Supplementary Information

Exploiting the Radical Reactivity of Diazaphosphinanes in Hydrodehalogenations and Cascade Cyclizations

Jingjing Zhang,^a Jin-Dong Yang,^{a*} Jin-Pei Cheng^{a,b*}

^a Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China. ^b State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.

Content

1. General information.	S2
2. Preparation of 1,3-Di-tert-butyl-1,3,2-diazaphosphinane 1a	S2
3. The Synthesis of 1a-[P]* and 1b-[P]*.	S3
4. Cyclic Voltammetry of the Phosphenium Cations of 1a and 1b.	S3
5. General Procedure for Condition Optimization for Hydrodehalogenation of Bromobenzene.	S3
6. General Procedure for Hydrodehalogenations of Aryl, Alkenyl, Alkyl Bromides 2 and chlorides 2'	S4
7. General Procedure for Cyclizations	S5
8. Mechanism Studies in Scheme 5.	S7
9. DFT Calculations.	S11
10. Representative NMR Spectra	S13
11. SMD-M06-2X/6-31+G(d) Calculated Cartesian Coordinates and Energies.	S33
12. Reference.	S42

1. General information.

Chemicals: All hydrodehalogenation substrates 2 and 2' were purchased from J&K Chemical. Other reagents and solvent were purchased from J&K or TCI Chemicals and used without further purification unless specified otherwise. **4a-e** were synthesized according to reported methods.¹ **1a** has been synthesized and characterized in our paper.² And **1a-D**, **1b**, **1a-[P]**⁺ and **1b-[P]**⁺ have been synthesized and characterized in our recent paper,³ herein we only showed NMR spectra of **1a-[P]**⁺ and **1b-[P]**⁺ to clarify the reliability. Toluene and toluede-*d*₈ were purchased from **J&K** Chemical (99.9 %, Extra dry, water < 10 ppm, J&K seal). Reaction temperature refers to the temperature of an aluminum heating block or a silicon oil bath, which was controlled by an electronic temperature modulator from IKA.

Reactions: All hydrodehalogenation and cyclization reactions were carried out in dry glass wares under an argon atmosphere using Schlenk technique throughout the reaction procedures.

Analytics: ¹H and ¹³C NMR spectra were recorded in CDCl₃ (δ = 7.26 for ¹H NMR and δ = 77.16 for ¹³C NMR) on 400 MHz NMR instrument at Center of Basic Molecular Science (CBMS) of Tsinghua University. Data for ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad).

Electrochemistry: All the samples were prepared and all the electrochemical experiments were performed in an inert Ar atmosphere. The supporting electrolyte was $[Bu_4N][PF_6]$, which was recrystallized three times in EtOH and dried about 12 hours before use, and the electrolyte concentration is about 0.1 M in acetonitrile. A standard three-electrode cell consists of a glassy carbon disk as work electrode, a platinum wire as a counter electrode, and 0.1 M AgNO₃/Ag (in 0.1 M [Bu₄N][PF₆]-acetonitrile) as reference electrode. Ferrocene (Fc^{+/0}) was used as an external reference and was found to be 0.04 V with respect to our reference electrode. The sample concentrations of **1a-[P]**⁺ and **1b-[P]**⁺ are about 1.0 mM. The scan rate was 100 mV/s. The potentials are reported in volts (V) *vs.* Fc^{+/0}.

2. Preparation of 1,3-Di-tert-butyl-1,3,2-diazaphosphinane 1a.

The 1,3-di-tert-butyl-1,3,2-diazaphosphinane 1a was prepared and characterized in our recent paper.²

3.3 mL (5.0 g, 37 mmol) of phosphorus trichloride was treated dropwise with a solution of 13.0 g (70 mmol) $(CH_2)_3(NH'Bu)_2$ in 200 mL of n-hexane under stirring at 0 °C. After stirring overnight, the reaction mixture was filtered. Hexane was removed from the filtrate in vacuum to produce yellow solid, which was then washed with Et₂O (3 ×10 mL) to give 6.6 g yellow solid of **1a-Cl** (71%).²

A solution of **1a-CI** (2.5 g, 10 mmol) in THF (40 mL) was cooled to 0 $^{\circ}$ C, and a 1 M solution of LiAlH₄ in THF (2.5 mL, 2.5 mmol) was slowly added. The mixture was stirred for 3 hours at room temperature. The

solvent was evaporated in vacuum. Then, the residue was extracted with n-hexane (50 mL) and filtered. The solvent of filtrate was removed and produced 1.9 g yellow oil of **1a** (88%).²

3. The Synthesis of 1a-[P]⁺ and 1b-[P]⁺.³

The preparation of **1a-[P]**⁺ was the same as **1b-[P]**⁺. AgSO₃CF₃ (AgOTf) (0.51 g, 2.0 mmol) was added into the solution of 1,3-di-tert-butyl-2-chloro-1,3,2-diazaphosphinane² (0.50 g, 2.0 mmol) in 10 mL of acetonitrile. After 1 hour stirring, the reaction mixture was filtered through a glass frit packed with Celite. The filtrate was concentrated to yield white

solid 1a-[P]+ 0.67 g (92%).

¹**H** NMR (400 MHz, CD₃CN) δ 3.39 (dd, *J* = 11.3, 5.8 Hz, 4H), 2.10 – 1.99 (m, 2H), 1.45 (d, *J* = 3.1 Hz, 18H). ¹³**C** NMR (101 MHz, CD₃CN) δ 62.63 (d, *J* = 18.7 Hz), 43.98 (d, *J* = 7.8 Hz), 28.52 (d, *J* = 14.6 Hz), 24.43. ³¹**P** NMR (162 MHz, CD₃CN) δ 248.59 (s). **ESI-HR** calcd for C₁₁H₂₄N₂P (M⁺) 215.1672, found 215.1667.

AgSO₃CF₃ (AgOTf) (0.51 g, 2.0 mmol) was added into the solution of 2-chloro-1,3diisopropyl-2,3-dihydro-1H-naphtho[1,8-*de*][1,3,2]diazaphosphinine⁴ (0.61 g, 2.0 mmol) in 10 mL of acetonitrile. After 1 hour stirring, the reaction mixture was filtered through a glass frit packed with Celite. The filtrate was concentrated to yield red solid **1b-[P]**⁺ 0.78

g (93%).

¹**H** NMR (400 MHz, CD₃CN) δ 7.47 – 7.33 (m, 4H), 6.94 (dd, J = 5.7, 2.9 Hz, 2H), 4.40 – 4.31 (m, J, 2H), 1.54 (dd, J = 6.7, 1.1 Hz, 12H). ³¹**P** NMR (162 MHz, CD₃CN) δ 111.47 (s). ¹³**C** NMR (101 MHz, CD₃CN) δ 137.22, 135.78, 126.75, 121.43, 119.48, 108.95, 51.13 (d, J = 27.6 Hz), 21.33 (d, J = 17.5 Hz). ¹H NMR (400 MHz, toluene- d_8) δ 7.19 (d, J = 8.0 Hz, 2H), 7.12 – 7.08 (m, 2H), 6.51 (d, J = 7.7 Hz, 2H), 3.89 (tt, J = 13.5, 6.6 Hz, 2H), 1.32 (dd, J = 6.6, 2.2 Hz, 12H). ³¹P NMR (162 MHz, toluene- d_8) δ 141.26 (s). The NMR spectroscopic data are in good agreement with those in the literature.^{4a}

4. Cyclic Voltammetry of the Phosphenium Cations of 1a and 1b.³

Figure S1. Cyclic voltammetry of the phosphenium cations of a) **1a** and b) **1b** in acetonitrile at 20 °C with 0.1 M [Bu₄N][PF₆] as supporting electrolyte at a sweep rate of 100 mV/s. The concentrations of the phosphenium cations are about 1.0 mM in acetonitrile.

5. General Procedure for Condition Optimization for Hydrodehalogenation of Bromobenzene.

2a (0.1 mmol), AIBN, reductants (0.12 mmol) and toluene- d_8 (0.5 mL) were taken in a Schlenk tube under argon. The mixture was stirred at 90 °C for 5 hours to ensure complete hydrodehalogenation. The resulting mixture was cooling down to room temperature and 1,3,5-trimethoxybenzene as the internal standard was

Br_Br		·	
		1a (1.2 equiv.), AIBN 10 m	
	~	toluene, 90 °C, 5 h	
2	2a		3a
	Entry	Condition ^[a]	Yield ^[b]
	1	standard condition	90%
	2	5 mol% AIBN	78%
	3	1b as reductant	< 10%
	4	1c as reductant	< 5%
	5	1d as reductant	< 5%
	6	C as reductant	77%
	7	no AIBN	< 5%
	8	no heat	< 5%

added to the mixture (0.1 mmol). The yields were monitored by ^1H NMR spectra.

P-H reagents 1:

[a] Reactions were conducted using 0.10 mmol of **2a** in 0.5 mL toluene. [b] ¹H NMR yields using 1,3,5-trimethoxybenzene as the internal standard.

6. General Procedure for Hydrodehalogenations of Aryl, Alkenyl, Alkyl Bromides 2 and chlorides 2'.

	1a (1.2 equiv.), AIBN 10 mol%	
R-DI/CI		R-n
2 or 2'	toluene, 90 °C, 5 h	3

2 or **2'** (0.1 mmol), AIBN (0.01 mmol), **1a** (0.12 mmol) and toluene (0.5 mL) were taken in a Schlenk tube under argon. The mixture was stirred at 90 °C for 5 hours to ensure complete hydrodehalogenation. The resulting mixture was concentrated under vacuum and the crude product was purified by flash column chromatography through a silica plug using hexane as the eluent.

Representative NMR spectra data for products 3:

SMPrepared from 2b (0.1 mmol) for 5 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane) gave 3b in 98% yield as the colorless oil. ¹H NMR (400 MHz, CDCl₃) δ
 7.39 - 7.25 (m, 4H), 7.18 (ddd, J = 8.3, 4.0, 1.7 Hz, 1H), 2.52 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.46, 128.83, 126.71, 125.05, 15.90.

Ph Prepared from 2c (0.1 mmol) for 5 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane) gave 3c in 83% yield as the white solid. ¹H NMR (400 MHz, CDCl₃) δ
 3c 7.69 (d, J = 7.6 Hz, 4H), 7.53 (t, J = 7.7 Hz, 4H), 7.47 - 7.40 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.33, 128.82, 127.32, 127.24.

Prepared from **2e** (0.1 mmol) for 5 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane) gave **3e** in 93% yield as the colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.91 (s, 3H), 2.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 137.76, 126.98,

Prepared from **2g** (0.1 mmol) for 5 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane) gave **3g** in 99% yield as the colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.92 (m, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 2.63 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.12, 137.16, 133.08, 128.56, 128.30, 26.59.

Prepared from **2i** (0.1 mmol) for 5 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane) gave **3i** in 85% yield as the colorless oil. ¹H NMR (400 MHz, $CDCl_3$) δ 7.89 (dd, J = 6.1, 3.3 Hz, 4H), 7.52 (dd, J = 6.2, 3.2 Hz, 4H). ¹³C NMR (101 No.) δ 133 52, 127 93, 125 86

MHz, CDCl_3) δ 133.52, 127.93, 125.86.

Prepared from **2j** (0.1 mmol) for 5 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane) gave **3j** in 96% yield as the colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.9 Hz, 1H), 7.81 – 7.79 (m, 2H), 7.66 (s, 1H), 7.47 (qd, *J* = 6.8, 3.4 Hz, 2H), 7.37 (dd, *J* = 8.4, 1.2 Hz, 1H), 2.57 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ

135.45, 133.71, 131.74, 128.13, 127.71, 127.62, 127.25, 126.85, 125.87, 124.96, 21.73.

Prepared from **2m** (0.1 mmol) for 5 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane) gave **3m** in 99% yield as the white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.73 (d, *J* = 8.1 Hz, 2H), 7.93 (dd, *J* = 7.8, 0.9 Hz, 2H), 7.78 (s, 2H), 7.74 –

7.61 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 132.07, 130.33, 128.58, 126.93, 126.57, 122.67.

Prepared from **2n** (0.1 mmol) for 12 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane) gave **3n** in 70% yield as the colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (d, *J* = 7.1 Hz, 1H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.33 – 7.24 (m, 1H), 7.17 (td, *J* = 6.9, 0.8 Hz, 1H), 7.10 (d, *J* = 2.9 Hz, 1H), 6.55 (d, *J* = 3.0 Hz, 1H), 3.84 (s, 3H). ¹³**C**

 $\textbf{NMR} \ (101 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 136.72, \ 128.78, \ 128.51, \ 121.49, \ 120.88, \ 119.28, \ 109.18, \ 100.92, \ 32.81.$

Prepared from **2p** (0.1 mmol) for 5 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane) gave **3p** in 90% yield as the colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.25 – 8.16 (m, 2H), 7.97 – 7.86 (m, 2H), 7.57 – 7.41 (m, 4H). ¹³C NMR (101

MHz, $CDCI_3$) δ 139.47, 135.58, 126.72, 124.37, 122.83, 121.60.

Prepared from **2q** (0.1 mmol) for 5 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane) gave **3q** in 93% yield as the colorless oil. ¹H NMR (400 MHz, CDCl₃) δ

3q 7.63 (dd, *J* = 22.7, 7.3 Hz, 2H), 7.47 (t, *J* = 7.3 Hz, 1H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.07 (d, *J* = 5.4 Hz, 1H), 6.77 – 6.64 (m, 1H), 3.56 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 145.01, 143.82, 134.25, 132.24, 126.40, 124.72, 123.87, 121.12, 39.21.

7. General Procedure for Cyclizations.

4 (1.0 mmol), AIBN (0.1 mmol), 1a (1.2 mmol) and toluene (3.0 mL) were taken in a Schlenk tube under argon. The mixture was stirred at 90 °C for 8 hours. The resulting mixture was concentrated under vacuum and the crude product was purified by flash column chromatography through a silica plug with hexane as the eluent.

Prepared from 4a (1.0 mmol) for 8 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane) gave 5a in 99% yield as the colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.06 (m, 2H), 6.86 (t, J = 7.4 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 4.69 – 4.65 (m, 1H), 4.11 - 4.00 (m, 1H), 3.63 - 3.42 (m, 1H), 1.33 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.73, 132.26, 127.99, 123.79, 120.43, 109.47, 78.47, 36.50, 19.31.

The NMR spectroscopic data are in good agreement with those in the literature.⁵

Prepared from 4b (1.0 mmol) for 8 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane) gave 5b in 95% yield as the colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 7.7 Hz, 1H), 7.10 – 7.04 (m, 1H), 6.89 – 6.82 (m, 1H), 6.82 – 6.75 5b (m, 1H), 4.18 (qdd, J = 10.8, 7.2, 3.3 Hz, 2H), 2.95 (dd, J = 13.2, 6.6 Hz, 1H), 2.12 - 2.04 (m, 1H), 1.80 – 1.64 (m, 1H), 1.33 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.34, 128.64, 127.62, 127.21, 120.20, 116.72, 63.86, 30.34, 28.51, 22.20.

The NMR spectroscopic data are in good agreement with those in the literature.⁶

Prepared from 4c (1.0 mmol) for 8 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane) gave 5c in 88% yield as the colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, J = 7.5 Hz, 1H), 7.05 – 6.99 (m, 2H), 6.95 (t, J = 7.4 Hz, 1H), 3.46 – 3.34 (m, 2H), 2.89 (dd, J = 10.2, 8.1 Hz, 1H), 1.28 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 144.40, 141.29, 127.39, 124.27, 123.68, 122.28, 42.75, 40.89, 18.90. The NMR spectroscopic data are in good agreement with those in the literature.⁷

Prepared from 4d (1.0 mmol) for 8 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane) gave 5d in 90% yield as the colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.23 - 7.10 (m, 4H), 3.21 - 3.15 (m, 1H), 2.95 - 2.75 (m, 2H), 2.39 - 2.22 (m, 1H), 1.64 – 1.52 (m, 1H), 1.29 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.73,

143.85, 126.09, 126.07, 124.31, 123.15, 39.42, 34.74, 31.44, 19.87.

The NMR spectroscopic data are in good agreement with those in the literature.8

Prepared from 4e (1.0 mmol) for 8 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane / ethyl acetate = 50 : 1) gave 5e' in 20% yield as the colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, *J* = 7.7 Hz, 2H), 6.70 (t, *J* = 7.4 Hz, 1H), 6.62 (d, J = 8.2 Hz, 2H), 5.95 – 5.92 (m, 1H), 5.28 (d, J = 17.2 Hz, 1H), 5.16 (d, J =

10.2 Hz, 1H), 3.77 (d, J = 5.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.09, 135.50, 129.23, 117.54, 116.22, 113.00, 46.58.

The NMR spectroscopic data are in good agreement with those in the literature.9

Prepared from **4e** (1.0 mmol) for 8 hours at 90 °C. Purification by flash column chromatography (silica gel, hexane / ethyl acetate = 50 : 1) gave **5e** in 50% yield as the colorless oil.¹**H NMR** (400 MHz, CDCl₃) δ 7.08 (d, *J* = 7.3 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.73 (t, *J* = 7.4 Hz, 1H), 6.64 (t, *J* = 7.7 Hz, 1H), 3.68 (t, *J* = 8.6 Hz, 1H), 3.43 – 3.29 (m, 1H), 3.10 (t, *J* = 8.6 Hz, 1H),

1.31 (d, *J* = 6.8 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 151.23, 134.35, 127.28, 123.36, 118.69, 109.50, 55.45, 36.66, 18.66.

The NMR spectroscopic data are in good agreement with those in the literature.¹⁰

8. Mechanism Studies in Scheme 5.

AIBN (0.12 mmol), **1a** (0.1 mmol) and toluene- d_8 (0.5 mL) were mixed in a Schlenk tube under argon. The solution reacted at 90 °C for 2 hours. The dimer **[1a-P]**₂ was quantitatively generated through the ³¹P NMR analysis,³ and then the bromobenzene (0.1 mmol) was added into the **[1a-P]**₂ solution. The new mixture continued to react at 90 °C for 12 hours. No desired debrominated product was detected.

2e (0.1 mmol), AIBN (0.01 mmol), **1a** (0.12 mmol), internal standard (1,3,5-trimethoxybenzene, 0.06 mmol) and toluene- d_8 (0.5 mL) were taken in a NMR tube under argon at 90 °C for 5 hours. The deuterated ratio of the product **3e** was determined by in situ ¹H NMR spectrum in toluene- d_8 . And the NMR spectra of mixture for the reaction were shown as follow:

(1) ¹H NMR in toluene- d_8

(1) ³¹P NMR in toluene- d_8

2i (0.1 mmol), AIBN (0.01 mmol), **1a** (0.12 mmol), internal standard (1,3,5-trimethoxybenzene, 0.07 mmol) and toluene- d_8 (0.5 mL) were taken in a NMR tube under argon at 90 °C for 5 hours. The deuterated ratio of the product **3i** was determined by in situ ¹H NMR spectrum in toluene- d_8 . And the ¹H NMR spectra of mixture for the reaction were shown as follow:

(2) ³¹P NMR in toluene-d₈

2m (0.1 mmol), AIBN (0.01 mmol), **1a-D** (0.12 mmol) and toluene- d_8 (0.5 mL) were taken in a NMR tube under argon at 90 °C for 5 hours. The deuterated ratio of the product **3m** was determined by in situ ¹H NMR spectrum in toluene- d_8 . And the NMR spectra of mixture for the reaction were shown as follow:

(1) ¹H NMR in toluene-d₈

9. DFT Calculations.

Quantum chemistry calculations were conducted by using Gaussian 09¹¹. Geometry optimizations and frequency computations were performed using the M06-2X¹² density functional in conjunction with the 6-31+G(d) basis set and an ultrafine integration grid. The SMD¹³ model was used to account for the solvation

effects of toluene, the solvent used experimentally. All of the optimized geometries were characterized as minima or transition state structures by frequency calculations. Thermal free energy corrections were obtained at 293.15 K. To obtain more accurate electronic energies, single-point energy calculations were performed at the (SMD)-M06-2X/6-311++G(2df,2p) level with the (SMD)-M06-2X/6-31+G(d) optimized structure.

The differences of bond dissociation free energies of P-Br bonds of **1a-Br** and **1b-Br** were calculated on the basic of reaction Gibbs free energy changes of Eq. S1-2 through DFT calculations. The P-Br bond of **1a-Br** is only 1.3 kcal/mol larger than that of **1b-Br**, however, the reaction did not work at all when **1b** was as the reductant. Therefore, the mechanism that the phosphinyl radicals abstract the bromine atom od bromobenzene to perform the hydrodebromination was excluded.

 $\Delta G_{rxn} = BDFE_{1b-Br}(P-Br) - BDFE_{1a-Br}(P-Br) = -1.3 \text{ kcal/mol}$

During the course of our mechanism studies, we had deliberately tried to capture the radical species under reaction conditions, and also through the reaction of **1a** with equivalent AIBN at 90 °C. However, no EPR signal was detected in either case, but instead, the dimeric bisphosphine **[1a-P]**₂ was obtained. These results indicate that the radical **1a-[P]**[•] is so reactive that it would rather react with bromobenzene or couple with each other once generated. When the dimer **[1a-P]**₂ was directly used as the reductant, the hydrodehalogenation did not occur (Eq. 1 of Scheme 5). This is presumably because **[1a-P]**₂ cannot easily dissociate to render the corresponding phosphinyl radical **1a-[P]**[•] at the reaction temperature (90 °C).

(S2)

Furthermore, DFT calculations were conducted to evaluate the stability of the radical and dimers. The dissociation free energies of the P-P bonds in $[1a-P]_2$ and $[B-P]_2$ ($\Delta G(1)_{\text{Diss}}$ and $\Delta G(2)_{\text{Diss}}$, see below) were estimated at the M06-2x/6-31+G(d,p)//6-311++G(2df,2p) level of theory with the SMD model for the solvation of toluene. As seen, the P-P bond of $[1a-P]_2$ is much stronger (by 13.4 kcal/mol) than that of $[B-P]_2$. Wright's observation showed that no solution EPR signal could be detected for $[B-P]_2$ in toluene at room temperature.¹⁴ As the temperature was increased to 80 °C (353 K), a weak EPR signal of B-[P][•] was captured. Considering the much stronger P-P bond of $[1a-P]_2$, it should be stable enough to tolerate our reaction temperature (90 °C). This may explain the absence of $1a-[P]^{•}$ EPR signal as well as the failure of the reaction of bromobenzene with $[1a-P]_2$.

10. Representative NMR Spectra.

³¹P NMR in CD_3CN

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 f1 (ppm)

- 141.26

7.46 7.55 7.55 7.53 7.51 7.46 7.44 7.42 7.42

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

165 155 145 135 125 115 105 95 85 75 65 55 45 35 25 15 5 0 11 (ppm)

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 ff (ppm)

11. SMD-M06-2X/6-31+G(d) Calculated Cartesian Coordinates and Energies.

С	0.13815500	-0.82334900	2.18607300
С	-1.27395300	-0.63252400	1.62621300
Н	-1.92284300	-1.43537700	1.99123300
Н	-1.67798500	0.32196700	1.98567900
Н	0.07128900	-1.32542800	3.15699500
С	0.99734600	-1.64084400	1.23221200
Н	0.50975600	-2.59882200	1.00468300
Н	1.95865400	-1.86321200	1.69771900
Н	0.62306200	0.14505100	2.34559300
Ρ	-0.02938900	-0.08509800	-0.75494100
Ν	1.22885000	-0.90816700	-0.01801900
Ν	-1.31829000	-0.65755200	0.15327900
С	-2.69504400	-0.62222600	-0.43601700
С	-3.33913300	-1.99889400	-0.23104500
С	-3.54689300	0.46954900	0.22623300
С	-2.64429300	-0.33951100	-1.94087500
Н	-2.75164400	-2.77318100	-0.73618300
Н	-3.42229500	-2.26371700	0.82731800
Н	-4.35178900	-2.00263900	-0.64946200
Н	-3.03577400	1.43767500	0.18293300
Н	-4.50205500	0.55806600	-0.30238400
Н	-3.77400600	0.24039300	1.27194900
Н	-3.66203700	-0.40341700	-2.33868300
Н	-2.26366400	0.66488600	-2.15713500
Н	-2.02925600	-1.07035200	-2.47703500
С	2.63966500	-0.64916600	-0.42003100
С	2.68726700	0.09524800	-1.75920300
С	3.34176700	0.20709100	0.64313000
С	3.35522500	-1.99381700	-0.59576600
Н	2.18294700	-0.46535000	-2.55359200
Н	2.24760000	1.09620600	-1.69472100
Н	3.73594300	0.21817900	-2.04918900
Н	3.37533700	-0.29411700	1.61650900
Н	4.37663100	0.40348700	0.34035600
Н	2.82652400	1.16516000	0.76200400
Н	4.38796400	-1.82516500	-0.91962200
Н	3.39525600	-2.57179900	0.33272900
Н	2.84816600	-2.59815700	-1.35594600
Br	0.11315700	2.20133800	0.19742900
Zero-point correction	n=		0.349784 (Hartree/Particle)

Thermal correction to Energy=	0.368050
Thermal correction to Enthalpy=	0.368994
Thermal correction to Gibbs Free Energy=	0.304532
Sum of electronic and zero-point Energies=	-3455.717547
Sum of electronic and thermal Energies=	-3455.699282
Sum of electronic and thermal Enthalpies=	-3455.698338
Sum of electronic and thermal Free Energies=	-3455.762799

∕^tBu ∧. P. N. 'tBu

С	-0.16571600	2.17598100	0.37143100
С	1.26903400	1.66958100	0.24320100
н	1.75889000	2.22174500	-0.56696600
Н	1.82293600	1.88199200	1.17255500
н	-0.17388200	3.26044400	0.21644100
С	-1.06969400	1.48343700	-0.64697500
Н	-0.61711100	1.54868400	-1.64747100
Н	-2.03292900	1.99594100	-0.69307500
н	-0.56186600	1.98193900	1.37562300
Р	0.01527400	-0.77561000	0.44613700
Ν	-1.28622700	0.07923000	-0.29164800
Ν	1.30911800	0.23848600	-0.09014100
С	2.66635100	-0.37546000	-0.10623000
С	3.64467200	0.56401600	-0.82335600
С	3.17567400	-0.64581300	1.31863000
С	2.62706300	-1.69038300	-0.89481000
Н	3.27228100	0.82694600	-1.82034400
Н	3.82970800	1.48604400	-0.26348100
н	4.60785200	0.05696600	-0.94170400
Н	2.53510200	-1.37274500	1.83147600
н	4.19451000	-1.05000900	1.29453800
н	3.19315300	0.27255500	1.91628500
н	3.64515000	-2.07617100	-1.01732500
Н	2.03859700	-2.46140900	-0.38981400
Н	2.19278300	-1.52717000	-1.88733800
С	-2.68135600	-0.35637700	-0.04606700
С	-2.72075400	-1.86177200	0.24094400
С	-3.28704500	0.39190500	1.15187700
С	-3.51385900	-0.10375200	-1.31123500
Н	-2.24903600	-2.43045500	-0.56759700
Н	-2.22459400	-2.11926100	1.18268000
Н	-3.76488800	-2.18169300	0.32187900

Н	-3.31235500	1.47481000	0.98578400
н	-4.31709100	0.06201200	1.33111700
н	-2.70063800	0.19598500	2.05705600
н	-4.53134200	-0.48559000	-1.17120000
н	-3.59574600	0.95966600	-1.55590500
н	-3.06505900	-0.61927700	-2.16718800
Zero-point correction=			0.346785 (Hartree/Particle)
Thermal correction to Energy=		0.363505	
Thermal correction to Enthalpy=		0.364449	
Thermal correction	to Gibbs Free E	nergy=	0.303085
Sum of electronic and zero-point Energies=		-883.837231	
Sum of electronic and thermal Energies=			-883.820511
Sum of electronic and thermal Enthalpies=		-883.819567	
Sum of electronic and thermal Free Energies=			-883.880931

N P-Br N iPr

С	2 99007800	2 41605600	-0 17082000
C	3 66165300	1 22760300	-0 07714000
C	2 95386800	0.00010400	-0 16339100
C	1 54409100	0.00005100	-0.38478700
C C	0.86806500	1 26600400	-0.48653500
C C	1 50261000	2 43865000	0.35783300
	1.39201000	2.43003900	-0.33703300
н	4.73739100	-1.19964600	0.07426500
Н	3.52295800	3.35925800	-0.08825400
Н	4.73729400	1.19998900	0.07430300
С	3.66175100	-1.22734100	-0.07717900
С	0.86815800	-1.26604100	-0.48656300
н	1.09825900	3.40124800	-0.38828000
С	1.59280100	-2.43855200	-0.35789500
С	2.99026800	-2.41584200	-0.17088700
н	1.09853300	-3.40118200	-0.38835200
н	3.52322300	-3.35900500	-0.08834700
Ν	-0.52240000	1.28187100	-0.71888200
Ν	-0.52231400	-1.28190900	-0.71889300
Р	-1.49521300	-0.00005400	-0.19651400
С	-1.21012600	2.57020200	-0.97796400
С	-1.59289300	3.29541500	0.31251500
С	-2.42041700	2.37869800	-1.89149200
н	-0.48779300	3.16850100	-1.53950500
н	-0.75117700	3.36228600	1.00809600
н	-1.94101000	4.30963700	0.08777500

Н	-2.40645400	2.76618100	0.82285200	
Н	-2.15168100	1.79536300	-2.77831900	
Н	-3.24978200	1.87839100	-1.38195200	
Н	-2.77797500	3.36010800	-2.21977500	
С	-1.20997200	-2.57027200	-0.97799300	
С	-2.42037100	-2.37878200	-1.89137600	
С	-1.59255800	-3.29559500	0.31247800	
Н	-0.48766500	-3.16848600	-1.53965700	
Н	-2.15176700	-1.79536800	-2.77819200	
Н	-2.77790200	-3.36019200	-2.21968800	
Н	-3.24971300	-1.87856100	-1.38171100	
Н	-0.75076100	-3.36246500	1.00796000	
Н	-2.40609300	-2.76644100	0.82293900	
Н	-1.94064100	-4.30982100	0.08770700	
Br	-1.00308800	-0.00004200	2.08284100	
Zero-point correction	on=		0.333962 (Hartree/	Particle)
Thermal correction	to Energy=		0.353733	
Thermal correction	to Enthalpy=		0.354677	
Thermal correction to Gibbs Free Energy=			0.285126	
Sum of electronic and zero-point Energies=			-3643.827442	
Sum of electronic and thermal Energies=			-3643.807671	
Sum of electronic and thermal Enthalpies=			-3643.806727	
Sum of electronic and thermal Free Energies=			-3643.876278	

P' P'

С	2.88137500	2.27275800	-0.08881800
С	3.49766900	1.05090900	-0.07218600
С	2.71999600	-0.13693100	-0.06054600
С	1.29293600	-0.06567000	-0.05911000
С	0.67201100	1.23715500	-0.08094500
С	1.47670300	2.36952800	-0.08887100
н	4.46162800	-1.41907400	-0.06776700
н	3.46897200	3.18678800	-0.09255800
н	4.58078700	0.96550600	-0.07012900
С	3.37532800	-1.39616400	-0.06943100
С	0.54515100	-1.30014500	-0.07951500
н	1.03878900	3.35847500	-0.07328400
С	1.23283500	-2.50702600	-0.08310600
С	2.64038000	-2.55051600	-0.08282000
Н	0.69922300	-3.44796200	-0.06498200
н	3.13402900	-3.51866700	-0.08411600

Ν	-0.72621400	1.33880000	-0.10992100
Ν	-0.85635400	-1.26036200	-0.11263000
Р	-1.73070800	0.08567600	0.50285100
С	-1.35525300	2.67125400	-0.24728900
С	-1.46008600	3.39294200	1.09823900
С	-2.71809700	2.58750100	-0.93430600
Н	-0.70587100	3.23866300	-0.91995000
Н	-0.49665100	3.43111300	1.61540800
н	-1.81855700	4.41875400	0.95768200
Н	-2.17158000	2.87320400	1.75101200
Н	-2.65937500	1.99728200	-1.85439400
Н	-3.48549100	2.14840900	-0.28922500
Н	-3.04325200	3.60040300	-1.19455500
С	-1.61703500	-2.52286300	-0.24814000
С	-2.95962400	-2.30323800	-0.94484500
С	-1.80210700	-3.22175800	1.10128400
Н	-1.02509200	-3.15706200	-0.91390500
Н	-2.83251200	-1.72775200	-1.86730400
Н	-3.38673700	-3.27837300	-1.20212900
Н	-3.68168100	-1.78291200	-0.30774500
Н	-0.85015100	-3.34813600	1.62588700
Н	-2.46431000	-2.63002000	1.74443900
Н	-2.25666100	-4.20926500	0.96515000
Zero-point correction= 0.333028 (Hartree/Particle)			
Thermal correction to Energy= 0.350802			
Thermal correction to Enthalpy= 0.351746			
Thermal correction to Gibbs Free Energy= 0.287505			

Sum of electronic and zero-point Energies= -1071.950951 Sum of electronic and thermal Energies= -1071.933178 Sum of electronic and thermal Enthalpies= -1071.932233 Sum of electronic and thermal Free Energies= -1071.996475

∫^{tBu} ∫^NP[·] N^{tBu}

С	1.47346500	-0.18629700	0.67594500
С	1.47346500	-0.18629700	-0.67594500
н	2.35286000	-0.17079000	1.30585800
н	2.35286000	-0.17079000	-1.30585800
N	0.20327600	-0.27197800	1.22498400
N	0.20327600	-0.27197800	-1.22498400
Р	-1.04581700	-0.24026300	0.00000000
С	-0.05844900	0.05766100	2.64213200

С	0.09560900	1.56947900	2.85048800
С	-1.48348100	-0.37528600	2.99353500
С	0.92285500	-0.70565300	3.53695300
н	1.11501400	1.89224100	2.61031700
Н	-0.59731500	2.11621100	2.20100800
Н	-0.11408000	1.83971100	3.89170400
Н	-1.62485900	-1.44612500	2.81206900
Н	-1.67543000	-0.17507200	4.05254700
Н	-2.23121000	0.17951700	2.41471900
Н	0.65855700	-0.54645800	4.58773200
н	0.88268000	-1.77986200	3.32746600
Н	1.95447700	-0.36297900	3.40874100
С	-0.05844900	0.05766100	-2.64213200
С	-1.48348100	-0.37528600	-2.99353500
С	0.09560900	1.56947900	-2.85048800
С	0.92285500	-0.70565300	-3.53695300
Н	-1.62485900	-1.44612500	-2.81206900
Н	-2.23121000	0.17951700	-2.41471900
Н	-1.67543000	-0.17507200	-4.05254700
Н	1.11501400	1.89224100	-2.61031700
Н	-0.11408000	1.83971100	-3.89170400
н	-0.59731500	2.11621100	-2.20100800
н	0.65855700	-0.54645800	-4.58773200
Н	1.95447700	-0.36297900	-3.40874100
Н	0.88268000	-1.77986200	-3.32746600
Zero-point correction=			0.293140 (Hartree/Particle)
Thermal correction to Energy=			0.307847
Thermal correction to Enthalpy=			0.308791
Thermal correction to Gibbs Free Energy=			0.252009
Sum of electronic and zero-point Energies=			-843.402901
Sum of electronic and thermal Energies=			-843.388194
Sum of electronic and thermal Enthalpies=			-843.387250
Sum of electronic and thermal Free Energies=			-843.444032

,^tBư^tBu ^tBưBu

С	-1.67827800	-0.07800400	2.46838800
С	-2.00505100	1.27519700	1.84570000
н	-3.08160400	1.45393800	1.99378600
н	-1.47239000	2.06597200	2.39404600
Н	-2.08744000	-0.08777900	3.48519900
С	-2.29024100	-1.23780600	1.69367800

Н	-3.38140300	-1.07129000	1.62479000
Н	-2.13990100	-2.15922600	2.26858200
Н	-0.59648100	-0.21743300	2.55990000
Р	-1.04413500	-0.00287400	-0.43193800
Ν	-1.70418300	-1.39870400	0.36081400
Ν	-1.69571200	1.34389400	0.41463800
С	-2.39271900	2.41969100	-0.34278900
С	-2.35566100	3.72159700	0.47006700
С	-1.67118000	2.69135100	-1.66786400
С	-3.85029200	2.03055400	-0.62774300
Н	-2.92242500	3.65269000	1.40362900
н	-1.32271500	3.99826000	0.71169400
н	-2.79610300	4.53271300	-0.11951200
Н	-1.75614300	1.85520500	-2.36774700
Н	-2.10514600	3.57683100	-2.14615800
Н	-0.60627900	2.87742500	-1.48459700
н	-4.37877000	2.83857800	-1.14816000
н	-3.88729300	1.13671500	-1.25996800
Н	-4.39709000	1.81677900	0.29829200
С	-2.36418600	-2.41571400	-0.50745100
С	-1.39464300	-2.84773900	-1.61345600
С	-2.69889900	-3.66381400	0.32094300
С	-3.65291000	-1.86935700	-1.14054200
Н	-1.12833100	-2.01394900	-2.27111500
Н	-0.47060800	-3.24255200	-1.17597700
Н	-1.85792700	-3.62628700	-2.23076400
Н	-3.49867700	-3.48553800	1.04689700
Н	-3.03897600	-4.45998600	-0.34976100
н	-1.81445700	-4.02651700	0.85739700
н	-4.18955300	-2.65970500	-1.67909500
н	-4.32866400	-1.46341300	-0.37833700
н	-3.42047800	-1.07256800	-1.85567700
С	1.67828100	-0.07741400	-2.46837600
С	2.00456200	1.27592500	-1.84573100
н	3.08104400	1.45508400	-1.99381200
н	1.47160100	2.06645800	-2.39413500
Н	2.08746600	-0.08707500	-3.48518100
С	2.29066500	-1.23702100	-1.69369500
Н	3.38179800	-1.07022400	-1.62504700
н	2.14043600	-2.15851500	-2.26851900
н	0.59653000	-0.21721200	-2.55992000
Р	1.04419500	-0.00244900	0.43190900
Ν	1.70494400	-1.39797400	-0.36069700
Ν	1.69516200	1.34459600	-0.41467000

С	2.39164300	2.42075800	0.34275600
С	2.35414300	3.72261200	-0.47017200
С	1.66974100	2.69215400	1.66768400
С	3.84931900	2.03228100	0.62800900
Н	2.92105800	3.65390100	-1.40365500
Н	1.32110900	3.99881600	-0.71194700
Н	2.79416200	4.53395200	0.11941800
Н	1.75490200	1.85604800	2.36759500
н	2.10323600	3.57782600	2.14604400
Н	0.60479800	2.87777200	1.48419700
н	4.37730800	2.84056000	1.14853500
н	3.88660100	1.13849500	1.26028900
н	4.39641800	1.81874000	-0.29789700
С	2.36529600	-2.41479500	0.50750600
С	1.39597400	-2.84710200	1.61357900
С	2.70029100	-3.66274000	-0.32098900
С	3.65393500	-1.86811000	1.14050500
н	1.12964400	-2.01340400	2.27135200
Н	0.47193900	-3.24203600	1.17621900
н	1.85948500	-3.62560500	2.23078300
Н	3.49989300	-3.48412500	-1.04705200
Н	3.04074100	-4.45882000	0.34963600
н	1.81589100	-4.02571100	-0.85733400
н	4.19087900	-2.65832100	1.67895300
н	4.32945800	-1.46189900	0.37823200
н	3.42134400	-1.07143200	1.85571200
Zero-point correction=			0.696545 (Hartree/Particle)
Thermal correction to Energy=			0.730468
Thermal correction to Enthalpy=			0.731412
Thermal correction to Gibbs Free Energy=			0.635764
Sum of electronic and zero-point Energies=			-1767.745395
Sum of electronic and thermal Energies=			-1767.711472
Sum of electronic and thermal Enthalpies=			-1767.710528
Sum of electronic and thermal Free Energies=			-1767.806176

С	-2.18041300	-0.68269100	1.59392900
С	-2.18936100	0.66178300	1.58995200
н	-2.47573500	-1.29876300	2.43562300
н	-2.49475800	1.27914200	2.42726000
Ν	-1.67637400	-1.28996600	0.41686900

Ν	-1.69568600	1.26831500	0.40894600
Р	-0.98120900	-0.00793100	-0.55362500
С	-2.44460100	-2.40717400	-0.19939000
С	-3.74708600	-1.89902200	-0.82681800
С	-1.56803300	-3.06060500	-1.26817200
С	-2.76125100	-3.44394100	0.88270100
Н	-4.33408000	-1.33584300	-0.09170800
Н	-3.53458300	-1.24345000	-1.67917600
Н	-4.35936100	-2.73467000	-1.18646700
Н	-0.65101800	-3.46035600	-0.82287900
Н	-2.11215300	-3.88159100	-1.74849500
Н	-1.28058300	-2.34545800	-2.04691000
Н	-3.16840300	-4.34742800	0.41645400
Н	-1.85479700	-3.71972400	1.43327300
Н	-3.50786200	-3.08077000	1.59649200
С	-2.47135500	2.38370300	-0.20008800
С	-1.64279300	2.98610800	-1.33500700
С	-3.81767000	1.88907500	-0.74020900
С	-2.70517500	3.45654000	0.86864000
Н	-0.67271300	3.33390000	-0.96412600
Н	-1.45797300	2.25627300	-2.13073300
Н	-2.17620100	3.83569200	-1.77571300
Н	-4.39252300	1.39296900	0.05069800
Н	-4.41472200	2.72523100	-1.12347500
Н	-3.66772200	1.17577800	-1.55873000
Н	-3.12881100	4.35360300	0.40443700
Н	-3.41128800	3.12439500	1.63668100
Н	-1.76218100	3.73050400	1.35467900
С	2.18887500	-0.66153300	-1.59021000
С	2.18010700	0.68294700	-1.59375300
Н	2.49394000	-1.27869700	-2.42778500
Н	2.47543800	1.29924100	-2.43528600
Ν	1.69537700	-1.26836700	-0.40922300
Ν	1.67645800	1.28987800	-0.41640500
Р	0.98111600	0.00775400	0.55375000
С	2.47155600	-2.38360000	0.19956800
С	3.81787800	-1.88866200	0.73940500
С	1.64349000	-2.98631800	1.33467900
С	2.70527600	-3.45633700	-0.86927800
Н	4.39246500	-1.39245400	-0.05162100
Н	3.66792200	-1.17539400	1.55795600
Н	4.41518900	-2.72467700	1.12257400
Н	0.67334700	-3.33419100	0.96406100
Н	2.17718200	-3.83589900	1.77504500

Н	1.45878300	-2.25663800	2.13056500
н	3.12930900	-4.35331100	-0.40526000
н	1.76216400	-3.73052700	-1.35497200
н	3.41103300	-3.12401000	-1.63755900
С	2.44455500	2.40705900	0.19987700
С	1.56811500	3.06008900	1.26900600
С	3.74728100	1.89897000	0.82689300
С	2.76082200	3.44409500	-0.88207400
н	0.65088600	3.45967400	0.82399200
н	1.28104200	2.34472900	2.04768700
н	2.11216300	3.88110500	1.74935000
н	4.33413300	1.33597000	0.09151900
н	4.35955800	2.73461600	1.18653600
н	3.53508600	1.24319000	1.67916400
н	3.16797000	4.34753700	-0.41573600
н	3.50730200	3.08114800	-1.59612600
н	1.85421000	3.71988200	-1.43238400
Zero-point correction=			0.589097 (Hartree/Particle)
Thermal correction to Energy=			0.620387
Thermal correction to Enthalpy=			0.621332
Thermal correction to Gibbs Free Energy=			0.530344
Sum of electronic and zero-point Energies=			-1686.852754
Sum of electronic and thermal Energies=			-1686.821464
Sum of electronic and thermal Enthalpies=			-1686.820519
Sum of electronic and thermal Free Energies=			-1686.911507

12. Reference.

- (a) J. Barluenga, F. J. Fañanás, R. Sanz, C. Marcos and M. Trabada, *Org. Lett.*, 2002, 4, 1587-1590; (b) V. Pace,
 L. Castoldi and W. Holzer, *Tetrahedron Lett.*, 2012, 53, 967-972; (c) G. A. Molander and D. L. Sandrock, *J. Am. Chem. Soc.*, 2008, 130, 15792-15793; (d) S. Xu, F. Haeffner, B. Li, L. N. Zakharov and S.-Y. Liu, *Angew. Chem. Int. Ed.*, 2014, 53, 6795-6799.
- 2. J. Zhang, J.-D. Yang and J.-P. Cheng, Angew. Chem. Int. Ed., 2019, 58, 5983-5987.
- 3. J. Zhang, J.-D. Yang and J.-P. Cheng, Chem. Sci., 2020, DOI: 10.1039/C9SC05883D.
- (a) H. A. Spinney, I. Korobkov, G. A. DiLabio, G. P. A. Yap and D. S. Richeson, *Organometallics*, 2007, 26, 4972-4982;
 (b) H. A. Spinney, G. P. A. Yap, I. Korobkov, G. DiLabio and D. S. Richeson, *Organometallics*, 2006, 25, 3541-3543.
- R. Matsubara, T. Yabuta, U. Md Idros, M. Hayashi, F. Ema, Y. Kobori and K. Sakata, J. Org. Chem., 2018, 83, 9381-9390.
- 6. H. Kim and C. Lee, Angew. Chem. Int. Ed., 2012, 51, 12303-12306.
- 7. S. Urban, B. Beiring, N. Ortega, D. Paul and F. Glorius, J. Am. Chem. Soc., 2012, 134, 15241-15244.
- C. Santilli, S. S. Beigbaghlou, A. Ahlburg, G. Antonacci, P. Fristrup, P.-O. Norrby and R. Madsen, *Eur. J. Org. Chem.*, 2017, 2017, 5269-5274.
- 9. M. Rauser, R. Eckert, M. Gerbershagen and M. Niggemann, Angew. Chem. Int. Ed., 2019, 58, 6713-6717.

- 10. F. Ding, Y. Zhang, R. Zhao, Y. Jiang, R. L.-Y. Bao, K. Lin and L. Shi, Chem. Commun., 2017, 53, 9262-9264.
- M. J. T. Frisch, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;J. E, P.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K.N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.;Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador,P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.Gaussian 09,Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.
- 12. (a) Y. Zhao and D. G. Truhlar, *Acc. Chem. Res.*, 2008, **41**, 157-167; (b) Y. Zhao and D. G. Truhlar, *Chem. Phys. Lett.*, 2011, **502**, 1-13.
- 13. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
- 14. R. Edge, R. J. Less, E. J. L. McInnes, K. Müther, V. Naseri, J. M. Rawson and D. S. Wright, *Chem. Commun.*, 2009, 1691-1693.