 (ortho C-H of BArF), 134.2 (ArC-H), 132.8 (Pyr δ), 128.7-129.4 (qq, J_αF = 3, 32 Hz, meta C of BArF), 127.4,125.6,123.8,121.9 (q, J_αF = 273 Hz, -CF3), 126.2 (Ar C-H), 125.5 (Ar C-H), 124.0 (Pyr α), 117.6 (para C-H of BArF), 64.2 (C-H of DACH), 60.6 (C-H of DACH), 47.3 (-CH2- of pyridyl) 33.8 (-CH3 of cumyl), 30.9 (-CH3 of cumyl), 25.9 (-CH3 of cumyl), 27.8 (-CH3 of 'Bu), 27.3 (-CH2- of 'Bu), 19F {^1}H NMR (282 MHz, CDC13): δ -61.8.

Synthesis of complex 2d

Complex 2d was generated using a similar procedure to complex 2a but was obtained in a mixture of decomposition products and could not be purified. Synthesis of 2d in THF at -30 °C resulted in less decomposition products. However, 2d could not be isolated. Anal. Calcd. For C74H64BF24InN2O: C 56.70; H 4.20; N 1.70. Found: C 55.10; H 4.50; N 1.71. ^1H NMR (400 MHz, CDCl3, 25 °C) δ 8.36 (1H, s, -N=CH-Ar), 7.70 (8H, br. s., ortho H of BArF), 7.52 (4H, br. s., para H of BArF), 7.07 - 7.45 (14H, m, ArH), 4.17 (1H, m, -CH2- of benzyl), 3.98 (1H, m, -CH2- of benzyl), 3.76 (-CH2- of THF), 3.50 (1H, m, -CH- of...
DACH), 3.14 (1H, m, -CH- of DACH), -0.22 – 2.31 (24H, m, -CH₂- of DACH, -CH₃ of cumyl, -CH- of iBu, -CH₂- of iBu and -CH₃ of iBu).

Representative polymerization of epoxides using cationic complexes (2a)

A 7 mL scintillation vial was charged with a solution of complex 2a (19.0 mg, 0.012 mmol) in 0.3 ml of C₆D₆. Epichlorohydrin (0.30 mL, 3.8 mmol) was added directly to the vial by a syringe. The mixture was stirred at 25 °C for 24 h. The resulting solution was concentrated under vacuum for 3 h and then cold methanol was added to it (0 °C, 15 mL). The polymer precipitated from solution and was isolated by decantation or centrifugation. The isolated polymer was dried under high vacuum for at least 3 h prior to analysis.

Representative polymerization of ε-CL using cationic complexes (2b)

A 20 ml scintillation vial was charged with a solution of complex 2b (20.0 mg, 0.013 mmol) in 0.5 ml of toluene. A solution of ε-CL (0.5 ml, 4.5 mmol) in 0.5 ml of toluene was added to the vial. The mixture was stirred at 100 °C for 24 h. The resulting solution was concentrated under vacuum for 3 h and then cold methanol was slowly added to the vial (0 °C, 15 mL). The polymer precipitated from the solution and was isolated by decantation of the supernatant. The isolated polymer was dried under high vacuum for at least 3 h prior to analysis.

Representative polymerization of rac-LA using cationic complexes (2c)

A 20 ml scintillation vial was charged with a solution of complex 2c (10.1 mg, 0.006 mmol) in 1 ml of toluene. Rac-LA (230 mg, 1.6 mmol) was directly added to the vial. The mixture was stirred at 100 °C for 24 h. The resulting solution was concentrated under vacuum for 3 h and then cold methanol was slowly added to the vial (0 °C, 15 mL). The polymer precipitated from the solution and was isolated by decantation of the supernatant. The isolated polymer was dried under high vacuum for at least 3 h prior to analysis.

Table S1 Summary of cationic complex synthesis, storage and shelf life.

<table>
<thead>
<tr>
<th>Complex</th>
<th>2a</th>
<th>2b</th>
<th>2c</th>
<th>2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendant group donor strength (D₅)⁴</td>
<td>11</td>
<td>10</td>
<td>33</td>
<td>38</td>
</tr>
<tr>
<td>Synthesis temperature</td>
<td>Ambient temperature</td>
<td>Ambient temperature</td>
<td>Ambient temperature</td>
<td>-30 °C</td>
</tr>
<tr>
<td>Synthesis solvents</td>
<td>THF, DCM, C₆D₆</td>
<td>THF, DCM, C₆D₆</td>
<td>THF, DCM, C₆D₆</td>
<td>THF</td>
</tr>
<tr>
<td>Shelf life*</td>
<td>~48 h at r.t.</td>
<td>Stable up to 10 weeks at r.t.</td>
<td>Stable up to 10 weeks at r.t.</td>
<td>~20 mins at r.t.</td>
</tr>
<tr>
<td></td>
<td>~2 weeks at -30 °C</td>
<td>Up to 10 days exposed to moist air</td>
<td>Up to 10 days exposed to moist air</td>
<td>~1 day at -30 °C</td>
</tr>
</tbody>
</table>

*Stored under dry N₂ unless otherwise stated.
B. Characterization of metal complexes and ligands in solution

Figure S1 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of L$_a$.

Figure S2 13C$\{^1$H$\}$ NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of L$_a$.
Figure S3 2D 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of La.
Figure S4 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of L_a.
Figure S5 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of L$_b$.

Figure S6 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of L$_b$.
Figure S7 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of L$_b$.
Figure S8 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of L$_b$.
Figure S9 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of L$_c$.

Figure S10 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of L$_c$.
Figure S11 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of L$_c$.
Figure S12 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of L$_e$
Figure S13 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of L$_d$.

Figure S14 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of L$_d$.
Figure S15 2D 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of L$_d$.
Figure S16 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of L_d
Figure S17 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1a

Figure S18 13C {1H} NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of 1a
Figure S19 \(^1\text{H}-^1\text{H} \) COSY NMR spectrum (400 MHz, CDCl\(_3\), 25 °C) of 1a.
Figure S20 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of 1a.
Figure S21 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1a
Figure S22 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1b.

Figure S23 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of 1b
Figure S24 ¹H-¹H COSY NMR spectrum (400 MHz, CDCl₃, 25 °C) of 1b
Figure S25 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of 1b.
Figure S26 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl₃, 25 °C) of 1b.
Figure S27 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1c.

Figure S28 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of 1c
Figure S29: 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1c
Figure S30 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of 1c.
Figure S31 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1c.
Figure S32 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1d.

Figure S33 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of 1d
Figure S34 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1d.
Figure S35 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 $^\circ$C) of 1d.
Figure S36 1H NMR spectrum (300 MHz, CDCl$_3$, 25 °C) of 2a. (Residual diethyl ether q, 3.48 and t, 1.22 ppm)

Figure S37 13C{1H} NMR spectrum (151 MHz, CDCl$_3$, 25 °C) of 2a
Figure S38 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 2a.
Figure S39 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 $^\circ$C) of 2a.
Figure S40 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 2a.
Figure S41 1H-13C Heteronuclear Multiple Bond Correlation (HMBC) NMR spectrum (CDCl$_3$, 25 °C) of 2b.

Figure S42 19F{1H} NMR spectrum (282 MHz, CDCl$_3$, 25 °C) of 2a
Figure S43 1H NMR spectrum (300 MHz, CDCl$_3$, 25 °C) of 2b.

Figure S44 13C{1H} NMR spectrum (151 MHz, CDCl$_3$, 25 °C) of 2b
Figure S45 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 2b.
Figure S46 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of 2b.
Figure S47 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl₃, 25 °C) of 2b.
Figure S48 1H-13C Heteronuclear Multiple Bond Correlation (HMBC) NMR spectrum (CDCl$_3$, 25 °C) of 2b.

Figure S49 19F{1H} NMR spectrum (282 MHz, CDCl$_3$, 25 °C) of 2b
Figure S50 1H NMR spectrum (300 MHz, CDCl$_3$, 25 °C) of 2c

Figure S51 13C{1H} NMR spectrum (151 MHz, CDCl$_3$, 25 °C) of 2c
Figure S52 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 2c.
Figure S53 1H-1C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of 2c.
Figure S54 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl₃, 25 °C) of 2c.
Figure S55 19F{1H} NMR spectrum (282 MHz, CDCl$_3$, 25 °C) of 2c

Figure S56 1H NMR spectrum (300 MHz, CDCl$_3$, 25 °C) of 2d
C. Characterization of metal complexes in the solid state

Bond distances	In1-N1	2.510(3)	In1-C32	2.165(4)
	In1-N2	2.293(3)	In1-C36	2.169(4)
	In1-O1	2.205(3)		

Bond Angles	O1-In1-C32A	98.0(1)	O1-In1-N1	147.4(1)
	O1-In1-C36	95.0(1)	N1-In1-C32	99.4(1)
	C32-In1-C36	135.0(2)	N1-In1-C36	91.9(1)
	N1-In1-N2	69.6(1)		

Figure S57 Molecular structure of complex 1a. (depicted with thermal ellipsoids at 50% probability and H atoms, as well as solvent molecules omitted for clarity).
Selected bond distance (Å) and angles (°) for complex 1b.

<table>
<thead>
<tr>
<th>Bond distances</th>
<th>In1-N1</th>
<th>2.548(1)</th>
<th>In1-C32</th>
<th>2.178(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1-N2</td>
<td>2.269(2)</td>
<td></td>
<td>In1-C36</td>
<td>2.187(3)</td>
</tr>
<tr>
<td>In1-O1</td>
<td>2.203(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond Angles</th>
<th>O1-In1-C32A</th>
<th>94.00(7)</th>
<th>O1-In1-N1</th>
<th>148.60(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1-In1-C36</td>
<td>101.95(8)</td>
<td></td>
<td>N1-In1-C32</td>
<td>90.98(8)</td>
</tr>
<tr>
<td>C32-In1-C36</td>
<td>129.61(9)</td>
<td></td>
<td>N1-In1-C36</td>
<td>98.52(8)</td>
</tr>
<tr>
<td>N1-In1-N2</td>
<td>70.31(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S58 Molecular structure of complex 1b. (depicted with thermal ellipsoids at 50% probability and H atoms, minor disorders as well as solvent molecules omitted for clarity).
Selected bond distance (Å) and angles (°) for complex 1c.

<table>
<thead>
<tr>
<th>Bond distances</th>
<th>Bond distances</th>
<th>Bond distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1-N1</td>
<td>2.510(2)</td>
<td>In1-C32</td>
</tr>
<tr>
<td>In1-N2</td>
<td>2.286(1)</td>
<td>In1-C36</td>
</tr>
<tr>
<td>In1-O1</td>
<td>2.209(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond Angles</td>
<td>Bond Angles</td>
<td>Bond Angles</td>
</tr>
<tr>
<td>O1-In1-C32A</td>
<td>94.72(7)</td>
<td>O1-In1-N1</td>
</tr>
<tr>
<td>O1-In-C36</td>
<td>97.68(7)</td>
<td>N1-In1-C32</td>
</tr>
<tr>
<td>C32-In1-C36</td>
<td>135.39(8)</td>
<td>N1-In1-C36</td>
</tr>
<tr>
<td>N1-In1-N2</td>
<td>69.95(6)</td>
<td></td>
</tr>
</tbody>
</table>

Figure S59 Molecular structure of complex 1c. (depicted with thermal ellipsoids at 50% probability and H atoms, as well as solvent molecules omitted for clarity).
Selected bond distance (Å) and angles (°) for complex 1d.

<table>
<thead>
<tr>
<th>Bond distances</th>
<th>In1-N1</th>
<th>2.516(2)</th>
<th>In1-C32</th>
<th>2.170(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1-N2</td>
<td>2.286(1)</td>
<td></td>
<td>In1-C36</td>
<td>2.176(1)</td>
</tr>
<tr>
<td>In1-O1</td>
<td>2.206(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond Angles</th>
<th>O1-In1-C32A</th>
<th>97.49(5)</th>
<th>O1-In1-N1</th>
<th>148.14(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1-In1-C36</td>
<td>94.38(5)</td>
<td>N1-In1-C32</td>
<td>98.34(5)</td>
<td></td>
</tr>
<tr>
<td>C32-In1-C36</td>
<td>136.55(6)</td>
<td>N1-In1-C36</td>
<td>92.87(5)</td>
<td></td>
</tr>
<tr>
<td>N1-In1-N2</td>
<td>69.81(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S60 Molecular structure of complex 1d. (depicted with thermal ellipsoids at 50% probability and H atoms, as well as solvent molecules omitted for clarity).
D. Characterization of complex behavior

Figure S61 31P-1H NMR spectra (162 MHz, C$_6$D$_6$, 25 °C) of 1a, 1b, 1c and 1d after the addition of 0.8 equivalents of OPEt$_3$. The free triethylphosphine oxide shift is determined by the addition of a capillary inside the NMR tube containing a solution of triethylphosphine oxide in C$_6$D$_6$.
Figure S62 1H NMR spectra of 2c before (time = 0 days) and after (time = 10 days) exposure to air for 10 days continuously. No significant changes were observed.
Figure S63 Variable temperature (VT) 1H NMR spectra (400 MHz, C$_6$D$_5$Br, 25 to 125 °C) of 1a. Shifts observed were reversible. C$_6$D$_5$Br is taken as a reference.
Figure S64 Variable temperature (VT) 1H NMR spectra (400 MHz, C$_6$D$_5$Br, 25 to 85 °C) of 1b. Shifts observed were reversible. C$_6$D$_5$Br is taken as a reference.
Figure S65 Variable temperature (VT) 1H NMR spectra (400 MHz, C$_6$D$_5$Br, 25 to 85 °C) of 1c. Shifts observed were reversible. C$_6$D$_5$Br is taken as a reference.
Figure S66 Variable temperature (VT) 1H NMR spectra (400 MHz, C$_6$D$_5$Br, 30 to 105 °C) of 2a. Shifts observed were irreversible. C$_6$D$_5$Br is taken as a reference.
Figure S67 Variable temperature (VT) 1H NMR spectra (400 MHz, CD$_5$Br, 25 to 125 °C) of 2b free ligand L2. Shifts observed were reversible. CD$_5$Br is taken as a reference.
Figure S68 Variable temperature (VT) 1H NMR spectra (400 MHz, C$_6$D$_5$Br, 30 to 120 °C) of 2c. Shifts observed were reversible. C$_6$D$_5$Br is taken as a reference.
Selected bond distance (Å) and angles (°) for complex 2b.2THF.

<table>
<thead>
<tr>
<th>Bond distance</th>
<th>In1-N1</th>
<th>2.468(5)</th>
<th>In1-O3</th>
<th>2.392(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In1-N2</td>
<td>2.179(5)</td>
<td>In1-O4</td>
<td>2.354(4)</td>
</tr>
<tr>
<td></td>
<td>In1-O1</td>
<td>2.127(3)</td>
<td>In1-C32</td>
<td>2.128(7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond Angles</th>
<th>O1-In1-C32</th>
<th>112.9(2)</th>
<th>O1-In1-N1</th>
<th>156.3(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O3-In1-O4</td>
<td>166.3(1)</td>
<td>N1-In1-C32</td>
<td>90.4(2)</td>
</tr>
<tr>
<td></td>
<td>N1-In1-N2</td>
<td>72.9(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S69 Molecular structures of complex 2b.2THF (depicted with thermal ellipsoids at 50% probability and H atoms, minor disorders as well as solvent molecules omitted for clarity)
Table S2 Selective crystal data for 1b, 1d, 1a, 1c and 2b.2THF.

<table>
<thead>
<tr>
<th></th>
<th>1b</th>
<th>1d</th>
<th>1a</th>
<th>1c</th>
<th>2b.2THF</th>
</tr>
</thead>
<tbody>
<tr>
<td>empirical formula</td>
<td>C_{44}H_{59}InN_{2}O_{2}</td>
<td>C_{46}H_{61}InN_{2}O</td>
<td>C_{44}H_{59}InN_{2}OS</td>
<td>C_{45}H_{60}InN_{3}O</td>
<td>C_{88}H_{92}BF_{24}InN_{2}O_{6}</td>
</tr>
<tr>
<td>Fw</td>
<td>762.75</td>
<td>772.78</td>
<td>778.81</td>
<td>773.78</td>
<td>1855.26</td>
</tr>
<tr>
<td>T (K)</td>
<td>296.15</td>
<td>273(2)</td>
<td>100</td>
<td>296.15</td>
<td>100</td>
</tr>
<tr>
<td>a (Å)</td>
<td>17.5732(15)</td>
<td>18.4020(6)</td>
<td>18.3672(15)</td>
<td>18.3804(16)</td>
<td>12.616(3)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>18.4226(15)</td>
<td>18.4542(7)</td>
<td>17.9736(14)</td>
<td>18.328(2)</td>
<td>26.255(5)</td>
</tr>
<tr>
<td>a (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>80.163(3)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>117.891(2)</td>
<td>119.051(2)</td>
<td>118.8140(10)</td>
<td>119.839(2)</td>
<td>76.369(3)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>85.869(3)</td>
</tr>
<tr>
<td>volume (Å³)</td>
<td>3962.81</td>
<td>4126.72</td>
<td>4066.39</td>
<td>4087.71</td>
<td>4229.90</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>cryst syst</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>triclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P 2₁/c</td>
<td>P 2₁/n</td>
<td>P 2₁/c</td>
<td>P 2₁/c</td>
<td>P -1</td>
</tr>
<tr>
<td>d_{calc} (g/cm³)</td>
<td>1.278</td>
<td>1.244</td>
<td>1.272</td>
<td>1.257</td>
<td>1.457</td>
</tr>
<tr>
<td>μ (Mo Kα) (cm⁻¹)</td>
<td>6.34</td>
<td>6.08</td>
<td>6.67</td>
<td>6.14</td>
<td>3.87</td>
</tr>
<tr>
<td>2θ_{max} (deg)</td>
<td>61.3</td>
<td>61.2</td>
<td>55.8</td>
<td>61.0</td>
<td>54.6</td>
</tr>
<tr>
<td>absor corr (T_{min}, T_{max})</td>
<td>0.7005, 0.7461</td>
<td>0.909, 0.986</td>
<td>0.982, 0.997</td>
<td>0.6730, 0.7461</td>
<td>0.9887, 0.9977</td>
</tr>
<tr>
<td>total no. of reflns</td>
<td>63957</td>
<td>65464</td>
<td>9204</td>
<td>56696</td>
<td>18759</td>
</tr>
<tr>
<td>no. of indep reflns (R_{int})</td>
<td>12154 (0.0394)</td>
<td>12665 (0.0445)</td>
<td>9204 (0.0890)</td>
<td>12417 (0.0461)</td>
<td>18759 (0.1605)</td>
</tr>
<tr>
<td>residuals (refined on F²): R₁; wR₂</td>
<td>0.0523, 0.0887</td>
<td>0.0354, 0.0634</td>
<td>0.0773, 0.1436</td>
<td>0.0465, 0.0808</td>
<td>0.0983, 2141</td>
</tr>
<tr>
<td>GOF</td>
<td>1.023</td>
<td>1.032</td>
<td>1.067</td>
<td>1.094</td>
<td>1.036</td>
</tr>
<tr>
<td>no. obsrvns [I > 2σ(I)]</td>
<td>9858</td>
<td>9908</td>
<td>9510</td>
<td>9643</td>
<td>9841</td>
</tr>
<tr>
<td>residuals (refined on F²): R₁'; wR₂'</td>
<td>0.0524, 0.0802</td>
<td>0.0273, 0.0600</td>
<td>0.0550, 0.1339</td>
<td>0.0373, 0.0772</td>
<td>0.0794, 2047</td>
</tr>
</tbody>
</table>

\[aR_1 = \Sigma \frac{||F_o|| - |F_c||}{\Sigma |F_o||}, \quad wR_2 = \left[\Sigma \left(w(F_c^2 - F_o^2)^2 \right) \right]^{1/2} \]
Figure S70 DOSY-NMR of the mixture of THF and 2a (400MHz, diffusion time (Δ) = 0.85 s, gradient length (δ) = 400 µs, C$_6$D$_6$, 25 °C).

Figure S71 DOSY-NMR of the mixture of THF and 2b (400MHz, Δ = 1.2 s, δ = 400 µs, C$_6$D$_6$, 25 °C).
Figure S72 DOSY-NMR of the mixture of THF and 2c (400 MHz, $\Delta = 0.55$ s, $\delta = 400$ µs, C$_6$D$_6$, 25 °C).

Figure S73 1H NMR of spectra of 2b in the presence of THF, pyridine, triethylphosphine oxide and epichlorohydrin (400 MHz in C$_6$D$_6$ at 25 °C).
Figure S74 MALDI-TOF spectrum of PLA isolated from polymerization of 250 equivalents of rac-LA with 2c in toluene at 100 °C for 24 hours

Figure S75 \(^{1}H\{^{1}H\} \) NMR spectrum (600 MHz, CDCl\(_3\), 25 °C) of PLA as the product of the polymerization of 250 equivalents of rac-LA 2c in toluene at 100 °C for 24 hours. The methine protons of the polymer are decoupled. (P\(_m\) = 0.46)
E. References