Electronic Supplementary Information

Luminescent Tungsten(VI) Complexes as Photocatalysts for Light-Driven C-C and C-B Bond Formation Reactions

Daohong Yu,^{a,b} Wai-Pong To,^b Glenna So Ming Tong,^b Liang-Liang Wu,^b Kaai-Tung Chan,^b Lili Du,^b David Lee Phillips,^b Yungen Liu,^{a,c} and Chi-Ming Che^{*a,b,c}

- ^{a.} Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- ^{b.} State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- ^{c.} HKU Shenzhen Institute of Research and Innovation Shenzhen, Guangdong 518055, China
 Email: cmche@hku.hk

Table of contents

General information	S3-S4
Procedures for the synthesis of tungsten(VI) complexes	S5-S7
Computational details	S20-S31
General procedures for photocatalysis and characterization of products	S32-S49
References	S49-S50
Figure S1: ¹ H NMR spectral traces of W1a in degassed CD ₂ Cl ₂ upon 450 nm	S13
LEDs irradiation	
Figure S2: Emission spectra of a) W1b and b) W1c in CH ₂ Cl ₂ under aerated	S13
condition and under N ₂	
Figure S3: Excitation spectra of a) W1b and b) W1c in CH ₂ Cl ₂ under aerated and	S13
degassed condition	
Figure S4: Emission spectra of W1a in CH ₂ Cl ₂ under aerated condition and under	S14
N2.	
Figure S5: Emission spectra of W1b in different degassed solvents at room	S14
temperature	
Figure S6: ns-TA spectra of W1a and W1b in CH ₂ Cl ₂ at room temperature	S14
Figure S7 fs-TA spectra of W1a in CH ₂ Cl ₂ at room temperature with 266 nm	S15
excitation	
Figure S8 fs-TA spectra of W1c in CH ₂ Cl ₂ at room temperature with 400 nm	S15
excitation	
Figure S9: Cyclic voltammogram of W1a, a mixture of W1a and benzyl bromide	S15
(0.01 M), and benzyl bromide only (0.01 M) in DMF under N_2	
Figure S10. Mechanistic experiments.	S16

Figure S11. ¹ H NMR spectral traces of W1a and 1.5 molar equivalent of DIPEA in	S17
degassed CD ₂ Cl ₂ upon 410 nm LEDs irradiation for 2 and 10 hours.	
Figure S12. ¹ H NMR spectral traces of W1a and 240 molar equivalent of DIPEA	S18
in degassed CD ₂ Cl ₂ upon 410 nm LEDs irradiation for 10 hours. Upper: chemical	
shift range: 5.9 to 10.4 ppm. Lower: chemical shift range: -2 to 12 ppm.	
Figure S13. Cyclic voltammogram of W1a at difference scan speeds.	S19
Figure S14. UV-vis absorption spectral change of mixtures of (a) W1a and TBAB	S19
(0.1 M) and (b) W1a and ethyl 4-chlorobenzoate (0.1 M) upon blue LED	
irradiation.	
Figure S15. Simulated absorption spectra of W1a and W1c at their respective	S20
optimized S_0 geometry.	
Figure S16. The charge density difference (CCD) maps for the ¹ LMCT excited	S23
state computed at 283 nm.	
Figure S17. H-1, HOMO, LUMO, L+1 of W1a	S23
Figure S18. HOMO, LUMO of W1c	S24
Figure S19. Transition dipole moment density and the fragment transition dipole	S25
moment along the z-direction of the $S_0 \rightarrow S_2$ (top) and $S_0 \rightarrow S_3$ (bottom) excitation	
in toluene solution at the optimized S_0 geometries of W1a.	
Figure S20. Transition dipole moment density and the fragment transition dipole	S25
moment along the y-direction of the $S_0 \rightarrow S_2$ (top) and $S_0 \rightarrow S_3$ (bottom) excitation	
in toluene solution at the optimized S_0 geometries of W1a.	
Figure S21. The energy profile for the benzyl homocoupling and the	S31
cross-coupling to W1a ^{·-/} styrene	
Figure S22. Spin density plot (contour value: 0.006) for one-electron reduced	S31
W1a .	
Table S1: Photophysical data of complexes W1a–W1c	S 8
Table S2: Differential pulse voltammograms of some aryl halides	S9
Table S3: Photo-dehydrogenation reactions catalysed by W1a	S10
Table S4: Optimization of reaction conditions for borylation of aryl iodine	S11
Table S5: Optimization of conditions for C-B bond formation from aryl chloride	S12
Table S6. $S_0 \rightarrow S_n$ Absorption energies of complex W1a at the optimized S_0	S21
geometry in toluene solution.	
Table S7. $S_0 \rightarrow S_n$ Absorption energies of complex W1c at the optimized S_0	S22
geometry in toluene solution.	
Table S8. Orbital overlap for complexes W1a and W1c at their respective	S24
optimized S ₀ geometries.	
Table S9. Cartesian coordinates of complex W1c at its optimized S_0 geometry.	S26
Table S10. Cartesian coordinates of complex W1a at its optimized S_0 geometry.	S27

General information.

All chemicals, unless otherwise noted, were purchased from commercial sources and were used without further purification. All solvents for reactions and measurement were purified by standard method. ¹H, ¹⁹F and ¹³C NMR spectra were recorded respectively on 500 MHz, 400 MHz, 376 MHz and 101 MHz spectrometers. ¹H NMR and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 ppm and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as internal standard. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. All reactions were monitored by TLC or ¹H NMR spectroscopy. Flash column chromatography was carried out using 300-400 mesh silica-gel at medium pressure.

High resolution mass spectra were recorded using a Q Exactive mass spectrometer (Thermo Fisher Scientific, USA). Elemental analyses were performed at the Institute of Chemistry of the Chinese Academy of Sciences, Beijing. Gas chromatography-mass spectrometry (GC-MS) analyses were performed with an Agilent Technologies 7890A Network GC System equipped with an Agilent Technologies 5975C Network Mass Selective Detector (MSD).

All absorption spectra were recorded on a Hewlett-Packard 8453 diode array spectrophotometer. Steady-state emission spectra were recorded on a Horiba Fluorolog-3 spectrophotometer. Solutions for photophysical studies were degassed by using a high vacuum line in a two-compartment cell with five freeze-pump-thaw cycles. The emission quantum yield was measured with $[Ru(2,2'-bipyridine)_3](PF_6)_2$ in degassed CH₃CN as the standard ($\Phi = 0.062$) and calculated by: $\Phi_s = \Phi_r (B_r/B_s) (n_s/n_r)^2 (D_s/D_r)$, in which the subscripts s and r refer to sample and reference standard solution, respectively, *n* is the refractive index of the solvents, D is the integrated emission intensity and Φ is the luminescence quantum yield. The excitation intensity B is calculated by: $B = 1 - 10^{-AL}$, where A is the absorbance at the excitation wavelength and L is the optical path length ($\lambda = 1$ cm in all cases). The refractive indices of the solvents at room temperature were taken from standard sources. The emission lifetime measurements were performed on a Quanta Ray GCR 150-10 pulsed Nd:YAG laser system. Errors for λ values (±1 nm), τ (±10 %), and Φ (± 10 %) are estimated. Singlet oxygen quantum yield was determined with meso-tetraphenylporphyrin (H₂TPP) as a reference ($\Phi_{O_2} = 0.55$ in aerated chloroform). Nanosecond time-resolved emission measurements were performed on a LP920-KS Laser Flash Photolysis Spectrometer (Edinburgh Instruments Ltd., Livingston, UK). The excitation source was the 355 nm output (third harmonic) of a Nd:YAG laser (Spectra-Physics Quanta-Ray Lab-130 Pulsed Nd:YAG Laser). The signals were processed by a PC plug-in controller with L900 software. The preparation of samples for the measurements was the same as those for steady-state emission

measurements. Femtosecond time-resolved transient absorption (fs-TA) measurements were performed on a HELIOS setup equipped with a femtosecond regenerative amplified Ti:sapphire laser system (Spitfire Pro) in which the amplifier was seeded with the 120 fs laser pulses from an oscillator laser system (1k Hz). The laser probe pulse was produced by utilizing about 100 mW of the amplified 800 nm laser pulses to generate a white-light continuum (430-750 nm) in a sapphire crystal and then this probe beam was split into two 4 parts before traversing the sample. One part of the probe laser beam goes through the sample while the other part of the probe laser beam goes to the reference spectrometer. For the present experiments, sample solutions were excited by a 400 nm or 266 nm pump beam in a 2 mm path-length cuvette. The maximum time window is 3300 ps. Signals for each measurement were averaged for 1 s. Femtosecond time-resolved emission (fs-TRE) measurements were performed on the same setup as fs-TA. The output 800 nm laser pulse (200 mW) is used as gate pulse while the 400 nm laser pulse (10 mW) S4 (second harmonic) is used as the pump laser. After excitation by the pump laser, the sample fluorescence is focused into the nonlinear crystal (BBO) mixing with the gate pulse to generate the sum frequency signal. Broadband fluorescence spectra were obtained by changing the crystal angles and the spectra were detected by the aircooled CCD.Cyclic voltammetry was conducted on a Princeton Applied Research PMC-1000 Potentiostat. The working electrode was glassy carbon; the reference electrode was SCE; the counter electrode was a platinum wire. Scan rate: 100 mV/s. All potentials were reported versus SCE (+0.241 V vs. NHE).

Experimental Procedures

Procedure for synthesis of Schiff base ligand

Synthesis of **Salen-NPh₂**: To a solution of 4'-(diphenylamino)-3-hydroxy-[1,1'-biphenyl]-4-carbaldehyde (2.2 g, 6.0 mmol) dissolved in 40 mL ethanol, 2,2-dimethylpropane-1,3-diamine (306 mg, 3.0 mmol) in 1 mL ethanol was added dropwise. The solution was heated to reflux for 2 h, after which the solution was cooled to room temperature. The yellow solid precipitated in the reaction mixture was filtered, washed with hexane, and used without further purification. Yield: 2.34 g (98 %, yellow crystalline solid). ¹H NMR (400 MHz, CDCl₃) δ 13.71 (s, 2 H), 8.38 (s, 2 H), 7.53 (d, *J* = 8.6 Hz, 4 H), 7.33 (d, *J* = 2.7 Hz, 2 H), 7.35 – 7.30 (m, 8 H), 7.21 (d, *J* = 1.7 Hz, 2 H), 7.17 (d, *J* = 7.3 Hz, 10 H), 7.15 – 7.11 (m, 4 H), 7.07 (t, *J* = 7.3 Hz, 4 H), 3.54 (s, 4H), 1.13 (s, 6 H).

Synthesis of Salen-Carb: The procedure was similar to that of Salen-NPh₂ except that 4'-(9*H*-carbazol-9-yl)-3-hydroxy-[1,1'-biphenyl]-4-carbaldehyde (110 mg, 0.30 mmol) was used as the aldehyde. Yield: 0.36 g (90 %, yellow solid). ¹H NMR (400 MHz, Chloroform-*d*) δ 13.80 (s, 2 H), 8.47 (s, 2 H), 8.18 (dd, *J* = 7.8, 1.0 Hz, 4 H), 7.89 (d, *J* = 8.5 Hz, 4 H), 7.69 (d, *J* = 8.5 Hz, 4 H), 7.52 (d, *J* = 8.2 Hz, 4 H), 7.48 – 7.42 (m, 6 H), 7.36 – 7.31 (m, 6 H), 7.28 – 7.25 (m, 2 H), 3.1 (s, 4 H), 1.18 (s, 6 H).

Synthesis of Salen-H: To a solution of salicylaldehyde (4.88 g, 40.0 mmol) dissolved in 50 mL ethanol, 2,2-dimethylpropane-1,3-diamine (2.04 g, 20.0 mmol) in 10 mL ethanol was added dropwise. The solution was heated to reflux 3 h, after which the solution was concentrated by rotary evaporation. The crude product was purified by chromatography

column using petroleum ether and ethyl acetate mixtures as eluting solvent. Yield: 5.04 g (81%, yellow solid). ¹H NMR (500 MHz, CDCl₃) δ 13.60 (s, 2 H), 8.36 (d, *J* = 1.3 Hz, 2 H), 7.35 (ddd, *J* = 8.4, 7.3, 1.7 Hz, 2H), 7.29 (dd, *J* = 7.6, 1.6 Hz, 2 H), 7.00 (dd, *J* = 8.3, 1.1 Hz, 2 H), 6.91 (td, *J* = 7.5, 1.1 Hz, 2 H), 3.52 (d, *J* = 1.3 Hz, 4 H), 1.11 (s, 6 H).

Procedure for synthesis of WO₂-Salen-NPh₂ complex

Synthesis of **W1a**: A suspension of $W(eg)_3$ (0.77 g, 2.1 mmol) in 20 mL methanol, was heated to 60 °C until all the $W(eg)_3$ dissolved completely. A CHCl₃ solution of the Schiff base ligand (1.7 g, 2.1 mmol) was added. The mixture turned orange and the yellow solid precipitated. The mixture was heated to 60 °C overnight during which the whole mixture turned yellow. The reaction mixture was cooled to room temperature. The yellow solids were filtered, washed with methanol. The complex obtained was analytically pure and used without further purification. Yield: 1.9 g (89 % yellow solid). For characterization data, please refer to reference 1.

W1b, WO₂-Salen-Carb

The synthesis of **W1b** is similar to that of **W1a**, except that **Salen-Carb** was used as the ligand. Yield: 90 %, yellow solid. HR-MS (+ESI) *m/z*: 1007.2744 [M+H]⁺ (calcd. 1007.2794). Selected IR (KBr, $v \text{ cm}^{-1}$): 933.55 (W=O), 896.90 (W=O). ¹H NMR (500 MHz, CDCl₃): δ 8.28 (s, 1H, *J*_{H-W} = 11.0 Hz), 8.12–8.16 (m, 5H), 7.94 (d, 2H, *J* = 8.0 Hz), 7.77 (d, 2H, *J* = 8.5 Hz), 7.70 (d, 2H, *J* = 8.5 Hz), 7.60 (d, 2H, *J* = 8.5 Hz), 7.53–7.54 (m, 2H), 7.48 (t, 3H, *J* = 8.5 Hz), 7.37–7.44 (m, 7H), 7.27–7.31 (m, 4H), 7.09 (dd, 1H, *J* = 8.5 and 1.0 Hz), 7.01 (s, 1H), 4.96 (d, 1H, *J* = 11.0 Hz), 4.43 (d, 1H, *J* = 12.0 Hz), 3.81 (d, 1H, *J* = 11.0 Hz), 3.50 (d, 1H, *J* = 12.5 Hz), 1.22 (s, 3H), 0.86 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 168.5, 168.3, 163.6, 160.6, 150.1, 146.8, 140.7, 140.6, 138.8, 128.3, 138.1, 138.0(7), 134.0, 128.7, 128.6(6), 127.4, 127.2, 126.1, 126.0, 123.5, 123.4(9), 122.2, 121.6, 120.3, 120.2, 120.1, 119.7, 119.3, 118.8, 117.7, 109.8, 109.7(7), 73.2, 37.9, 26.1, 23.6. Elemental analysis (%) calcd. for C₅₅H₄₂N₄O₄W·CH₃OH: C, 64.75; H, 4.46; N, 5.39; Found: C, 64.66; H, 4.20; N, 5.56.

W1c, WO₂-Salen-H

The synthesis of **W1c** is similar to that of **W1a**, except that **Salen-H** was used as the ligand. Yield: 68 %, yellow solid. For characterization data, please refer to reference 1.

Complex	Medium	λ. [nm]	λ [nm]	τ[us]	k	Ф ^b
Complex	Wiedlum	κ_{abs} [IIII] (c [10 ³ mol ⁻¹ dm ³ cm ⁻¹])	Nem [IIII]	ι [μა]	n_r [10 ³ s ⁻¹]	Ψem
W1a	CH ₂ Cl ₂ ^c	(e [10 mor din em]) 207 (43 7) 407 (34 6)	608	4.6	23.0	0.11
vv 1a		297 (43.7), 407 (34.0) 200 (45.2), 410 (36.7)	582	4.0	23. 3 12.7	0.11
		299(43.2), 410(30.7)	585	22.1 117.9	12.7	0.28
		292 (49.7), 392 (42.9)	510 552 (.1.)	117.8	2.3	0.27
	Toluene	297 (sn, 55.2), 402 (40.8)	510, 552 (sh)	67.6	0.6	0.04
	EtOAc	297 (sh, 56.3), 402 (41.9)	570	45.6	2.4	0.11
	MeCN	293 (44.2), 392 (37.0)	635	0.4	7.5	0.003
W1b	CH_2Cl_2	261 (57.1), 285 (45.9), 292	553	74.9	1.7	0.13
		(49.8), 327 (30.4), 341				
		(31.9), 365 (sh, 25.0), 420				
		(sh, 10.6)				
	CHCl ₃	286 (50.1), 293 (54.2), 315	555	98.7	1.5	0.15
		(29.7), 328 (31.7), 342				
		(32.7), 368 (25.9), 420 (11.4)				
	THF	283 (49.8), 292 (55.2), 327	556	82.0	1.3	0.11
		(35.6), 341 (39.2), 415				
		(10.2)				
	Toluene	293 (64.0), 327 (32.5), 342	560	97.3	2.1	0.21
		(34.2), 368 (28.1), 420 (11.3)				
	EtOAc	283 (49.1), 291 (54.3), 326	556	99.0	1.3	0.13
		(36.2), 340 (39.8), 415				
		(10.1)				
	MeCN	283 (47.6), 291 (51.6), 326	560	11.8	1.3	0.020
		(35.1), 340 (37.5), 415				
		(10.4)				
W1c	CH ₂ Cl ₂ ^c	270 (26.2) 299 (18.2) 402	582	83.6	0.4	0.03
		(5.5)	002	0210	011	0102
	CHCl ^c	(3.3)	578	37.4	12	0.046
	chicij	(4.4)	578	57.4	1.2	0.040
	Toluene	$(\neg \cdot \neg)$ 301 (11 1) $105 (2.8)$	570	83.0	0.5	0.042
	MaCN	$\begin{array}{c} 501 (11.1), 403 (5.0) \\ 570 (20.6), 507 (14.4), 509 \\ 570 (20.6), 507 (14.4), 509 \\ 570 (10.6), 507 (14.4), 509 \\ 570 (10.6), 570 (14.4), 570 \\ 570 (10.6), 570 (14.4), 570 \\ 570 (10.6), 570 (14.4), 570 \\ 570 (10.6), 570 (14.4), 570 \\ 570 (10.6), 570 (14.4), 570 \\ 570 (10.6), 570 (14.4), 570 \\ 570 (10.6), 570 (14.4), 570 \\ 570 (10.6), 570 (14.4), 570 \\ 570 (10.6), 570 (14.4), 570 \\ 570 (10.6), 570 (14.4), 570 \\ 570 (10.6), 570 (14.4), 570 \\ 570 (10.6), 570 (10.6), 570 \\ 570 (10.6), 570 (10.6), 570 \\ 570 (10.6), 570 (10.6), 570 \\ 570 (10.6), 570 (10.6), 570 \\ 570 (10.6), 570 (10.6), 570 \\ 570 (10.6), 570 (10.6), 570 \\ 570 (10.6), 570 (10.6), 570 \\ 570 (10.6),$	575	05.0 47 1	0.5	0.042
	MECIN	270 (20.0), 297 (14.4), 398	515	4/.1	0.4	0.019
		(4.6)				

Table S1. Photophysical data of complexes W1a–W1c^a

^{*a*} Measurements were performed at 298 K unless specified. ^{*b*} All emission quantum yields (Φ) were estimated with [Ru(2,2'-bipyridine)₃](PF₆)₂ in degassed CH₃CN as the standard ($\Phi = 0.062$). ^{*c*} Value taken from reference 1.

Table S2. Differential pulse voltammograms of some aryl halides

Measured in DMF containing 0.1 M tetrabutylammonium hexafluorophosphate and under N_2 . Potentials versus SCE. Table S3: Photo-dehydrogenation reactions catalysed by W1a

entry	catalyst(%)	additives	LEDs light	Solvent	yield (%) ^a
1	W1a		450 nm	DMF	18%
2	W1a		450 nm	MeCN	15%
3	W1a		410 nm	MeCN	23%
4	W1a		300 W Xe lamp	DMF	4%
5	W1a		365 nm	MeCN	52%
6	W1a	HCF ₂ CO ₂ H	365 nm	MeCN	60% ^b
7	W1a		365 nm	MeCN	0% ^c
8	H₂TPP ^d		365 nm	MeCN	15%
9		H_2O_2	365 nm	MeCN	45%

^ayields were determined by ¹H NMR using 2,2-difluoroacetic acid or methyl 4bromobenzoate as internal standard

^b2,3-dihydro-1*H*-inden-1-yl 2,2-difluoroacetate **A** was obtained in 26% yield.

^cunder inert atomsphere without O₂

^{*d*} H₂TPP stands for tetraphenylporphyrin

	+ B ₂ P I 1.2 et	2.0 m in ₂ 1 quiv So 4	ol% WO ₂ -s equiv DIP I equiv Bas Ivent, r.t., 7 10 nm LEI	Salen EA Se 12 h Os	BPin 2a	
Entry	Catalyst	Base	solvent	DIPEA (equiv)	conversion (%)	Yield (%) ^a
1	W1a	^t BuONa	MeCN	2.5 eq	100%	31%
2	W1a	K ₂ CO ₃	MeCN	2.5 eq	100%	52%
3	W1a	Cs_2CO_3	MeCN	2.5 eq	88%	40%
4	W1a	Na ₂ CO ₃	MeCN	2.5 eq	78%	32%
5	W1a	NaHCO ₃	MeCN	2.5 eq		31%
6	W1a	Na ₂ HPO ₄	MeCN	2.5 eq		43%
7	W1a	NaOAc	MeCN	2.5 eq	60%	31%
8	W1a	KH ₂ PO ₄	MeCN	2.5 eq		21%
9	W1a	K ₂ CO ₃	MeCN	0.5 eq	52%	24%
10	W1a	K ₂ CO ₃	MeCN	1 eq	87%	41%
11	W1a	K ₂ CO ₃	MeCN	2 eq	100%	50%
12	W1a	K ₂ CO ₃	MeCN	5 eq	100%	40%
13	W1a		MeCN	2.5 eq	0%	0%
14	W1a	K ₂ CO ₃	MeCN		32%	12%
15	W1a	K ₂ CO ₃	MeCN	DABCO	38%	30%
16	W1a	K ₂ CO ₃	MeCN	DBU	100%	50%
17	W1a	K ₂ CO ₃	MeCN	TEA	32%	32%
18	W1a	K ₂ CO ₃	DCE	2.5 eq	0%	0%
19	W1a	K ₂ CO ₃	acetone	2.5 eq	40%	20%
20	W1a	K ₂ CO ₃	THF	2.5 eq	0%	0%
21	W1a	K_2CO_3	toluene	2.5 eq	0%	0%
22	W1a	K ₂ CO ₃	ACN/H ₂ O	2.5 eq	100%	60%
23	W1a	K ₂ CO ₃	MeCN ^b	2.5 eq	100%	50%
24		K ₂ CO ₃	MeCN	2.5 eq	0%	0%

Table S4. Optimization of reaction conditions for borylation of aryl iodine

^ayields were determined by ¹H NMR using dibromomethane as internal stantard ^bthe solvent was anhydrous

	1 mol%	% WO₂-Salen		\rightarrow +	
	1 eq K ₂ C	$O_{3,}$ 2.5 eq Additive	<u></u> _ь		EtO ₂ C
1b	Me0 41	CN, r.t., 12 h 0 nm LEDs	2b	X	10a
entry	catalyst	additive	conversion	yield	l (%) ^a
	Catalyst	auditive	conversion	2b	10a
1	W1a	DIPEA	100%	53%	41%
2	W1a	TMBDA	70%	41%	20%
3	W1a	DM-DMF	100%	51%	45%
4	W1a	TMDMA	75%	53%	20%
5	W1a	TBBDMM	85%	50%	30%
6	W1a	dimethylaniline	100%	0%	79%
7	W1a	tetrahydrothiophene	90%	58%	26%
8	W1a	AllylPhS	75%	46%	25%
9	W1a	1 eq Me ₂ S	89%	64%	22%
10	W1a	p-toluenethiol	100%	33%	41%
11	W1a	L-Ascorbic acid	40%	26%	5%
12	W1a	1 eq Kl	100%	53%	43%
13	W1a	1 eq KI/H ₂ O	10%	0%	8%
14	W1a	PPh_3	5%	0%	5%
15	W1a	1eq TBAB	100%	89%	9%
16	W1a	TBAB/KI	100%	90%	8%
17		TBAB	25%	20%	0%
18 ^b	W1a	TBAB	0%	0%	0%
19	W1a		100%	50%	10%
20	W1c	TBAB	20%	14%	0%
21	W1b	TBAB	36%	30%	3%
22 ^c		TBAB	100%	68%	10%

Table S5. Optimization of conditions for C-B bond formation from aryl chloride

^{*a*} Reaction conditions: **1b**(0.2 mmol), B₂Pin₂(0.22 mmol), WO₂-Salen (1 mol%), K₂CO₃ (0.2 mmol), in MeCN at room temperature for 12 h. yields were determined by ¹H NMR using dibromomethane as internal standard.^{*b*} no light. ^{*c*} Reaction time = 48 hours.

MeO ÓМе

DM-DMF

TMBDA

AllyPhS

TMDMA

TBBDMM

Figure S1. ¹H NMR spectral traces of W1a in degassed CD₂Cl₂ upon 450 nm LEDs irradiation.

Figure S2. Emission spectra of a) W1b and b) W1c in CH₂Cl₂ under aerated condition and under N₂.

Figure S3. Excitation spectra of a) W1b and b) W1c in CH₂Cl₂ under aerated and degassed condition.

Figure S4. Emission spectra of W1a in CH₂Cl₂ under aerated condition and under N₂.

Figure S5. Emission spectra of W1b in different degassed solvents at room temperature.

Figure S6. ns-TA spectra of W1a and W1b in CH₂Cl₂ at room temperature.

Figure S7. fs-TA spectra of W1a in CH₂Cl₂ at room temperature with 266 nm excitation.

Figure S8. fs-TA spectra of W1c in CH₂Cl₂ at room temperature with 400 nm excitation.^[1]

Figure S9. Cyclic voltammogram of **W1a**, a mixture of **W1a** and benzyl bromide (0.01 M), and benzyl bromide only (0.01 M) in DMF under N₂.

Figure S10. Mechanistic experiments.

Figure S11. ¹H NMR spectral traces of **W1a** and 1.5 molar equivalent of DIPEA in degassed CD₂Cl₂ upon 410 nm LEDs irradiation for 2 and 10 hours.

Figure S12. ¹H NMR spectral traces of **W1a** and 240 molar equivalent of DIPEA in degassed CD₂Cl₂ upon 410 nm LEDs irradiation for 10 hours. Upper: chemical shift range: 5.9 to 10.4 ppm. Lower: chemical shift range: -2 to 12 ppm.

Figure S13. Cyclic voltammogram of W1a at difference scan speeds.

Figure S14. UV-vis absorption spectral change of mixtures of (a) **W1a** and TBAB (0.1 M) and (b) **W1a** and ethyl 4-chlorobenzoate (0.1 M) upon blue LED irradiation.

Computational details

In this work, the hybrid density functional, M06,^[2] was employed for all calculations using the program package G09.^[3] The 6-31G* basis set^[4] is used for all atoms except W, which is described by the Stuttgart relativistic pseudopotential and its accompanying basis set (ECP60MWB).^[5] Solvent effect was also included by means of the polarizable continuum model (PCM)^[6] and default parameters are used for the solvent, toluene (refractive index $\eta =$ 1.4969). No symmetry constraints were applied in geometry optimizations. For the singlet ground state (S_0) , the restricted density functional theory (RDFT) formalism was employed. Frequency calculations were performed on the optimized structures to ensure that they are minimum energy structures by the absence of imaginary frequency (i.e. NImag = 0). Stability calculations were also performed for all the optimized structures to ensure that all the wavefunctions obtained are stable. The absorption energies were computed using TDDFT within the Tamm-Dancoff approximation (TDA)^[7] to avoid the triplet instability problems.^[8] The simulated absorption spectra were created using the software, gausssum 3.0.^[9] CCD maps, NTOs, orbital overlap, the transition dipole moment density (TDMD), and fragment TDM were computed using the program Multiwfn.^[10] Details about these calculations could be found in the Multiwfn manual (version 3.6).

Figure S15. Simulated absorption spectra of **W1a** and **W1c** at their respective optimized S₀ geometry.

Table S6. $S_0 \rightarrow S_n$ Absorption energies of complex W1a at the optimized S_0 geometry in toluene solution.

n	λ (nm)	f	Major contribs
1	443	0.4363	H-1->LUMO (86%)
2	430	0.3101	H-1->LUMO (10%), HOMO->LUMO (86%)
3	390	0.4909	HOMO->L+1 (92%)
4	376	0.0899	H-1->L+1 (95%)
5	374	0.1351	H-2->LUMO (90%)
6	344	0.0187	H-3->LUMO (86%)
7	326	0.0317	H-2->L+1 (92%)
8	313	0.0763	H-3->L+1 (35%), HOMO->L+2 (43%)
9	308	0.0054	H-3->L+1 (34%), HOMO->L+2 (38%)
10	308	0.1921	H-4->LUMO (19%), H-1->L+2 (47%), H-1->L+5 (12%)
11	306	0.0349	HOMO->L+6 (59%), HOMO->L+7 (20%)
12	306	0.0699	H-1->L+5 (60%), H-1->L+7 (11%)
13	305	0.1464	H-4->LUMO (54%), H-1->L+2 (27%)
14	299	0.1651	H-1->L+3 (55%)
15	298	0.2676	H-5->LUMO (45%), HOMO->L+3 (16%)
16	297	0.0348	H-5->LUMO (25%), HOMO->L+3 (52%)
17	295	0.5056	H-1->L+9 (63%), HOMO->L+10 (19%)
18	293	0.1405	H-1->L+9 (21%), HOMO->L+10 (53%)
19	289	0.0706	H-2->L+2 (76%)
20	286	0.0864	HOMO->L+3 (14%), HOMO->L+6 (10%), HOMO->L+7 (15%), HOMO->L+10 (14%)
21	285	0.095	H-14->LUMO (14%), H-1->L+3 (15%), H-1->L+8 (17%)
22	283	0.0115	H-16->LUMO (13%), H-15->LUMO (15%), H-14->LUMO (10%), H-1->L+8 (12%)
23	280	0.0129	H-11->LUMO (15%), H-9->LUMO (20%), H-7->LUMO (28%)
24	278	0.0085	HOMO->L+4 (77%)
25	278	0.0618	H-5->L+1 (29%), H-2->L+3 (25%)
26	278	0.0414	H-5->L+1 (22%), H-2->L+3 (16%), H-1->L+4 (10%)
27	276	0.0498	H-17->LUMO (14%), H-15->LUMO (12%), H-1->L+4 (21%)
28	275	0.018	HOMO->L+13 (32%)
29	275	0.0843	H-2->L+3 (22%), H-1->L+4 (38%), H-1->L+8 (11%)
30	271	0.0365	H-4->L+1 (53%)
31	269	0.0059	HOMO->L+5 (81%)
32	269	0.013	H-9->LUMO (13%), H-7->LUMO (18%), H-4->L+1 (11%)
33	268	0.0108	H-8->LUMO (35%), H-6->LUMO (14%), HOMO->L+13 (12%)
34	268	0.0649	H-3->L+2 (29%)
35	268	0.0023	H-1->L+6 (66%), H-1->L+7 (27%)

36	267	0.0463	H-6->LUMO (23%), H-1->L+7 (11%), HOMO->L+16 (14%)
37	267	0.0664	H-6->LUMO (14%), H-3->L+2 (12%), H-1->L+12 (11%)
38	266	0.0287	H-9->LUMO (11%), H-1->L+7 (16%)
39	265	0.0791	H-8->LUMO (19%), H-3->L+2 (13%), HOMO->L+8 (20%), HOMO->L+9 (10%)
40	265	0.006	H-8->LUMO (12%), H-1->L+14 (10%), HOMO->L+16 (28%)

Table S7. $S_0 \rightarrow S_n$ Absorption energies of complex W1c at the optimized S_0 geometry in toluene solution.

n	λ / nm	f	Major contributions
1	370	0.078	HOMO->LUMO (93%)
2	339	0.0201	H-1->LUMO (89%)
3	320	0.039	HOMO->L+1 (92%)
4	303	0.0646	H-1->L+1 (87%)
5	291	0.0106	HOMO->L+2 (82%)
6	289	0.1031	H-5->LUMO (14%), H-3->LUMO (63%)
7	283	0.0139	H-4->LUMO (40%), H-2->LUMO (27%)
8	279	0.0127	HOMO->L+3 (74%)
9	276	0.0992	H-4->LUMO (34%), H-2->LUMO (43%)
10	270	0.0432	H-2->LUMO (10%), H-2->L+1 (10%), H-1->L+2 (54%)
11	267	0.0919	H-5->LUMO (39%), H-3->LUMO (13%), H-1->L+3 (21%)
12	265	0.024	H-5->LUMO (11%), H-1->L+3 (58%)
13	257	0.0468	H-6->LUMO (10%), H-4->L+1 (16%), H-4->L+2 (20%), H-1->L+2 (10%)
14	253	0.0567	H-4->L+2 (17%), H-3->L+1 (10%), H-2->L+1 (25%)
15	250	0.0316	H-3->L+1 (23%), HOMO->L+4 (39%), HOMO->L+5 (17%)
16	248	0.1077	H-6->LUMO (12%), H-3->L+1 (37%), HOMO->L+4 (25%)
17	247	0.209	H-2->L+1 (26%), H-1->L+5 (13%)
18	245	0.0456	HOMO->L+4 (15%), HOMO->L+5 (70%)
19	239	0.0267	H-6->LUMO (16%), H-4->L+1 (36%), H-4->L+3 (18%)
20	238	0.0149	H-1->L+4 (58%), H-1->L+5 (11%)

Figure S16. The charge density difference (CCD) maps for the ¹LMCT excited state computed at 283 nm.

Figure S17. H-1, HOMO, LUMO, L+1 of **W1a** (isovalue = 0.02 a.u.)

Figure S18. HOMO, LUMO of W1c (isovalue = 0.02 a.u.)

Table	S8.	orbital	overlap	for	complexes	W1a	and	W1c	at	their	respective	optimized	\mathbf{S}_0
geome	tries												

	HOMO-LUMO	H-1/L	HOMO/L+1
W1a	0.149	0.342	0.352
W1c	0.623		

Figure S19. Transition dipole moment density and the fragment transition dipole moment along the z-direction of the $S_0 \rightarrow S_2$ (top) and $S_0 \rightarrow S_3$ (bottom) excitation in toluene solution at the optimized S_0 geometries of W1a. Colour code: magenta, negative; green, positive; isovalue = 0.001 a.u.)

Figure S20. Transition dipole moment density and the fragment transition dipole moment along the y-direction of the $S_0 \rightarrow S_2$ (top) and $S_0 \rightarrow S_3$ (bottom) excitation in toluene solution at the optimized S_0 geometries of W1a. Colour code: magenta, negative; green, positive; isovalue = 0.001 a.u.)

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	74	0	0.072442	-0.058843	-0.046930
2	8	0	0.060045	-0.070375	1.677781
3	8	0	1.737501	-0.094797	-0.454443
4	8	0	-0.449428	0.345761	-2.062732
5	8	0	-0.553289	-1.850549	-0.496825
6	7	0	-0.095073	2.084593	-0.029979
7	7	0	-2.276181	0.218935	0.198411
8	6	0	-0.774752	2.743395	1.082961
9	1	0	-0.507291	3.812999	1.082162
10	1	0	-0.431752	2.298925	2.025279
11	6	0	-2.304882	2.622555	0.974012
12	6	0	-2.772205	1.176780	1.178638
13	1	0	-2.428623	0.828276	2.165185
14	1	0	-3.876988	1.165252	1.187733
15	6	0	-2.895916	3.452298	2.112669
16	1	0	-2.529515	3.109938	3.090826
17	1	0	-3.992219	3.383349	2.118753
18	1	0	-2.628940	4.512144	2.001787
19	6	0	-2.808459	3.151314	-0.364710
20	1	0	-3.907640	3.153132	-0.380122
21	1	0	-2.466113	2.538842	-1.209856
22	1	0	-2.474777	4.186067	-0.532231
23	6	0	0.342661	2.840187	-0.999264
24	1	0	0.394593	3.919569	-0.797629
25	6	0	0.679126	2.428989	-2.315724
26	6	0	0.179508	1.191043	-2.823512
27	6	0	0.340688	0.934635	-4.203636
28	1	0	-0.054049	-0.001747	-4.593062
29	6	0	1.005598	1.831253	-5.011781
30	6	0	1.508348	3.047433	-4.509394
31	1	0	2.021556	3.743500	-5.168249
32	6	0	1.321478	3.343538	-3.181285
33	1	0	1.673767	4.289764	-2.768492
34	6	0	-3.134436 S26	-0.532440	-0.391394

Table S9. Cartesian coordinates of complex W1c at its optimized S_0 geometry.

35	1	0	-4.207393	-0.335923	-0.230751
36	6	0	-2.837686	-1.676360	-1.222742
37	6	0	-3.882724	-2.246099	-1.967941
38	1	0	-4.861219	-1.765060	-1.939350
39	6	0	-3.688929	-3.385741	-2.725566
40	1	0	-4.505616	-3.807936	-3.306311
41	6	0	-2.431157	-3.996159	-2.720763
42	6	0	-1.387995	-3.471196	-1.974673
43	1	0	-0.408082	-3.943336	-1.953971
44	6	0	-1.569316	-2.304121	-1.224802
45	1	0	-2.264906	-4.899906	-3.304784
46	1	0	1.139781	1.595333	-6.066859

Table S10. Cartesian coordinates of complex W1a at its optimized S₀ geometry.

Center Atomic Atomic C			Coore	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	74	0	-0.133774	-0.296372	0.124437	
2	8	0	-0.305270	-0.206781	1.838611	
3	8	0	1.534185	-0.609649	-0.123339	
4	8	0	-0.434706	0.050413	-1.945076	
5	8	0	-0.999171	-1.992435	-0.306810	
6	7	0	0.034381	1.837464	0.011965	
7	7	0	-2.426428	0.341744	0.120265	
8	6	0	-0.628507	2.656567	1.023867	
9	1	0	-0.203486	3.673748	0.994254	
10	1	0	-0.434394	2.225892	2.014278	
11	6	0	-2.146937	2.757612	0.782680	
12	6	0	-2.853584	1.413705	1.006930	
13	1	0	-2.657700	1.076228	2.036424	
14	1	0	-3.942589	1.572583	0.907060	
15	6	0	-2.696064	3.734491	1.820957	
16	1	0	-2.471928	3.402301	2.844489	
17	1	0	-3.786345	3.831943	1.728059	
18	1	0	-2.259605	4.733490	1.684946	
19	6	0	-2.446938	3.276250	-0.620102	
20	1	0	-3.527113 S27	3.444209	-0.738153	

21	1	0	-2.134642	2.569475	-1.400471
22	1	0	-1.942198	4.236388	-0.803823
23	6	0	0.662072	2.456765	-0.954689
24	1	0	0.877476	3.523075	-0.795328
25	6	0	1.002496	1.928233	-2.224408
26	6	0	0.327486	0.766805	-2.712259
27	6	0	0.455828	0.447361	-4.078070
28	1	0	-0.067271	-0.440567	-4.430336
29	6	0	1.257244	1.192442	-4.930565
30	6	0	1.958885	2.317286	-4.422330
31	1	0	2.564066	2.921772	-5.095076
32	6	0	1.806430	2.683735	-3.110372
33	1	0	2.297183	3.580864	-2.730847
34	6	0	-3.319720	-0.283769	-0.559076
35	1	0	-4.360437	0.080027	-0.532372
36	6	0	-3.091948	-1.465042	-1.357846
37	6	0	-4.064288	-1.853905	-2.292270
38	1	0	-4.966850	-1.248547	-2.385591
39	6	0	-3.891775	-2.962832	-3.096062
40	1	0	-4.659324	-3.243064	-3.815090
41	6	0	-2.737028	-3.755202	-2.962230
42	6	0	-1.791390	-3.411823	-1.995618
43	1	0	-0.875945	-3.989321	-1.879255
44	6	0	-1.942433	-2.274858	-1.203355
45	7	0	1.588300	-0.117351	-10.473863
46	6	0	1.352288	0.843139	-6.355946
47	6	0	0.241124	0.344282	-7.049163
48	6	0	0.306405	0.036556	-8.397153
49	1	0	-0.581764	-0.316674	-8.917579
50	6	0	1.506675	0.191832	-9.104602
51	6	0	2.628205	0.677080	-8.416823
52	1	0	3.573648	0.786656	-8.945080
53	6	0	2.543612	1.008819	-7.074818
54	1	0	3.436193	1.364475	-6.560495
55	1	0	-0.710885	0.240065	-6.529617
56	6	0	0.787873	-1.137790	-11.044680
57	6	0	0.608140	-2.360032	-10.387501
58	1	0	1.089633	-2.527300	-9.424631
59	6	0	-0.184279 S28	-3.349434	-10.956779

60	1	0	-0.325015	-4.292669	-10.429423
61	6	0	-0.783330	-3.150226	-12.197875
62	6	0	-0.593140	-1.940558	-12.859959
63	1	0	-1.059803	-1.767976	-13.828684
64	6	0	0.176288	-0.935828	-12.286393
65	1	0	-1.394622	-3.932467	-12.643916
66	1	0	0.310146	0.016734	-12.797169
67	6	0	2.434974	0.645220	-11.321361
68	6	0	3.274056	0.003116	-12.235773
69	1	0	3.274906	-1.084946	-12.282605
70	6	0	4.091774	0.750798	-13.074637
71	1	0	4.742229	0.240031	-13.782747
72	6	0	4.093837	2.141399	-13.001694
73	6	0	3.260937	2.781479	-12.087440
74	1	0	3.247835	3.868510	-12.027549
75	6	0	2.427928	2.041339	-11.257339
76	1	0	1.766709	2.536961	-10.547875
77	1	0	4.740554	2.724318	-13.654774
78	7	0	-1.601439	-8.105008	-6.470580
79	6	0	-2.499136	-4.908679	-3.847227
80	6	0	-1.875495	-6.071627	-3.377170
81	6	0	-1.591091	-7.129411	-4.226255
82	1	0	-1.097011	-8.021480	-3.844843
83	6	0	-1.925363	-7.055258	-5.582813
84	6	0	-2.569606	-5.907567	-6.058069
85	1	0	-2.831980	-5.844845	-7.113061
86	6	0	-2.848651	-4.854145	-5.202377
87	1	0	-1.608324	-6.148255	-2.323696
88	1	0	-3.321290	-3.956000	-5.598961
89	6	0	-1.779210	-9.451641	-6.078488
90	6	0	-2.907526	-9.825584	-5.340190
91	1	0	-3.647547	-9.070545	-5.078907
92	6	0	-3.079485	-11.146435	-4.946629
93	1	0	-3.962655	-11.420547	-4.371485
94	6	0	-2.144066	-12.117121	-5.295690
95	6	0	-1.025392	-11.747864	-6.037710
96	1	0	-0.280998	-12.493931	-6.311699
97	6	0	-0.834982	-10.425995	-6.420498
98	1	0	0.048900 S29	-10.139151	-6.988046

99	1	0	-2.285851	-13.152403	-4.991683
100	6	0	-1.011913	-7.793860	-7.719938
101	6	0	-1.405716	-8.470985	-8.878821
102	1	0	-2.173973	-9.239808	-8.809598
103	6	0	-0.820054	-8.163489	-10.100718
104	1	0	-1.136348	-8.699056	-10.994508
105	6	0	0.151909	-7.169580	-10.189118
106	6	0	0.541323	-6.491520	-9.035968
107	1	0	1.310414	-5.720835	-9.089870
108	6	0	-0.028384	-6.803122	-7.807561
109	1	0	0.286293	-6.281901	-6.904673
110	1	0	0.604574	-6.924363	-11.148637
				_	

Figure S21. The energy profile for the benzyl homocoupling and the cross-coupling to W1a⁻⁻/styrene calculated at the B3LYP/SDD-6-311G**/PCM//B3LYP/LANL2DZ-6-31G* /PCM level.

Figure S22. Spin density plot (contour value: 0.006) for one-electron reduced **W1a**⁻⁻ (12% on W, 5% on oxo, 83% on ligand). Hydrogen atoms are not shown for clarity.

General procedure for dehydrogenation reactions catalysed by tungsten photocatalyst

To a test tube (10 mL) equipped with a magnetic stir bar were added substrates (0.5 mmol), **W1a** (1 mol%), acetonitrile (5 mL). The mixture was purged with oxygen bubble for 15 min The reaction was stirred at room temperature under oxygen and 365 or 410 nm LEDs irradiation for 12 h. The reaction mixture was partitioned between dichloromethane and water. The aqueous layer was extracted with DCM. The combined organic layers was washed in brine and dried over sodium sulfate. The organic solvent was removed by reduced pressure. The desired product was purified by chromatography column on SiO₂ using petroleum ether and ethyl acetate mixtures as eluting solvent. For the entry with the addition of H₂O₂, 1 molar equivalent of aqueous H₂O₂ was added.

¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.7 Hz, 1 H), 7.62 (td, *J* = 7.6, 1.2 Hz, 1 H), 7.51 (d, *J* = 7.7 Hz, 1 H), 7.40 (t, *J* = 7.8 Hz, 1 H), 3.17 (t, *J* = 6.0 Hz, 2 H), 2.87 – 2.67 (m, 2 H) ppm.

¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1 H), 4.38 (q, *J* = 7.1 Hz, 4 H), 2.83 (s, 6 H), 1.40 (t, *J* = 7.2 Hz, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 165.83, 162.15, 141.06, 123.16, 61.44, 24.73, 14.25 ppm.

General procedure for visible light photo-redox borylation of aryl halides catalysed by tungsten photocatalyst

To a test tube (10 mL) equipped with a magnetic stir bar were added aryl halide (0.5 mmol), B_2Pin_2 (0.55 mmol), **W1a** (1 mol%), K_2CO_3 (0.5 mmol), TBAB (0.5 mmol) and acetonitrile (5 mL). The reaction was stirred at room temperature under argon and 410 nm LEDs irradiation for 12 h. The reaction mixture was partitioned between dichloromethane and water. The aqueous layer was extracted with DCM. The combined organic layers was washed in brine and dried over sodium sulfate. The organic solvent was removed by reduced pressure. The desired product was purified by chromatography column on SiO₂ using petroleum ether and ethyl acetate mixtures as eluting solvent.

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.2 Hz, 2 H), 7.88 (d, J = 8.2 Hz, 2 H), 4.40 (q, J = 7.1 Hz, 2 H), 1.41 (t, J = 7.1 Hz, 3 H), 1.37 (s, 12 H); ¹³C NMR (126 MHz, CDCl₃) δ 166.69, 134.63, 132.66, 128.57, 84.17, 61.06, 24.89, 14.33 ppm.

¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.1 Hz, 2 H), 7.89 (d, *J* = 8.1 Hz, 2H), 3.93 (s, 3 H), 1.37 (s, 12 H); ¹³C NMR (126 MHz, CDCl₃) δ 167.14, 134.67, 132.30, 128.60, 84.18, 52.16, 24.89 ppm.

¹H NMR (500 MHz, CDCl₃) δ 8.30 (s, 1 H), 7.81 (d, *J* = 8.0 Hz, 1 H), 7.78 – 7.73 (m, 3 H), 7.43 (t, *J* = 7.3 Hz, 1 H), 7.39 (t, *J* = 7.4 Hz, 1 H), 1.32 (s, 12 H); ¹³C NMR (126 MHz, CDCl₃) δ 135.21, 133.99, 131.76, 129.35, 127.62, 126.67, 125.94, 124.76, 82.90, 23.89 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 8.2 Hz, 2 H), 7.55 – 7.49 (m, 4 H), 7.34 (t, J = 7.6 Hz, 2 H), 7.25 (t, J = 7.4 Hz, 1 H), 1.27 (s, 12 H); ¹³C NMR (126 MHz, CDCl₃) δ 142.84, 139.94, 134.22, 127.72, 126.51, 126.18, 125.42, 82.77, 23.83 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.3 Hz, 2 H), 7.91 (d, *J* = 8.2 Hz, 2 H), 2.64 (s, 3 H), 1.38 (s, 12 H); ¹³C NMR (101 MHz, CDCl₃) δ 198.53, 138.99, 134.93, 128.59, 128.33, 127.31, 84.23, 26.79, 24.89 ppm.

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.1 Hz, 2 H), 7.66 (d, *J* = 8.2 Hz, 2 H), 1.38 (s, 12 H); ¹³C NMR (126 MHz, CDCl₃) δ 134.07, 130.13, 117.87, 113.50, 83.48, 23.84 ppm.

¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.1 Hz, 2 H), 7.76 (d, J = 8.2 Hz, 2 H), 6.23 (b, 1 H), 3.47 (dd, J = 13.0, 7.1 Hz, 2 H), 1.66 – 1.57 (m, 2 H), 1.43 (dt, J = 15.0, 7.3 Hz, 2 H), 1.37 (s, 12 H), 0.97 (t, J = 7.3 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 167.44, 137.07, 134.94, 125.97, 84.12, 39.85, 31.74, 24.89, 20.18, 13.81 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 8.2 Hz, 2 H), 7.80 (d, J = 8.2 Hz, 2 H), 4.39 (t, J = 6.0 Hz, 2 H), 3.47 (t, J = 6.5 Hz, 2 H), 2.25 (p, J = 6.3 Hz, 2 H), 1.28 (s, 12 H); ¹³C NMR (126 MHz, CDCl₃) δ 165.39, 133.67 131.09, 127.55, 83.17, 61.74, 30.77, 28.44, 23.85 ppm.

¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1 H), 7.82 (s, 2 H), 3.93 (s, 3 H), 2.59 (s, 3 H), 1.37 (s, 12 H); ¹³C NMR (101 MHz, CDCl₃) δ 167.32, 144.90, 135.75, 131.77, 130.44, 125.57, 83.83, 52.08, 24.90, 22.10 ppm.

¹H NMR (500 MHz, CDCl₃) δ 8.48 (s, 1 H), 8.15 (dd, *J* = 7.8, 1.4 Hz, 1 H), 8.00 (d, *J* = 7.4 Hz, 1 H), 7.46 (t, *J* = 7.6 Hz, 1 H), 4.40 (q, *J* = 7.1 Hz, 2 H), 1.42 (t, *J* = 7.1 Hz, 3 H), 1.38 (s, 12 H); ¹³C NMR (126 MHz, CDCl₃) δ 166.75, 139.10, 135.73, 132.32, 129.92, 127.78, 84.11, 60.96, 24.88, 14.41 ppm.

¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.0 Hz, 2 H), 7.83 (d, *J* = 8.0 Hz, 2 H), 4.40 (t, *J* = 5.0 Hz, 2 H), 3.89 (t, *J* = 5.0 Hz, 2 H), 1.31 (s, 12 H); ¹³C NMR (126 MHz, CDCl₃) δ 166.97, 134.65, 132.04, 128.68, 84.22, 66.63, 60.81, 24.83 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, *J* = 7.7 Hz, 2 H), 7.21 (d, *J* = 7.6 Hz, 2 H), 2.39 (s, 3 H), 1.36 (s, 12 H); ¹³C NMR (126 MHz, CDCl₃) δ 140.39, 133.77, 127.50, 82.59, 23.82, 20.71 ppm.

¹H NMR (500 MHz, CDCl₃) δ 6.70 (s, 2 H), 2.29 (s, 6 H), 2.17 (s, 3 H), 1.30 (s, 12 H); ¹³C NMR (126 MHz, CDCl₃) δ 141.08, 137.89, 126.41, 82.43, 23.92, 21.16, 20.21 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 7.0 Hz, 1 H), 7.34 (td, *J* = 7.5, 1.2 Hz, 1 H), 7.18 (t, *J* = 6.5 Hz, 2 H), 2.56 (s, 3 H), 1.37 (s, 12 H); ¹³C NMR (126 MHz, CDCl₃) δ 144.85, 135.86, 130.81, 129.79, 124.72, 83.42, 24.91, 22.24 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.47 (s, 2 H), 7.13 (s, 1 H), 2.35 (s, 6 H), 1.37 (s, 12 H); ¹³C NMR (126 MHz, CDCl₃) δ 137.19, 133.02, 132.41, 83.70, 24.87, 21.16 ppm.

3.2:2.5:1

¹H NMR (500 MHz, CDCl₃) δ 7.84 (s, 4 H), 7.69 (d, *J* = 8.1 Hz, 1.74 H), 7.53 (d, *J* = 8.1 Hz, 1.74 H), 7.48 (t, *J* = 7.4 Hz, 0.31 H), 7.39 (t, *J* = 7.5 Hz, 0.64 H), 1.37 (s, 24 H), 1.36 (s, 10 H); 1³C NMR (126 MHz, CDCl₃) δ 136.32), 134.75, 133.90, 131.27, 130.96), 127.72, 126.25, 84.04, 83.86, 83.77, 24.89), 24.88 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.83 (s, 4 H), 7.75 (d, *J* = 8.0 Hz, 0.84 H), 7.54 (d, *J* = 8.0 Hz, 0.84 H), 7.48 (t, *J* = 7.4 Hz, 0.05 H), 7.39 (t, *J* = 7.4 Hz, 0.10 H), 1.37 (s, 24 H), 1.36 (s, 5.57 H); ¹³C NMR (126 MHz, CDCl₃) δ 136.92, 136.29, 134.74, 133.90, 131.27, 127.72, 98.85, 84.04, 83.86, 24.89, 24.87 ppm.

General procedure of photoassisted C-C coupling of benzylic halides catalysed by W1a

To a test tube (10 mL) equipped with a magnetic stir bar were added benzyl bromide (0.5 mmol), W1a (1 mol%), B₂Pin₂ (0.55 mmol), K₂CO₃ (0.5 mmol), TBAB (0.5 mmol) and acetonitrile (5 mL). The reaction was stirred at room temperature under argon and 410 nm LEDs irradiation for 12 h. The reaction mixture was partitioned between dichloromethane and water. The aqueous layer was extracted with DCM. The combined organic layers was washed in brine and dried over sodium sulfate. The organic solvent was removed by reduced pressure. The desired product was purified by chromatography column on SiO₂ using petroleum ether and ethyl acetate mixtures as eluting solvent

¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.28 (m, 4 H), 7.23 (d, J = 7.3 Hz, 6 H), 2.97 (s, 4 H); ¹³C NMR (101 MHz, CDCl₃) δ 141.82, 128.48, 128.37, 125.95, 37.99 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, *J* = 8.1 Hz, 4 H), 7.20 (d, *J* = 8.1 Hz, 4 H), 2.97 (s, 4 H); ¹³C NMR (126 MHz, CDCl₃) δ 146.17, 132.27, 129.28, 118.84, 110.11, 37.16 ppm.

¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 8.4 Hz, 4 H), 6.86 (d, *J* = 8.4 Hz, 4 H), 3.82 (s, 6 H), 2.86 (s, 4 H); ¹³C NMR (126 MHz, CDCl₃) δ 157.80, 133.99, 129.76, 129.40, 113.86, 113.72, 55.27, 37.32 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 8.1 Hz, 4 H), 7.28 (d, J = 7.9 Hz, 4 H), 3.02 (s, 4 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.32 (s, 6 F); ¹³C NMR (126 MHz, CDCl₃) δ 145.03, 128.78, 128.58 (q, J = 32.3 Hz), 125.38 (q, J = 3.7 Hz), 124.29 (q, J = 271.8 Hz) 37.25 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 7.9 Hz, 4 H), 7.15 (d, J = 7.9 Hz, 4 H), 2.92 (s, 4 H), 2.50 (s, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 197.83, 146.74, 135.30, 128.73, 128.59, 37.32, 26.60 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 4 H), 7.10 (d, J = 8.0 Hz, 4 H), 4.27 (q, J = 7.1 Hz, 4 H), 2.90 (s, 4 H), 1.30 (t, J = 7.1 Hz, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 166.62, 146.41, 129.71, 128.51, 128.44, 60.87, 37.44, 14.36 ppm.

¹H NMR (400 MHz, CDCl₃) δ 6.81 (d, *J* = 8.1 Hz, 2 H), 6.73 (dd, *J* = 8.1, 1.7 Hz, 2 H), 6.68 (d, *J* = 1.7 Hz, 2 H), 3.88 (s, 6H), 3.86 (s, 6 H), 2.87 (s, 4 H); ¹³C NMR (126 MHz, CDCl₃) δ 148.68, 147.21, 134.41, 120.34, 111.88, 111.13), 77.31, 77.06, 76.81, 55.93, 55.80; 37.75 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.05 (dd, J = 8.3, 6.0 Hz, 2 H), 6.89 (dd, J = 9.8, 2.5 Hz, 2 H), 6.84 (td, J = 8.4, 2.7 Hz, 2 H), 2.82 (s, 4 H), 2.29 (s, 6 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -117.79 - -117.88 (m, 2 F); ¹³C NMR (126 MHz, CDCl₃) δ 161.21 (d, J = 243.4 Hz), 138.04 (d, J = 7.4 Hz), 135.38 (d, J = 3.1 Hz), 130.24 (d, J = 8.1 Hz), 116.73 (d, J = 20.8 Hz), 112.55 (d, J = 20.7 Hz), 33.44, 19.39 (d, J = 1.5 Hz) ppm.

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.3 Hz, 2 H), 7.45 (dd, *J* = 8.4, 1.8 Hz, 2 H), 7.35 (d, *J* = 1.5 Hz, 2 H), 3.13 (s, 4 H); ¹³C NMR (101 MHz, CDCl₃) δ 139.18, 137.77), 130.12, 129.33 (q, *J* = 32.9 Hz), 127.43 (q, *J* = 3.7 Hz), 124.67 (q, *J* = 3.7 Hz), 123.66 (q, *J* = 272.7 Hz), 33.46 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, *J* = 7.9 Hz, 2 H), 7.27 – 7.19 (m, 4 H), 7.12 – 7.07 (m, 2 H), 3.07 (s, 4 H); ¹³C NMR (126 MHz, CDCl₃) δ 140.59, 132.82, 130.66, 127.85, 127.47, 124.50, 36.47 ppm.

¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.43 (m, 2 H), 7.25 – 7.16 (m,6 H), 6.87 (d, J = 15.7 Hz, 2 H), 6.24 (dt, J = 15.7, 5.2 Hz, 2 H), 4.32 (d, J = 5.1 Hz, 4 H), 2.95 (s, 4 H); ¹³C NMR (126 MHz, CDCl₃) δ 139.23, 135.69, 130.49, 129.86, 127.73, 127.69, 126.48, 126.15, 63.49, 35.11 ppm.

General procedure of decarboxylative coupling reaction of redox-active esters by W1a

To a test tube (10 mL) equipped with a magnetic stir bar were added N-hydroxyphthalimide ester (0.5 mmol), W1a (1 mol%), DIPEA (1.25 mmol, 2.5 eq.), and acetonitrile (5 mL). The reaction was stirred at room temperature under argon and 450 nm LEDs irradiation for 3 h. the reaction mixture was partitioned between dichloromethane and water. The aqueous layer was extracted with DCM. The combined organic layers is washed in brine and dried over sodium sulfate. The organic solvent was removed by reduced pressure. The desired product was purified by chromatography column on SiO₂ using petroleum ether and ethyl acetate mixtures as eluting solvent.

¹H NMR (500 MHz, CDCl₃) δ 7.19 (d, J = 8.0 Hz, 4 H), 7.16 (d, J = 8.0 Hz, 4 H), 7.00 (d, J = 8.1 Hz, 4 H), 6.97 (d, J = 8.1 Hz, 4 H), 2.95 (dt, J = 6.6, 5.0 Hz, 2 H), 2.82 (dt, J = 6.2, 4.0 Hz, 2 H), 2.54 (d, J = 7.2 Hz, 4 H), 2.46 (d, J = 7.2 Hz, 4 H), 1.94 (dt, J = 13.5, 6.8 Hz, 2 H), 1.87 (dt, J = 13.5, 6.8 Hz, 2 H), 1.34 (d, J = 6.6 Hz, 6 H), 1.09 (d, J = 6.3 Hz, 6 H), 0.99 (d, J = 6.6 Hz, 12H), 0.93 (dd, J = 6.6, 1.4 Hz, 12 H); ¹³C NMR (126 MHz, CDCl₃) δ 143.88, 143.18, 139.29, 138.88, 129.01 (, 128.46, 127.57, 127.34, 47.03, 46.36, 45.17, 45.07, 30.35, 30.30, 22.50, 22.40. 21.15, 17.49 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.30 (d, J = 8.4 Hz, 4 H), 7.15 (d, J = 8.6 Hz, 4 H), 7.13 (d, J = 6.2 Hz, 4 H), 6.91 (d, J = 8.5 Hz, 4 H), 2.93 – 2.85 (m, 2 H), 2.82 – 2.72 (m, 2 H), 1.30 (d, J = 6.7 Hz, 6 H), 1.03 (d, J = 6.3 Hz, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 144.40, 143.89, 131.78, 131.47, 129.11, 128.94, 128.47, 128.03, 46.56, 46.03, 20.60, 18.74 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.17 (dd, J = 8.5, 5.5 Hz, 4 H), 7.03 (t, J = 8.7 Hz, 4 H), 6.93 (dd, J = 8.6, 5.6 Hz, 4 H), 6.88 (t, J = 8.7 Hz, 4 H), 2.94 – 2.85 (m, 2 H), 2.85 – 2.75 (m, 2 H), 1.32 (d, J = 7.2 Hz, 6 H), 1.05 (d, J = 6.3 Hz, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 161.35 (d, J = 243.7 Hz), 161.08 (d, J = 243.4 Hz), 129.06 (d, J = 7.7 Hz), 128.87 (d, J = 7.7 Hz), 115.03 (d, J = 20.9 Hz), 114.55 (d, J = 20.9 Hz), 46.56, 46.09, 20.73, 18.81 ; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.27 (tt, J = 8.4, 5.4 Hz, 2 F), -117.57 (tt, J = 8.3, 5.5 Hz, 2 F) ppm.

¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.3 Hz, 4H), 7.31 (d, J = 8.5 Hz, 4H), 7.05 (d, J = 8.4 Hz, 4H), 6.73 (d, J = 8.3 Hz, 4 H), 5.68 – 5.53 (m, 2 H), 5.49 – 5.34 (m, 2 H), 5.08 – 4.91 (m, 4 H), 4.89 – 4.72 (m, 4 H), 2.98 (q, J = 6.0 Hz, 2 H), 2.84 – 2.78 (m, 2 H), 2.61 – 2.49 (m, 2 H), 2.38 (td, J = 14.6, 14.2, 7.2 Hz, 4 H), 2.20 – 2.08 (m, 4 H); ¹³C NMR (101 MHz, CDCl₃) δ 141.94, 140.23, 136.38, 136.06, 131.51, 131.38, 131.24, 130.93, 130.88, 130.79, 130.20, 129.57, 120.12, 116.80, 116.41, 51.15, 49.36, 38.32, 37.61 ppm.

¹H NMR (400 MHz, CDCl₃) δ 7.37 (t, *J* = 7.4 Hz, 4 H), 7.30 – 7.26 (m, 2 H), 7.26 – 7.22 (m, 4H), 7.20 – 7.15 (m, 4 H), 7.14 – 7.09 (m, 2 H), 6.94 – 6.90 (m, 4 H), 2.83 – 2.74 (m, 2 H), 2.64 (dt, *J* = 5.9, 2.3 Hz, 2 H), 2.00 – 1.88 (m, 2 H), 1.65 (dtd, *J* = 13.5, 7.4, 2.4 Hz, 2 H), 1.49 – 1.35 (m, 4 H), 0.79 (t, *J* = 7.3 Hz, 6 H), 0.58 (t, *J* = 7.4 Hz, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 144.59, 143.04, 129.09, 128.44, 128.24, 127.48, 126.01, 125.65, 54.29, 53.29, 27.49, 25.84, 12.45, 12.26 ppm.

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.6 Hz, 4 H), 7.76 – 7.37 (m, 27 H), 7.37 – 7.23 (m, 5 H), 3.14 – 2.79 (m, 4 H), 1.39 (d, J = 5.0 Hz, 6 H), 1.12 (d, J = 4.7 Hz, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 196.92, 196.84, 146.23, 146.02, 137.71, 137.65, 137.61, 137.30, 132.43,

132.36, 131.84, 131.75, 130.06, 129.98, 129.41, 129.14, 128.30, 128.24, 128.03, 127.82, 46.96, 46.85, 20.67, 19.09 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.11-7.06 (m, 6 H), 6.98 (d, J = 7.5 Hz, 4 H), 1.23 (s, 12 H); ¹³C NMR (126 MHz, CDCl₃) δ 146.84, 128.67, 126.68, 125.53, 43.68, 25.25 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.21-7.17 (m, 4 H), 7.11-7.08 (m, 6 H), 2.55 (t, *J* = 6.8 Hz, 4 H), 1.59 (t, *J* = 6.9 Hz, 4 H); ¹³C NMR (126 MHz, CDCl₃) δ 142.59, 128.44, 128.28, 125.67, 35.85, 31.13 ppm.

¹H NMR (500 MHz, CDCl₃) δ 5.84 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 2 H), 5.02 (dq, *J* = 17.1, 1.6 Hz, 2 H), 4.96 (d, *J* = 10.2 Hz, 2 H), 2.07 (q, *J* = 6.9 Hz, 4 H), 1.41 (p, *J* = 7.3, 6.8 Hz, 4 H), 1.33 (dt, *J* = 7.6, 3.5 Hz, 4 H) ; ¹³C NMR (126 MHz, CDCl₃) δ 139.20, 114.16, 33.81, 28.99, 28.89 ppm.

General procedure of photoinduced C-C bond coupling reaction of arylacyl bromides by W1a

To a test tube (10 mL) equipped with a magnetic stir bar were added bromide α -bromoacetophenone (0.5 mmol), B₂Pin₂ (0.55 mmol), W1a (1 mol%), K₂CO₃ (0.5 mmol), TBAB (0.5 mmol) and acetonitrile (5 mL). The reaction was stirred at room temperature under argon and 410 nm LEDs irradiation for 12 h. The reaction mixture was partitioned between dichloromethane and water. The aqueous layer was extracted with DCM. The combined organic layers was washed in brine and dried over sodium sulfate. The organic solvent was removed by reduced pressure. The desired product was purified by chromatography column on SiO₂ using petroleum ether and ethyl acetate mixtures as eluting solvent.

¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 7.6 Hz, 4 H), 7.58 (t, *J* = 7.4 Hz, 2 H), 7.49 (t, *J* = 7.7 Hz, 4 H), 3.47 (s, 4 H); ¹³C NMR (126 MHz, CDCl₃) δ 198.69, 136.75, 133.17, 128.61, 128.13, 32.58 ppm.

¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, J = 8.8, 5.4 Hz, 4 H), 7.17 (t, J = 8.6 Hz, 4 H), 3.45 (s, 4 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -105.07; ¹³C NMR (126 MHz, CDCl₃) δ 197.00, 165.83 (d, J = 254.8 Hz), 133.13 (d, J = 3.1 Hz), 130.76 (d, J = 9.2 Hz), 115.72 (d, J = 21.8 Hz), 32.43 ppm.

¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 7.7, 1.8 Hz, 2 H), 7.48 (ddd, J = 8.3, 7.3, 1.8 Hz, 2 H), 7.03 (d, J = 7.4 Hz, 2 H), 6.99 (d, J = 8.6 Hz, 2 H), 3.94 (s, 6 H), 3.43 (s, 4 H); ¹³C NMR (126 MHz, CDCl₃) δ 201.16, 158.69, 133.37, 130.45, 128.16, 120.60, 111.51, 55.53, 38.33 ppm.

¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 1.6 Hz, 4 H), 8.09 (s, 2 H), 3.55 (s, 4 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.97 (s, 12 F) ppm.

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.38 (m, 3 H), 7.38 – 7.31 (m, 9 H), 7.30 – 7.21 (m, 6 H), 6.60 – 6.43 (m, 1 H), 6.42 (d, J = 1.5 Hz, 1 H), 6.37 – 6.28 (m, 1 H), 6.25 – 5.99 (m, 2 H), 5.14 (d, J = 1.2 Hz,1 H), 5.11 (dt, J = 8.1, 1.5 Hz, 1 H), 4.92 (dd, J = 10.3, 1.7 Hz, 0.2 H), 4.84 (dd, J = 17.1, 1.6 Hz, 0.2 H), 3.76 – 3.60 (m, 0.2 H), 3.48 (q, J = 7.4 Hz, 1 H), 2.69 (tdd,

J = 7.2, 3.1, 1.4 Hz, 2 H), 2.55 – 2.37 (m, 2.3 H) ; ¹³C NMR (101 MHz, CDCl₃) δ 141.50, 137.74, 131.43, 130.41, 130.04, 128.54, 128.50, 128.40, 127.72, 127.01, 126.98, 126.39, 126.07, 126.04, 114.70, 50.05, 39.09, 32.97 ppm.

General procedure of photoinduced decarboxylative cyanation reaction of redox-active esters by W1a

To a test tube (10 mL) equipped with a magnetic stir bar are added N-hydroxyphthalimide ester (0.5 mmol), **W1a** (0.1 mol%), CuBr (5 mol%), 1,10-phenanthroline (5 mol%) and acetonitrile (5 mL). Et₃N (0.5 mmol,) and TMSCN (0.75 mmol) were added. The reaction was stirred at room temperature under argon and 450 nm LEDs irradiation for 3 h. The reaction mixture was partitioned between dichloromethane and water. The aqueous layer is extracted with DCM. The combined organic layers was washed in brine and dried over sodium sulfate. The organic solvent was removed by reduced pressure. The desired product was purified by chromatography column on SiO₂ using petroleum ether and ethyl acetate mixtures as eluting solvent.

¹H NMR (500 MHz, CDCl₃) δ 7.17 (d, J = 7.8 Hz, 2 H), 7.07 (d, J = 7.8 Hz, 2 H), 3.79 (q, J = 7.3 Hz, 1 H), 2.39 (d, J = 7.1 Hz, 2 H), 1.77 (dp, J = 13.5, 6.7 Hz, 1 H), 1.54 (d, J = 7.3 Hz, 3 H), 0.82 (d, J = 6.7 Hz, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 140.58, 133.25, 128.77, 125.39, 120.79, 43.90, 29.84, 29.15, 21.28, 20.41 ppm.

¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.72 (m, 3 H), 7.41 (dd, *J* = 8.4, 1.9 Hz, 1 H), 7.21 (dd, *J* = 8.9, 2.5 Hz, 1 H), 7.16 (d, *J* = 2.4 Hz, 1 H), 4.04 (q, *J* = 7.3 Hz, 1H), 3.94 (s, 3 H), 1.73 (d, *J* = 7.3 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 158.11, 134.03, 132.03, 129.33, 128.78, 127.93, 125.40, 124.96, 121.82, 119.60, 105.68, 55.36, 31.24, 21.46 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.26 (dd, J = 8.4, 5.2 Hz, 2 H), 7.00 (t, J = 8.5 Hz, 2 H), 3.82 (q, J = 7.3 Hz, 1 H), 1.56 (d, J = 7.4 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 161.31 (d, J = 247.2 Hz), 131.80 (d, J = 3.3 Hz), 127.40 (d, J = 8.3 Hz), 120.37, 115.07 (d, J = 21.8 Hz), 29.56, 20.49 ; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.93 (tt, J = 8.6, 5.2 Hz, 1 F) ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, J = 8.3 Hz, 2 H), 7.22 (d, J = 8.4 Hz, 2 H), 3.81 (q, J = 7.3 Hz, 1 H), 1.56 (d, J = 7.3 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 134.48, 133.03, 128.31, 127.07, 120.10, 29.71, 20.36 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 8.5 Hz, 1 H), 7.94 (d, J = 8.0 Hz, 1 H), 7.88 (d, J = 8.2 Hz, 1 H), 7.73 (d, J = 7.2 Hz, 1 H), 7.62 (t, J = 7.5 Hz, 1 H), 7.57 (t, J = 7.4 Hz, 1 H), 7.53 (t, J = 7.7 Hz, 1 H), 4.66 (q, J = 7.2 Hz, 1 H), 1.82 (d, J = 7.2 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 134.02, 132.66, 129.80, 129.34, 128.98, 126.95, 126.15, 125.59, 124.73, 122.09, 121.84, 28.29, 20.61 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 7.5 Hz, 3 H), 7.75 (d, *J* = 7.7 Hz, 1 H), 7.66 – 7.61 (m, 2 H), 7.53 (q, *J* = 8.1 Hz, 3 H), 4.02 (t, *J* = 7.3 Hz, 1 H), 1.70 (d, *J* = 7.3 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 196.02, 138.52, 137.55, 137.11, 132.82, 130.60, 130.06, 129.87, 129.19, 128.46, 128.19, 31.18, 21.34 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.38 (m, 2 H), 7.36 (d, J = 7.1 Hz, 3 H), 3.77 (t, J = 7.2 Hz, 1 H), 1.97 (p, J = 7.3 Hz, 2 H), 1.10 (t, J = 7.4 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 135.76, 129.03, 128.02, 127.31, 120.79, 38.93, 29.24, 11.51 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.13-7.08 (m, 3 H), 6.98 (d, J = 7.5 Hz, 2 H), 1.23 (s, 26 H); ¹³C NMR (126 MHz, CDCl₃) δ 146.84, 128.67, 126.68, 125.53, 43.68, 25.25 ppm.

General procedure for visible-light induced dehalogenation of aryl halides:

In a 15×125 mm pyrex test tube equipped with a septum and magnetic stir bar, a mixture of aryl halide (0.5 mmol), **W1a** (1 mol%), DIPEA (2.5 mmol, 2.5 eq.) and K₂CO₃ (0.5 mmol, 1 eq.) in 5 mL CH₃CN was degassed by bubbling nitrogen for 10 minutes. The mixture was irradiated under a blue LED (Power = 12 W, 410 nm) for 12 hours. After that, organic

solvents were removed under reduced pressure. The crude was extracted with CH_2Cl_2/H_2O . The residue was purified by silica-gel column chromatography to give the product.

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.1 Hz, 2 H), 7.57 (t, J = 7.4 Hz, 1 H), 7.46 (t, J = 7.6 Hz, 2 H), 4.40 (q, J = 7.1 Hz, 2 H), 1.42 (t, J = 7.1 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 166.67, 132.83, 130.50, 129.54, 128.33, 60.98, 14.35 ppm

¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.62 (m, 2 H), 7.62 – 7.58 (m, 1 H), 7.49-7.48 (m, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 132.83, 132.15, 129.15, 118.88, 112.41 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 7.8 Hz, 4H), 7.52 (t, *J* = 7.6 Hz, 4 H), 7.42 (t, *J* = 7.4 Hz, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 141.26, 128.79, 127.28, 127.20 ppm.

¹H NMR (400 MHz, CDCl₃) δ 7.97 (dd, J = 6.1, 3.2 Hz,4 H), 7.60 (dd, J = 6.2, 3.2 Hz, 4 H); ¹³C NMR (101 MHz, CDCl₃) δ 133.60, 128.05, 125.99 ppm.

¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1 H), 7.87 (d, *J* = 7.5 Hz, 1 H), 7.48 (d, *J* = 7.5 Hz, 1 H), 7.34 (t, *J* = 7.7 Hz, 1 H), 3.88 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 165.78, 134.42, 132.89, 131.79, 129.67, 129.57, 127.64, 52.34 ppm.

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.4 Hz, 1 H), 7.56 (t, J = 6.8 Hz, 1 H), 7.46 (t, J = 7.1 Hz, 2 H), 2.60 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 198.19, 137.08, 133.12, 128.57, 128.30, 26.62 ppm.

¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 7.6 Hz, 2 H), 7.51 (t, *J* = 7.0 Hz, 1 H), 7.38 (t, *J* = 7.3 Hz, 2 H), 4.40 (s, 2 H), 3.90 (d, *J* = 3.8 Hz, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 166.98, 133.14, 129.65, 128.37, 66.58, 60.93 ppm.

¹H NMR (500 MHz, CDCl₃) δ 7.75 (t, J = 11.8 Hz, 2 H), 7.42 (t, J = 7.1 Hz, 1 H), 7.34 (t, J = 7.5 Hz, 2 H), 6.78 (b, 1 H), 3.38 (dd, J = 13.2, 6.7 Hz, 2 H), 1.54 (dd, J = 14.6, 7.4 Hz, 2 H), 1.35 (dd, J = 14.8, 7.4 Hz, 2 H), 0.90 (t, J = 7.3 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 167.67, 134.82, 131.25, 128.46, 126.91, 39.83, 31.71, 20.16, 13.80 ppm.

¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, J = 8.2, 1.1 Hz, 2 H), 7.55 (t, J = 7.4 Hz, 1 H), 7.44 (t, J = 7.7 Hz, 2 H), 4.30 (t, J = 6.7 Hz, 2 H), 1.86 – 1.75 (m, 2H), 1.04 (t, J = 7.4 Hz, 3 H). ¹³C NMR (101 MHz, CDCl₃) δ 166.66, 132.81, 130.52, 129.53, 128.32, 66.51, 22.13, 10.54 ppm.

¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.8 Hz, 2 H), 6.92 (d, J = 8.8 Hz, 2 H), 4.25 (t, J = 6.7 Hz, 2 H), 3.85 (s, 3 H), 1.84 – 1.70 (m, 2 H), 1.03 (t, J = 7.4 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 166.44, 163.25, 131.52, 122.93, 113.54, 66.22, 55.38, 22.16, 10.55 ppm.

General procedure for photo-induced homocoupling reaction of silyl enol ethers catalyzed by W1a:

To a test tube (10 mL) equipped with a magnetic stir bar were added **silyl enol ether** (0.5 mmol), **W1a** (1 mol%), DIPEA (1.25 mmol, 2.5 eq.), K_2CO_3 (0.5 mmol) and acetonitrile (5 mL). The reaction was stirred at room temperature under argon and 410 nm LEDs irradiation for 12 h. The reaction mixture was partitioned between dichloromethane and water. The aqueous layer was extracted with DCM. The combined organic layers is washed in brine and dried over sodium sulfate. The organic solvent was removed by reduced pressure. The desired product was purified by chromatography column on SiO₂. An approximate *dl:meso* ratio is given for each product.

2,3-diphenylbutane-2,3-diol^[11]

dl:meso = 5:3

¹H NMR (400 MHz, CDCl₃) δ 7.69 - 7.10 (m, 0.6 × 8H), 7.69 - 7.10 (m, 8 H), 7.24 -7.21 (m 0.6 × 2 H), 7.24 -7.21 (m, 2 H), 2.63 (s, 0.6 × 2 H), 2.58 (b, 2H), 1.61 (s, 0.6 × 6 H), 1.53 (s, 6 H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 143.78, 143.42, 127.39, 127.31, 127.18, 127.08, 126.94, 78.87, 78.61, 25.14, 24.98 ppm.

2,3-di-p-tolylbutane-2,3-diol^[11a,12]

dl:meso = 1.2:1

¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, *J* = 8.2 Hz, 4 H), 7.14 (d, *J* = 8.4 Hz, 4 H), 7.09 (dd, *J* = 8.4, 2.4 Hz, 7 H), 2.38 (s, 5 H), 2.37 (s, 6 H), 1.58 (s, 5 H), 1.50 (s, 6 H) ppm.

2,3-bis(4-(trifluoromethyl)phenyl)butane-2,3-diol^[13]

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.4 Hz, 0.4 × 4 H), 7.53 (d, J = 8.4 Hz, 4 H), 7.46 (d, J = 8.3 Hz, 0.4 × 4 H), 7.31 (d, J = 8.2 Hz, 4 H), 1.59 (s, 0.4 × 6 H), 1.55 (s, 6 H) ; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.47 (s) ppm.

Mechanistic Experiment

To a test tube (10 mL) equipped with a magnetic stir bar were added benzyl bromide (0.5 mmol), **W1a** (1 mol%), K₂CO₃ (0.5 mmol), DIPEA (1.25 mmol), TEMPO (0.5 mmol) and acetonitrile (5 mL). The reaction was stirred at room temperature under argon and 410 nm LEDs irradiation for 12 h. The reaction mixture was partitioned between dichloromethane and water. The aqueous layer was extracted with DCM. The combined organic layers was washed in brine and dried over sodium sulfate. The organic solvent was removed by reduced pressure. The desired product was purified by chromatography column on SiO₂ using petroleum ether and ethyl acetate mixtures as eluting solvent.

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.37 (m, 4 H), 7.37 – 7.30 (m, 1 H), 4.91 (s, 2 H), 1.69 – 1.50 (m, 5 H), 1.42 (d, *J* = 11.3 Hz, 1 H), 1.34 (s, 6 H), 1.23 (s, 6 H).

Cross Experiment

To a test tube (10 mL) equipped with a magnetic stir bar were added 1-(bromomethyl)-4-methoxybenzene (0.5 mmol), ethyl 4-(bromomethyl)benzoate (0.5 mmol), W1a (1 mol%), K_2CO_3 (1.0 mmol), DIPEA (1.25 mmol) and acetonitrile (5 mL). The reaction was stirred at room temperature under argon and 410 nm LEDs irradiation for 12 h. The reaction mixture was partitioned between dichloromethane and water. The aqueous layer was extracted with DCM. The combined organic layers was washed in brine and dried over sodium sulfate. The organic solvent was removed by reduced pressure. The desired product was purified by chromatography column on SiO₂ using petroleum ether and ethyl acetate mixtures as eluting solvent.

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.2 Hz, 2 H), 7.26 (d, J = 8.0 Hz, 2 H), 7.10 (d, J = 8.6 Hz, 2 H), 6.84 (d, J = 8.6 Hz, 2 H), 4.39 (q, J = 7.1 Hz, 2 H), 3.81 (s, 3 H), 2.85 (s, 2 H), 2.43 (s, 3 H), 1.41 (t, J = 7.1 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 166.74, 157.83, 143.40, 133.99, 129.72, 129.57, 129.36, 129.01, 127.82, 113.73, 60.74, 55.25, 37.25, 21.61, 14.33.

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.1 Hz, 2 H), 7.23 (d, J = 8.1 Hz, 2 H), 7.08 (d, J = 8.5 Hz, 2 H), 6.84 (d, J = 8.5 Hz, 2 H), 4.39 (dd, J = 14.2, 7.1 Hz, 2 H), 3.81 (s, 3 H), 3.02 – 2.93 (m, 2 H), 2.92 – 2.81 (m, 2 H), 1.41 (t, J = 7.1 Hz, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 165.69, 156.87, 146.12, 132.21, 128.58, 128.34, 127.50, 127.16, 112.73, 59.78, 54.21, 37.12, 35.56, 13.32.

¹H NMR (500 MHz, CDCl₃) δ 7.11 (d, J = 8.5 Hz, 2 H), 6.85 (d, J = 8.5 Hz, 2 H), 6.81 (d, J = 8.1 Hz, 1 H), 6.74 (dd, J = 8.1, 1.7 Hz, 1 H), 6.67 (d, J = 1.6 Hz, 1 H), 3.89 (s, 3 H), 3.86 (s, 3 H), 3.81 (s, 3 H), 2.86 (s, 4 H); ¹³C NMR (126 MHz, CDCl₃) δ 157.83, 148.65, 147.17, 134.49, 133.88, 129.44, 120.27, 113.71, 111.87, 111.12, 55.91, 55.78, 55.28, 37.79, 37.25.

Procedure for reaction of substrate 3f in the presence of styrene:

To a test tube (10 mL) equipped with a magnetic stir bar were added ethyl 4-(bromomethyl)benzoate (0.75 mmol, 1.5 eq), **W1a** (1 mol%), K₂CO₃ (0.50 mmol), 4-methoxystyrene (0.5 mmol, 1.0 eq), DIPEA (1.25 mmol, 2.5 eq) and acetonitrile (5 mL). the mixture was purged with argon for 15 min. Then the reaction was stirred at room temperature under argon and 410 nm LEDs irradiation for 12 h. The reaction mixture was partitioned between dichloromethane and water. The aqueous layer was extracted with DCM. The combined organic layers was washed with brine and dried over sodium sulfate. The organic solvent was removed by reduced pressure. The desired product was purified by chromatography column on SiO₂ using petroleum ether and ethyl acetate mixtures as eluting solvent.

References:

- K.-T. Chan, T.-L. Lam, D. Yu, L. Du, D. L. Phillips, C.-L. Kwong, G. S. M. Tong, G. Cheng and C.-M. Che, *Angew. Chem. Int. Ed.*, 2019, 58, 14896-14900.
- [2] Y. Zhao and D. G. Truhlar, *Theor. Chim. Acta*, 2008, **120**, 215-241.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Revision D.01 ed., Gaussian, Inc., Wallingford CT, 2009.
- [4] (a) M. M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFree and J. A. Pople, *J. Chem. Phys.*, 1982, 77, 3654; (b) P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, 28, 213.
- [5] (a) D. Andrae, U. Haeussermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta*,

1990, 77, 123-141; (b) J. M. L. Martin and A. Sundermann, J. Chem. Phys., 2001, 114, 3408-3420.

- [6] M. Cossi, G. Scalmani, N. Rega and V. Barone, J. Chem. Phys., 2002, 117, 43-54.
- [7] S. Hirata and M. Head-Gordon, *Chem. Phys. Lett.*, 1999, **314**, 291-299.
- [8] (a) M. E. Casida, F. Gutierrez, J. Guan, F.-X. Gadea, d. Salahub and J.-P. Daudey, J. Chem. Phys., 2000, 113, 7062-7071; (b) M. J. G. Peach, M. J. Williamson and D. J. Tozer, J. Chem. Theory Comput., 2011, 7, 3578-3585.
- [9] N. M. O'Boyle, A. L. Tenderholt and K. M. Langner, J. Comp. Chem., 2008, 29, 839-845.
- [10] T. Lu and F. Chen, J. Comput. Chem., 2012, **33**, 580-592.
- [11] (a) M. Billamboz, N. Sotto, C. Chevrin-Villette and C. Len, *RSC Adv.*, 2015, 5, 46026-46030; (b) A. Steiner, J. D. Williams, J. A. Rincón, O. de Frutos, C. Mateos and C. O. Kappe, *Eur. J. Org. Chem.*, 2019, 5807-5811.
- [12] M. Uchiyama; Y. Matsumoto, S. Nakamura, T. Ohwada, N. Kobayashi, N. Yamashita,A. Matsumiya and T. Sakamoto, *J. Am. Chem. Soc.*, 2004, **126**, 8755-8759.
- [13] M. Nakajima, E. Fava, S. Loescher, Z. Jiang and M. Rueping, *Angew. Chem. Int. Ed.*, 2015, 54, 8828-8832.