Electronic Supplementary Information for

Self-activated Rh–Zr mixed oxide as a nonhazardous cocatalyst for photocatalytic hydrogen evolution

Toshio Nishino, Masaki Saruyama,* Zhanzhao Li, Yoshie Nagatsuma, Mamiko Nakabayashi, Naoya Shibaya, Taro Yamada, Ryo Takahata, Seiji Yamazoe, Takashi Hisatomi, Kazunari Domen and Toshiharu Teranishi*

Experimental details

Chemicals: The following chemicals were used as received without purification: SrTiO₃ (Wako), Al₂O₃ (Aldrich, nanopowder), SrCl₂ (Kanto), RhCl₃·3H₂O (Wako), Rh(NO₃)₃·xH₂O (Aldrich), Cr(NO₃)₃·9H₂O (Wako), ZrOCl₂·8H₂O (Wako), ZrO(NO₃)₂·6H₂O (Wako), Fe(NO₃)₃·9H₂O (Wako), Ce(NO₃)₃·6H₂O (Wako), La(NO₃)₃·6H₂O (Wako), Eu acetate·nH₂O (Wako), Er acetate·4H₂O (Wako), Al(NO₃)₃·9H₂O (Wako), Mn(NO₃)₂·6H₂O (Aldrich), Ni(NO₃)₂·6H₂O (Wako), Sa(NO₃)₃·nH₂O (Aldrich), Cu(NO₃)₂·3H₂O (Wako), Zn(NO₃)₂·6H₂O (Aldrich), Ni(NO₃)₂·6H₂O (Wako), In(NO₃)₃·3H₂O (Wako), Co(NO₃)₂·6H₂O (Kanto), Cd(NO₃)₂·4H₂O (Aldrich), Pb(NO₃)₂ (Wako), Na₂WO₄·2H₂O (Aldrich) and K₂IrCl₆ (Wako).

Synthesis of SrTiO₃:Al: SrTiO₃:Al was synthesized by the molten-salt synthesis (flux method). A mixture of SrTiO₃, Al_2O_3 and SrCl₂ at a molar ratio of 1:0.02:10 was heated in an alumina crucible (Nikkato, SSA-S) at 1150 °C for 10 h in air. The SrTiO₃:Al was subsequently separated from the flux by washing with deionized water three times.

Cocatalyst loading on SrTiO₃:Al: Cocatalyst was loaded on SrTiO₃:Al by impregnation method. Aqueous solution of desired amount of Rh and metal precursor was mixed with SrTiO₃:Al (50 mg) and dried on the glass dish with hot plate. Dried powder was collected and annealed at 350 °C for 1 h in air. Product was washed with water three times for water-washed sample for XPS measurement.

Photocatalysis measurements: SrTiO₃:Al based photocatalyst powder (10 mg) was dispersed in water (20 mL) in Pyrex glass reactor by sonication. Xe lamp (300 W) with a cold mirror, which reflects the light of 250-450 nm, was used, but Pyrex glass transmits only the light >300 nm. The power of 300 W Xe lamp was set to 10 A for experiments shown in Figs. S1 and S9, and 20 A for those shown in Figs. 1, 5, S4, S11, S15 and S16. The reactor was immersed in a water bath and connected to Ar-flow system GC (Shimadzu GC-2014). Evolved hydrogen and oxygen were automatically collected at every 30 min.

Apparent quantum yield (AQY) estimation: The AQY of water splitting reaction is given by the equation (1):

$$AQY = 2 \times \gamma(H_2O) / \gamma(photon)$$
(1)

where $\gamma(H_2O)$ and $\gamma(photons)$ denote the number of decomposed water molecules and the number of incident

photons per unit time, respectively. The water splitting reaction was carried out using a closed circulation system equipped with a gas chromatograph with a thermal conductivity detector in an Ar carrier gas. The light source used was a 300 W Xe lamp equipped with a bandpass filter with central wavelength of 365 nm. The spatial distributions of the power spectra are measured using a grating spectroradiometer (EKO Instruments Co., Ltd., LS-100). γ (photons) and γ (H₂O) were measured to be 3.2×10^{20} photon h⁻¹ and 88 µmol h⁻¹, respectively. Based on the equation (1), the AQY was calculated to be 33%. For estimating solar-to-hydrogen efficiency (STH), a solar simulator (Asahi Spectra Co., Ltd., HAL-320) with an irradiation area of 2.9×2.9 cm² was used as a light source.

Electrocatalysis measurements: RhZrO_x/XC-72 catalyst was prepared by the impregnation method. An aqueous solution containing RhCl₃·3H₂O (0.1 wt% Rh vs. XC-72) and ZrOCl₂·8H₂O (0-0.7 wt% Zr vs. XC-72) was mixed with XC-72 (10 mg) and dried on the glass dish with hot plate. Dried powder was annealed at 350 °C for 1 h in air. We confirmed that XC-72 is not burnt out by annealing process with TG-DTA analysis (Fig. S12). RhZrO_x/XC-72 powder (1 mg), water (394 μ L), 2-propanol (96 μ L) and 5 wt% Nafion solution (10 μ L) were mixed by sonication for 30 min to prepare homogeneous catalyst slurry. 10 μ L of catalyst slurry was placed on a rotating disk glassy carbon electrode (5 mm in diameter), followed by rotating at 700 rpm until the catalyst layer was dried. HER was measured in Ar-saturated 1 M Na₂SO₄ aqueous solution at pH 7 at 3600 rpm at RT.

Characterization: SEM observation and EDX analysis were carried out using HITACHI S-4800. HRTEM and STEM-EDS mapping measurements were conducted using JEOL JEM-ARM200F. ICP measurements were carried out using SHIMADZU ICPE-9820. XRD patterns were obtained using Panalytical X'Pert Pro MPD with CuK α radiation (λ = 1.542 Å) operated at 45 kV and 40 mA. TG-DTA measurements were conducted with Shimadzu DTG-60. X-ray photoelectron spectroscopy (XPS) was conducted in an ultrahigh vacuum combined system equipped with a hemispherical electron analyzer (Omicron model EA125) and a twin-anode (Mg/AI) X-ray source (Vacuum Generators).

In-situ XANES measurement: XANES measurements were conducted at BL01B2 beamline in SPring-8. RhZrO_x/SrTiO₃:Al (0.1 g) was suspended in distilled water (approximately 2 mL) in a Pyrex tube (inner diameter of 9 mm and outer diameter of 12 mm, transmittance of light >300 nm), and was vigorously stirred using a magnetic stirrer. The photocatalyst suspension was irradiated with UV light using a 300 W Xe lamp (250 nm < λ < 450 nm). Fluorescence X-rays were collected using semiconductor detector. XANES spectra of reference samples, Rh foil and Rh₂O₃ powder, were obtained in transmittance mode. For Rh₂O₃, a pellet was prepared using BN as a dispersion media.

Fig. S1 Average evolution rates of H₂ and O₂ gases using SrTiO₃:Al with Rh-metal mixed oxide cocatalysts (Rh = 0.1 wt% and other metals = 0.5 wt% vs. SrTiO₃:Al). Reaction conditions: catalyst, 10 mg; solution, 20 mL of H₂O; light source, 300 W Xe lamp (λ = 300–450 nm).

Fig. S2 TG analyses of $ZrOCl_2 \cdot 8H_2O$ at the holding temperatures of 300 (broken line) and 350 °C (solid line). If $ZrOCl_2 \cdot 8H_2O$ is completely converted into ZrO_2 , the weight ratio is calculated to be 38.4%.

Annealing Temp. (°C)	Cl/Zr (mol/mol)
non-annealed	2.07
300	0.61
350	0.39
400	0.27
450	0.08

Table S1 Cl/Zr molar ratios in ZrOCl₂·8H₂O annealed at various temperature for 1 h in air (EDX analyses)

Fig. S3 SEM images of (a) pristine $SrTiO_3$:Al and (b–e) $RhZrO_x/SrTiO_3$:Al annealed at (b) 300, (c) 350, (d) 400 and (e) 450 °C. Scale bars are 500 nm.

Fig. S4 Average evolution rates of H_2 and O_2 gases using $RhZrO_x/SrTiO_3$: Al preapred at various preparation conditions. Each graph corresponds to that of Fig.1.

Fig. S5 TG analysis of $RhCl_3 \cdot 3H_2O$ at the same annealing conditions as impregnation. If $RhCl_3 \cdot 3H_2O$ is completely converted into $RhCl_3$ or Rh_2O_3 , the weight ratio is calculated to be 79.5 or 48.2%, respectively.

Fig. S6 XRD patterns of solids prepared by annealing $RhCl_3 \cdot 3H_2O$ and/or $ZrOCl_2 \cdot 8H_2O$.

Fig. S7 (a) Rh XANES spectra of Rh foil (red), Rh_2O_3 (blue) and $RhZrO_x/SrTiO_3$:Al (black) before light irradiation. (b) Stacked in-situ Rh XANES spectra and (c) estimated valence state of Rh (black square) vs metal Rh (red) and Rh_2O_3 (blue) reference samples, assuming that Rh in Rh_2O_3 is trivalent.

	Before	After
Zr	0.57 wt%	0.54 wt%
Rh	0.10 wt%	0.09 wt%
Zr/Rh	5.77	5.84

Table S2 Amounts of Zr and Rh in RhZrO_x/SrTiO₃:Al before and after photocatalytic reaction measured by ICP

Fig. S8 TG analyses of (a) $Rh(NO_3)_3 \cdot xH_2O$ and (b) $ZrO(NO_3)_2 \cdot 6H_2O$ at the same heating conditions as the co-impregnation.

Fig. S9 Average evolution rates of H₂ and O₂ gases over RhZrO_x/SrTiO₃:AI prepared from RhCl₃·3H₂O, Rh(NO₃)₃·xH₂O, ZrOCl₂·8H₂O and ZrO(NO₃)₂·6H₂O. Reaction conditions: catalyst, 10 mg; solution, 20 mL of H₂O; light source, 300 W Xe lamp (λ = 300-450 nm).

Fig. S10 SEM images of RhZrO_x/SrTiO₃:Al prepared from (a) RhCl₃·3H₂O and ZrO(NO₃)₂·6H₂O, (b) Rh(NO₃)₃·xH₂O and ZrOCl₂·8H₂O and (c) Rh(NO₃)₃·xH₂O and ZrO(NO₃)₂·6H₂O (Zr/Rh weight ratio = 5). Scale bars are 500 nm.

Fig. S11 Photocatalytic activities of $RhO_x/SrTiO_3$:Al (Rh = 0.1 wt% vs. $SrTiO_3$:Al), $ZrO_x/SrTiO_3$:Al (Zr = 0.5 wt% vs. $SrTiO_3$:Al) and $RhZrO_x/SrTiO_3$:Al (Rh = 0.1 wt% and Zr = 0.5 wt% vs. $SrTiO_3$:Al). Reaction conditions: catalyst, 10 mg; solution, 20 mL of H₂O; light source, 300 W Xe lamp (λ = 300-450 nm).

Fig. S12 TG analysis of XC-72 at the same heating conditions as the impregnation.

Fig. S13 ORR and HER performance of RhZrO_x cocatalysts on XC-72 with various weight ratios of Zr/Rh. (a) *I-V* curves of RhZrO_x (Zr/Rh: 0–7 w/w%) loaded XC-72 in O₂-saturated 1 M Na₂SO₄. (b) Current density at 0.4 V vs. RHE for each sample. (c) *I-V* curves of RhZrO_x (Zr/Rh: 0–7 w/w%) loaded XC-72 in Ar-saturated 1 M Na₂SO₄. (d) Overpotential of HER at –8 mA·cm⁻² for each sample. The RhZrO_x prepared from RhCl₃·3H₂O (black dots) and Rh(NO₃)₃·xH₂O (blue dots) are shown as comparison. All scans were conducted at 3600 rpm rotation.

Fig. S14 Time courses of gases evolution over $RhZrO_x/SrTiO_3$:Al (Rh = 0.1 wt% and Zr = 0.5 wt% vs. SrTiO_3:Al) during and after light irradiation. Reaction conditions: catalyst, 100 mg; solution, 100 mL of H₂O; light source, 300 W Xe lamp.

Fig. 15 Photocatalytic activities of $(CoO_x+RhZrO_x)/SrTiO_3$:Al with 0.05, 0.1 and 0.2 wt% CoO_x vs $SrTiO_3$:Al. Reaction conditions: catalyst, 10 mg; solution, 20 mL of H_2O ; light source, 300 W Xe lamp ($\lambda = 300-450$ nm).

Fig. S16 Photocatalytic activities of RhZrO_x/SrTiO₃:Al with oxygen evolution cocatalysts (0.1 wt% vs SrTiO₃:Al). Reaction conditions: catalyst, 10 mg; solution, 20 mL of H₂O; light source, 300 W Xe lamp (λ = 300–450 nm)

Fig. S17 Time courses of gases evolution of $(CoO_x+RhZrO_x)/SrTiO_3$:Al (Co = 0.1 wt%, Rh = 0.1 wt% and Zr = 0.5 wt% vs. SrTiO_3:Al) under simulated sunlight.

Photocatalyst	Light wavelength (nm)	AQY (%)	Reference
Rh _{0.5} Cr _{1.5} O ₃ / SrTiO ₃	350	4.3	H. Kato <i>et al.</i> Catal. Sci. Technol. 2013, 3 , 1733.
Ni@NiO/Sr _{1.25} Mg _{0.3} TiO _x	300–400	9.1	K. Han et al. ChemSusChem 2017, 10 , 4510.
Rh _{0.3} Cr _{1.7} O ₃ / SrTiO ₃ :Na	360	16	Y. Sakata <i>et al.</i> Appl. Catal. A Gen. 2016, 521 , 227.
Rh _{2-y} C _y O ₃ /SrTiO ₃ :Al	360	30	Y. Ham <i>et al.</i> J. Mater. Chem. A 2016, 4 , 3027.
CoO _x +RhZrO _x /SrTiO₃:Al	365	33	This work
RhCrO _x /SrTiO ₃ :Al	365	56	Y. Goto <i>et al.</i> Joule 2018, 2 , 509.
MoO _y /RhCrO _x /SrTiO ₃ :Al	365	69	T. H. Chiang <i>et al.</i> ACS Catal. 2018, 4 , 2782.
CoOOH+Rh@Cr ₂ O ₃ /SrTiO ₃ :Al	365	91.6	T. Takata <i>et al.</i> <i>Nature</i> 2020, 581 , 411.

Table S3 Comparison of AQY of SrTiO₃ based photocatalysts