Supplementary Information

Engineered unnatural ubiquitin for optimal detection of deubiquitinating enzymes

Wioletta Rut^{1*}, Mikolaj Zmudzinski¹, Scott J. Snipas², Miklos Bekes^{3,4}, Tony T. Huang³, Marcin Drag^{1,2*}

¹Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland

²Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA

³Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA

⁴present address: Arvinas, Inc., 5 Science Park, New Haven, CT, 06511, USA

*corresponding authors: wioletta.rut@pwr.edu.pl, marcin.drag@pwr.edu.pl

Content of Supporting Information

1. Supplementary Figure	S2-S4
2. Supplementary Tables	S5-S15
3. Analysis data of synthesized substrates and activity-based probes	S16-S40

Figure S1. DUBs substrate specificity profiles presented as heat maps.

Figure S2. MERS PLpro labelling by Ub-based probes. Ub-based probes (100 nM) were incubated with different enzyme concentrations for 30 min at 37°C. Then SDS-PAGE analysis was performed.

Figure S3. Ub-based probe selectivity.

(A) DUB labeling in cell lysates by B-Ub-VME and B-Ub-MERS27-VME (B) DUB labeling in cell lysates by B-Ub-UCHL3-1-VME, B-Ub-UCHL3-2-VME and anti-UCH-L3 antibody. The second band at ca. 50 kDa which is presented on the membrane "A431-lysate + UCH-L3 antibody" is unspecific labelling of protein from lysate by secondary antibody (goat anti-mouse IgG secondary antibody Alexa Fluor 488). This unspecific labelling was confirmed by re-running the gel and incubating membrane only with anti-mouse secondary antibody Alexa Fluor 488 (without anti-UCH-L3 antibody). (C) Dosedependent labelling of UCH-L3 in A-431 lysate by Ub-probes. (D) Pull-down experiment using B-Ub-VME, B-Ub-UCHL3-1-VME and B-Ub-UCHL3-2-VME. A-431 and HeLa lysates were incubated with or without probes for 30 min at 37°C. Then streptavidin beads were added and samples were incubated for 2.5 h at 4°C. Samples were analyzed by gel electrophoresis, followed by western blotting.

Substrate	Ac-Leu-Arg-P2-Gly-ACC	m/z _{calcd}	m/z _{found}
P2/1	L-Ala	658.3308	658.28
P2/2	L-Arg	743.3948	743.37
P2/3	L-Asn	701.3366	701.30
P2/4	L-Asp	702.3206	702.28
P2/5	L-Glu	716.3363	716.30
P2/6	L-GIn	715.3522	715.15
P2/7	Gly	644.3151	644.15
P2/8	L-His	724.3526	724.25
P2/9	L-lle	700.3777	700.28
P2/10	L-Leu	700.3777	700.29
P2/11	L-Lys	715.3886	715.30
P2/12	L-NIe	700.3777	700.20
P2/13	L-Phe	734.3621	734.23
P2/14	L-Pro	684.3464	684.19
P2/15	L-Ser	674.3257	674.19
P2/16	L-Thr	688.3413	688.21
P2/17	L-Trp	773.3730	773.29
P2/18	L-Tyr	750.3570	750.27
P2/19	L-Val	686.3621	686.26
P2/20	D-Ala	658.3308	658.20
P2/21	D-Arg	743.3948	743.29
P2/22	D-Asn	701.3366	701.24
P2/23	D-Asp	702.3206	702.22
P2/24	D-GIn	/15.3522	/15.25
P2/25	D-Glu	716.3363	716.23
P2/26	D-His	724.3526	724.27
P2/27	D-Leu	700.3777	700.28
P2/28	D-Lys	715.3886	715.29
P2/29	D-Phe	734.3621	734.28
P2/30	D-PIO	084.3404	684.22
P2/31	D-Sei	074.3237	074.21
P2/32	D-Prig	720.3404	720.20
FZ/33	D-TTII D Tro	772 2720	000.23 772.21
F2/34 D2/25	D-TIP D Tur	750 2570	750 20
F 2/35	D-Tyl	686 3621	686.25
F 2/30 D2/37	D-Val D bPbo	748 3777	748.20
P2/38	B-Ala	658 3308	658 21
P2/30		670 3308	670.23
P2/40		700 3/13	700.23
P2/40	יייץץ ן_Hvn(RzI)	700.3413	700.22
P2/42	۲-۱۰۱۳ ۱-Thz	702 2020	702 12
P2/42		738 3024	738 23
P2/44		732 3464	732 18
P2/45		698 3621	698 19
P2/46		746,3621	746 20
, .0		1 10.0021	0.20

Table S1.	Calculated	and found	m/z for	Ac-Leu-	-Arg-P2-	Gly-ACC	substrate lib	orary.

P2/47	Inp	698.3621	698.20
P2/48	L-2Fal	724.3413	724.17
P2/49	AC5C	698.3621	698.19
P2/50	L-Dap	673.3417	673.26
P2/51	L-Dab	687.3573	687.26
P2/52	L-Dab(Z)	821.3941	821.36
P2/53	L-Cit	744.3788	744.32
P2/54	L-hCit	758.3944	758.36
P2/55	L-Orn	701.3730	701.29
P2/56	L-Lys(TFA)	811.3709	811.32
P2/57	L-Lys(Ac)	757.3992	757.28
P2/58	L-Lvs(2-CIZ)	883.3864	883.28
P2/59	L-Àap	715.3635	715.24
P2/60	L-hArg	757,4104	757.31
P2/61	L-His(Bzl)	814.3995	814.31
P2/62	L-His(3-Bom)	844,4101	844.34
P2/63	\downarrow -Phe(NH ₂)	749 3730	749 29
P2/64		701 30/8	701.20
D2/65		787 3886	791.00
D2/66		775 3886	775 30
P2/00		760 3261	760.23
P2/07		730 3510	700.23
F2/00 D2/60		730.3319	700.20
F2/09		7 90.4 140	190.04 006 22
F2/70		000.303Z	000.3Z
P2/71	L-GIU(AII)	700.0070	700.01
P2/72		730.3319	750.20
P2/73	L-Phe(2-F)	752.3527	152.29
P2/74	L-Phe(3-F)	752.3527	752.28
P2/75	L-Phe(4-F)	752.3527	752.29
P2/76	L-Phe(3,4-F ₂)	770.3432	//0.2/
P2/77	L-Phe(F₅)	824.3150	824.26
P2/78	L-Phe(2-Cl)	768.3231	768.24
P2/79	L-Phe(3-Cl)	768.3231	768.25
P2/80	L-Phe(4-Cl)	768.3231	768.25
P2/81	L-Phe(3,4-Cl ₂)	802.2841	802.31
P2/82	I-Phe(4-Br)	812,2726	812.30
P2/83	I-Phe(3-l)	860 2587	860.31
P2/84	L-Phe(4-l)	860 2587	860.31
P2/85	I-Phe(4-Me)	748 3777	748 40
P2/86	$I_{-}Phe(4-NO_{2})$	779 3472	779.37
P2/87	1-3-Pal	735 3573	735 35
P2/88	L-4-Pal	735 3573	735 34
P2/80	L-4 la(2-th)	7/0 3185	7/0 30
P2/00	L-Λια(2-111) Ι_ΔΙ2(Rth)	791 220/	791 35
P2/01		670 2161	672 20
F 2/31 D2/02		700 22404	700 20
F 2/32 D2/02		130.3342	1 30.30 672 22
F 2/30 D2/01		012.3404 QAE 21E1	012.32 005 11
rz/94	L-ADU(BIN)	005.3451	000.41

P2/95	L-Ser(BzI)	764.3276	764.40
P2/96	L-hSer	688.3413	688.31
P2/97	L-hSer(Bzl)	778.3883	778.42
P2/98	L-Thr(BzI)	778.3883	778.43
P2/99	L-Cys(Bzl)	780.3498	780.38
P2/100	L-Cys(MeBzl)	794.3655	794.38
P2/101	L-Cys(4-MeOBzl)	810.3604	810.33
P2/102	L-Met	718.3342	718.27
P2/103	L-Met(O)	734.3291	734.29
P2/104	L-Met(O) ₂	750.3240	750.29
P2/105	L-NIe(O-BzI)	806.4196	806.40
P2/106	L-Phg	720.3464	720.34
P2/107	L-hPhe	748.3777	748.39
P2/108	L-Chg	726.3934	726.39
P2/109	L-Cha	740.4090	740.41
P2/110	L-hCha	754.4247	754.44
P2/111	L-Igl	760.3777	760.39
P2/112	L-1-Nal	784.3777	784.42
P2/113	L-2-Nal	784.3777	784.42
P2/114	L-Bip	810.3934	810.44
P2/115	L-Bpa	838.3883	838.44
P2/116	L-2-Aoc	728.4090	728.40
P2/117	L-Arg(NO ₂)	788.3799	788.40
P2/118	L-hLeu	714.3934	714.37
P2/119	L-Tle	700.3777	700.36
P2/120	L-Tyr(Me)	764.3726	764.43
P2/121	L-Tyr(2,6-Cl ₂ -Bzl)	908.3260	908.41
P2/122	L-Tyr(Bzl)	840.4039	840.48
P2/123	L-hTyr	764.3726	764.41
P2/124	L-hTyr(Me)	778.3883	778.43
P2/125	L-Nva	686.3621	686.33
P2/126	2-Abz	706.3308	706.33
P2/127	3-Abz	706.3308	706.31
P2/128	4-Abz	706.3308	706.30

S9

S11

[└]OH L-Tyr(2,6-Cl₂-Bzl)

HRMS and analytical chromatograms of synthesized substrates and activity-based probes

Ac-Leu-Arg-Gly-Gly-ACC

HRMS for $C_{29}H_{41}N_9O_8$ (m/z calcd = 644.3151; m/z found = 644.3158)

S16

Ac-Tle-Phg-Gly-Gly-ACC

HRMS for $C_{31}H_{36}N_6O_8$ (m/z calcd = 621.2595; m/z found = 621.2672)

HRMS for $C_{34}H_{49}N_9O_8$ (m/z calcd = 712.3777; m/z found = 712.3780)

Ac-DArg-Phe(guan)-Ala-Gly-ACC

HRMS for $C_{34}H_{44}N_{12}O_8$ (m/z calcd = 749.3478; m/z found = 749.3479)

Ac-Cys(4-MeOBzl)-Phg-Gly-Gly-ACC

HRMS for $C_{36}H_{38}N_6O_9S$ (m/z calcd = 731.2494; m/z found = 731.2478)

Ac-Cys(MeBzl)-Phg-Gly-Gly-ACC

HRMS for $C_{36}H_{38}N_6O_8S$ (m/z calcd = 715.2545; m/z found = 715.2556)

Ub-ACC

charge	m/z_{calcd}	m/z found
+6	1461.6221	1461.8839
+7	1252.9628	1253.2618
+8	1096.4684	1096.7080
+9	974.7505	974.9593
+10	877.3762	877.6428
+11	797.7063	797.8460

Ub-Tle-Phg-Gly-Gly-ACC (Ub-MERS27-ACC)

charge	m/z_{calcd}	m/z found
+5	1749.1354	1749.5309
+6	1457.7807	1457.9774
+7	1249.6702	1249.8422
+8	1093.5874	1093.7565
+9	972.1896	972.3176
+10	875.0713	875.1980

HRMS for C₃₉₁H₆₃₂N₁₀₄O₁₂₀S

Ub-Cha-Arg-Abu-Gly-ACC (Ub-UCHL3-1-ACC)

charge	m/z_{calcd}	m/z found
+5	1767.3576	1767.8867
+6	1472.9659	1473.3879
+7	1262.6861	1263.0165
+8	1104.9762	1105.1364
+9	982.3130	982.4749
+10	884.1824	884.3774
+11	803.8938	804.0812
+12	736.9866	737.1602

HRMS for C₃₉₄H₆₄₅N₁₀₇O₁₂₀S

Ub-DArg-Phe(guan)-Ala-Gly-ACC (Ub-UCHL3-2-ACC)

charge	m/z_{calcd}	m/z found
+4	2218.1876	2218.8503
+5	1774.7516	1775.1068
+6	1479.1275	1479.4045
+7	1267.9675	1268.1271
+8	1109.5975	1109.8116

Biot-6-Ahx-Ub-VME (B-Ub-VME)

HRMS for $C_{397}H_{658}N_{108}O_{121}S_2$

charge	m/z calcd	m/z found
+6	1491.4778	1491.8063
+7	1278.5535	1278.8268
+8	1118.8602	1119.2485
+9	994.6543	994.8820
+10	895.2896	895.3971
+11	813.9912	814.0791
+12	746.2426	746.3508

Biot-6-Ahx-Ub-Tle-Phg-Gly-Gly-VME (B-Ub-MERS27-VME)

charge	m/z_{calcd}	m/z found
+6	1487.6364	1487.8646
+7	1275.2608	1275.4232
+8	1115.9791	1116.2777
+9	992.0934	992.2054
+10	892.9848	893.1783
+11	811.8959	812.1168

HRMS for C₃₉₉H₆₅₃N₁₀₅O₁₂₁S₂

Biot-6-Ahx-Ub-Cha-Arg-Abu-Gly-VME (B-Ub-UCHL3-1-VME)

charge	m/z calcd	m/z found
+8	1127.3680	1127.5012
+9	1002.2168	1002.3268
+10	902.0959	902.2721
+11	820.1787	820.2746
+12	751.9144	752.0181

HRMS for $C_{402}H_{666}N_{108}O_{121}S_2$

Biot-6-Ahx-Ub-DArg-Phe(guan)-Ala-Gly-VME (B-Ub-UCHL3-2-VME)

charge	m/z calcd	m/z found
+8	1131.9893	1132.2377
+9	1006.3246	1006.6258
+10	905.7929	905.9586
+11	823.5396	823.6242
+12	754.9953	755.0801
+13	696.9962	697.1877

HRMS for $C_{402}H_{661}N_{111}O_{121}S_2$

Peptide hydrazide segments used in Ub derivatives synthesis

Ub[1-27]-NH-NH₂

Biot-6-Ahx-Ub[1-27]-NH-NH₂

Ub[28-45]-(A²⁸C)-NH-NH₂

Ub[1-45]-(A²⁸C)-NH-NH₂

Biot-6-Ahx-Ub[1-45]-(A²⁸C)-NH-NH₂

Ub[46-72]-Leu-Arg-Gly-(A⁴⁶C)-NH-NH₂

Ub[1-72]-Leu-Arg-Gly-(A²⁸C,A⁴⁶C)-NH-NH₂

Ub[1-72]-Leu-Arg-Gly-NH-NH₂

Biot-6-Ahx-Ub[1-72]-Leu-Arg-Gly-(A²⁸C,A⁴⁶C)-NH-NH₂

Biot-6-Ahx-Ub[1-72]-Leu-Arg-Gly-NH-NH2

Ub[46-72]-Tle-Phg-Gly-(A⁴⁶C)-NH-NH₂

Ub[1-72]-Tle-Phg-Gly-(A²⁸C,A⁴⁶C)-NH-NH₂

Ub[1-72]-Tle-Phg-Gly-NH-NH₂

Biot-6-Ahx-Ub[1-72]-Tle-Phg-Gly-(A²⁸C,A⁴⁶C)-NH-NH₂

Biot-6-Ahx-Ub[1-72]-Tle-Phg-Gly-NH-NH₂

Ub[46-72]-Cha-Arg-Abu-(A⁴⁶C)-NH-NH₂

Ub[1-72]-Cha-Arg-Abu-(A²⁸C,A⁴⁶C)-NH-NH₂

Ub[1-72]-Cha-Arg-Abu-NH-NH₂

Biot-6-Ahx-Ub[1-72]-Cha-Arg-Abu-(A²⁸C,A⁴⁶C)-NH-NH₂

Biot-6-Ahx-Ub[1-72]-Cha-Arg-Abu-NH-NH2

Ub[46-72]-DArg-Phe(guan)-Ala-(A⁴⁶C)-NH-NH₂

Ub[1-72]-DArg-Phe(guan)-Ala-(A²⁸C,A⁴⁶C)-NH-NH₂

Ub[1-72]-DArg-Phe(guan)-Ala-NH-NH₂

Biot-6-Ahx-Ub[1-72]-DArg-Phe(guan)-Ala-(A²⁸C,A⁴⁶C)-NH-NH₂

Biot-6-Ahx-Ub[1-72]-DArg-Phe(guan)-Ala-NH-NH₂

C-terminal derivatization with ACC fluorophore

Shown on the example of Ub-ACC synthesis. **Step 1:** acyl hydrazide to azide conversion using NaNO₂

Step 2: H₂N-Gly-ACC coupling

C-terminal derivatization with the H₂N-Gly-VME warhead

Shown on the example of Biot-6-Ahx-Ub-VME synthesis. **Step 1:** acyl hydrazide to azide conversion using NaNO₂

Step 2: H₂N-Gly-VME coupling

