Contents

General Methods2
Reaction Set-Up4
Solvent Screening – Table 1
Procedure for the Lifetime Study of Lithium <i>N</i> -Methylanilide in Glycerol and 2-MeTHF – Table 2
Procedure for Addition of Solid Li-N(Me)Ph (2a) – Scheme 2
Procedure for Reaction Scale-Up18
Procedure for the <i>in-situ</i> Amidation of Ethylbenzoate – Scheme 319
Transamidation of Esters and Amides (3a-3m) – Table 3
Variation of Li-Amide for Transamidation (5b-5h') – Table 4
Procedure for the Addition of Li-N(H)Ph (2b) to Ethylbenzoate (1a) Under Inert Conditions49
Procedure for the Addition of Li-Amides to N,N-di(Boc)-benzamide – Table 5
Procedure for Addition of LiN(Me)Ph (2a) to Ethylbenzoate (1a) Under Inert Conditions 56
Synthesis of Lithium Amides
Synthesis and Characterisation of Crystalline Compounds - Lithium Amides ($2b-S_4$, $2h-S_3$ and $2i-S_2$) and of [{LiNPh ₂ }(O=CPh(NMe ₂)] ₂ (8)
X-Ray Crystallographic Details
DOSY NMR Studies of LiNPh ₂ (2h) with N,N-Dimethylbenzamide (7)
DOSY NMR Studies – 2-MeTHF
DOSY NMR Studies – D ₈ -THF
References

General Methods

Reagents were obtained from commercial suppliers and used without further purification, except DESs, lithium amides and esters **1f**, **1g**, **1m** which were prepared. DESs and *N*,*N*-di(Boc)-benzamide **6** were prepared following literature procedures.^[1]

The *n*-butyllithium solution (1.6 M in hexanes) used in the synthesis of lithium amides was purchased from standard commercial sources, and concentration was established by titration of L-menthol.^[2]

Hexane, THF and toluene used in the preparation of lithium amides and lithium amide solutions were dried by heating to reflux over sodium benzophenone ketyl radical under nitrogen. 2-MeTHF used in lithium amide solutions was dried by distillation from sodium. Deuterated solvents used for NMR spectroscopy were degassed (three freeze-pump-thaw cycles) and stored over 4 Å molecular sieves.

Solvents used as reaction solvent were used as supplied from commercial sources.

NMR spectra were recorded on a Bruker AVIII 400 MHz spectrometer operating at 400.1 MHz for ¹H, 100.6 MHz for ¹³C{¹H}, 128.4 MHz for ¹⁹F or 155.5 MHz for ⁷Li for compounds **2d, 2e 2g** and **2i**. Li-amides **2a-c, 2d, 2f** and **2h** were recorded on a Bruker AVIII 300 MHz spectrometer operating at 300.1 MHz for ¹H, 75.5 MHz for ¹³C{¹H} and 116.6 for ⁷Li. The chemical shifts in ¹H NMR spectra are calibrated to the resonance of the ferrocene standard at 4.16 ppm in CDCl₃ when yield calculation is concerned – otherwise are calibrated to deuterated solvent signals. Stock solutions of ferrocene in CDCl₃ were made to be used as internal standard for yields determination. To accurately determine the amount of the internal standard present in these stock solutions, ¹H NMR spectra were recorded with known amounts standard solution and benzophenone.

For each ¹H NMR spectrum the exact amount of standard is labelled and the amount of product is corrected by this value by applying the following equation:

$$\left(\frac{a}{b \times \frac{FeCp_2 \text{ integral}}{10H}}\right) \times FeCp_2 \text{ concentration } = x \text{ mmoles product}$$

a = integral of one distinct signal from product

b = known number of protons for signal

*FeCp₂ integral/10H can be cancelled and set to 1 as FeCp₂ is calibrated to 10H.

e.g. for **3a**

$$\left(\frac{48H (Me \ signal)}{3H \ \times 1}\right) \times 0.05 \ M = 0.80 \ mmoles \ product$$

Therefore, for a 1 mmol scale reaction, the yield of **3a** is 80%

GCMS measurements were performed using an Agilent Technologies 5975C GC/MS detector. High resolution mass spectrometry was carried out by University of Edinburgh Mass Spectrometry Facility.

¹H NMR spectra of products matched those previously reported (**3a**,^[3] **3b**,^[4] **3c**,^[5] **3f**,^[6] **3g-h**,^[7] **3i-j**,^[8] **3l-m**,^[9] **4**,^[10] **5b**,^[3] **5c**,^[6] **5d**,^[11] **5e**,^[8, 12] **5f**,^[13] **5g**,^[9, 14] **5h**,^[15]) or where unreported were characterized by ¹H, ¹³C and ¹⁹F NMR spectroscopy and high-resolution mass spectrometry (**3d**, **3e**, **3k**, **5i**).

Procedure for the Synthesis of Esters

Esters **1f**, **1g**, **1m** were prepared from their corresponding acids (*p*-methoxybenzoic acid, *m*-methoxybenzoic acid and *n*-octanoic acid. Typical scale 20 mmol. Acids were dissolved in EtOH, acidified to \leq pH 3 by addition of H₂SO₄ (conc.) and refluxed overnight. The resultant solution was neutralized with sat. NaHCO₃ sol. And extracted into EtOAc (3 x 20 mL). Extracts were combined, dried over MgSO₄ and concentrated under vacuum. The product ester did not require purification, only drying over 4 Å molecular sieves.

Reaction Set-Up

Figure 1 Reaction set up for amidation of esters using lithium amides under air. (A) Pre-addition (B) Addition of lithium amide, 1.0 M solution in 2-MeTHF. (C) Reaction in progress (D) Reaction after quench with 5 mL of Rochelle's salt

Solvent Screening – Table 1

Additions were performed under air at room temperature in an open Schlenk flask (25 mL) and 1 g of appropriate solvent. Lithium amide **2a** (1.5 mL, 1.0 M in 2-MeTHF) was added to a stirring solution of ester **1a** (1 mmol). After 20 s the reaction was quenched by the addition of saturated Rochelle's salt solution (sodium potassium tartrate tetrahydrate, 5 mL) before being extracted into 2-MeTHF (3 x 10 mL). Extracts were combined, dried over MgSO₄ and concentrated under vacuum.

Crude products were purified by silica column chromatography, eluted by hexane:EtOAc (10:1 – 2:1 gradient). Products were identified by GCMS and ¹H NMR. Yields of **3a** were obtained by ¹H NMR spectroscopy by integration against ferrocene as an internal standard as described in General Methods.

Figure 2 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 1, Entry 1 (3a, THF, 93%). FeCp₂ (49 μ mol, 4.9 mol%).

Figure 3 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 1, Entry 2 (**3a**, 2-MeTHF 3 eq. **2a**, 80%). FeCp₂ (50 μmol, 5 mol%).

Figure 4 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 1, Entry 3 (**3a**, 2-MeTHF 2 eq. **2a**, 81%). FeCp₂ (50 μmol, 5 mol%).

Figure 5 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 1, Entry 4 (**3a**, 2-MeTHF 1.5 eq. **2a**, 80%). FeCp₂ (50 μmol, 5 mol%).

Figure 6 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 1, Entry 5 (**3a**, 2-MeTHF 1 eq. **2a**, 78%). FeCp₂ (200 μmol, 20 mol%).

Figure 7 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 1, Entry 6 (**3a**, ChCl/2Gly, 3 eq. **2a**, 83%). FeCp₂ (54 μmol, 5.4 mol%).

Figure 8 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 1, Entry 7 (**3a**, ChCl/2EG, 3 eq. **2a**, 59%). FeCp₂ (54 μ mol, 5.4 mol%).

Figure 9 ¹H spectrum (400.1 MHz, CDCl₃) of Table 1, Entry 8 (**3a**, ChCl/2H2O, 3 eqs. **2a**, 81%). FeCp₂ (54 μ mol, 5.4 mol%).

Figure 10 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 1, Entry 9 (**3a**, LiCl/2H₂O, 3 eq. **2a**, 53 °C, 79%). FeCp₂ (54 μmol, 5.4 mol%).

Figure 11 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 1, Entry 10 (**3a**, H₂O, 3 eq. **2a**, 36%). FeCp₂ (54 μmol, 5.4 mol%).

Figure 12 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 1, Entry 11 (**3a**, Gly, 3 eq. **2a**, 85%). FeCp₂ (54 μmol, 5.4 mol%).

Figure 13 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 1, Entry 12 (**3a**, Gly, 1.5 eq. **2a**, 79%). FeCp₂ (49 μmol, 4.9 mol%).

Procedure for the Lifetime Study of Lithium *N*-Methylanilide in Glycerol and 2-MeTHF – Table 2

Additions were performed under air at room temperature in an open Schlenk flask (25 mL) using 1 g of solvent. Lithium *N*-methylanilide solution (1.5 mL, 1.0 M in 2-MeTHF) was added to and after a set time interval, ethyl benzoate (144 μ L, 1 mmol) was added. After 20 s the reaction was quenched by the addition of saturated Rochelle's salt solution (sodium potassium tartrate tetrahydrate, 5 mL) before being extracted into 2-MeTHF (3 x 10 mL). Extractions were combined, dried over MgSO₄ and concentrated under vacuum.

Crude products were purified by silica column chromatography eluted by hexane:EtOAc (10:1 - 2:1 gradient). Products were identified by GCMS and ¹H spectroscopy. Yields of **3a** were obtained by ¹H NMR spectroscopy by integration against ferrocene as an internal standard as described in General Methods.

Figure 14 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 2, Entry 1 (**3a**, Gly, 10 s stirring with **2a** before addition of **1a**, 32%). FeCp2 (50 μmol, 5 mol%).

Figure 15 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 2, Entry 2 (**3a**, Gly 30 s stirring with **2a** before addition of **1a**, 3%). FeCp₂ (50 μmol, 5 mol%).

Figure 16 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 2, Entry 3 (**3a**, 2-MeTHF 1 min stirring with **2a** before addition of **1a**, 70%). FeCp₂ (50 µmol, 5 mol%).

Figure 17 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 2, Entry 4 (**3a**, 2-MeTHF 2 min stirring with **2a** before addition of **1a**, 62%). FeCp₂ (49 µmol, 4.9 mol%).

Figure 18 ¹H spectrum (400.1 MHz, CDCI₃) of Table 2, Entry 5 (**3a**, 2-MeTHF 5 min stirring with **2a** before addition of **1a**, 42%). FeCp₂ (49 µmol, 4.9 mol%).

Figure 19 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 2, Entry 6 (**3a**, 2-MeTHF 10 min stirring with **2a** before addition of **1a**, 13%). FeCp₂ (49 µmol, 4.9 mol%).

Procedure for Addition of Solid Li-N(Me)Ph (2a) – Scheme 2

Additions were performed under air at room temperature in an open Schlenk flask (25 mL) with 1 g of Gly or 2-MeTHF. Lithium amide **2a** (170 mg, 1.5 mmoles) was added to a stirring solution of ester **1a** (144 μ L, 1 mmol). After 20 s the reaction was quenched by the addition of saturated Rochelle's salt solution (sodium potassium tartrate tetrahydrate, 5 mL) before being extracted into 2-MeTHF (3 x 10 mL). Extracts were combined, dried over MgSO₄ and concentrated under vacuum.

Crude products were purified by silica column chromatography, eluted by hexane:EtOAc (10:1 - 2:1 gradient). Products were identified by GCMS and ¹H NMR. The yields of **3a** were obtained by ¹H NMR spectroscopy by integration against ferrocene as an internal standard as described in General Methods.

Figure 20 ¹H NMR spectrum (400.1 MHz, CDCl₃) of **3a** synthesized via addition of solid Li-N(Me)Ph (**2a**) in Gly. **3a** obtained in 47% yield against FeCp₂ (50 μmol, 5.0 mol%).

Figure 21 ¹H NMR spectrum (400.1 MHz, CDCl₃) of **3a** synthesized via addition of solid Li-N(Me)Ph (2a) in 2-MeTHF. **3a** obtained in 82% yield against FeCp₂ (49 μ mol, 4.9 mol%).

Procedure for Reaction Scale-Up

In an open Schlenk flask (25 mL) and 2 mL of 2-MeTHF was added alongside 10 mmol (1.44 mL) of ethylbenzoate (**1a**) and stirred at room temperature. To this, 1.5 equivalents (4.06 mL, 3.7 M solution in 2-MeTHF) of **2a** (Li-N(Me)Ph) was added – 6 mL of 2-MeTHF in total giving concentration of 2.5 M of Li-N(Me)Ph. After 20 s the reaction was quenched by the addition of saturated Rochelle's salt solution (sodium potassium tartrate tetrahydrate, 5 mL) before being extracted into 2-MeTHF (3 x 10 mL). Extracts were combined, dried over MgSO₄ and concentrated under vacuum.

Product **3a** was purified by silica column chromatography, eluted by hexane:EtOAc (10:1 - 2:1 gradient). The yield was obtained by ¹H NMR spectroscopy by integration against ferrocene as an internal standard as described in General Methods, and calculated to be 89%.

Figure 22 ¹H NMR spectrum (400.1 MHz, CDCl₃) of **3a** synthesized at 10 mmol scale in 6 mL total of 2 MeTHF. **3a** obtained in 89% yield against FeCp₂ (46 μ mol, 4.6 mol%).

Procedure for the *in-situ* Amidation of Ethylbenzoate – Scheme 3

Additions were performed under air at room temperature in an open Schlenk flask (25 mL) and 1 g/1.16 mL of 2-MeTHF. *n*-BuLi (1.5 mmol, 0.94 mL, 1.6 M solution in hexane) was added to a stirring solution of ethyl benzoate (144 μ L, 1 mmol) and 1.5 mmol (162 μ L) of HN(Me)Ph. After 20 s the reaction was quenched by the addition of saturated Rochelle's salt solution (sodium potassium tartrate tetrahydrate, 5 mL) before being extracted into 2-MeTHF (3 x 10 mL). Extractions were combined, dried over MgSO₄ and concentrated under vacuum.

The crude yields were obtained by ¹H NMR spectroscopy by integration against ferrocene as an internal standard as described in General Methods – full conversion of starting materials into products is observed. Calculations showed a 26% yield of **4** (compound identified by GCMS analysis and with reference to literature-reported NMR spectra)^[10] and a 79% crude yield of **3a** (slight overlap with N-H of *N*-methylaniline gives overall conversion of 105%). Comparison with conversion by GC shows 26:74 yield of **4:3a** which is almost identical to the yield observed by NMR against ferrocene as an internal standard.

Figure 23 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Scheme 3. FeCp₂ (54 µmol, 5.4 mol%)

Transamidation of Esters and Amides (3a-3m) – Table 3

Additions were performed under air at room temperature in an open Schlenk flask (25 mL) and 1 g of 2-MeTHF. Lithium amide **2a** (1.5 mL, 1.0 M in 2-MeTHF) was added to a stirring solution of ester **1a-1m** (1 mmol). After 20 s the reaction was quenched by the addition of saturated Rochelle's salt solution (sodium potassium tartrate tetrahydrate, 5 mL) before being extracted into 2-MeTHF (3 x 10 mL). Extracts were combined, dried over MgSO₄ and concentrated under vacuum.

Crude products were purified by silica column chromatography, eluted by hexane:EtOAc (10:1 - 2:1 gradient). Products were identified by GCMS and ¹H NMR. Yields were obtained by ¹H NMR spectroscopy by integration against ferrocene as an internal standard as described in General Methods.

<u>N-Methyl-N-phenylbenzamide 3a.</u> Spectral data were in accord with published data.^[3]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.34–7.28 (2H, m, Ar), 7.24–7.09 (6H, m, Ar), 7.06–7.01 (2H, m, Ar), 3.49 (3H, s, C*H*₃).

Figure 25 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 3, Entry 3a, 80%. FeCp₂ (50 µmol, 5 mol%).

<u>4-Chloro-*N*-methyl-*N*-phenylbenzamide **3b**. Spectral data were in accord with published data.^[4]</u>

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.31–7.19 (4H, m, Ar), 7.19–7.09 (3H, m, Ar), 7.09– 6.98 (2H, m, Ar), 3.49 (3H, s, C*H*₃).

Figure 26 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 3, Entry **3b**, 85%. FeCp₂ (53 μmol, 5.3 mol%).

<u>4-Fluoro-*N*-methyl-*N*-phenylbenzamide **3c**. Spectral data were in accord with published data.^[5]</u>

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.33–7.27 (2H, m, Ar), 7.26–7.20 (2H, m, Ar), 7.17–7.11 (1H, m, Ar), 7.06–7.00 (2H, m, Ar), 6.86–6.79 (2H, m, Ar), 3.48 (3H, s, CH₃)

¹⁹F NMR (376.4 MHz, CDCl₃): δ / ppm -110.12 (1F, s, Ar*F*).

Figure 27 ¹H spectrum (400.1 MHz, CDCl₃) of Table 3, Entry 3c, 77%. FeCp₂ (50 µmol, 5 mol%).

3-Fluoro-N-methyl-N-phenylbenzamide 3d.

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.26 (3H, m, Ar), 7.14 (6H, m, Ar), 6.95 (1H, m, Ar), 3.52 (3H, s, C*H*₃)

¹³C{¹H} NMR (100.6 MHz, CDCI₃): δ / ppm 168.6 (*C*O), 162.7 (Ar), 160.3 (Ar), 144.0 (1C, s, Ar), 137.6 (d, *J* = 7 Hz, Ar), 128.9 (Ar), 128.8 (Ar), 126.3 (Ar), 123.9 (1C, d, *J* = 3 Hz, Ar), 116.1 (d, *J* = 21 Hz, Ar), 115.3 (d, *J* = 23 Hz, Ar), 38 (*C*H₃)

¹⁹F NMR (128.4 MHz, CDCl₃): δ / ppm -112.8 (3F, s, Ar*F*)

HR-MS found: 229.08991; calculated for [M⁺] (C₁₄H₁₂ONF⁺): 229.08974 (error 0.17 ppm).

Figure 28 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 3, Entry 3d, 70%. FeCp₂ (53 μmol, 5.3 mol%).

Figure 29 ¹H NMR spectrum of 3d in CDCI₃

Figure 30 ¹⁹F NMR spectrum of 3d in CDCI₃

Figure 31 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of 3d in CDCl3

2-Fluoro-N-methyl-N-phenylbenzamide 3e.

¹H NMR (400.1 MHz, CDCI₃): δ / ppm 7.19 (8H, m, Ar), 6.78 (1H, s, Ar), 3.47 (3H, s, CH₃)

¹³C{¹H} NMR (100.6 MHz, CDCI₃): δ / ppm 166.6 (CO), 159.2 (Ar), 156.8 (Ar), 143.4 (Ar), 131.1 (d, *J* = 8 Hz, Ar), 129.3 (d, *J* = 3 Hz, Ar), 127.0 (Ar), 126.8 (Ar), 125.3 (1C, d, *J* = 17 Hz, Ar), 123.9 (Ar), 115.5 (d, *J* = 22 Hz, Ar), 37.4 (CH₃)

¹⁹F NMR (128.4 MHz, CDCI₃): δ / ppm 113.1 (1F, s, Ar*F*)

HR-MS found: 229.08959; calculated for [M⁺] (C₁₄H₁₂ONF⁺): 229.08974 (error -0.15 ppm).

Figure 32 ¹H spectrum (400.1 MHz, CDCl₃) of Table 3, Entry 3e, 67%. FeCp₂ (50 µmol, 5 mol%).

Figure 33 ¹H NMR spectrum of 3e in CDCl₃

Figure 34 ¹⁹F NMR spectrum of 3e in CDCl₃

Figure 35 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of 3e in CDCl_3

<u>4-Methoxy-*N*-methyl-*N*-phenylbenzamide **3f**. Spectral data were in accord with published data.^[6]</u>

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.28 (2H, d, *J* = 8.6 Hz, Ar), 7.23 (2H, t, *J* = 7.4 Hz, Ar), 7.14 (1H, t, *J* = 7.4 Hz, Ar), 7.05 (2H, d, *J* = 7.4 Hz, Ar), 6.66 (2H, d, *J* = 8.6 Hz, Ar), 3.49 (3H, s, C*H*₃).

Figure 36 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 3, Entry 3f, 74%. FeCp₂ (50 μmol, 5 mol%).

<u>3-Methoxy-*N*-methyl-*N*-phenylbenzamide **3g**. Spectral data were in accord with published data.^[7]</u>

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.27–7.18 (2H, m, Ar), 7.18–7.10 (1H, m, Ar), 7.10– 6.98 (3H, m, Ar), 6.92–6.83 (2H, m, Ar), 6.82–6.72 (1H, m, Ar), 3.63 (3H, s, C*H*₃), 3.49 (3H, s, C*H*₃).

Figure 37 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 3, Entry 3g, 89%. FeCp₂ (4 μmol, 4.8 mol%).

<u>2-Methoxy-*N*-methyl-*N*-phenylbenzamide **3h**. Spectral data were in accord with published data.^[7]</u>

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.24–6.99 (7H, m, Ar), 6.85–6.71 (1H, m, Ar), 6.69–6.52 (1H, m, Ar), 3.60 (3H, s, CH₃), 3.48 (3H, s, CH₃).

Figure 38 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 3, Entry 3h, 63%. FeCp₂ (40 µmol, 4 mol%).

2-Methyl-N-methyl-N-phenylbenzamide 3i. Spectral data were in accord with published data.^[8]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.20–6.75 (9H, m, Ar), 3.38 (3H, s, C*H*₃), 2.24 (3H, s, C*H*₃).

Figure 39 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 3, Entry 3i, 60%. FeCp₂ (40 µmol, 4 mol%).

<u>N-Methyl-N-phenylfuran-3-carboxamide 3j.</u> Spectral data were in accord with published data.^[8]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.44–7.30 (9H, m, Ar), 7.24–7.15 (9H, m, Ar), 7.15–7.06 (9H, m, Ar), 6.92–6.82 (9H, m, Ar), 3.39 (3H, s, CH₃).

Figure 40 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 3, Entry 3j, 78%. FeCp₂ (52 μmol, 5.2 mol%).

N-Methyl-N-phenylnicotinamide 3k.

¹**H NMR (400.1 MHz, CDCl₃):** δ / ppm 8.43 (1H, d, *J* = 1.7 Hz, Ar), 8.37 (1H, dd, *J* = 4.9 Hz, 1.6 Hz, Ar), 7.53 (1H, *J* = 8.0 Hz, 2.0 Hz, Ar), 7.18 (t, *J* = 7.5 Hz, Ar), 7.10 (tt, *J* = 7.3, 2.0 Hz, Ar), 7.03 (1H, dd, *J* = 8.0 Hz, 4.8 Hz, Ar), 6.98 (2H, d, *J* = 7 Hz, Ar), 3.43 (3H, s, C*H*₃)

¹³C{¹H} NMR (100.6 MHz, CDCI₃): δ / ppm 168.0 (CO), 150.2 (Ar), 149.5 (Ar), 144.1 (Ar_{ipso}), 136.0 (Ar), 131.7 (Ar_{ipso}), 129.4 (Ar), 127.1 (Ar), 127.0 (Ar), 38.3 (CH₃).

HR-MS found: 212.09376; calculated for $[M^+]$ ($C_{13}H_{12}ON_2^+$): 212.09441 (error -0.65 ppm).

Figure 41 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 3, Entry 3k, 72%. FeCp₂ (50 μmol, 5 mol%).

<u>*N*-Methyl-*N*-phenylcyclohexanecarboxamide **3I**.</u> Spectral data were in accord with published data.^[9]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.42 (2H, t, *J* = 7.2 Hz, Ar), 7.35 (1H, t, *J* = 7.2 Hz, Ar), 7.17 (2H, d, *J* = 7.2 Hz, Ar), 3.24 (3H, s, CH₃), 2.17–2.09 (1H, s, CH), 1.75–1.44 (7H, s, CH₂), 1.27–1.08 (1H, s, CH₂), 1.08–0.84 (2H, s, CH₂).

Figure 44 ¹H NMR spectrum (400.1 MHz, CDCI₃) of Table 3, Entry 3I, 72%. FeCp₂ (42 µmol, 4.2 mol%).

<u>*N*-Methyl-*N*-phenyloctanamide **3m**</u>. Spectral data were in accord with published data.^[9]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.42 (2H, t, J = 7.4 Hz, Ar), 7.34 (1H, t, J = 7.4 Hz, Ar), 7.18 (2H, t, J = 7.4 Hz, Ar), 3.27 (3H, s, CH_3), 2.07 (2H, t, J = 6.6 Hz, CH_2), 1.57 (2H, qui, J = 6.6 Hz, CH_2), 1.30–1.09 (8H, m, CH_2), 0.85 (3H, t, J = 6.5 Hz, CH_3).

Figure 45 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 3, Entry 3m, 39%. FeCp₂ (16 μmol, 1.6 mol%).

Variation of Li-Amide for Transamidation (5b-5h') – Table 4

Additions were performed under air at room temperature in an open Schlenk flask (25 mL) and 1 g of 2-MeTHF. Lithium amide **2a-j** (1.5 mL, 1.0 M in 2-MeTHF) was added to a stirring solution of ester **1a/1n** (1 mmol). After 20 s the reaction was quenched by the addition of saturated Rochelle's salt solution (sodium potassium tartrate tetrahydrate, 5 mL) before being extracted into 2-MeTHF (3 x 10 mL). Extracts were combined, dried over MgSO₄ and concentrated under vacuum.

Crude products were purified by silica column chromatography, eluted by hexane:EtOAc (10:1 - 2:1 gradient). Products were identified by GCMS and ¹H NMR. Yields were obtained by ¹H NMR spectroscopy by integration against ferrocene as an internal standard as described in General Methods.

<u>N-Methyl-N-phenylbenzamide 3a.</u> Spectral data were in accord with published data.^[3]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.34–7.28 (2H, m, Ar), 7.24–7.09 (6H, m, Ar), 7.06– 7.01 (2H, m, Ar), 3.49 (3H, s, C*H*₃).

Figure 46 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 4, Entry 3a, 81%. FeCp₂ (51 μmol, 5.1 mol%).

<u>N-Phenylbenzamide 5b.</u> Spectral data were in accord with published data.^[3]

*3 equivalents of lithium anilide (2b) were employed.

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.93 (1H, br. s, N*H*), 7.86 (2H, d, *J* = 7.5 Hz, Ar), 7.65 (2H, d, *J* = 7.8 Hz, Ar), 7.54 (1H, t, *J* = 7.8 Hz, Ar), 7.47 (2H, t, *J* = 7.5 Hz, Ar), 7.37 (2H, t, *J* = 7.8 Hz, Ar), 7.15 (1H, t, *J* = 7.5 Hz, Ar).

Figure 47 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 4, Entry 5b, 71%. FeCp₂ (52 μ mol, 5.2 mol%).

N,N-Dibutylbenzamide 5c. Spectral data were in accord with published data.^[6]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.43–7.31 (5H, m, Ar), 3.61–3.36 (2H, m, C*H*₂), 3.34– 3.05 (2H, m, C*H*₂), 1.76–1.57 (2H, m, C*H*₂), 1.57–1.34 (4H, m, C*H*₂), 1.20–1.07 (2H, m, C*H*₂), 1.06–0.91 (3H, m, C*H*₃), 0.87–0.71 (2H, m, C*H*₂).

Figure 48 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 4, Entry **5c**, 77%. FeCp₂ (45 μ mol, 4.5 mol%). Additional peaks correspond to remaining 2-MeTHF.

Morpholino(phenyl)methanone 5d. Spectral data were in accord with published data.[11]

*0.08 M lithium morpholide (2d) solution in 2-MeTHF was employed due to limited solubility.

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.45–7.32 (5H, m, Ar), 3.96–3.56 (6H, m, C*H*₂), 3.56–3.28 (2H, m, C*H*₂).

Figure 49 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 4, Entry **5d**, 17%. FeCp₂ (40 µmol, 4 mol%).

Phenyl(pyrrolidin-1-yl)methanone 5e. Spectral data were in accord with published data.^[8, 12]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.60–7.47 (2H, m, Ar), 7.45–7.33 (3H, m, Ar), 3.70– 3.54 (2H, m, C*H*₂), 3.50–3.31 (2H, m, C*H*₂), 2.07–1.80 (6H, m, C*H*₂).

Figure 50 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 4, Entry **5e**, 79%. FeCp₂ (48 μ mol, 4.8 mol%). Additional peaks correspond to remaining 2-MeTHF.

Phenyl(piperidin-1-yl)methanone **5f**. Spectral data were in accord with published data.^[13]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.34 (5H, m, Ar), 3.78–3.55 (2H, m, C*H*₂), 3.40–3.17 (2H, m, C*H*₂), 1.74–1.54 (4H, m, C*H*₂), 1.54–1.38 (2H, m, C*H*₂).

Figure 51 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 4, Entry **5f**, 58%. FeCp₂ (57 μmol, 5.7 mol%).

(2,6-Dimethylpiperidin-1-yl)(phenyl)methanone **5g**. Spectral data were in accord with published data.^[9, 14]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.43–7.36 (3H, m, Ar), 7.36–7.30 (2H, m, Ar), 5.00– 4.25 (2H, m, C*H*), 1.90–1.81 (1H, m, C*H*₂), 1.75–1.62 (2H, m, C*H*₂), 1.62–1.46 (3H, m, C*H*₂), 1.29 (3H, s, C*H*₃), 1.27 (3H, s, C*H*₃).

Figure 52 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 4, Entry 5g, 63%. FeCp₂ (52 μmol, 5.2 mol%).

<u>*N*,*N*-Diphenylbenzamide **5h**</u>. Spectral data were in accord with published data.^[15] ¹**H NMR (400.1 MHz, CDCI₃):** δ / ppm 8.20–6.83 (15H, m, Ar).

Figure 53 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 4, Entry 5h, 6%. FeCp₂ (40 µmol, 4 mol%).

2,2,2-Trifluoro-N,N-diphenylacetamide 5h'.

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.41 (3H, br. s, Ar), 7.39 (2H, br. s, Ar), 7.32 (5H, br. s, Ar)

¹³C{¹H} NMR (100.6 MHz, CDCI₃): δ / ppm 157.0 (q, J = 36 Hz, CO), 141.7 (br, Ar_{ipso}), 128.8 (br, Ar), 127.8 (br, Ar), 126.2 (br, Ar), 115.2 (q, *J* = 289 Hz, *C*F₃)

¹⁹F NMR (128.4 MHz, CDCI₃): δ / ppm -66.9 (s, CF₃)

HR-MS found: 265.07087; calculated for [M⁺] (C₁₄H₁₀ONF₃⁺): 265.07090 (error -0.03 ppm).

Figure 54 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 4, Entry **5h'**, 70%. FeCp₂ (48 μmol, 4.8 mol%). Additional peaks correspond to remaining 2-MeTHF.

Figure 55 ¹³C{¹H} NMR spectrum of Table 4, 5h' in CDCl₃

Procedure for the Addition of Li-N(H)Ph (2b) to Ethylbenzoate (1a) Under Inert Conditions

To a nitrogen-flushed 25 mL Schlenk flask, 1 g (1.16 mL) of dry 2-MeTHF and 1 mmol (144 μ L) of ethylbenzoate were added and stirred at room temperature. To this, 1.5 equivalents (1.5 mL, 1.0 M solution in 2-MeTHF) of Li-N(H)Ph (**2b**) was added. After 20 s, the reaction was quenched by the addition of saturated Rochelle's salt solution (sodium potassium tartrate tetrahydrate, 5 mL) before being extracted into 2-MeTHF (3 x 10 mL). Extracts were combined, dried over MgSO₄ and concentrated under vacuum.

The crude product (**5b**) was purified by silica column chromatography, eluted by hexane:EtOAc (10:1 - 2:1 gradient). The yield was obtained by ¹H NMR spectroscopy by integration against ferrocene as an internal standard as described in General Methods. The yield of **5b** was calculated to be 59%.

Figure 56 ¹H NMR spectrum (400.1 MHz, CDCl₃) of **5b** from amidation of ethylbenzoate (**1a**) by Li-N(H)Ph (**2b**) under nitrogen atmosphere, 59%. FeCp₂ (63 μ mol, 6.3 mol%).

Procedure for the Addition of Li-Amides to *N,N*-di(Boc)benzamide – Table 5

Additions were performed under air at room temperature in an open Schlenk flask (25 mL) and 1 g of solvent. Lithium amide **2a**, **2c**, **2e**, **2f-h** (1.5 mL, 1.0 M in 2-MeTHF) was added to a stirring solution of *N*,*N*-di(Boc)-benzamide **6** (1 mmol). After 20 s the reaction was quenched by the addition of saurated Rochelle's salt solution (sodium potassium tartrate tetrahydrate, 5 mL) before being extracted into 2-MeTHF (3 x 10 mL). Extracts were combined, dried over MgSO₄ and concentrated under vacuum.

Crude products were purified by silica column chromatography, eluted by hexane:EtOAc (10:1 - 2:1 gradient). Products were identified by GCMS and ¹H NMR. Yields were obtained by ¹H NMR spectroscopy by integration against ferrocene as an internal standard as described in General Methods.

<u>N-Methyl-N-phenylbenzamide 3a.</u> Spectral data were in accord with published data.^[3]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.34–7.28 (2H, m, Ar), 7.24–7.09 (6H, m, Ar), 7.06– 7.01 (2H, m, Ar), 3.49 (3H, s, C*H*₃).

Figure 57 ¹H NMR spectrum (400.1 MHz, CDCl₃) of Table 5, Entry 3a, 77%. FeCp₂ (200 µmol, 20 mol%).

N,N-Dibutylbenzamide 5c. Spectral data were in accord with published data.^[6]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.43–7.31 (5H, m, Ar), 3.61–3.36 (2H, m, C*H*₂), 3.34–3.05 (2H, m, C*H*₂), 1.76–1.57 (2H, m, C*H*₂), 1.57–1.34 (4H, m, C*H*₂), 1.20–1.07 (2H, m, C*H*₂), 1.06–0.91 (3H, m, C*H*₃), 0.87–0.71 (2H, m, C*H*₂).

Figure 58 ¹H spectrum (400.1 MHz, CDCl₃) of Table 5, Entry 5c, 70%. FeCp₂ (200 µmol, 20 mol%).

Phenyl(pyrrolidin-1-yl)methanone 5e. Spectral data were in accord with published data.^[8, 12]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.60–7.47 (2H, m, Ar), 7.45–7.33 (3H, m, Ar), 3.70– 3.54 (2H, m, C*H*₂), 3.50–3.31 (2H, m, C*H*₂), 2.07–1.80 (6H, m, C*H*₂).

Figure 59 ¹H spectrum (400.1 MHz, CDCl₃) of Table 5, Entry 5e, 65%. FeCp₂ (200 μmol, 20 mol%).

Phenyl(piperidin-1-yl)methanone **5f**. Spectral data were in accord with published data.^[13]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.34 (5H, m, Ar), 3.78–3.55 (2H, m, C*H*₂), 3.40–3.17 (2H, m, C*H*₂), 1.74–1.54 (4H, m, C*H*₂), 1.54–1.38 (2H, m, C*H*₂).

Figure 60 ¹H spectrum (400.1 MHz, CDCl₃) of Table 5, Entry 5f, 53%. FeCp₂ (200 μmol, 20 mol%).

(2,6-Dimethylpiperidin-1-yl)(phenyl)methanone **5g**. Spectral data were in accord with published data.^[9, 14]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 7.43–7.36 (3H, m, Ar), 7.36–7.30 (2H, m, Ar), 5.00– 4.25 (2H, m, C*H*), 1.90–1.81 (1H, m, C*H*₂), 1.75–1.62 (2H, m, C*H*₂), 1.62–1.46 (3H, m, C*H*₂), 1.29 (3H, s, C*H*₃), 1.27 (3H, s, C*H*₃).

Figure 61 ¹H spectrum (400.1 MHz, CDCl₃) of Table 5, Entry 5g, 73%. FeCp₂ (200 µmol, 20 mol%).

N,N-Diphenylbenzamide 5h. Spectral data were in accord with published data.^[15]

¹H NMR (400.1 MHz, CDCl₃): δ / ppm 8.20–6.83 (15H, m, Ar), 7.15 (N-*H*, HNBoc), 1.48 (C*H*₃, *t*Bu, HNBoc).

*HNBoc present in approximately 21%.

Figure 62 ¹H spectrum (400.1 MHz, CDCl₃) of Table 5, Entry 5h, 72%. FeCp₂ (200 μmol, 20 mol%).

Procedure for Addition of LiN(Me)Ph (2a) to Ethylbenzoate (1a) Under Inert Conditions

To an argon-flushed Schlenk flask (25 mL), 1.16 mL of dry 2-MeTHF was measured – the solvent was then degassed using freeze-pump-thaw cycles. 1 mmol (144 μ L, 1 mmol) of ethylbenzoate (**1a**) was then added followed by 1.5 equivalents (1.5 mL, 1.0 M solution in 2-MeTHF) of Li-N(Me)Ph (**2a**) and the reaction mixture stirred at room temperature. After 20 s the reaction was quenched by the addition of saturated Rochelle's salt solution (sodium potassium tartrate tetrahydrate, 5 mL) before being extracted into 2-MeTHF (3 x 10 mL). Extracts were combined, dried over MgSO₄ and concentrated under vacuum.

Crude products were purified by silica column chromatography, eluted by hexane:EtOAc (10:1 – 2:1 gradient). **3a** was identified by GCMS and ¹H NMR. The yield was obtained by ¹H NMR spectroscopy by integration against ferrocene as an internal standard as described in General Methods to give a yield of 85%.

Figure 63 ¹H spectrum (400.1 MHz, CDCl₃) of **3a** (dry and degassed conditions, 85%). FeCp₂ (200 μ mol, 20 mol%).

Synthesis of Lithium Amides

n-BuLi (19 mL, 30 mmol) was added dropwise to a stirring solution of amine (30 mmol) in hexane (60 mL) and left to stir for 1 h. The resultant suspension was filtered and washed with hexane (3 x 10 mL) before being dried under vacuum. The white solid product obtained was stored in an argon filled glovebox and analysed by multinuclear NMR spectroscopy (¹H, ⁷Li and ¹³C{¹H}.

Lithium N-methylanilide (2a)

¹**H-NMR (400.1 MHz, D₈-THF, 300 K):** δ / ppm 6.81 (t, 2H, C-*H*_{meta}), 6.28 (d, 2H, C-*H*_{ortho}), 5.93 (t, 1H, C-*H*_{para}), 2.81 (s, 3H, N-C*H*₃).

⁷Li-NMR (155.5 MHz, D₈-THF, 300 K): δ / ppm 0.51 (*Li*-N(H)Ph).

¹³C{¹H}-NMR (100.6 MHz, D₈-THF, 300 K): δ / ppm 164.1 (*C*_q-N), 129.2 (*C*_{meta}-H and *C*_{ortho}-H)[‡], 108.3 (*C*_{para}-H), 37.6 (N-*C*H₃).

^{*}Confirmed by [¹H,¹³C]-HSQC NMR spectrum

Figure 64 ¹H NMR spectrum of compound 2a in D₈-THF

Figure 66 $^{13}C\{^{1}H\}$ NMR spectrum of compound 2a in D₈-THF

Figure 67 [1H,13C]-HSQC NMR spectrum of 2a in D8-THF

Lithium anilide (2b)

¹H-NMR (300.1 MHz, D₈-THF, 300 K): δ / ppm 6.64 (t, 2H, C-*H*_{meta}), 6.24 (d, 2H, C-*H*_{ortho}), 5.85 (t, 1H, C-*H*_{para}), 2.72 (br. s, 1H, N-*H*).

⁷Li-NMR (116.6 MHz, D₈-THF, 300 K): δ / ppm 0.87 (*Li*-N(H)Ph).

¹³C{¹H}-NMR (75.5 MHz, D₈-THF, 300 K): δ / ppm 164.3 (C_q-N), 128.8 (C_{meta}-H), 115.9 (C_{ortho}-H), 108.3 (C_{para}-H).

Figure 68 ¹H NMR spectrum of compound 2b in D₈-THF

Figure 69 ⁷Li NMR spectrum of compound 2b in D₈-THF

Figure 70 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of compound 2b in D_8-THF

Lithium di-n-butylamide (2c)

¹**H-NMR (300.1 MHz, D₈-THF, 300 K):** δ / ppm 2.85 (br. t, 4H, N-C*H*₂), 1.47-1.24 (br. m, 8H, N-CH₂(C*H*₂)₂CH₃), 0.90 (br. t, 6H, C*H*₃).

⁷Li-NMR (116.6 MHz, D₈-THF, 300 K): δ / ppm 1.63 (*Li*-N*n*Bu₂).

¹³C{¹H}-NMR (75.5 MHz, D₈-THF, 300 K): δ / ppm 59.4 (N-*C*H₂), 37.3 (N-CH₂(C*H*₂)₂CH₃), 22.4 (N-CH₂(C*H*₂)₂CH₃), 14.9 (*C*H₃).

Figure 71 ¹H NMR spectrum of compound 2c in D₈-THF

Figure 73 $^{13}C\{^{1}H\}$ NMR spectrum for compound 2c in D_8-THF

Lithium morpholide (2d)

¹H-NMR (300.1 MHz, D₈-THF, 300 K): δ / ppm 3.32 (br. t, 4H, O(CH₂)₂), 2.93 (br. t, 4H, N(CH₂)₂).

⁷Li-NMR (116.6 MHz, D₈-THF, 300 K): δ / ppm 0.74 (*Li*-N(CH₂)₂(CH₂)₂O).

¹³C{¹H}-NMR (75.5 MHz, D₈-THF, 300 K): δ / ppm 71.9 (O(CH₂)₂), 55.3 (N(CH₂)₂).

Figure 74 ¹H NMR spectrum of compound 2d in D₈-THF

Figure 75 ⁷LI NMR spectrum of compound 2d in D₈-THF

Figure 76 ¹³C{¹H} NMR spectrum of compound 2d in D₈-THF

Lithium pyrrolidide (2e)

¹H-NMR (400.1 MHz, D₈-THF, 300 K): δ / ppm 2.96 (br. t, 4H, N(CH₂)₂), 1.28 (br. t, 4H, N(CH₂)₂).

⁷Li-NMR (155.5 MHz, D₈-THF, 300 K): δ / ppm 1.02 (*Li*-N(CH₂)₂(CH₂)₂O).

¹³C{¹H}-NMR (100.6 MHz, D₈-THF, 300 K): δ / ppm 55.4 (N(CH₂)₂), 27.9 (N(CH₂)₂(CH₂)₂).

Figure 77 ¹H NMR spectrum of compound 2e in D₈-THF

Lithium piperidide (2f)

¹H-NMR (300.1 MHz, D₈-THF, 300 K): δ / ppm 2.99 (br. t, 4H, N-(CH₂)₂, 1.50 (br. m, 2H, N(CH₂)₂(CH₂)₂CH₂), 1.23 (br. m, 4H, N(CH₂)₂(CH₂)₂CH₂).

⁷Li-NMR (116.6 MHz, D₈-THF, 300 K): δ / ppm 0.79 (*Li*-piperidide)

¹³C{¹H}-NMR (75.5 MHz, D₈-THF, 300 K): δ / ppm 56.5 (N(*C*H₂)₂(CH₂)₂CH₂), 32.6 (N(CH₂)₂(CH₂)₂CH₂), 28.8 (N(CH₂)₂(CH₂)₂CH₂).

Figure 80 ¹H NMR spectrum of compound 2f in D₈-THF

Figure 81 7Li NMR spectrum of compound 2f in D8-THF

Figure 82 ¹³C{¹H} NMR spectrum of compound 2f in D₈-THF

Lithium 2,6-dimethylpiperidide (2g) Spectral data were in accord with published data^[16]

¹**H-NMR (400.1 MHz, D₈-THF, 300 K):** δ / ppm 3.06–2.95 (2H, m, C*H*), 2.16–2.06 (1H, m, C*H*), 1.91–1.82 (1H, m, C*H*), 1.83–1.73 (2H, m, C*H*₂), 0.94–0.80 (2H, m, C*H*₂)

⁷Li-NMR (155.5 MHz, D₈-THF, 300 K): δ / ppm 0.39 (*Li*-NPh₂).

Lithium diphenylamide (2h)

¹**H-NMR (300.1 MHz, D₈-THF, 300 K):** δ / ppm 6.79 (br. t, 4H, C-*H*_{meta}), 6.68 (br. d, 4H, C-*H*_{ortho}), 6.13 (br. t, 2H, C-*H*_{para}).

⁷Li-NMR (116.6 MHz, D₈-THF, 300 K): δ / ppm 0.39 (*Li*-NPh₂).

¹³C{¹H}-NMR (75.5 MHz, D₈-THF, 300 K): δ / ppm 159.6 (*C*_q-N), 128.7 (*C*_{meta}-H), 119.4 (*C*_{ortho}-H), 112.3 (*C*_{para}-H).

Figure 83 ¹H NMR spectrum of compound 2h in D₈-THF

Figure 84 ^7Li NMR spectrum of compound 2h in D_8-THF

Figure 85 ¹³C{¹H} NMR spectrum of 2h in D₈-THF

Synthesis and Characterisation of Crystalline Compounds -Lithium Amides ($2b-S_4$, $2h-S_3$ and $2i-S_2$) and of [{LiNPh₂}(O=CPh(NMe₂)]₂ (8)

Lithium anilide (2b-S4)

To an argon-flushed Schlenk flask, 2 mmoles (0.2 mL) of aniline was added to 23 mL of dry hexane. To this, an equimolar amount of *n*BuLi (1.26 mL, 1.6 M in hexane) was added affording a thick, white suspension. The suspension was stirred at room temperature for 1 hour and then solubilized with the addition of 2.5mL of dry 2-MeTHF and gentle heating. Cooling the solution to -18°C over a period of 24 hours afforded a crop of colourless crystals in a 21% yield.

¹**H-NMR (300.1 MHz, D₈-THF, 300 K):** δ / ppm 6.76 (t, 2H, C- H_{meta}), 6.35 (d, 2H, C- H_{ortho}), 6.13 (t, 1H, C- H_{para}), 3.9-3.6 (br. m, N-H, 2x H_{α} , 2-MeTHF + C-H, 2-MeTHF), 1.93 (m, 1x H_{β} , 2-MeTHF), 1.82 (m, 1x H_{β} + 1x H_{γ} , 2-MeTHF), 1.32 (m, 1x H_{γ} of 2-MeTHF), 1.13 (d, C H_{3} , 2-MeTHF).

⁷Li-NMR (116.6 MHz, D₈-THF, 300 K): δ / ppm 0.82 (*Li*-N(H)Ph).

¹³C{¹H}-NMR (75.5 MHz, D₈-THF, 300 K): δ / ppm 165.4 (C_q -N), 129.1 (C_{meta} -H), 116.4 (C_{ortho} -H), 108.2 (C_{para} -H), 75.7 (C(H)CH₃, 2-MeTHF), 68.1 (OCH₂, 2-MeTHF), 34.0 (C_{γ} -H₂, 2-MeTHF), 26.7 (C_{β} -H₂, 2-MeTHF), 21.4 (CH₂, 2-MeTHF).

*Ratio of 2-MeTHF to **2b** varies from the solid state structure – 2-MeTHF could have been partially removed under reduced pressure during isolation of crystalline material.

Figure 86 ¹H NMR spectrum of compound 2b-S₄ in D₈-THF

Figure 87 7Li NMR spectrum of compound 2b-S4 in D8-THF

Figure 88 ¹³C{¹H} NMR spectrum of compound 2b-S₄ in D₈-THF

Lithium diphenylamide (2h-S₃)

To an argon-flushed Schlenk flask, 2 mmol (340 mg) of diphenylamine was added to 23 mL of dry hexane. To this, an equimolar amount of *n*BuLi (1.26 mL, 1.6 M in hexane) was added affording a thick, white suspension. The suspension was stirred at room temperature for 1 hour and then solubilized with the addition of 0.3 mL of dry 2-MeTHF and gentle heating. Cooling the solution to -33°C over a period of 24 hours afforded a crop of colourless crystals in a 54% yield.

¹**H-NMR (300.1 MHz, D₈-THF, 300 K):** δ / ppm 6.84 (br. t, 4H, C- H_{meta}), 6.74 (br. d, 4H, C- H_{ortho}), 6.18 (br. t, 2H, C- H_{para}), 3.89-3.78 (br. m, 2x H_{α} , 2-MeTHF), 3.60 (C H_3 , 2-MeTHF), 1.93 (m, 1x H_{β} , 2-MeTHF), 1.83 (m, 1x H_{β} + 1x H_{γ} , 2-MeTHF), 1.35 (m, 1x H_{γ} of 2-MeTHF), 1.17 (d, C H_3 , 2-MeTHF).

⁷Li-NMR (116.6 MHz, D₈-THF, 300 K): δ / ppm 0.39 (*Li*-NPh₂).

¹³C{¹H}-NMR (75.5 MHz, D₈-THF, 300 K): δ / ppm 159.4 (C_q -N), 128.7 (C_{meta} -H), 119.3 (C_{ortho} -H), 112.4 (C_{para} -H), 75.4 (C(H)CH₃, 2-MeTHF), 67.7 (OCH₂, 2-MeTHF), 33.7 (C_{γ} -H₂, 2-MeTHF), 26.3 (C_{β} -H₂, 2-MeTHF), 21.1 (CH₂, 2-MeTHF).

*Ratio of 2-MeTHF to **2h** varies from the solid state structure – 2-MeTHF could have been partially removed under reduced pressure during isolation of crystalline material.

Figure 89 ¹H NMR spectrum of compound 2h-S₃ in D₈-THF

0.40

Figure 90 $^{13}C\{^{1}H\}$ NMR spectrum of compound $2h\text{-}S_{3}$ in D_8-THF

Lithium bipyridylamide (2i-S₄)

To an argon-flushed Schlenk flask, 2 mmol (342 mg) of 2,2'-bipyridylamine was added to 5 mL of dry hexane. To this, an equimolar amount of *n*BuLi (0.63 mL, 1.6 M in hexane) was added affording a thick, white suspension. The suspension was stirred at room temperature for 1 hour and then solubilized with the addition of 10 mL of dry 2-MeTHF and gentle heating. Cooling the solution to -18°C over a period of 24 hours afforded a crop of colourless crystals in 66% yield. Due to limited solubility in D₈-THF, full spectroscopic characterisation was conducted in pyridine-D₅.

¹**H-NMR (400.1 MHz, D₅-Py, 300 K):** δ / ppm 8.22 (br. d, 1H, C_{Ar}-*H*), 7.50 (br. d, 1H, C_{Ar}-*H*), 7.41 (br. t, 1H, C_{Ar}-*H*), 6.45 (br. t, 1H, C_{Ar}-*H*), 3.87 (br. m, 2x H_{α} , 2-MeTHF), 3.62 (C H_3 , 2-MeTHF), 1.82 (m, 1x H_{β} , 2-MeTHF), 1.70 (m, 1x H_{β} + 1x H_{γ} , 2-MeTHF), 1.27 (m, 1x H_{γ} of 2-MeTHF), 1.18 (br. m, C H_3 , 2-MeTHF).

⁷Li-NMR (155.5 MHz, D₅-Py, 300 K): δ / ppm 3.85 (*Li*-NPy₂).

¹³C{¹H}-NMR (100.6 MHz, D₅-Py, 300 K): δ / ppm 165.1 (C_q -Li), 147.7 (C_{Ar} -H), 137.1 (C_{Ar} -H), 118.1 (C_{Ar} -H), 110.6 (C_{Ar} -H), 75.6 (C(H)CH₃, 2-MeTHF), 66.1 (OCH₂, 2-MeTHF), 33.8 (C_{γ} -H₂, 2-MeTHF), 26.6 (C_{β} -H₂, 2-MeTHF), 21.7 (C_{H_2} , 2-MeTHF).

Figure 91 ¹H NMR spectrum of compound 2i-S₄ in D₅-Py

Figure 93 ¹³C{¹H} NMR spectrum of compound 2i-S₂ in D₅-Py

$[{LiNPh_2}(O=CPh(NMe_2)]_2(8)$

In an argon-flushed Schlenk flask, 1 mmol (169 mg) of diphenylamine was dissolved 5 mL of dried toluene with subsequent addition of 1 mmol (0.63 mL, 1.6 M in hexane) of *n*BuLi at room temperature, affording a white suspension of LiNPh₂ (**2h**). After stirring the suspension for 1 hour at room temperature, 1 mmol (149 mg) of *N*,*N*-dimethylbenzamide was added giving a light-yellow suspension after addition, followed by precipitation of a yellow suspension. The mixture was stirred at room temperature for a further 10 minutes before gentle heating was applied to regain the light yellow solution. Slow cooling to room temperature produced a crop of colourless crystals which by X-ray diffraction analysis proved to be compound **8**. Yield: 260 mg, 40%.

¹**H-NMR (300.1 MHz, D₈-Tol, 300 K):** δ / ppm 7.15-7.05 (m, 5H, C_{Ar}-*H*, PhC(=O)NMe₂ + D₈-Tol), 7.03-6.92 (m, 2H, C-*H*_{ortho}, LiNPh₂ + D₈-Tol), 6.85 (m, 2H, C-*H*_{meta}, LiNPh₂), 6.68 (m, 1H, C-*H*_{para}, LiNPh₂), 2.32 (br. s, 3H, C*H*₃, PhC(=O)NMe₂), 2.02 (br. s, 3H, C*H*₃, PhC(=O)NMe₂).

⁷Li-NMR (116.6 MHz, D₈-Tol, 300 K): δ / ppm 1.91 ([*Li*-NPh₂·PhC(=O)NMe₂]₂).

*Attempts to achieve ¹³C{¹H} NMR spectrum in D₈-Tol were unsuccessful due to poor solubility in this solvent. Spectra recorded in D₈-THF reveals dissociation of PhC(=O)NMe₂ from LiNPh₂ – see **Figure 95**, **Figure 99** and **Table 2**.

Figure 94 ¹H NMR spectrum of compound 8 in D₈-Tol

Figure 95 ⁷Li NMR spectrum of compound 8 in D₈-Tol

Figure 96 ¹H NMR spectrum of compound 8 in D_8 -THF showing de-complexation into free LiNPh2 (2h) and PhC(=O)NMe2 (7) at room temperature

Figure 97 ⁷Li NMR spectrum of compound 8 in D₈-THF

Figure 98 ¹³C{¹H} NMR spectrum of compound 8 in D₈-THF

X-Ray Crystallographic Details

Crystallographic data for [{LiN(H)Ph}₂(2-MeTHF)₄] (**2b-S**₄) (CCDC 1973293), [{LiNPh₂}₂(2-MeTHF)₃] (**2h-S**₃) (CCDC 1973294), [{LiNPy₂}₂(2-MeTHF)₂] (**2i-S**₂) (CCDC 1973295) and [{LiNPh₂}(O=CPh(NMe₂)]₂ (**8**) (CCDC 1987696) were measured at 123 K for with an Oxford Diffraction Gemini S instrument and with graphite-monochromated Cu (λ =1.54180 Å) radiation. The structures were refined to convergence on F 2 using all unique reflections and programs from the SHELX family.^[17] Selected crystallographic parameters are displayed in **Table 1**

*Due to significant disorder within the 2-MeTHF molecules, the crystallographic data for $[{LiN(H)Ph}_2(2-MeTHF)_4]$ (**2b-S**₄) is used purely for connectivity purposes.

	[{LiN(H)Ph} ₂ (2- MeTHF) ₄] (2b- S ₄)	[{LiNPh ₂ } ₂ (2- MeTHF) ₃] (2h- S ₃)	[{LiNPy ₂ } ₂ (2- MeTHF) ₂] (2i-S ₂)	[{LiNPh ₂ }(O=CPh(NMe ₂)] ₂ (8)
CCDC Number	1973293	1973294	1973295	1987696
Empirical formula	$Li_{2}O_{4}N_{2}C_{32}H_{52}$	$Li_2O_4N_2C_{44}H_{60}$	$Li_2O_2N_6C_{30}H_{36}$	$C_{42}H_{42}Li_2N_4O_2$
Mol. Mass	542.63	694.82	526.53	648.67
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
a/Å	9.0773(3)	10.2268(4)	9.7406(4)	9.5878(2)
b/Å	20.9604(6)	19.0435(7)	10.9189(4)	9.9347(2)
c/Å	9.2929(4)	10.7658(5)	14.1465(7)	9.9435(2)
α/°	90	90	90	105.659(2)
β/°	112.088(4)	102.453(4)	107.012(5)	94.8850(10)
γ/°	90	90	90	95.340(2)
V/Å ³	1638.34(11)	2047.35(15)	1438.74(11)	902.00(3)
Z	2	2	2	1
λ/Å	1.54184	1.54184	1.54184	1.54184
Measured reflections	7885	23108	10712	13772
Unique reflections	3103	7090	2857	3274
<i>R</i> int	0.0313	0.0775	0.0786	0.03036
Observed rfIns [l > 2σ(l)]	2523	6096	2274	3722
Goof	1.611	1.225	1.058	1.065
<i>R</i> [on <i>F</i> , obs rfins only]	0.11252	0.0987	0.0591	0.0393
ωR [on <i>F</i> ², all data]	0.3718	0.2948	0.1830	0.1120
Largest diff. peak/hole e/Å ⁻³	0.83/-0.61	0.72/-0.34	0.29/-0.26	0.18/-0.21

 Table 1 Table of selected crystallographic parameters of compounds 2b-S₄, 2h-S₃, 2i-S₂ and 8.

DOSY NMR Studies of LiNPh₂ (**2h**) with *N*,*N*-Dimethylbenzamide (**7**)

<u>D₈-Tol</u>

10 mg of compound **8** was added to 0.5 mL of D_8 -Tol in a J. Young's NMR tube. Gentle heating was required for complete dissolution.

¹H DOSY NMR spectroscopic analysis reveals that LiNPh₂ and PhC(=O)NMe₂ remain as part of the same molecular entity in toluene solution with diffusion coefficients of $6.490 \times 10^{-10} \text{ m}^2/\text{s}$ and $6.554 \times 10^{-10} \text{ m}^2/\text{s}$, respectively – **mean diffusion coefficient of 6.52 \times 10^{-10} \text{ m}^2/\text{s}.**

Figure 99 ¹H DOSY NMR spectrum of compound 8 in D₈-Tol

D₈-THF

In a J. Young's NMR tube, a 15 nM solution of LiNPh₂ (**2h**) and *N*,*N*-dimethylbenzamide in a 1:1 ratio was made in D₈-THF with tetramethylsilane (TMS) as a reference standard.^[18]

¹H DOSY NMR spectroscopic analysis revealed that in bulk D₈-THF solution, LiNPh₂ and PhC(=O)NMe₂ do not remain part of the same molecular entity with independent diffusion coefficients of 7.638x10⁻¹⁰ m²/s and 1.263x10⁻⁹ m²/s. Measured and calculated against TMS (1.627x10⁻⁹ m²/s).

Table 2 Calculated molecular weights of LiNPh₂ and PhC(=O)NMe₂ from solution study in D₈-THF against TMS

Figure 100 ¹H DOSY NMR spectrum of LiNPh₂ and PhC(=O)NMe₂ against TMS in D₈-THF

DOSY NMR Studies – 2-MeTHF

All DOSY NMR experiments in 2-MeTHF were conducted using the Internal Calibration Curve (ICC) method at 0.2 M concentration (0.5 mL 2-MeTHF) with 1,2,3,4-tetraphenylnapthalene (TPhN), 1-phenylnaphthalene (1-PhN) and tetramethylsilane (TMS) as inert, internal standards. A correlation between log D and log FW of the linear least-squares fit to the internal standards could be established in order to deduce the aggregation states of the lithium amides LiN(Me)Ph (**2a**), LiN(H)Ph (**2b**) and LiNPh₂ (**2h**) in 2-MeTHF. All lithium amide solids used for this study were prepared from hexane, in their non-solvated form.

LiN(Me)Ph (2a)

Figure 101 Graph of log(FW) vs. log(D) for solution-state study of LiN(Me)Ph (2a) in 2-MeTHF using ICC

Table 3 Formula weights and diffusion coefficients of 1-PhN, TPhN and TMS for ICC of LiN(Me)Ph (2a)

	FW [g/mol]	log(FW)	Diffusion Coefficient (D) [m²/s]	log(D)
1-PhN	204.27	2.310205	8.1447x10 ⁻¹⁰	-9.08912
TPhN	432.55	2.636036	4.893x10 ⁻¹⁰	-9.31042
TMS	88.22	1.945567	1.555x10 ⁻⁹	-8.80827
LiN(Me)Ph (2a)			5.487x10 ⁻¹⁰	-9.2606

If y = -9.2606, then MW_{det} for LiN(Me)Ph = 363 g/mol.

 MW_{calc} for LiAS₃ = 372 g/mol with error of 2%.

See Table 6 for full details.

Figure 102 ¹H DOSY NMR spectrum of LiN(Me)Ph (2a) in 2-MeTHF against TMS, 1-PhN and TPhN

LiN(H)Ph (2b)

Table 4 Formula weights and diffusion coefficients of 1-PhN, TPhN and TMS for ICC of LiN(H)Ph (2b)

	FW [g/mol]	log(FW)	Diffusion Coefficient (D) [m²/s]	log(D)
1-PhN	204.27	2.310205	8.376x10 ⁻⁹	-9.07696
TPhN	432.55	2.636036	5.022x10 ⁻¹⁰	-9.29912
TMS	88.22	1.945567	1.63x10 ⁻⁹	-8.78781
LiN(H)Ph (2b)			5.311x10 ⁻¹⁰	-9.2748

If y = -9.2748, then MW_{det} for LiN(H)Ph = 393 g/mol.

MW_{calc} for LiAS₃ = 357 g/mol with error of -9%.

See Table 6 for full details.

.

Figure 104 ¹H DOSY NMR spectrum of LiN(H)Ph (2b) in 2-MeTHF against TMS, 1-PhN and TPhN

<u>LiNPh2 (2h)</u>

Figure 105 Graph of log(FW) vs. log(D) for solution-state study of LiNPh₂ (2h) in 2-MeTHF using ICC

Table 5 Formula weights and diffusion coefficients of 1-PhN, TF	PhN and TMS for ICC of LiNPh2 (2	h)
---	----------------------------------	----

	FW [g/mol]	log(FW)	Diffusion Coefficient (D) [m²/s]	log(D)
1-PhN	204.27	2.310205	8.143x10 ⁻⁹	-9.08922
TPhN	432.55	2.636036	4.723x10 ⁻¹⁰	-9.32578
TMS	88.22	1.945567	1.511x10 ⁻⁹	-8.82074
LiNPh₂ (2h)			4.576x10 ⁻¹⁰	-9.3395

If y = -9.3395, then MW_{det} for LiNPh₂ = 451 g/mol.

 MW_{calc} for LiAS₃ = 434 g/mol with error of -4%.

See Table 6 for full details.

Figure 106 ¹H DOSY NMR spectrum of LiNPh₂ (2h) in 2-MeTHF against TMS, 1-PhN and TPhN

Entry	Amide	Solvent	Diffusion coefficient Li-NR ₂ [x10 ⁻¹⁰ m ² /s]	Diffusion coefficient TMS [x10 ⁻⁹ m ² /s]	Diffusion coefficient 1-PhN [x10 ⁻⁹ m ² /s]	Diffusion coefficient TPhN [x10 ⁻¹⁰ m ² /s]	MW _{det} [g/mol]	Structure	MW _{calc} [g/mol]	MW _{diff}
1	Li-N(Me)Ph	2-	5.487	1.555	8.447	4.893	363	LiAS ₃	372	2%
	(2a)	MeIHF						$Li_2A_2S_2$	399	10%
								LiAS ₂	285	-21%
								$Li_2A_2S_3$	486	33%
								$Li_2A_2S_4$	571	57%
2	Li-N(H)Ph	2- MeTHF	5.311	1.63	8.376	5.022	393	LiAS₃	357	-9%
	(2b)	(2b)					$Li_2A_2S_2$	370	-6%	
								LiAS ₂	271	-31%
								$Li_2A_2S_3$	457	16%
								$Li_2A_2S_4$	543	38%
3	Li-NPh ₂	2- Матис	4.576	1.511	8.143	4.723	451	LiAS₃	434	-4%
	(2h)							$Li_2A_2S_2$	523	16%
								LiAS ₂	347	-23%
								$Li_2A_2S_3$	609	35%
								$Li_2A_2S_4$	694	54%

Table 6 Table of solution-state calculations for lithium amides 2a, 2b and 2h in 2-MeTHF using Internal Calibration Curve (ICC)

DOSY NMR Studies – D₈-THF

All DOSY NMR experiments in D₈-THF were conducted using the External Calibration Curve (ECC) method at 15 nM (0.5 mL D₈-THF) as described by Stalke.^[17] Using tetramethylsilane (TMS) as a reference standard, we have been able to approximate the aggregates of lithium amides LiN(Me)Ph (**2a**), LiN(H)Ph (**2b**) and LiNPh₂ (**2h**) as dissipated spheres and ellipsoids (DSE). All lithium amide solids used for this study were prepared from hexane, in their non-solvated form.

See Table 7 for full details.

Jackman and Williard have studied the aggregation of lithium amides in solution and in the solid state, respectively.^[19,20] Their studies support the feasibility of the found aggregates.

$$Li_2A_2S_2 \longrightarrow Li_2A_2S_3 \longrightarrow Li_2A_2S_4 \longrightarrow LiAS_2 \longrightarrow LiAS_3$$

Figure 107 ¹H DOSY NMR spectrum of LiN(Me)Ph (2a) in D₈-THF against TMS

Figure 108 ¹H DOSY NMR spectrum of LiN(H)Ph (2b) in D₈-THF against TMS

Figure 109 ¹H NMR spectrum of LiNPh₂ (2h) in D₈-THF against TMS

Entry	Amide	Solvent	Diffusion coefficient	Diffusion coefficient	MW _{det}	Structure	MW_{calc}	MW_{diff}
			LI-NR ₂ [X10 ¹¹⁰ m ² /S]	1MS [x10° m²/s]	[g/mol]		[g/mol]	
1	Li-N(Me)Ph	D ₈ -THF	8.226	1.672	335	LiAS₃	329	-2%
	(2a)					$Li_2A_2S_2$	370	11%
						LiAS ₂	257	-23%
						$Li_2A_2S_3$	442	32%
						$Li_2A_2S_4$	515	54%
2	Li-N(H)Ph	D ₈ -THF	8.904	1.895	331	LiAS₃	315	-5%
	(2b)					$Li_2A_2S_2$	342	3%
						LiAS ₂	243	-27%
						$Li_2A_2S_3$	414	25%
						$Li_2A_2S_4$	487	47%
3	Li-NPh ₂	D ₈ -THF	8.4587	1.886	393	LiAS ₃	391	<1%
	(2h)					$Li_2A_2S_2$	494	26%
						LiAS ₂	319	-19%
						$Li_2A_2S_3$	567	44%
						$Li_2A_2S_4$	639	87%

Table 7 Table of solution-state calculations for lithium amides 2a, 2b and 2h in D₈-THF using External Calibration Curve

References

- a) A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, *Chem. Commun.* 2003, 70; (b) H. Cruz, N. Jordão, L. C. Branco, *Green Chem.* 2017, 19, 1653; (c) H. Wu, W. Guo, S. Daniel, Y. Li, C. Liu, Z. Zeng, *Chem. Eur. J.* 2018, 24, 3444; (d) S. K. Davidsen, P. D. May, J. B. Summers, *J. Org. Chem.* 1991, 56, 5482.
- (a) S. C. Watson, J. F. Eastham, *J. Organomet. Chem.* 1967, 9, 165; (b) H. S. Lin, L.
 A. Paquette, *Synth. Commun.* 1994, 24, 2503
- [3] G. Li, M. Szostak, *Nat. Commun.* 2018, **9**, 4165.
- [4] Z. Yin, Z. Wang, X. F. Wu, *Eur. J. Org. Chem.* 2017, 3992.
- [5] L. Ran, Z. H. Ren, Y. Y. Wang, Z. H. Guan, *Chem. Asian J.* 2014, **9**, 577.
- [6] S. Wang, J. Wang, R. Guo, G. Wang, S. Y. Chen, X. Q. Yu, *Tetrahedron Lett.*, 2013, 54, 6233.
- [7] F. Bruyneel, J. Marchand-Brynaert, *Synlett.*, 2010, 1974.
- [8] L. Hie, N. F. Fine Nathel, T. K. Shah, E. L. Baker, X. Hong, Y.F. Yang, P. Liu, K. N. Houk, N. K. Garg, *Nature*, 2015, **524**, 79.
- [9] J.M. Gaudin, T. Lander, O. Nikolaenko, *Chemistry & Biodiversity*, 2008, 5, 617.
- [10] J. J. Eisch, J. U. Sohn, E. J. Rabinouitz, *Eur. J. Org. Chem.*, 2010, 2971.
- [11] Y.L. Zheng, S. G. Newman, ACS Catal., 2019, 9, 4426.
- [12] Y. Rao, X. Li, S. J. Danishefsky, J. Am. Chem. Soc., 2009, 131, 12924.
- [13] (a) B. R. Kim, H.G. Lee, S.B. Kang, G. H. Sung, J.J. Kim, J. K. Park, S.G. Lee, Y.J. Yoon, *Synthesis*, 2012, 44, 42; (b) T. Ohshima, T. Iwasaki, Y. Maegawa, A. Yoshiyama, K. Mashima, *J. Am. Chem. Soc.*, 2008, 130, 2944.
- [14] L. Lunazzi, D. Macciantelli, D. Tassi, A. Dondoni, *J. Chem. Soc., Perkin Trans.* 2, 1980, 717.
- [15] S. Zhou, K. Junge, D. Addis, S. Das, M. Beller, Angew. Chem. Int. Ed., 2009, 48, 9507; Angew. Chem., 2009, 121, 9671.
- [16] P. J. Harford, A. J. Peel, J. P. Taylor, S. Komagawa, P. R. Raithby, T. P. Robinson, M. Uchiyama, A. E. H. Wheatley, *Chem. Eur. J.*, 2014, **20**, 3908.
- [17] O.V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339.
- [18] R. Neufeld, D. Stalke, *Chem. Sci.*, 2015, **6**, 3354–3364.
- [19] C. Su, J. Guang, P. G. Williard, J. Org. Chem., 2014, 79, 1032.
- [20] L. M. Jackman, L. M. Scarmoutzos, J. Am. Chem. Soc., 1987, 109, 5348.