Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Pseudo-Atomic-Scale Metals Well-Dispersed on Nano-Carbons as Ultra-Low Metal Loading Oxygen-Evolving Electrocatalysts

Jing-Fang Huang* and Wei-Zhe Xie

Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, R.O.C.

*Correspondence to: E-mail: jfh@dragon.nchu.edu.tw

This file includes:

The area of single molecule of TA

Coverage of TA on GCE (one monolayer)

Coverage of TA on SWCNT (one monolayer)

pH-controllable TA molecule monolayer on the nano-carbon (NC)

UV-Vis of Fe²⁺-TA complex determines the Fe loading on the Fe@SWCNT

Figs. S1 to S16

Tables S1

The area of single molecule of TA

The radius of a TA molecule was determined by measuring the length from its center (A) to one of end hydroxyl groups (B). The A-B length was measured to be ca 1.28 nm. Thus, the area of single-molecule of TA (A_{TA}) is calculated as below.

$$A_{TA} = [2 \text{ x } (1.28 \text{ x } 10^{-9} \text{ m})]^2 = ca \ 7 \text{ x } 10^{-18} \text{ m}^2$$

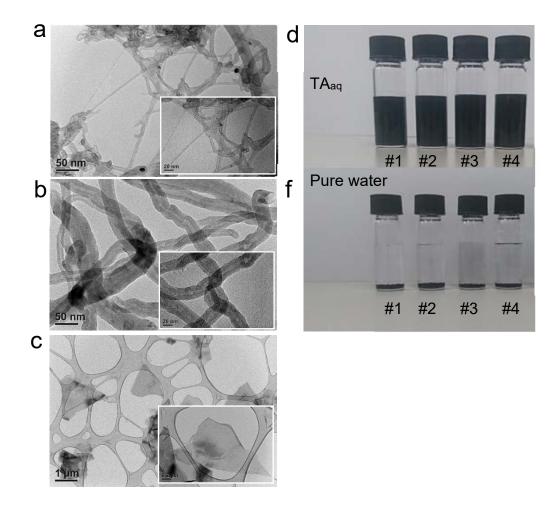
Coverage of TA on GCE (one monolayer)

The surface area of GCE/A_{TA} =
$$7 \times 10^{-6}$$
 m²/ 7×10^{-18} m² = $\sim 1 \times 10^{12}$ molecules/GCE = $\sim 1.66 \times 10^{-12}$ moles/GCE

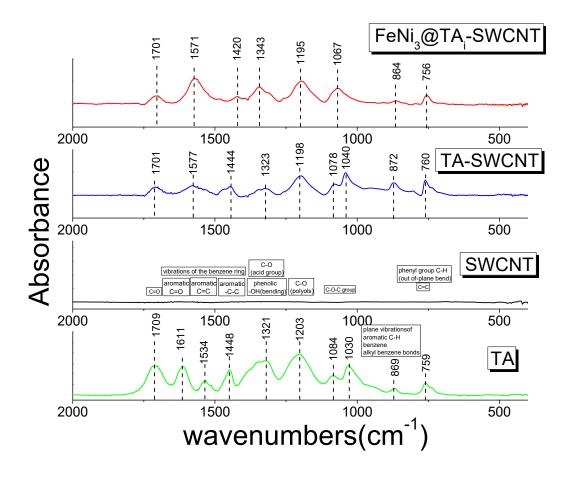
Coverage of TA on SWCNT (one monolayer)

The Carbon loading 15.1 µg cm⁻² is drop-dried on a GCE (0.07 cm²)

- →1.06 µg SWCNT on the GCE and the BET SWCNT specific surface area is about 525 m² g⁻¹
- \Rightarrow Total surface area of SWCNT on the GCE = $1.06 \times 10^{-6} \times 525 = 5.6 \times 10^{-4} \text{ m}^2$

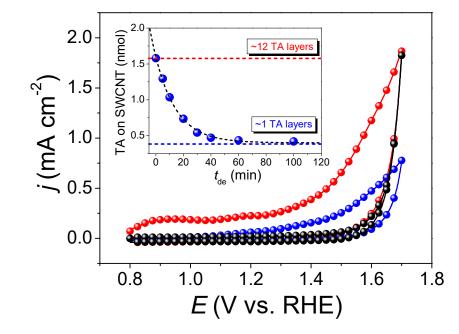

Coverage of TA on SWCNT (one monolayer):

Total surface area of SWCNT on GCE/ $A_{TA} = 5.6 \times 10^{\text{-4}} \ m^2/7 \ x \ 10^{\text{-18}} \ m^2$


=
$$\sim 8.1 \times 10^{13}$$
 molecules/GCE

$$=$$
 \sim 1.33 \times 10⁻¹⁰ moles/GCE

Fig. S1. Molecule structure of TA

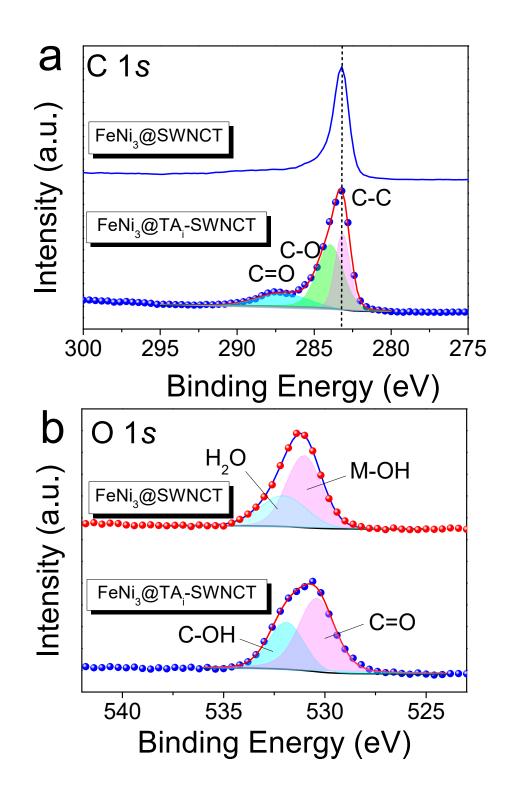
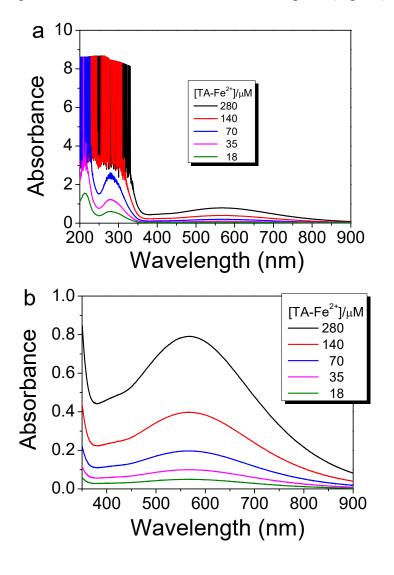

Fig. S2 TEM images of well-dispersed (a) TA-SWCNT, (b) TA-MWCNT, and (c) TA-GE8; Photographs of vials containing 0.12 wt% NCs, including #1 SWCNT, #2 MWCNT, #3 GE8, and #4 GE12 in (d) 0.12 wt% TA aqueous solution and (e) pure water, respectively.

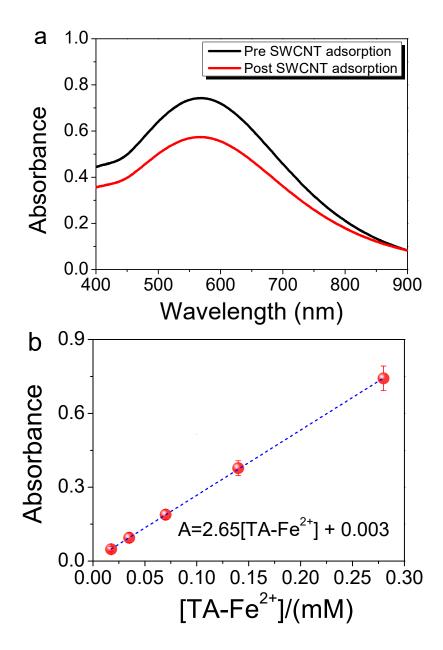
 $\textbf{Fig. S3} \ FTIR \ spectra \ of \ FeNi3@TA_i-SWCNT, \ TA-SWCNT, \ SWCNT, \ and \ TA.$

pH-controllable TA molecule monolayer on the nano-carbon (NC)

TA_{ad} on NCs also can be evaluated by CVs recorded in KOH_{aq} (Fig. S4), with TA_{ad} on SWCNT serving as an example. In this case, 4 μl of 0.027 wt% TA_m-SWCNT_{aq} (carbon loading 15.1 μg cm⁻²) was drop-dried onto a GCE (0.07 cm²) (TA_m-SWCNT@GCE) serving as a working electrode. CVs of TA anodic stripping were recorded after various periods (*t*_{de}) before the CV measurement in 1.0 M KOH_{aq}. Anodic waves appear due to TA oxidation to TA-quinone through 2e⁻/2H⁺ in the first cycle of CVs, then disappear in the second cycle of CVs, indicating TA anodic stripping from TA-SWCNT. The SWCNT specific surface area is ~525 m² g⁻¹, evaluated from nitrogen adsorption data calculated by the Brunauer-Emmett-Teller method, and is consistent with the data provided by the manufacturer (400–600 m² g⁻¹). TA_{ad} in one monolayer on SWCNT is ~8.1 × 10¹³ molecules. The TA_{ad} on the as-prepared TA_m-SWCNT is ~12 TA molecule layers, which is then reduced to 1–1.5 TA molecule layers after immersion in KOH_{aq} for over 30 min (Fig. S4). These results demonstrate that pH-tunable TA monolayer formation occurs on NCs (TA_i-NCs).

Fig. S4 CVs of TA anodic stripping were recorded on (black solid circle) a GCE, (red solid circle) a TA_m-SWCNT@GCE, and (blue solid circle) a TA_m-SWCNT@GCE incubated in 1.0 M KOH_{aq} for $t_{de} = 20$ min before the CV measurement with a scan rate of 50 mV/s. Inset: TA_{ad} on the TA-SWCNT vs. t_{de} .

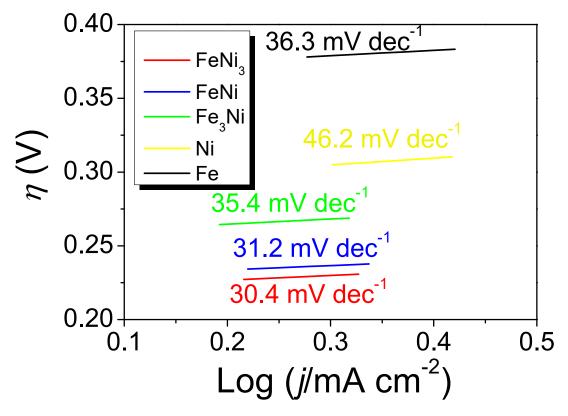
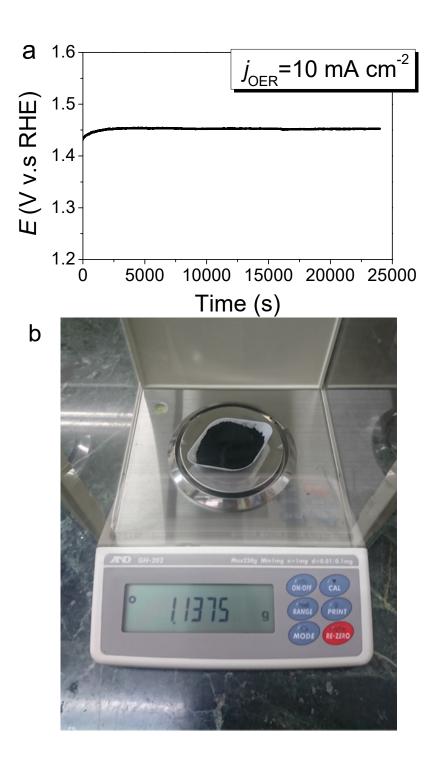
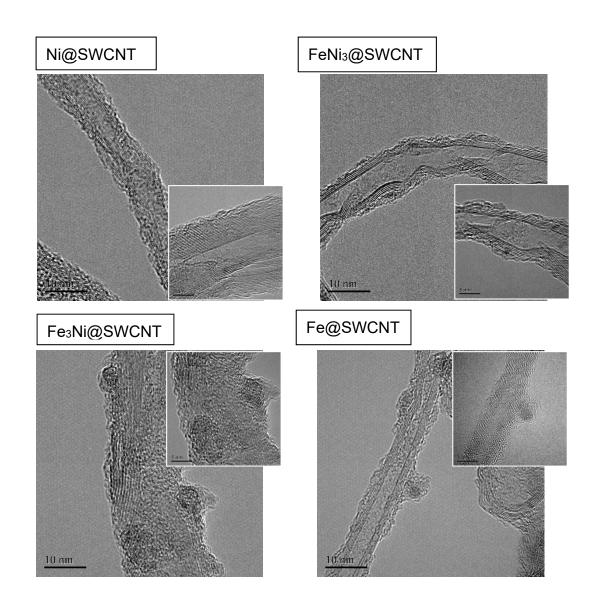

Fig. S5 C 1s and O 1s spectra of the FeNi3@SWCNT and FeNi3@TAi-SWCNT.

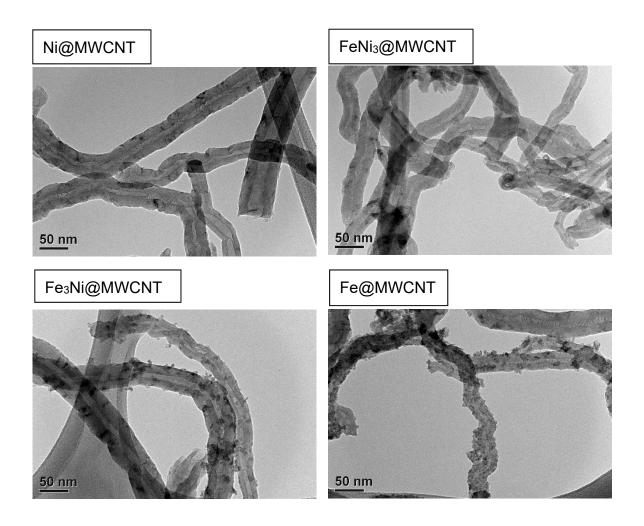
UV-Vis of Fe²⁺-TA complex determines the Fe loading on the Fe@SWCNT

Two peaks of TA were observed at 218 and 275 nm, which correspond to the π - π^* and n- π^* transitions of TA, respectively (Fig. S6a). After the addition of Fe²⁺, other peaks appeared at 317 and 550 nm. The peak at 317 nm was assigned to the TA absorption peaks coordinated to the Fe²⁺, and the broad peak near 550 nm corresponds to a coordinated TA to Fe²⁺-charge transfer band in the Fe²⁺-TA complex. In the UV-Vis spectra, the absorbance at 550 nm (A₅₅₀) is dependent on the concentration of the Fe²⁺-TA complex (Fig. S6b). The Fe loading on the Fe@SWCNT was determined by tracking the reduction in A₅₅₀ after SWCNT adsorption (Fig. S7).

Fig. S6 UV-Vs absorption spectra a) 200–900 nm and b) 350–900 nm recorded in various of [TA-Fe²⁺].

Fig. S7 (a) Tracking the reduction in A₅₅₀ before and after SWCNT adsorption in TA-Fe²⁺-complex-containing aqueous solution. (b) Calibration curve was recorded as A₅₅₀ vs. [TA-Fe²⁺].


Fig. S8 Tafel plots are transferred from the data shown in Fig. 6a.

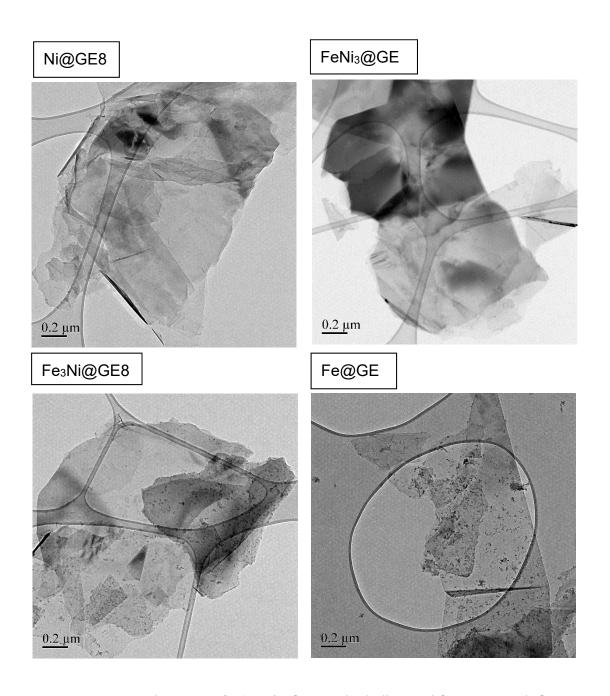

Fig. S9 (a) Chronopotentiometry curves at a current density of 10 mAcm⁻² and (b) gram-scale production of FeNi₃@SWCNT.

Fig. S10 HR-TEM images of (FeNi)x@SWCNT including Ni@SWCNT, FeNi3@SWCNT, Fe3Ni@SWCNT, and Fe@SWCNT.

Fig. S11 TEM images of (FeNi)_x@MWCNT including Ni@MWCNT, FeNi₃@MWCNT, Fe₃Ni@MWCNT, and Fe@MWCNT.

Fig. S12 TEM images of (FeNi)_x@GE8 including Ni@GE8, FeNi₃@GE8, Fe₃Ni@GE8, and Fe@GE8.

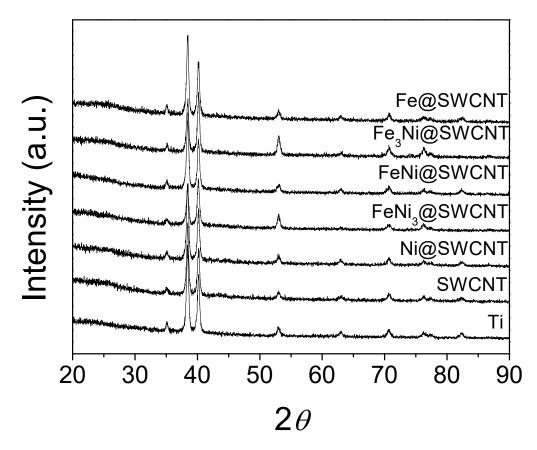


Fig. 13 X-ray diffraction of $(FeNi)_x@SWCNT$ on a Ti sample holder.

Fig. S14 FeNi₃@SWCNT ink loaded in a sprayer can homogeneously spray catalysts onto any conducting substrates for OER application.

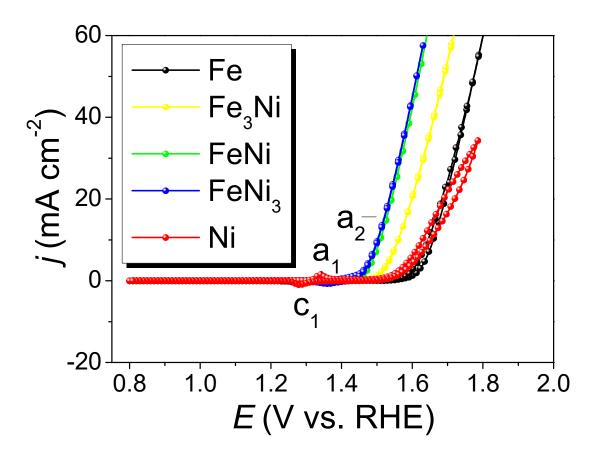
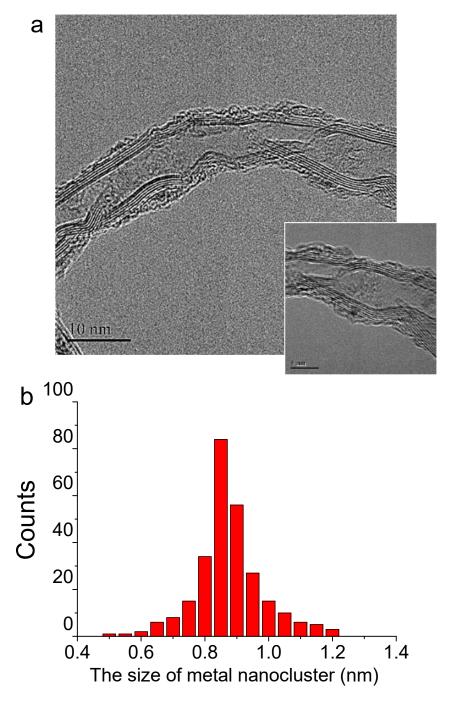



Fig. S15 OER CVs for the $(FeNi)_x$ @SWCNT series recorded in 1.0 M KOH with a scan rate of 10 mV/s.

Fig. S16 HR-TEM images of (a) FeNi₃@SWCNT and (b) Histograms of metal nanocluster size constructed by counting 200–300 nanoclusters on the SWCNT in TEM images of FeNi₃@SWCNT

Table S1. Comparisons of OER performance for various transition metal-based electrocatalysts.

Catalyst	Catalyst loading	TOF	Tafel slope	${J_{ m m}}^*$	$J_{ m m}@\eta^*$	η_{10}^*	Refs.
	mg cm ⁻²	s ⁻¹	mV dec ⁻¹	A mg ⁻¹	A g ⁻¹	V	
FeNia@SWCNT	0.00042	14.03	30.2	23.81	92249.6@0.3V	0.275	
FeNi@SWCNT	0.00041	8.2	31.2	24.39	53925.8@0.3V	0.280	
Fe ₃ Ni@SWCNT	0.00045	1.25	35.4	22.22	8247.3@0.3V	0.329	this work
Fe@SWCNT	0.00046	0.02	36.3	21.74	0.0066@0.3V	0.442	
Ni@SWCNT	0.00040	0.31	46.2	25.00	0.86@0.3V	0.360	
Fe ₃ Co(PO ₄) ₄ @rGO	1.0	0.54	57	0.01	0.54@0.237V	0.237	27
NiMoN@NiFeN	1270	0.09	58.6	0.0079	0.163@0.3V	0.277	28
AN-CuNiFe	0.025	3.3	44	0.4	1464.5@0.3V	0.224	26
Au/NiFe LDH	2	0.11	36	0.005	64.9@0.28V	0.237	25
FeP/Ni ₂ P	8	0.16	22.7	0.00125	159.6@0.3V	0.154	24
Fe(TCNQ) ₂ /Fe	0.49	N/A	110	0.0204	NA	0.340	23
Fe-Co-2.3Ni-B	0.3	N/A	38	0.0333	N/A	0.274	22
Ni ₃ Fe _{0.5} V _{0.5}	1.27	0.09	58.6	0.0079	0.163@0.3V	0.264	21
Fe-NiSe ₂	~0.2	0.071	41	0.05	124.3@0.29V	0.268	20
Ni ₂ Fe ₁ -O	0.15	N/A	39	0.0667	N/A	0.244	19
Ni@NC-800	0.31	N/A	45	0.0323	N/A	0.280	18
P-Co3O4	0.4	0.0158	51.6	0.025	N/A	0.280	17
Ultrathin CoFe LDHs	0.2	4.78	37.9	0.05	190@0.3V	0.266	42
Ni45Fe55/XC-72r	0.01	0.2	36	1	2000@0.3V	N/A	37
NiFe-MOF	N/A	3.8	34	N/A	N/A	0.24	15

Gelled FeCoW	0.21	0.46	N/A	0.05	1175@0.3	0.223	14
$Fe_{0.5}V_{0.5}$	0.143	0.02	36.7	0.07	6.99@0.292V	0.39	16
CP/CTs/Co-S	0.32	0.016	72	0.0313	31.3*0.306	0.306	29
FeOOH/Co/FeOOH	0.5	2.33	32	0.02	40@0.25	0.25	13
NiFe LDH/GO	0.25	0.1	42	0.04	40@0.23	0.23	11
NiFe-LDH/CNTs	0.2	0.56	31	0.05	47.63@0.3	0.26	10
Ni _{0.75} V _{0.25} -LDH	0.143	0.054	50	0.07	70@0.35	0.35	12

^{*} $J_{\rm m}$: Mass activity at 10 mA cm⁻²geo; $J_{\rm m}$ @ η : Mass activity @specific η ; η_{10} : Overpotential for 10 mA cm⁻²geo