Pd/Xiang-Phos-CatalyzedEnantioselectiveIntermolecularCarboheterofunctionalizationsUnder Mild Conditions

Mengna Tao^[a], Youshao Tu^[b], Yu Liu^[b], Haihong Wu^[a], Lu Liu^{*, [a]}, and Junliang Zhang^{*, [c],[d]}

^[a] Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
 ^[b] College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology,

^[b] College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China.

^[c] Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China ^[d] State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science.

E-mail: lliu@chem.ecnu.edu.cn junliangzhang@fudan.edu.cn

Table of Contents

1	General Information
2	Optimization of the intermolecular carboheterofunctionalizations
2.1	Optimization of the intermolecular carboamination of 2,3-dihydrofuran
2.2	Optimization of the intermolecular carboetherification of 2,3-dihydrofuran
3	Experimental procedures
3.1	General procedure for the synthesis of (S, R_S) -N-Me-X4/X5
3.2	General procedure for the intermolecular carboamination of 2,3-dihydrofuran using 2-
bro	omoaniline derivatives (GP1)
3.3	General procedure for the intermolecular carboetherification of 2,3-dihydrofuran using
2-t	promophenol derivatives (GP2)
3.4	General procedure for the synthesis of 2-substituted-2,3-dihydrofurans
4	General Data for (<i>S</i> , <i>R</i> _{<i>S</i>})- <i>N</i> -Me-X4/X5, 3 and 6
5	Absolute Configuration of 3 and 6S37
6	References
7	¹ H, ¹³ C, ¹⁹ F, ³¹ P Spectra for (<i>S</i> , <i>R_S</i>)- <i>N</i> -Me-X4/X5, 3 and 6S40

1. General Information

Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere; materials obtained from commercial suppliers were used directly without further purification. The $[\alpha]_D$ was recorded using PolAAr 3005 High Accuracy Polarimeter. ¹H NMR spectra and ¹³C NMR spectra were recorded on a Bruker 400 MHz or 500 MHz spectrometer in chloroform-d₃, and were calibrated with CDCl₃ ($\delta = 77.00$ ppm). ¹⁹F NMR spectra were recorded on a Bruker 400 MHz spectrometer in chloroform-d₃. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ as an internal standard. The data is being reported as (s = singlet, d = doublet, dd = doublet, t = triplet, m = multiplet or unresolved, br = broad signal, coupling constant(s) in Hz, integration).

Trichloromethane (CHCl₃), dichloromethane, dichloroethane and acetonitrile were freshly distilled from CaH₂; tetrahydrofuran (THF), toluene and ether were dried with sodium benzophenone and distilled before use.

Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed on silica gel 60 (particle size 200-400 mesh ASTM, purchased from Yantai, China) and eluted with petroleum ether/ethyl acetate. All reagents and solvents were used as received from commercial sources (*Energy Chemical, J&K*[®], *Adamas-beta*[®], *Bidepharm*) without further purification. The substrates **2b-f** were synthesized according to published procedures¹. The spectral data of the substrates were consisted with that reported in the literature². The enantionmeric excesses of the products were determined by chiral stationary phase HPLC using a Chiralpak IA, IB, IC , IF, ADH, ODH, OJH, OJ3.

2. Optimization of the intermolecular carboheterofunctionalizations

2.1 Table S1. Detailed optimization of the enantioselective intermolecular carboamination of 2,3-dihydrofuran and $1a^{[a]}$

Supporting Information								
22	Pd ₂ (dba) ₃ •CHCl ₃	L8	NaOPh	1,2-DCE	100	81(93.9)	>30:1	
23	$Pd(OAc)_2$	L8	NaOPh	1,2-DCE	100	74(94.1)	>30:1	
24	$(\eta^3 - C_3 H_5)_2 P d_2 C l_2$	L8	NaOPh	1,2-DCE	100	69(93.7)	>30:1	
25	Pd A	L8	NaOPh	1,2-DCE	100	82(94.1)	>30:1	
26	Pd B	L8	NaOPh	1,2-DCE	100	74(86.9)	>30:1	
27	Pd C	L8	NaOPh	1,2-DCE	100	N.D.	-	
28	Pd D	L8	NaOPh	1,2-DCE	100	77(81.3)	>30:1	
29	Pd E	L8	NaOPh	1,2-DCE	100	trace	-	
30	Pd A	L8	NaOPh	1,2-DCE	80	81(93.1)	>30:1	
31	Pd A	L8	NaOPh	1,2-DCE	50	81(95.3)	>30:1	
32	Pd A	L8	NaOPh	1,2-DCE	20	84(95.5)	>30:1	
34 ^[e]	Pd A	L8	NaOPh	1,2-DCE	20	73(91.6)	>30:1	
35 ^[f]	Pd A	L8	NaOPh	1,2-DCE	20	77(93.8)	>30:1	
35 ^[g]	Pd A	L8	NaOPh	1,2-DCE	20	81(95.3)	>30:1	
35 ^[h]	Pd A	L8	NaOPh	1,2-DCE	20	79(94.9)	>30:1	
33 ^[i]	Pd A	L8	NaOPh	1,2-DCE	20	79(95.7)	>30:1	

[a] Unless otherwise specified, all reactions were carried out with **1a** (0.2 mmol), **2a** (0.8 mmol, 4 eq), [Pd] source (0.01 mmol, 5 mol%), *N*-**Me-Xiang-Phos** (0.024 mmol, 12 mol%), Base (0.8 mmol, 4 eq), H₂O (7.2 μ L, 2 eq) in solvent (1 mL, 0.2 M). [b] Yield of isolated product. [c] Determined by chiral HPLC. [d] Reaction *r.r.*s of **3aa:4aa**, determined by chiral HPLC. [e] 2.5 mol% Pd A, 6 mol% **L8** were employed. [f] 2 eq NaOPh and 1 eq H₂O were employed. [g] 1 eq H₂O were employed. [h] 50 mol% H₂O were employed. [i] 2 eq H₂O was removed.

2.2 Table S2. Detailed optimization of the enantioselective intermolecular carboetherification of 2,3-dihydrofuran and $5a^{[a]}$

	H + 5 5a 5	[Pd] eq 2a	(2.5 mol%), L* (5 mol ase (2 eq), H ₂ O (1 eq) Solvent, Temp.	%) H	С Н	
Ar O NS, Me PAd ₂	Ar = L_3 L_4 (S, R_S) -N-Me-X1 (S, R_S) -N	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	Bu OMe 'Bu L5 N-Me-X3 L6: (R, R _S)	O ^{II} Me d₂ - <i>N</i>-Me-X1 L8: Ar = 3	Ar .7: Ar = Ph, (<i>S, F</i> 4,5- ^t Bu ₂ -4-OMeC	O S'Bu Me d₂ R _S)- N-Me-X4 6H2. (S. R _S)- N-Me-X5
	$ \begin{array}{c} $		N CI ^{Pd} CI Pd C	Pd D	Pd Cí, Cl Pd Pd E	
Entry	Pd	L*	Base	Solvent	Temp. (°C)	$\begin{array}{c} \text{Yield (Ee)} \\ (\%)^{[b,c]} \end{array}$
1	Pd ₂ (dba) ₃	L3	NaO ^t Bu	Toluene	80	40(87.1)
2	$Pd_2(dba)_3$	L3	NaOPh	Toluene	80	30(37.9)
3	$Pd_2(dba)_3$	L3	CH ₃ ONa	Toluene	80	trace
4	$Pd_2(dba)_3$	L3	CH ₃ OLi	Toluene	80	trace
5	$Pd_2(dba)_3$	L3	LiO ^t Bu	Toluene	80	trace
6	$Pd_2(dba)_3$	L3	KO ^t Bu	Toluene	80	mix
7	$Pd_2(dba)_3$	L3	Cs_2CO_3	Toluene	80	mix
8 ^[d]	$Pd_2(dba)_3$	L3	NaO ^t Bu	THF	80	30(74.5)
9 ^[d]	$Pd_2(dba)_3$	L3	NaO ^t Bu	MTBE	80	34(67.1)
10 ^[d]	$Pd_2(dba)_3$	L3	NaO ^t Bu	DCM	80	45(32.5)
11 ^[d]	$Pd_2(dba)_3$	L3	NaO'Bu	1,2-DCE	80	39(20.3)
12 ^[d]	$Pd_2(dba)_3$	L3	NaO'Bu	Toluene	80	40(71.5)
13	$Pd_2(dba)_3$	L3	NaO ^t Bu	Toluene	20	55(95.3)
14	$Pd_2(dba)_3$	L3	NaO'Bu	THF	20	30(97)
15	Pd(dba) ₂	L3	NaO'Bu	Toluene	20	23(94.3)
16	Pd ₂ (dba) ₃ •CHCl ₃	L3	NaO ^t Bu	Toluene	20	38(96.5)
17	$Pd(OAc)_2$	L3	NaO ^t Bu	Toluene	20	49(91.5)
18	$(\eta^3\text{-}C_3H_5)_2Pd_2Cl_2$	L3	NaO ^t Bu	Toluene	20	53(94.3)
19	Pd A	L3	NaO ^t Bu	Toluene	20	51(94.7)
20	Pd B	L3	NaO ^t Bu	Toluene	20	42(83.1)
21	Pd C	L3	NaO ^t Bu	Toluene	20	trace
22	Pd D	L3	NaO ^t Bu	Toluene	20	33(77.2)
23	Pd E	L3	NaO ^t Bu	Toluene	20	mix
24	$Pd_2(dba)_3$	L4	NaO ^t Bu	Toluene	20	49(94.3)

25	$Pd_2(dba)_3$	L5	NaO'Bu	Toluene	20	44(85)			
26	$Pd_2(dba)_3$	L6	NaO'Bu	Toluene	20	trace			
27	$Pd_2(dba)_3$	L7	NaO ^t Bu	Toluene	20	60(96.3)			
28	$Pd_2(dba)_3$	L8	NaO ^t Bu	Toluene	20	52(81.9)			
29 ^[e]	$Pd_2(dba)_3$	L7	NaO ^t Bu	Toluene	20	21(91.1)			
30 ^[f]	$Pd_2(dba)_3$	L7	NaO ^t Bu	Toluene	20	35(94.5)			

[a] Unless otherwise specified, all reactions were carried out with **5a** (0.2 mmol), **2a** (1 mmol, 5 eq), [Pd] source (0.005 mmol, 2.5 mol%), *N*-Me-Xiang-Phos (0.01 mmol, 5 mol%), Base (0.4 mmol, 2 eq), H₂O (3.6 μ L, 1 eq) in solvent (1 mL, 0.2 M). [b] Yield of isolated product. [c] Determined by chiral HPLC. [d] Pd₂(dba)₃ was added to 5 mol%, also L3 was added to 10 mol%. [e] 1 eq H₂O was removed. [f] 4 eq NaO*t*Bu and 1 eq H₂O were employed.

3. Experimental procedures

3.1 General procedure for the synthesis of (S, R_S) -N-Me-X4/X5.

To a solution of di-1-adamantylphosphine borane (5 mmol) in dry THF (25 mL) was added "BuLi (1.2 eq, 1.6 M in hexane) dropwise under argon at -78 °C. The resulting solution at this temperature during 1 hour and 1,2-dibromo compound (5 mmol) was added dropwise followed by "BuLi (1.2 eq, 1.6 M in hexane). After 10 minutes at -78 °C, (*Rs*)-sulfinyl imine (6 mmol) was added and the reaction mixture was warmed to room temperature overnight. The reaction mixture was quenched by the addition of NH₄Cl (aq.) and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, concentrated. The crude product was dealed with Et₂NH (15 mL) and the resulting solution was stirred under argon at 55 °C. After the reaction was complete (monitored by TLC), solvent was removed under reduced pressure. The crude product was then purified by flash column chromatography on silica gel (Petroleum ether : EtOAc = 10:1) to afford the desired **Xiang-Phos**.

To a solution of **Xiang-Phos** (2 mmol) in dry THF (5 mL) was added "BuLi (1.5 eq, 1.6 M in hexane) dropwise under argon at -30 °C. The resulting solution was stilled at this temperature for 1 hour and then MeI (2 eq) was added dropwise at -50 °C. The resulting solution was stilled at this temperature for 1.5 hours and then stilled at 0 °C for another 1.5 hours. The reaction mixture was quenched by the addition of NH₄Cl (aq.) and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, concentrated. The crude product was then purified by flash column chromatography on silica gel (Petroleum ether: EtOAc = 10:1) to afford the desired *N*-Me-Xiang-Phos.

3.2 General procedure for the intermolecular carboamination of 2,3-dihydrofuran using 2bromoaniline derivatives (GP1)

To a sealed tube was added Pd A (5 mol%), *N*-Me-X5 (12 mol%). The flask was evacuated and refilled with argon. Then 2-Br-anilines 1 (0.2 mmol) and dry 1,2-DCE (1 mL) were added to the tube. NaOPh (4 eq) and H₂O (2 eq) were subsequently added under a flow of argon, followed by 2a (4 eq). The mixture was stirred at 20 or 60 °C for 12-36 h. After the reaction was complete (monitored by TLC), solvent was removed under reduced pressure. The crude product was then purified by flash column chromatography on silica gel using hexane/EtOAc as the eluent to afford the desired product 3.

3.3 General procedure for the intermolecular carboetherification of 2,3-dihydrofuran using2-bromophenol derivatives (GP2)

To a sealed tube was added $Pd_2(dba)_3$ (2.5 mol%), *N*-Me-X4 (5 mol%). The flask was evacuated and refilled with argon. Then 2-Br-phenols **5** (0.3 mmol) and dry toluene (1.5 mL) were added to the tube. NaO'Bu (2 eq) and H₂O (1 eq) were subsequently added under a flow of argon, followed by **2a** (5 eq). The mixture was stirred at 20 or 50 °C for 24-48 h. After the reaction was complete (monitored by TLC), solvent was removed under reduced pressure. The crude product was then purified by flash column chromatography on silica gel using hexane/Et₂O as the eluent to afford the desired product **6**.

3.4 General procedure for the synthesis of 2-substituted-2,3-dihydrofurans (GP3)¹

In a glovebox, a 50 mL Young valve Schlenk was charged with $Pd_2(dba)_3$ (126 mg, 0.138 mmol, 2.5 mol%), CPhos (120 mg, 0.275 mmol, 5 mol%) and distilled and degassed 1,4-dioxane (10 mL). The Schlenk was taken outside the glovebox, connected to a two-manifold line and the mixture was stirred at room temperature for 10 minutes. Next, the corresponding aryl bromide (5.5 mmol, 1 equiv.), DIPEA (2.8 mL, 16.5 mmol, 3.0 equiv.) and 2,3-dihydrofuran (2.0 mL, 27.5 mmol, 5 equiv.) were added consecutively under a flow of N₂ gas. The sealed reaction tube was immerged in an oil bath pre-heated at 110 \degree for 36 h. After cooling to room temperature, the reaction mixture was poured into Et₂O (20 mL) under vigorous stirring and the resulting precipitate was removed passing the suspension through a short pad of Celite. The volatiles were evaporated and the resulting oil was directly subjected to flash chromatography (Pentane/Et₂O).

4. General Data for (S, Rs)-N-Me-X4/X5, 3 and 6

(*R*)-*N*-((*S*)-(3-(di((1*s*,3*R*,5*S*,7*S*)-adamantan-1-yl)phosphanyl)-5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)(phenyl)methyl)-*N*,2-dimethylpropane-2-sulfinamide

(*S*, *R*_{*S*})-*N*-**Me-X4**; colorless solid (hexane/EtOAc/DCM = 3:1:1, 38% overall yield); m.p. = 227-229 °C; [α]_D²⁰ = 85.438 (*c* = 0.375, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, *J* = 4.5 Hz, 1H), 7.60 (d, *J* = 2.1 Hz, 1H), 7.21 – 7.18 (m, 2H), 7.14 – 7.11 (m, 3H), 6.88 (d, *J* = 9.7 Hz, 1H), 2.58 (s, 3H), 1.98 (d, *J* = 11.9 Hz, 3H), 1.90 (s, 3H), 1.85 (d, *J* = 11.8 Hz, 3H), 1.73 (d, *J* = 2.8 Hz, 3H), 1.68 (d, *J* = 15.2 Hz, 10H), 1.50 (s, 6H), 1.44 (s, 6H), 1.39 (d, *J* = 19.3 Hz, 6H), 1.32 (s, 6H), 1.05 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 145.69, 144.40 (d, *J* = 23.8 Hz), 141.43, 139.89, 135.50 (d, *J* = 2.6 Hz), 131.89, 129.09 (d, *J* = 25.4 Hz), 127.43, 126.80, 125.72 (d, *J* = 5.8 Hz), 70.94 (d, *J* = 33.3 Hz), 58.56, 41.83, 41.76 (dd, *J* = 12.6, 7.1 Hz), 41.68, 37.65, 37.47, 37.00, 36.82, 36.62, 36.44, 35.06 (d, *J* = 5.5 Hz), 34.34, 33.96, 31.83 (dd, *J* = 24.9, 15.2 Hz), 30.41, 28.80 (dd, *J* = 8.7, 6.1 Hz), 24.22. ³¹P NMR (202 MHz, CDCl₃) δ 15.94. HRMS (ESI) m/z calcd. For C₄₆H₆₇NOPS [M+H]⁺ = 712.4675, found = 712.4666; IR spectrum (neat) (cm⁻¹) = 2980, 2909, 2359, 1198, 1167, 1086, 961, 949, 928, 880, 733, 669.

(R) - N - ((S) - (3 - (di((1s, 3R, 5S, 7S) - adamantan - 1 - yl)phosphanyl) - 5, 5, 8, 8 - tetramethyl - 5, 6, 7, 8 - tetrahyd-onaphthalen - 2 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) methyl) - N, 2 - dimethyl propane - 2 - sulfinamide - 2 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) methyl) - N, 2 - dimethyl propane - 2 - sulfinamide - 2 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) methyl) - N, 2 - dimethyl propane - 2 - sulfinamide - 2 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - N, 2 - dimethyl propane - 2 - sulfinamide - 2 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - N, 2 - dimethyl propane - 2 - sulfinamide - 2 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - N, 2 - dimethyl propane - 2 - sulfinamide - 2 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - N, 2 - dimethyl propane - 2 - sulfinamide - 2 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - N, 2 - dimethyl propane - 2 - sulfinamide - 2 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - N, 2 - dimethyl propane - 2 - sulfinamide - 2 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - N, 2 - dimethyl propane - 2 - sulfinamide - 2 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - 3 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - 3 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - 3 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - 3 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - 3 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - 3 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - 3 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - 3 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - 3 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - 3 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - 3 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - 3 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - 3 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - 3 - yl)(3, 5 - di - tert - butyl - 4 - methoxyphenyl) - 3 - yl)(3, 5 - di - tert - butyl - 4 -

(*S*, *R*_{*S*})-*N*-**Me-X5**; colorless solid (hexane/EtOAc/DCM = 3:1:1, 31% overall yield); m.p. = 159-161 °C; [α]_D²⁰ = 96.185 (*c* = 0.375, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 4.5 Hz, 1H), 7.60 (d, *J* = 2.1 Hz, 1H), 6.97 (s, 2H), 6.75 (d, *J* = 9.9 Hz, 1H), 3.57 (s, 3H), 2.59 (s, 3H), 1.99 (d, *J* = 11.9 Hz, 3H), 1.90– 1.85 (m, 6H), 1.76 – 1.71 (m, 4H), 1.69 – 1.64 (m, 6H), 1.52– 1.46 (m, 7H), 1.43 – 1.40 (m, 12H), 1.32 – 1.29 (m, 26H), 1.00 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 158.23, 145.62, 144.58 (d, *J* = 23.9 Hz), 141.86, 141.19, 135.45 (d, *J* = 2.5 Hz), 133.51, 130.90, 129.12 (d, *J* = 25.4 Hz), 125.12 (d, *J* = 5.8 Hz), 71.12 (d, *J* = 34.4 Hz), 64.23, 58.40, 41.68 (dd, *J* = 12.8, 7.5 Hz), 37.51 (d, *J* = 23.3 Hz), 36.94 (d, *J*

= 22.0 Hz), 36.55 (d, J = 24.1 Hz), 35.57, 35.12, 34.41, 33.94, 32.45, 32.07, 32.02, 31.62, 31.42, 30.73, 28.82 (dd, J = 8.6, 6.9 Hz), 24.15. ³¹P NMR (202 MHz, CDCl₃) δ 15.24. HRMS (ESI) m/z calcd. For C₅₅H₈₅NO₂PS [M+H]⁺ = 854.6033, found = 854.6048; IR spectrum (neat) (cm⁻¹) = 2895, 1450, 1362, 1250, 1198, 1167, 1088, 961, 930, 880, 777, 733.

(3aR,8aR)-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3aa; colorless solid (hexane/EtOAc = 8:1, 84% isolated yield); m.p. = 97-98 °C; $[\alpha]_D^{20}$ = 24.960 (*c* = 0.625, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.24 (d, *J* = 8.2 Hz, 2H), 7.18 – 7.12 (m, 2H), 6.98 (t, *J* = 7.5 Hz, 1H), 6.26 (d, *J* = 6.6 Hz, 1H), 3.97 (t, *J* = 8.0 Hz, 1H), 3.90 (t, *J* = 7.5 Hz, 1H), 3.33 – 3.28 (m, 1H), 2.37 (s, 3H), 2.33 – 2.25 (m, 1H), 2.01 (dd, *J* = 12.2, 4.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 143.82, 141.43, 136.46, 131.32, 129.50, 128.30, 127.32, 124.83, 123.48, 112.74, 95.71, 66.35, 45.45, 33.62, 21.44. Enantiomeric excess: 96%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 80/20; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 20.2 min, second peak: t_R = 28.4 min; HRMS (ESI) m/z calcd. for C₁₇H₁₇NNaO₃S [M+Na]⁺ = 338.0821, found = 338.0820; IR spectrum (neat) (cm⁻¹) = 2878, 1481, 1460, 1354, 1169, 1091, 949, 881, 752, 663.

(3aR,8aR)-5-fluoro-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ba; colorless solid (hexane/EtOAc = 8:1, 97% isolated yield); m.p. = 68-70 °C; $[\alpha]_D^{20}$ = 34.672 (*c* = 0.55, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 8.3 Hz, 2H), 7.33 (dd, *J* = 8.8, 4.4 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 2H), 6.89 – 6.83 (m, 2H), 6.24 (d, *J* = 6.6 Hz, 1H), 3.98 (dd, *J* = 12.1, 4.2 Hz, 1H), 3.86 (t, *J*

= 7.6 Hz, 1H), 3.35 – 3.30 (m, 1H), 2.38 (s, 3H), 2.33 – 2.25 (m, 1H), 1.99 (dd, J = 12.3, 4.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 160.47, 158.55, 144.03, 137.51 (d, J = 2.0 Hz), 136.10, 133.41 (d, J = 8.1 Hz), 129.59, 127.25, 114.87 (d, J = 23.4 Hz), 113.89 (d, J = 8.3 Hz), 112.05 (d, J = 24.1 Hz), 96.22, 66.36, 45.47 (d, J = 1.7 Hz), 33.45, 21.46. ¹⁹F NMR (376 MHz, CDCl₃) δ -119.61. Enantiomeric excess: 87%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 19.0 min, second peak: t_R = 29.5 min; HRMS (ESI) m/z calcd. for C₁₇H₁₆FNNaO₃S [M+Na]⁺ = 356.0727, found = 356.0721; IR spectrum (neat) (cm⁻¹) = 2884, 1356, 1167, 1092, 961, 883, 814, 710, 669, 598.

(3aR,8aR)-5-chloro-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ca; colorless solid (hexane/EtOAc = 8:1, 94% isolated yield); m.p. = 90-91 °C; $[\alpha]_D^{20}$ = 35.818 (*c* = 0.55, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.6 Hz, 1H), 7.27 – 7.25 (m, 2H), 7.13 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.10 (s, 1H), 6.25 (d, *J* = 6.6 Hz, 1H), 3.98 (t, *J* = 8.0 Hz, 1H), 3.89 – 3.86 (m, 1H), 3.33 – 3.28 (m, 1H), 2.38 (s, 3H), 2.33 – 2.25 (m, 1H), 2.00 (dd, *J* = 12.3, 4.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.12, 140.17, 136.11, 133.32, 129.61, 128.32, 127.28, 125.04, 113.76, 96.05, 66.37, 45.32, 33.47, 21.47. Enantiomeric excess: 87%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 80/20; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 26.5 min, second peak: t_R = 31.9 min; HRMS (ESI) m/z calcd. for C₁₇H₁₆ClNNaO₃S [M+Na]⁺ = 372.0432, found = 372.0423; IR spectrum (neat) (cm⁻¹) = 2884, 1356, 1167, 1090, 961, 930, 881, 669, 590.

(3aR,8aR)-5-methyl-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3da; amorphous colorless solid (hexane/EtOAc = 8:1, 95% isolated yield); m.p. = 53-54 °C; $[\alpha]_D^{20}$ = 49.781 (*c* = 0.55, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 1H), 7.23 (d, *J* = 8.1 Hz, 2H), 6.97 (d, *J* = 8.3 Hz, 1H), 6.93 (s, 1H), 6.21 (d, *J* = 6.6 Hz, 1H), 3.95 (t, *J* = 7.9 Hz, 1H), 3.84 (t, *J* = 7.5 Hz, 1H), 3.34 – 3.29 (m, 1H), 2.36 (s, 3H), 2.30 – 2.22 (m, 4H), 2.00 (dd, *J* = 12.2, 4.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 143.70, 139.14, 136.42, 133.21, 131.46, 129.47, 128.84, 127.27, 125.40, 112.70, 95.91, 66.37, 45.45, 33.57, 21.43, 20.77. Enantiomeric excess: 95%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 15.7 min, second peak: t_R = 22.9 min; HRMS (ESI) m/z calcd. for C₁₈H₁₉NNaO₃S [M+Na]⁺ = 352.0978, found = 352.0975; IR spectrum (neat) (cm⁻¹) = 2880, 1599, 1354, 1165, 1092, 991, 880, 814, 708, 662, 578.

(3aR,8aR)-5-methoxy-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ea; colorless solid (hexane/EtOAc = 5:1, 93% isolated yield); m.p. = 151-153 °C; $[\alpha]_D^{20}$ = 81.647 (*c* = 0.54, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.8 Hz, 1H), 7.22 (d, *J* = 8.2 Hz, 2H), 6.72 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.68 (d, *J* = 2.4 Hz, 1H), 6.17 (d, *J* = 6.5 Hz, 1H), 3.96 (t, *J* = 8.1 Hz, 1H), 3.82 – 3.79 (m, 1H), 3.74 (s, 3H), 3.37 – 3.32 (m, 1H), 2.36 (s, 3H), 2.30 – 2.22 (m, 1H), 2.00 (dd, *J* = 12.2, 4.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 156.59, 143.73, 136.15, 134.95, 133.08, 129.48, 127.19, 114.06, 113.24, 110.77, 96.15, 66.38, 55.56, 45.64, 33.46, 21.43. Enantiomeric excess: 90%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 26.7 min, second peak: t_R = 44.4 min; HRMS (ESI) m/z calcd. for C₁₈H₁₉NNaO₄S [M+Na]⁺ = 368.0927, found = 368.0919; IR spectrum (neat) (cm⁻¹) = 2884, 1198, 1084, 961, 928, 881, 733, 669.

(3aR,8aR)-8-tosyl-5-(trifluoromethyl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3fa; amorphous colorless solid (hexane/EtOAc = 8:1, 96% isolated yield); m.p. = 52-53 °C; $[\alpha]_D^{20}$ = 4.896 (*c* = 0.625, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 2H), 7.45 – 7.41 (m, 2H), 7.38 (s, 1H), 7.28 (d, *J* = 8.1 Hz, 2H), 6.35 (d, *J* = 6.6 Hz, 1H), 4.02 – 3.96 (m, 2H), 3.31 – 3.26 (m, 1H), 2.39 (s, 3H), 2.37 – 2.230 (m, 1H), 2.05 (dd, *J* = 12.4, 4.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.38, 136.20, 132.02, 129.70, 127.41, 126.05 (q, *J* = 3.9 Hz), 125.50 (q, *J* = 32.6 Hz), 124.08 (q, *J* = 271.6 Hz), 122.08 (q, *J* = 3.7 Hz), 112.16, 96.13, 66.38, 45.26, 33.60, 21.50. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.64. Enantiomeric excess: 94%, determined by HPLC (Chiralpak AD-H, hexane/*i*-PrOH = 80/20; flow rate

0.8 ml/min; 25 °C; 254 nm), first peak: $t_R = 11.2$ min, second peak: $t_R = 14.5$ min; HRMS (ESI) m/z calcd. for $C_{18}H_{16}F_3NNaO_3S$ [M+Na]⁺ = 406.0695, found = 406.0692; IR spectrum (neat) (cm⁻¹) = 2880, 1620, 1445, 1337, 1285, 1167, 1121, 1078, 989, 961, 877, 721, 664, 596.

(3aR,8aR)-8-tosyl-5-(trifluoromethoxy)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ga; colorless solid (hexane/EtOAc = 8:1, 87% isolated yield); m.p. = 46-48 °C; $[\alpha]_D^{20}$ = 12.339 (*c* = 0.53, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.7 Hz, 1H), 7.28 (d, *J* = 9.1 Hz, 2H), 7.03 – 7.00 (m, 2H), 6.30 (d, *J* = 6.6 Hz, 1H), 4.00 (t, *J* = 8.0 Hz, 1H), 3.92 (t, *J* = 7.6 Hz, 1H), 3.35 – 3.30 (m, 1H), 2.39 (s, 3H), 2.36 – 2.28 (m, 1H), 2.01 (dd, *J* = 12.4, 4.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 145.11 (d, *J* = 1.8 Hz), 144.21, 140.14, 136.23, 133.14, 129.67, 127.36, 121.33, 120.38 (q, *J* = 256.8 Hz), 118.15, 113.21, 96.20, 66.37, 45.39, 33.55, 21.49. ¹⁹F NMR (376 MHz, CDCl₃) δ - 58.24. Enantiomeric excess: 87%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 80/20; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 15.0 min, second peak: t_R = 19.6 min; HRMS (ESI) m/z calcd. for C₁₈H₁₆F₃NNaO₄S [M+Na]⁺ = 422.0644, found = 422.0639; IR spectrum (neat) (cm⁻¹) = 2874, 1599, 1485, 1357, 1250, 1161, 1094, 991, 872, 814, 662, 586.

(3aR,8aR)-6-fluoro-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ha; colorless solid (hexane/EtOAc = 8:1, 75% isolated yield); m.p. = 51-53 °C; $[\alpha]_D^{20} = 10.2$ (*c* = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 9.2 Hz, 2H), 7.10 (dd, *J* = 9.9, 2.3 Hz, 1H), 7.06 – 7.01 (m, 1H), 6.67 (td, *J* = 8.6, 2.3 Hz, 1H), 6.29 (d, *J* = 6.6 Hz, 1H), 3.97 (t, *J* = 8.1 Hz, 1H), 3.87 (t, *J* = 7.4 Hz, 1H), 3.32 – 3.27 (m, 1H), 2.39 (s, 3H), 2.31 – 2.23 (m, 1H), 1.98 (dd, *J* = 12.2, 4.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.89, 161.94, 144.18, 142.73 (d, *J* = 11.9 Hz), 136.26, 129.65, 127.37, 126.69 (d, *J* = 2.6 Hz), 125.52 (d, *J* = 10.0 Hz), 110.02 (d, *J* = 22.9 Hz), 100.99 (d, *J* = 28.6 Hz), 96.59, 66.40, 44.93, 33.74, 21.50. ¹⁹F NMR (282 MHz, CDCl₃) δ -112.53. Enantiomeric excess: 95%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 13.5 min, second peak: t_R = 16.5 min; HRMS (ESI) m/z calcd. for C₁₇H₁₆FNNaO₃S [M+Na]⁺ = 356.0727, found = 356.0719; IR spectrum (neat) (cm⁻¹) = 2874, 1603, 1437, 1350, 1161, 1143, 1099, 999, 864, 813, 706, 664, 583.

(3aR,8aR)-6-chloro-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ia; colorless solid (hexane/EtOAc = 8:1, 67% isolated yield); m.p. = 93-94 °C; $[\alpha]_D^{20} = 10.782$ (*c* = 0.46, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 1.8 Hz, 1H), 7.28 (d, *J* = 8.1 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 1H), 6.95 (dd, *J* = 8.0, 1.8 Hz, 1H), 6.27 (d, *J* = 6.6 Hz, 1H), 3.97 (t, *J* = 8.0 Hz, 1H), 3.89 – 3.86 (m, 1H), 3.30 – 3.25 (m, 1H), 2.40 (s, 3H), 2.32 – 2.24 (m, 1H), 1.97 (dd, *J* = 12.3, 4.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.20, 142.58, 136.25, 134.10, 129.85, 129.68, 127.36,

125.60, 123.48, 113.05, 96.29, 66.37, 45.08, 33.63, 21.52. Enantiomeric excess: 92%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: $t_R = 13.9$ min, second peak: $t_R = 18.5$ min; HRMS (ESI) m/z calcd. for $C_{17}H_{16}CINNaO_3S$ [M+Na]⁺ = 372.0432, found = 372.0420; IR spectrum (neat) (cm⁻¹) = 2874, 1418, 1356, 1169, 1092, 1078, 993, 961, 881, 665, 583.

(3aR,8aR)-6-methyl-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ja; amorphous colorless solid (hexane/EtOAc = 8:1, 66% isolated yield); m.p. = 98-99 °C; $[\alpha]_D^{20}$ = 21.220 (*c* = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 9.4 Hz, 2H), 7.20 (s, 1H), 7.00 (d, *J* = 7.6 Hz, 1H), 6.80 (d, *J* = 7.6 Hz, 1H), 6.24 (d, *J* = 6.6 Hz, 1H), 3.95 (t, *J* = 8.0 Hz, 1H), 3.85 (t, *J* = 7.5 Hz, 1H), 3.34 – 3.28 (m, 1H), 2.38 (s, 3H), 2.31 (s, 3H), 2.28 – 2.23 (m, 1H), 1.98 (dd, *J* = 12.2, 4.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 143.76, 141.62, 138.50, 136.67, 129.52, 128.42, 127.33, 124.44, 124.29, 113.49, 96.08, 66.38, 45.18, 33.72, 21.66, 21.49. Enantiomeric excess: 93%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 11.6 min, second peak: t_R = 17.1 min; HRMS (ESI) m/z calcd. for C₁₈H₁₉NNaO₃S [M+Na]⁺ = 352.0978, found = 352.0975; IR spectrum (neat) (cm⁻¹) = 2886, 1612, 1493, 1350, 1165, 1094, 961, 928, 814, 733, 665, 584.

methyl (3aR,8aR)-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole-6-carboxylate

3ka; colorless solid (hexane/EtOAc = 5:1, 72% isolated yield); m.p. = 173-175 °C; $[\alpha]_D^{20}$ = 16.8 (*c* = 0.625, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 1.1 Hz, 1H), 7.89 (d, *J* = 8.3 Hz, 2H), 7.71 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.27 (d, *J* = 10 Hz, 2H), 7.20 (d, *J* = 7.8 Hz, 1H), 6.32 (d, *J* = 6.6 Hz, 1H), 4.00 – 3.93 (m, 2H), 3.91 (s, 3H), 3.30 – 3.24 (m, 1H), 2.38 (s, 3H), 2.36 – 2.29 (m, 1H), 2.03 (dd, *J* = 12.0, 4.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.49, 144.12, 141.82, 136.59, 136.24, 130.66, 129.63, 127.41, 125.25, 124.72, 113.33, 95.99, 66.34, 52.23, 45.50, 33.52, 21.50. Enantiomeric excess: 80%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 60/40; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 21.1 min, second peak: t_R = 40.0 min; HRMS (ESI) m/z calcd. for C₁₉H₁₉NNaO₅S [M+Na]⁺ = 396.0876, found = 396.0866; IR spectrum (neat) (cm⁻¹) = 2884, 1368, 1088, 961, 928, 881, 750, 665, 586.

(3aR,8aR)-8-tosyl-6-(trifluoromethyl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3la; colorless solid (hexane/EtOAc = 8:1, 84% isolated yield); m.p. = 124-126 °C; $[\alpha]_D^{20} = 2.8$ (*c* = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.3 Hz, 2H), 7.61 (s, 1H), 7.29 – 7.24 (m, 4H), 6.32 (d, *J* = 6.6 Hz, 1H), 4.01 – 3.94 (m, 2H), 3.30 – 3.25 (m, 1H), 2.39 (s, 3H), 2.36 – 2.30 (m, 1H), 2.02 (dd, *J* = 12.5, 4.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.37, 142.02, 136.07, 135.33, 130.88 (q, *J* = 32.4 Hz), 129.71, 127.39, 125.22, 123.82 (q, *J* = 272.5 Hz), 120.46 (q, *J* = 3.9 Hz), 109.43 (q, *J* = 3.9 Hz), 96.07, 66.36, 45.40, 33.55, 21.50. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.34. Enantiomeric excess: 85%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 10.3 min, second peak: t_R = 13.0 min; HRMS (ESI) m/z calcd. for C₁₈H₁₆F₃NNaO₃S [M+Na]⁺ = 406.0695, found = 406.0691; IR spectrum (neat) (cm⁻¹) = 2884, 1435, 1361, 1317, 1168, 1121, 1092, 1078, 961, 732, 664.

(3aR,8aR)-4-fluoro-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ma; colorless solid (hexane/EtOAc = 8:1, 81% isolated yield); m.p. = 94-95 °C; $[\alpha]_D^{20} = 17.232$ (*c* = 0.625, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.4 Hz, 2H), 7.27 – 7.26 (m, 2H), 7.18 – 7.12 (m, 2H), 6.69 – 6.65 (m, 1H), 6.30 (d, *J* = 6.7 Hz, 1H), 4.02 – 3.99 (m, 2H), 3.36 – 3.31 (m, 1H), 2.38 (s, 3H), 2.28 – 2.20 (m, 1H), 2.14 (dd, *J* = 12.5, 4.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 160.00, 158.03, 144.11, 143.60 (d, *J* = 8.4 Hz), 136.21, 130.18 (d, *J* = 8.4 Hz), 129.58, 127.33, 117.42 (d, *J* = 20.6 Hz), 110.18 (d, *J* = 20.0 Hz), 108.49 (d, *J* = 3.3 Hz), 96.22, 66.47, 42.77, 31.84, 21.47. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.56. Enantiomeric excess: 93%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 14.3 min, second peak: t_R = 18.9 min; HRMS

(ESI) m/z calcd. for $C_{17}H_{16}FNNaO_3S [M+Na]^+ = 356.0727$, found = 356.0724; IR spectrum (neat) (cm⁻¹)

= 2897, 1626, 1362, 1240, 1171, 1088, 961, 881, 777, 733, 664.

(3aR,8aR)-4-methyl-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3na; amorphous colorless solid (hexane/EtOAc = 8:1, 51% isolated yield); m.p. = 57-59 °C; $[\alpha]_D^{20}$ = 7.44 (*c* = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.24 (dd, *J* = 8.3, 2.7 Hz, 3H), 7.08 (t, *J* = 7.9 Hz, 1H), 6.79 (d, *J* = 7.6 Hz, 1H), 6.29 (d, *J* = 6.9 Hz, 1H), 4.00 – 3.96 (m, 1H), 3.89 – 3.85 (m, 1H), 3.41 – 3.36 (m, 1H), 2.37 (s, 3H), 2.31 – 2.22 (m, 4H), 1.97 (dd, *J* = 12.2, 5.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 143.81, 141.30, 136.47, 134.52, 129.54, 128.34, 127.38, 124.76, 110.20, 95.91, 65.93, 44.65, 32.19, 21.51, 18.50. Enantiomeric excess: 93%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 13.9 min, second peak: t_R = 20.0 min; HRMS (ESI) m/z calcd. for C₁₈H₁₉NNaO₃S [M+Na]⁺ = 352.0978, found = 352.0972; IR spectrum (neat) (cm⁻¹) = 2886, 1458, 1356, 1250, 1167, 1084, 1051, 961, 927, 881, 775, 662, 578.

(3aR,8aR)-7-fluoro-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

30a; colorless solid (hexane/EtOAc = 8:1, 66% isolated yield); m.p. = 66-67 °C; $[\alpha]_D^{20}$ = 3.18 (*c* = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 7.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 6.96 – 6.94 (m, 2H), 6.88 – 6.84 (m, 1H), 6.60 (d, *J* = 6.4 Hz, 1H), 4.09 – 4.03 (m, 2H), 3.47 – 3.42 (m, 1H), 2.41 (s, 3H), 2.39 –2.33 (m, 1H), 2.07 (dd, *J* = 12.3, 4.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 150.22, 148.23, 143.52, 137.76 (d, *J* = 1.6 Hz), 136.14 (d, *J* = 2.8 Hz), 129.31, 128.61 (d, *J* = 10.5 Hz), 127.52 (d, *J* = 2.2 Hz), 124.92 (d, *J* = 6.6 Hz), 120.35 (d, *J* = 3.3 Hz), 116.29 (d, *J* = 20.3 Hz), 96.35, 66.43, 45.83, 33.60, 21.52. ¹⁹F NMR (376 MHz, CDCl₃) δ -120.54. Enantiomeric excess: 87%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 18.1 min, second peak: t_R = 38.4 min; HRMS (ESI) m/z calcd. for C₁₇H₁₆FNNaO₃S [M+Na]⁺ = 356.0727, found = 356.0718; IR spectrum (neat) (cm⁻¹) = 2876, 1597, 1348, 1258, 1165, 1094, 1074, 988, 961, 816, 779, 660, 596.

(3aR,8aR)-5,6-difluoro-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3pa; colorless solid (hexane/EtOAc = 8:1, 84% isolated yield); m.p. = 123-125 °C; $[\alpha]_D^{20} = 20.537$ (*c* = 0.54, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 7.25 – 7.23 (m, 1H), 6.95 – 6. 91 (m, 1H), 6.25 (d, *J* = 6.6 Hz, 1H), 3.99 (t, *J* = 8.0 Hz, 1H), 3.85 (t, *J* = 7.5 Hz, 1H), 3.33 – 3.28 (m, 1H), 2.40 (s, 3H), 2.32 – 2.24 (m, 1H), 1.96 (dd, *J* = 12.4, 4.6 Hz, 1H). ¹³C NMR

(126 MHz, CDCl₃) δ 151.07 (d, *J* = 13.8 Hz), 149.10 (d, *J* = 13.8 Hz), 148.02 (d, *J* = 13.7 Hz), 146.08 (d, *J* = 13.7 Hz), 144.35, 137.51 (dd, *J* = 9.6, 2.3 Hz), 135.94, 129.73, 127.31, 126.90 (dd, *J* = 5.9, 3.4 Hz), 113.41 (d, *J* = 19.5 Hz), 102.84 (d, *J* = 23.8 Hz), 96.42, 66.39, 45.20, 33.55, 21.52. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.09 (d, *J* = 20.4 Hz), -143.62 (d, *J* = 20.3 Hz). Enantiomeric excess: 89%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 16.1 min, second peak: t_R = 20.4 min; HRMS (ESI) m/z calcd. for C₁₇H₁₅F₂NNaO₃S [M+Na]⁺ = 374.0633, found = 374.0627; IR spectrum (neat) (cm⁻¹) = 2882, 1447, 1368, 1202, 1167, 1088, 961, 928, 881, 662, 610.

(7aR,10aR)-7-tosyl-7a,9,10,10a-tetrahydro-7H-furo[3',2':4,5]pyrrolo[3,2-f]quinoxaline

3qa; colorless solid (hexane/EtOAc = 2:1, 87% isolated yield); m.p. = 210-211 °C; $[\alpha]_D^{20}$ = 96.898 (*c* = 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.75 (dd, *J* = 17.0, 1.8 Hz, 2H), 8.01 (q, *J* = 9.2 Hz, 2H), 7.89 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 6.8 Hz, 2H), 6.47 (d, *J* = 6.8 Hz, 1H), 4.44 – 4.41 (m, 1H), 4.06 – 4.03 (m, 1H), 3.35 – 3.30 (m, 1H), 2.48 – 2.40 (m, 2H), 2.37 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.04, 144.32, 143.22, 142.63, 140.62, 139.89, 136.29, 130.85, 129.78, 127.28, 125.12, 117.39, 97.04, 66.67, 44.51, 32.44, 21.51. Enantiomeric excess: 95%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 60/40; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 24.2 min, second peak: t_R = 30.3 min; HRMS (ESI) m/z calcd. for C₁₉H₁₇N₃NaO₃S [M+Na]⁺ = 390.0883, found = 390.0881; IR spectrum (neat) (cm⁻¹) = 2884, 1362, 1348, 1258, 1161, 1080, 961, 947, 928, 881, 619, 588.

(3aR,8aR)-8-(phenylsulfonyl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ra; amorphous colorless solid (hexane/EtOAc = 8:1, 92% isolated yield); m.p. = 49-51 °C; $[\alpha]_D^{20}$ = 12.061 (*c* = 0.65, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.99 (dd, *J* = 8.3, 1.0 Hz, 2H), 7.55 – 7.52 (m, 1H), 7.45 (dd, *J* = 10.6, 4.8 Hz, 2H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.19 – 7.13 (m, 2H), 6.99 (td, *J* = 7.5, 0.7 Hz, 1H), 6.28 (d, *J* = 6.6 Hz, 1H), 3.96 (t, *J* = 8.0 Hz, 1H), 3.91 (t, *J* = 7.5 Hz, 1H), 3.32 – 3.26 (m, 1H), 2.33 – 2.25 (m, 1H), 2.02 (dd, *J* = 12.2, 4.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.36, 139.50, 132.96, 131.30, 128.89, 128.36, 127.27, 124.89, 123.58, 112.71, 95.74, 66.38, 45.49, 33.63. Enantiomeric excess: 95%, determined by HPLC (Chiralpak OJ-3, hexane/*i*-PrOH = 80/20; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 18.8 min, second peak: t_R = 24.8 min; HRMS (ESI) m/z calcd. for C₁₆H₁₅NNaO₃S [M+Na]⁺ = 324.0665, found = 324.0661; IR spectrum (neat) (cm⁻¹) = 2884, 1362, 1169, 1080, 961, 881, 752, 592.

(3aS,8aR)-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6aa; pale yellow oil (hexane/Et₂O = 20:1, 60% isolated yield); $[\alpha]_D^{20} = -94.038$ (*c* = 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, *J* = 7.4 Hz, 1H), 7.14 (t, *J* = 7.7 Hz, 1H), 6.90 (td, *J* = 7.4, 0.7 Hz, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 6.31 (d, *J* = 5.7 Hz, 1H), 4.06 (t, *J* = 8.2 Hz, 1H), 4.00 (dd, *J* = 8.3, 5.9 Hz, 1H), 3.64 – 3.59 (m, 1H), 2.34 – 2.26 (m, 1H), 2.07 (dd, *J* = 12.2, 4.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.41, 128.66, 127.61, 124.67, 121.11, 110.85, 109.17, 67.18, 46.50, 33.54. Enantiomeric excess: 96%, determined by HPLC (Chiralpak IC, hexane/*i*-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 210 nm), first peak: t_R = 10.3 min, second peak: t_R = 13.0 min; HRMS (ESI) m/z calcd. for C₁₀H₁₀NaO₂ [M+Na]⁺ = 185.0573, found = 185.0589; IR spectrum (neat) (cm⁻¹) = 2974, 1198, 1166, 1083, 961, 928, 882, 779, 733, 669.

(3aS,8aR)-5-fluoro-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6ba; pale yellow oil (hexane/Et₂O = 20:1, 77% isolated yield); $[\alpha]_D^{20} = -149.872$ (*c* = 0.4, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 6.90 – 6.88 (m, 1H), 6.83 (td, *J* = 8.9, 2.7 Hz, 1H), 6.71 (dd, *J* = 8.7, 4.2 Hz, 1H), 6.32 (d, *J* = 5.7 Hz, 1H), 4.08 (t, *J* = 8.2 Hz, 1H), 4.00 (dd, *J* = 8.2, 6.0 Hz, 1H), 3.65 – 6.60 (m, 1H), 2.34 – 2.26 (m, 1H), 2.05 (dd, *J* = 12.3, 4.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.81 (d, *J* = 237.6 Hz), 155.34 (d, *J* = 1.4 Hz), 128.89 (d, *J* = 8.5 Hz), 114.94 (d, *J* = 24.1 Hz), 111.63 (d, *J* = 24.7 Hz), 111.47, 109.41 (d, *J* = 8.5 Hz), 67.21, 46.86 (d, *J* = 1.7 Hz), 33.40. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.52. Enantiomeric excess: 98%, determined by HPLC (Chiralpak OD-H, hexane/*i*-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 210 nm), first peak: t_R = 8.5 min, second peak: t_R = 9.6 min; HRMS (ESI) m/z calcd. for

 $C_{10}H_9FNaO_2 [M+Na]^+ = 203.0479$, found = 203.0493; IR spectrum (neat) (cm⁻¹) = 2986, 1447, 1234, 1190, 1165, 1126, 1097, 1072, 960, 926, 856, 799, 740, 715, 573.

(3aS,8aR)-5-methyl-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6ca; pale yellow oil (hexane/Et₂O = 20:1, 53% isolated yield); $[\alpha]_D^{20} = -168.117$ (*c* = 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 6.98 (s, 1H), 6.93 (dd, *J* = 8.1, 0.6 Hz, 1H), 6.69 (d, *J* = 8.1 Hz, 1H), 6.27 (d, *J* = 5.7 Hz, 1H), 4.05 (t, *J* = 8.1 Hz, 1H), 3.95 (dd, *J* = 8.3, 5.9 Hz, 1H), 3.63 – 3.58 (m, 1H), 2.31 – 2.23 (m, 1H), 2.28 (s, 3H), 2.06 – 2.03 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.31, 130.37, 129.01, 127.51, 125.14, 110.91, 108.65, 67.13, 46.54, 33.48, 20.73. Enantiomeric excess: 95%, determined by HPLC (Chiralpak OD-H, hexane/*i*-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 210 nm), first peak: t_R = 8.0 min, second peak: t_R = 8.4 min; HRMS (ESI) m/z calcd. for C₁₁H₁₂NaO₂ [M+Na]⁺ = 199.0730, found = 199.0732; IR spectrum (neat) (cm⁻¹) = 2976, 1458, 1448, 1307, 1246, 1202, 1072, 1022, 957, 831, 808, 745, 654.

$(3aS, 8aR) \hbox{-} 5 \hbox{-} methyl \hbox{-} 2, 3, 3a, 8a \hbox{-} tetrahydrofuro [2, 3-b] benzofuran$

6da; pale yellow oil (hexane/Et₂O = 10:1, 72% isolated yield); $[\alpha]_D^{20} = -182.367$ (c = 0.54, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 6.78 (d, J = 2.4 Hz, 1H), 6.73 – 6.69 (m, 2H), 6.29 (d, J = 5.7 Hz, 1H), 4.07 (t, J = 8.1 Hz, 1H), 3.99 (dd, J = 8.4, 5.8 Hz, 1H), 3.77 (s, 3H), 3.66 – 3.61 (m, 1H), 2.34 – 2.25 (m, 1H), 2.10 – 2.06 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 154.52, 153.44, 128.44, 113.53, 111.07, 110.70, 109.08, 67.12, 55.89, 46.96, 33.39. Enantiomeric excess: 98%, determined by HPLC (Chiralpak IC, hexane/*i*-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 210 nm), first peak: t_R = 20.3 min, second peak: t_R = 24.8 min; HRMS (ESI) m/z calcd. for C₁₁H₁₂NaO₃ [M+Na]⁺ = 215.0679, found = 215.0676; IR spectrum (neat) (cm⁻¹) = 2980, 1240, 1198, 1076, 1068, 959, 928, 810, 739, 656.

(3aS,8aR)-5-methyl-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6ea; pale yellow oil (hexane/Et₂O = 20:1, 51% isolated yield); $[\alpha]_D^{20} = -138.84$ (*c* = 0.25, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.09 (dd, *J* = 7.8, 6.1 Hz, 1H), 6.62 – 6.58 (m, 1H), 6.52 (dd, *J* = 9.4, 2.3 Hz, 1H), 6.34 (d, *J* = 5.7 Hz, 1H), 4.08 (t, *J* = 8.2 Hz, 1H), 3.97 – 3.94 (m, 1H), 3.65 – 3.60 (m, 1H), 2.32 – 2.24 (m, 1H), 2.03 (dd, *J* = 12.2, 4.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.33 (d, *J* = 244.2 Hz), 160.45 (d, *J* = 13.1 Hz), 124.94 (d, *J* = 10.5 Hz), 123.28 (d, *J* = 2.6 Hz), 112.17, 107.76 (d, *J* = 22.8 Hz), 97.61 (d, *J* = 26.5 Hz), 67.28, 45.88, 33.59. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.10. Enantiomeric excess: 90%, determined by HPLC (Chiralpak OD-H, hexane/*i*-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 210 nm), first peak: t_R = 6.6 min, second peak: t_R = 7.7 min; HRMS (ESI) m/z calcd. for C₁₀H₉FNaO₂ [M+Na]⁺

= 203.0479, found = 203.0488; IR spectrum (neat) (cm⁻¹) = 2984, 1610, 1439, 1325, 1256, 1132, 1074, 957, 918, 837, 800, 752, 610.

(3aS,8aR)-6-methyl-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6fa; pale yellow oil (hexane/Et₂O = 20:1, 58% isolated yield); $[\alpha]_D^{20} = -125.319$ (c = 0.25, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.05 (d, J = 7.5 Hz, 1H), 6.72 (dd, J = 7.5, 0.5 Hz, 1H), 6.63 (s, 1H), 6.29 (d, J = 5.7 Hz, 1H), 4.05 (t, J = 8.1 Hz, 1H), 3.95 (dd, J = 7.8, 6.2 Hz, 1H), 3.63 – 3.58 (m, 1H), 2.30 (s, 3H), 2.29 – 2.22 (m, 1H), 2.03 (dd, J = 12.1, 4.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.63, 138.91, 124.61, 124.20, 121.83, 111.13, 109.82, 67.15, 46.24, 33.58, 21.47. Enantiomeric excess: 92%, determined by HPLC (Chiralpak IC, hexane/*i*-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 210 nm), first peak: t_R = 10.2 min, second peak: t_R = 13.8 min; HRMS (ESI) m/z calcd. for C₁₁H₁₂NaO₂ [M+Na]⁺ = 199.0730, found = 199.0725; IR spectrum (neat) (cm⁻¹) = 2978, 1591, 1445, 1321, 1252, 1072, 943, 922, 800, 750, 627, 590.

(3aS,8aR)-7-fluoro-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6ga; pale yellow oil (hexane/Et₂O = 20:1, 64% isolated yield); $[\alpha]_D^{20} = -91.870$ (c = 0.4, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 6.97 – 6.91 (m, 2H), 6.85 – 6.81 (m, 1H), 6.39 (d, J = 5.6 Hz, 1H), 4.10 (t, J = 8.2 Hz, 1H), 4.05 (dd, J = 8.5, 5.7 Hz, 1H), 3.68 – 3.63 (m, 1H), 2.35 – 2.27 (m, 1H), 2.08 (dd, J = 12.3, 4.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 146.51 (d, J = 246.4 Hz), 146.04 (d, J = 10.5 Hz), 131.23 (d, J = 3.0 Hz), 121.61 (d, J = 5.6 Hz), 119.95 (d, J = 3.5 Hz), 115.75 (d, J = 16.9 Hz), 112.19, 67.41, 46.95 (d, J = 2.0 Hz), 33.39. ¹⁹F NMR (376 MHz, CDCl₃) δ -137.96. Enantiomeric excess: 98%, determined by HPLC (Chiralpak OD-H, hexane/*i*-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 210 nm), first peak: t_R = 7.7 min, second peak: t_R = 9.3 min; HRMS (ESI) m/z calcd. for C₁₀H₉FNaO₂ [M+Na]⁺ = 203.0479, found = 203.0482; IR spectrum (neat) (cm⁻¹) = 2989, 1599, 1470, 1323, 1260, 1176, 1074, 943, 924, 814, 773, 731, 696, 642.

(3aS,8aR)-7-methoxy-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6ha; pale yellow oil (hexane/Et₂O = 10:1, 61% isolated yield); $[\alpha]_D^{20} = -113.542$ (*c* = 0.625, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 6.88 – 6.85 (m, 1H), 6.81 – 6.80 (m, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 6.35 (d, *J* = 5.7 Hz, 1H), 4.08 – 4.00 (m, 2H), 3.87 (s, 3H), 3.66 – 3.61 (m, 1H), 2.32 – 2.26 (m, 1H), 2.06 (dd, *J* = 12.2, 4.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 147.71, 143.64, 128.63, 121.66, 116.61, 111.63, 111.35, 67.19, 55.88, 47.01, 33.28. Enantiomeric excess: 99%, determined by HPLC (Chiralpak OD-H,

hexane/*i*-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: $t_R = 20.8$ min, second peak: $t_R = 30.0$ min; HRMS (ESI) m/z calcd. for $C_{11}H_{12}NaO_3$ [M+Na]⁺ = 215.0679, found = 215.0680; IR spectrum (neat) (cm⁻¹) = 2982, 1618, 1593, 1460, 1302, 1271, 1198, 1060, 939, 771, 731, 648.

(2R,3aR,8aR)-2-(p-tolyl)-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ab; colorless solid (hexane/EtOAc = 7:1, 52% isolated yield); m.p. = 161-163 °C; $[\alpha]_D^{20} = 13.927$ (*c* = 0.55, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 8.3 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 1H), 7.21 – 7.15 (m, 4H), 7.12 (s, 4H), 7.01 (td, *J* = 7.5, 0.7 Hz, 1H), 6.49 (d, *J* = 6.6 Hz, 1H), 4.42 (dd, *J* = 11.2, 4.4 Hz, 1H), 4.04 (t, *J* = 7.4 Hz, 1H), 2.33 (s, 3H), 2.33 (s, 3H), 2.30 (d, *J* = 4.5 Hz, 1H), 2.24 – 2.18 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 143.73, 141.62, 137.59, 136.65, 136.17, 131.44, 129.43, 128.93, 128.41, 127.52, 126.11, 124.85, 123.42, 112.64, 95.46, 79.18, 46.24, 42.13, 21.42, 21.09. Enantiomeric excess: 85%, determined by HPLC (Chiralpak AD-H, hexane/*i*-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 11.4 min, second peak: t_R = 14.7 min; HRMS (ESI) m/z calcd. for C₂₄H₂₃NNaO₃S [M+Na]⁺ = 428.1291, found = 428.1302; IR spectrum (neat) (cm⁻¹) = 2884, 1614, 1447, 1354, 1252, 1167, 1074, 961, 928, 814, 768, 733, 664.

methyl 4-((2R,3aR,8aR)-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-2-yl)benzoate

3ac; colorless solid (hexane/EtOAc = 4:1, 48% isolated yield); m.p. = 166-168 °C; $[\alpha]_D^{20}$ = 5.673 (*c* = 0.55, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 8.3 Hz, 2H), 7.87 (d, *J* = 8.3 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 1H), 7.33 (d, *J* = 8.2 Hz, 2H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.17 (t, *J* = 6.8 Hz, 3H), 7.03 (dd, *J* = 7.5, 7.0 Hz, 1H), 6.51 (d, *J* = 6.6 Hz, 1H), 4.50 (dd, *J* = 11.3, 4.4 Hz, 1H), 4.07 (t, *J* = 7.4 Hz, 1H), 3.91 (s, 3H), 2.40 (dd, *J* = 12.3, 4.5 Hz, 1H), 2.32 (s, 3H), 2.21 – 2.15 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.74, 144.63, 143.89, 141.56, 136.49, 131.08, 129.58, 129.45, 128.59, 127.41, 125.81, 124.86, 123.61, 112.83, 95.57, 78.69, 52.03, 46.25, 42.22, 21.40. Enantiomeric excess: 90%, determined by HPLC (Chiralpak OJ-H, hexane/*i*-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 38.0 min, second peak: t_R = 52.3 min; HRMS (ESI) m/z calcd. for C₂₅H₂₃NNaO₅S [M+Na]⁺ = 472.1189, found = 472.1199; IR spectrum (neat) (cm⁻¹) = 2884, 1612, 1277, 1250, 1198, 1082, 1067, 959, 930, 815, 733, 665.

(2R,3aR,8aR)-2-(benzofuran-5-yl)-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ad; pale yellow solid (hexane/EtOAc = 7:1, 87% isolated yield); m.p. = 59-60 °C; $[\alpha]_D^{20}$ = 12.613 (*c* = 0.463, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 8.3 Hz, 2H), 7.60 (d, *J* = 2.2 Hz, 1H), 7.49 (d, *J* = 1.5 Hz, 1H), 7.43 – 7.41 (m, 2H), 7.21 – 7.13 (m, 5H), 7.06 – 7.01 (m, 1H), 6.72 (dd, *J* = 2.1, 0.8 Hz, 1H), 6.53 (d, *J* = 6.6 Hz, 1H), 4.55 (dd, *J* = 11.2, 4.4 Hz, 1H), 4.07 (t, *J* = 7.4 Hz, 1H), 2.37 (dd, *J* = 12.4, 4.5 Hz, 1H), 2.32 (s, 3H), 2.29 – 2.22 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 154.57, 145.41, 143.76, 141.64, 136.63, 133.77, 131.44, 129.44, 128.45, 127.49, 124.88, 123.48, 122.58, 121.52, 118.88, 112.70, 111.07, 106.51, 95.47, 79.48, 46.29, 42.61, 21.40. Enantiomeric excess: 86%, determined by HPLC (Chiralpak OJ-H, hexane/*i*-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 16.5 min, second peak: t_R = 23.9 min; HRMS (ESI) m/z calcd. for C₂₅H₂₁NNaO₄S [M+Na]⁺ = 454.1083, found = 454.1087; IR spectrum (neat) (cm⁻¹) = 2884, 1481, 1352, 1167, 1092, 1074, 1005, 961, 949, 814, 743, 662.

$(2R,3aS,8aR) - 2 - (p-tolyl) - 2,3,3a,8a-tetrahydrofuro \cite{2,3-b}\cite{benzofuran} benzofuran$

6ab; pale yellow oil (hexane/Et₂O = 20:1, 78% isolated yield); $[\alpha]_D^{20} = -54.179$ (c = 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.23 – 7.20 (m, 3H), 7.18 (d, J = 7.7 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 6.94 (td, J = 7.4, 0.7 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.47 (d, J = 5.8 Hz, 1H), 4.86 (dd, J = 11.3, 4.6 Hz, 1H), 4.14 (dd, J = 8.0, 6.1 Hz, 1H), 2.40 (dd, J = 12.4, 4.6 Hz, 1H), 2.33 (s, 3H), 2.25 – 2.19 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.56, 137.60, 136.50, 129.05, 128.79, 127.82, 126.00, 124.70, 121.19, 110.51, 109.35, 80.04, 47.36, 42.09, 21.11. Enantiomeric excess: 95%, determined by HPLC (Chiralpak IF, hexane/*i*-PrOH = 95/5; flow rate 0.8 ml/min; 25 °C; 220 nm), first peak: t_R = 10.2 min, second peak: t_R = 11.0 min; HRMS (ESI) m/z calcd. for C₁₇H₁₆NaO₂ [M+Na]⁺ = 275.1043, found = 275.1050; IR spectrum (neat) (cm⁻¹) = 2982, 1597, 1477, 1460, 1323, 1246, 1223, 1180, 1098, 1072, 995, 981, 912, 889, 812, 748, 588.

CO₂Me

6ac; colorless solid (hexane/Et₂O = 10:1, 45% isolated yield); m.p. = 131-132 °C; $[\alpha]_D^{20} = -15.2$ (c = 0.35, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.26 – 7.19 (m, 2H), 6.96 (td, J = 7.5, 0.8 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 6.50 (d, J = 5.7 Hz, 1H), 4.93 (dd, J = 11.3, 4.6 Hz, 1H), 4.18 (dd, J = 7.9, 6.1 Hz, 1H), 3.90 (s, 3H), 2.48 (dd, J = 12.4, 4.7 Hz, 1H), 2.22 – 2.16 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.84, 159.47, 144.97, 129.72, 129.57, 128.97, 127.41, 125.72, 124.71, 121.40, 120.52, 115.26, 110.51, 109.46, 79.56, 52.09, 47.38, 42.22. Enantiomeric excess:

81%, determined by HPLC (Chiralpak AD-H, hexane/*i*-PrOH = 95/5; flow rate 0.8 ml/min; 25 °C; 220 nm), first peak: $t_R = 21.6$ min, second peak: $t_R = 23.5$ min; HRMS (ESI) m/z calcd. for $C_{18}H_{16}NaO_4$ [M+Na]⁺ = 319.0941, found = 319.0940; IR spectrum (neat) (cm⁻¹) = 2974, 2884, 1381, 1275, 1198, 1086, 947, 880, 733, 623.

(2R,3aS,8aR)-2-(benzofuran-5-yl)-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6ad; pale yellow oil (hexane/Et₂O = 20:1, 68% isolated yield); $[\alpha]_D^{20} = -48.694$ (c = 0.475, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, J = 2.2 Hz, 1H), 7.56 (d, J = 1.4 Hz, 1H), 7.45 (d, J = 8.5 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.21 – 7.18 (m, 1H), 6.95 (dd, J = 10.8, 4.0 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.72 – 6.71 (m, 1H), 6.50 (d, J = 5.8 Hz, 1H), 4.98 (dd, J = 11.3, 4.6 Hz, 1H), 4.16 (dd, J = 7.9, 6.2 Hz, 1H), 2.45 (dd, J = 12.4, 4.6 Hz, 1H), 2.30 – 2.24 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.57, 154.59, 145.42, 134.09, 128.81, 127.80, 127.40, 124.71, 122.46, 121.22, 118.80, 111.23, 110.49, 109.36, 106.55, 80.35, 47.40, 42.53. Enantiomeric excess: 94%, determined by HPLC (Chiralpak AD-H, hexane/*i*-PrOH = 95/5; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 16.9 min, second peak: t_R = 18.9 min; HRMS (ESI) m/z calcd. for C₁₈H₁₄NaO₃ [M+Na]⁺ = 301.0835, found = 301.0838; IR spectrum (neat) (cm⁻¹) = 2980, 2879, 1597, 1460, 1323, 1248, 1180, 1126, 1070, 993, 889, 814, 736.

2-((2R,3aS,8aR)-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran-2-yl)quinoline

6ae; yellow solid (hexane/Et₂O = 8:1, 53% isolated yield); m.p. = 126-128 °C; $[\alpha]_D^{20} = -9.2$ (c = 0.4, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 8.5 Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.71 – 7.67 (m, 1H), 7.63 (d, J = 8.5 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.24 (d, J = 7.4 Hz, 1H), 7.19 (td, J = 7.4, 0.6 Hz, 1H), 6.95 (t, J = 7.4 Hz, 1H), 6.88 (d, J = 8.1 Hz, 1H), 6.56 (d, J = 5.6 Hz, 1H), 5.16 (dd, J = 11.3, 4.8 Hz, 1H), 4.20 (dd, J = 7.7, 6.2 Hz, 1H), 2.69 (dd, J = 12.3, 4.7 Hz, 1H), 2.44 – 2.37 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.82, 159.38, 147.33, 137.07, 129.71, 129.54, 128.89, 127.62, 127.49 (d, J = 41.1 Hz), 126.44, 124.92, 121.42, 118.20, 115.43, 110.80, 109.41, 81.43, 47.32, 40.84. Enantiomeric excess: 89%, determined by HPLC (Chiralpak IF, hexane/*i*-PrOH = 95/5; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 19.4 min, second peak: t_R = 25.2 min; HRMS (ESI) m/z calcd. for C₁₉H₁₆NO₂ [M+H]⁺ = 290.1176, found = 290.1185; IR spectrum (neat) (cm⁻¹) = 2976, 2878, 1381, 1321, 1198, 1086, 947, 880, 752, 631.

(3aS,8aR)-8a-methyl-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6af; pale yellow oil (hexane/Et₂O = 20:1, 47% isolated yield); $[\alpha]_D^{20} = -70.12$ (c = 0.33, CH₂Cl₂); Enantiomeric excess: 83%, determined by HPLC (Chiralpak OJ-H, hexane/*i*-PrOH = 98/2; flow rate 0.5 ml/min; 25 °C; 205 nm), first peak: t_R = 14.4 min, second peak: t_R = 17.3 min. (Please refer to Mazet's work for ¹H/¹³C NMR and IR)

5. Absolute Configuration of 3 and 6

X-ray structure of **3aa** and **3ac**:

The configuration of **6aa-6ha** was determined by comparing the optical rotation with the reported ones in Mazet's work (see ref. 1).

For instance:

Me H O O H 6ca	Our work	Mazet's work	
	$[\alpha]_{D}^{20} = -168.114 \ (c = 0.5, CH_2Cl_2)$	$[\alpha]_{D}^{23} = -172.0 \ (c = 0.85, CH_2Cl_2)$	
MeO	$[\alpha]_D{}^{20} = -182.367 \ (c = 0.54, CH_2Cl_2)$	$[\alpha]_{D}^{23} = -166.8 \ (c = 0.54, CH_2Cl_2)$	
OMe 6ha	$[\alpha]_{D}^{20} = -113.542 \ (c = 0.625, CH_2Cl_2)$	$[\alpha]_{D}^{23} = -108 \ (c = 0.81, CH_2Cl_2)$	

The configuration of **6ab-6ae** was determined by comparing the optical rotation and ¹H-¹H-NOSEY-NMR spectrum with the reported one in Mazet's work (see ref. 1).

For instance:

The configuration of new modified *N*-Me-Xiang-Phos was determined according to the reported *N*-Me-Xu-Phos in our previous work, due to the same one-pot synthesis approach (see ref. 3).

6. References

1 G. M. Borrajo-Calleja, V. Bizet, C. Mazet, J. Am. Chem. Soc. 2016, 138, 4014-4017.

2 Y.-Z. Chen, M.-L. Peng, D. Zhang, L.-P. Zhang, L.-Z. Wu, C.-H. Tung, *Tetrahedron*, **2006**, *62*, 10688-10693.

3 Z.-M. Zhang, B. Xu, Y. Qian, L. Wu, Y. Wu, L. Zhou, Y. Liu, J. Zhang, *Angew. Chem.* 2018, 130, 10530-10534; *Angew. Chem. Int. Ed.* 2018, 57, 10373-10377.

7. ¹H, ¹³C, ¹⁹F, ³¹P Spectra for (*S*,*R*_{*S*})-*N*-Me-X4/X5, 3 and 6

--0.00

¹H NMR (500 MHz, CDCl₃, 298 K)

3aa ¹³C NMR (126 MHz, CDCl₃, 298 K)

C7.85 7.26 7.26 7.24 6.99 6.99 6.79 6.79 6.79

Supporting Information

3ja ¹H NMR (500 MHz, CDCl₃, 298 K)

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

---62.34

---0.00

3ma ¹H NMR (500 MHz, CDCl₃, 298 K)

90 80 fl(ppm)

3pa ¹⁹F NMR (376 MHz, CDCl₃, 298 K)

-70 -75 -80 -85 -90 -95 -10	0 -110 -120	-130 -140 fl (ppm)	-150 -160 -	170 -180	-190 -200

Supporting Information						
6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20	4.08 4.05 4.00 3.99	2889887388999999999999999 2889887388999999999999999	00.0			

6aa ¹H NMR (500 MHz, CDCl₃, 298 K)

---0.00

F H O

6ba ¹H NMR (500 MHz, CDCl₃, 298 K)

6ba ¹³C NMR (126 MHz, CDCl₃, 298 K)

-75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 fl (ppm)

Supporting Information

Me

6ca ¹H NMR (500 MHz, CDCl₃, 298 K)

$\begin{smallmatrix} 6.73\\ 6.73\\ 6.73\\ 6.69\\ 6.69\\ 6.69\\ 6.69\\ 6.29\\ 6.$

¹H NMR (500 MHz, CDCl₃, 298 K)

---0.00

-0.00

20

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30