Supplementary Information

for

A Solvent-dependent Chirality-switchable Thia-Michael Addition to α,β-Unsaturated Carboxylic Acids using a Chiral Multifunctional Thiourea Catalyst

Noboru Hayama,[†] Yusuke Kobayashi,[†] Eriko, Sekimoto, [‡] Anna Miyazaki, [‡] Kiyofumi Inamoto, [‡] Tetsutaro Kimachi [‡] and Yoshiji Takemoto^{*,†}

[†]Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan [‡]School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan

CONTENTS

1. General Information	S3
2. Preparation of benzenethiols	S3
3. Preparation of α,β-unsaturated carboxylic acids	S3
4. Preparation of multifunctional thiourea catalysts	S4
5. Optimization of the reaction condition	S7
6. Control experiments	S9
7. Asymmetric thia-Michael addition	S11
8. ¹¹ B NMR analysis	S34
9. MS analysis	S36
10. Computational studies	S37
11. References	S43
12. Copies of ¹ H and ¹³ C NMR charts	S44
13. Copies of HPLC charts	S73

1. General information

All non-aqueous reactions were carried out under a positive atmosphere of argon in dried glassware unless otherwise noted. Solvents and materials were obtained from commercial suppliers and used without further purification. Column chromatography was performed on Cica silica gel 60 (230-400 mesh) or Fuji Silysia silica gel (NH, 100-200 mesh), gel permeation chromatography was performed with LC-9201, and flash column chromatography was performed on Cica silica gel 60 (spherical/40–100 µm). Reactions and chromatography fractions were analyzed using pre-coated silica gel plate (Merck Silica Gel 60 F₂₅₄). All melting points were measured on BÜCHI M-565 melting point apparatus and are uncorrected. IR spectra were measured on JASCO FT/IR-4100. Unless otherwise noted, NMR spectra were obtained in CDCl₃. ¹H NMR (400 MHz) spectra were recorded with JEOL ECP-400 spectrometers and chemical shifts are reported in δ (ppm) relative to TMS (in CDCl₃) as internal standard. Unless otherwise noted, ¹³C NMR (100 MHz) spectra were also recorded using JEOL ECP-400 spectrometers and referenced to the residual CHCl₃ or CHD₂CN signals. ¹¹B NMR (128 MHz) spectra were recorded using JEOL ECP-400 spectrometers using quarts NMR tubes. ¹H NMR multiplicities are reported as follows: br = broad; m = multiplet; s = singlet; d = doublet; t = triplet; q = quartet. High-resolution mass spectra were obtained on a JMS-HX/MS700 (FAB) or a Shimadzu LCMS-IT-TOF fitted with an ESI. Optical rotations were recorded on a JASCO P-2200 polarimeter with a path length of 0.5 cm; concentrations are quoted in grams per 100 mL. $[\alpha]_D$ values are measured in 10^{-1} deg cm²g⁻¹. Enantiometric excess was determined by high performance liquid chromatography (HPLC) analyses using a Shimadzu Prominence HPLC System fitted with Daicel chiral column. Unless otherwise noted, all materials and solvents were purchased from Tokyo Kasei Co., Aldrich Inc., and other commercial suppliers and were used without purification. All noncommercially available substrates were prepared according to the literature procedure as indicated below.

2. Preparation of benzenethiols

Benzenethiols 2a-g were commercially available.

3. Preparation of α , β -unsaturated carboxylic acids

 α , β -Unsaturated carboxylic acids **3a**, **3b**, **3d-f**, and **3n** were commercially available. The carboxylic acids **3c**,^{S1} **3g**, ^{S1} **3h**,^{S2} **3i-l**,^{S1} and **3m**^{S3} were prepared according to the literatures.

4. Preparation of multifunctional thiourea catalysts

Catalysts $1a-c^{S1}$ were prepared according to the literature. Catalysts 1d-h were prepared by a similar procedure according to the literature^{S1} as described below.

2-[[N-Methyl-(1R,2R)-2-(3-phenylthioureido)cyclohexan-1-yl]-(2-aminomethyl)]-5-

(trifluoromethyl)phenylboronic Acid (1d)

White amorphous; ¹H NMR (CD₃CN, 400 MHz) δ 8.82 (br s, 1H), 8.18 (br s, 1H), 7.95 (s, 1H), 7.61 (dd, $J_1 = 8.1$ Hz, $J_2 = 1.7$ Hz, 1H), 7.39–7.29 (m, 5H), 7.21–7.15 (m, 1H), 6.32 (br s, 1H), 4.60–4.47 (m, 1H), 3.81 (d, J = 12.8 Hz, 1H), 3.73 (d, J = 12.8 Hz, 1H), 2.39 (ddd, $J_1 = J_2 = 11.3$ Hz, $J_3 = 3.1$ Hz, 1H), 2.28 (s, 3H), 2.06–1.97 (m, 2H), 1.80–1.72 (m, 1H), 1.66–1.57 (m, 1H), 1.40–1.18 (m, 2H), 1.12–0.95 (m, 2H), one *O*-H or *N*-H proton was not observed; ¹³C NMR (CD₃CN, 100 MHz) δ 181.3, 147.1, 139.2, 132.8 (q, J = 3.8 Hz), 131.6, 129.7 (2C), 129.2 (q, J = 31.9 Hz), 127.2 (q, J = 3.8 Hz), 126.2, 125.8 (2C), 124.2 (q, J = 271 Hz), 62.1, 59.7, 55.5, 35.7, 33.4, 25.5, 25.3, 22.8, One carbon peak (<u>C</u>-B(OH)₂) could not be observed; IR (ATR): 2938, 1535 cm⁻¹; HRMS (ESI): calcd for C₂₂H₂₈BF₆N₃O₂S [M+H]⁺ 466.1946, found 466.1943; [α]p²⁵ +34.8 (*c* 1.03, CHCl₃).

2-[[*N*-Methyl-(1*R*,2*R*)-2-(3-phenylthioureido)cyclohexan-1-yl]-(2-aminomethyl)]-5-(methoxy)phenylboronic Acid (1e)

White amorphous; ¹H NMR (CD₃CN, 400 MHz) δ 8.25 (br s, 1H), 7.31 (d, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 7.8 Hz, 2H), 7.18 (d, *J* = 2.9 Hz, 1H), 7.10 (t, *J* = 7.2 Hz, 1H), 7.05 (d, *J* = 8.1 Hz, 1H), 6.79 (dd, *J_I* = 8.1 Hz, *J₂* = 2.9 Hz, 1H), 6.32 (br s, 1H), 4.54–4.43 (m, 1H), 3.71 (s, 3H), 3.64 (d, *J* = 12.8 Hz, 1H), 3.56 (d, *J* = 12.8 Hz, 1H), 2.40 (ddd, *J_I* = *J₂* = 11.3 Hz, *J₃* = 3.3 Hz, 1H), 2.19 (s, 3H), 1.98–1.90 (m, 2H), 1.72–1.65 (m, 1H), 1.60–1.53 (m, 1H), 1.33–1.10 (m, 2H), 1.16–0.93 (m, 2H), two *O*-H or *N*-H protons were not observed; ¹³C NMR (CD₃CN, 100 MHz) δ 181.4, 159.4, 139.4, 134.3, 132.7, 129.7 (2C), 126.1, 125.6 (2C), 121.8, 115.5, 61.7, 59.5, 55.6, 55.4, 35.3, 33.5, 25.6, 25.4, 22.7, one carbon peak (<u>C</u>-B(OH)₂) could not be observed; IR (ATR): 3278, 2934, 1536 cm⁻¹; HRMS (ESI): calcd for C₂₂H₃₁BN₃O₃S [M+H]⁺ 428.2178, found 428.2175; [α]_D²¹ +50.5 (*c* 0.97, CHCl₃).

2-[[*N*-Methyl-(1*R*,2*R*)-2-(3-phenylthioureido)cyclohexan-1-yl]-(2-aminomethyl)]-4-(trifluoromethyl)phenylboronic Acid (1f)

White amorphous; ¹H NMR (CD₃CN, 400 MHz) δ 8.20 (br s, 1H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.52 (s, 1H), 7.39–7.29 (m, 4H), 7.20–7.14 (m, 1H), 6.38 (br s, 1H), 4.60–4.43 (m, 1H), 3.82 (d, *J* = 12.8 Hz, 1H), 3.74 (d, *J* = 12.8 Hz, 1H), 2.41 (ddd, *J*₁ = *J*₂ = 11.3 Hz, *J*₃ = 2.7 Hz, 1H), 2.26 (s, 3H), 2.07–1.98 (m, 2H), 1.80–1.73 (m, 1H), 1.66–1.57 (m, 1H), 1.40–1.17 (m, 2H), 1.14–0.95 (m, 2H), two *O*-H or *N*-H protons were not observed; ¹³C NMR (CD₃CN, 100 MHz) δ 181.4, 143.9, 139.4, 137.0, 131.5 (q, *J* = 32.3 Hz), 129.7 (2C), 127.1 (q, *J* = 2.9 Hz), 126.1, 125.7 (2C), 126.6 (q, *J* = 272 Hz), 124.2 (q, *J* = 3.8 Hz), 62.2, 59.7, 55.5, 35.5, 33.4, 25.6, 25.4, 22.7, one carbon peak (*C*-B(OH)₂) could not be observed; IR (ATR): 3268, 2936, 1534 cm⁻¹; HRMS (ESI): calcd for C₂₂H₂₈BF₃N₃O₂S [M+H]⁺ 466.1946, found 466.1945; [α]_D²⁶ +14.2 (*c* 1.04, CHCl₃).

2-[[*N*-Methyl-(1*R*,2*R*)-2-(2phenylthioureido)cyclohexan-1-yl]-(2-aminomethyl)]-4-(methoxyl)phenylboronic Acid (1g)

White amorphous; ¹H NMR (CD₃CN, 400 MHz) δ 8.72 (br s, 2H), 8.37 (br s, 1H), 7.70–7.64 (m, 1H), 7.42–7.35 (m, 2H), 7.34–7.25 (m, 2H), 7.17–7.09 (m, 1H), 6.89–6.77 (m, 2H), 6.48 (br s, 1H), 4.62–4.48 (m, 1H), 3.78 (s, 3H), 3.80–3.70 (m, 1H), 3.62 (d, *J* = 12.2 Hz, 1H), 2.45 (ddd, *J*₁ = *J*₂ = 9.4 Hz, *J*₃ = 3.1 Hz, 1H), 2.27 (s, 3H), 2.08–1.97 (m, 2H), 1.81–1.71 (m, 1H), 1.68–1.58 (m, 1H), 1.40–1.18 (m, 2H), 1.13–0.97 (m, 2H), one *O*-H or *N*-H proton was not observed; ¹³C NMR (CD₃CN, 100 MHz) δ 181.4, 161.9, 144.7, 139.6, 138.7, 129.6 (2C), 125.9, 125.5 (2C), 117.4, 112.5, 61.8, 60.3, 55.7, 55.5, 35.6, 33.5, 25.6, 25.4, 22.6, one carbon peak could not be observed; IR (ATR): 3271, 2935, 1538 cm⁻¹; HRMS (ESI): calcd for C₂₂H₃₁BN₃O₃S [M+H]⁺ 428.2178, found 428.2179; [α]_D²⁵ +27.5 (*c* 1.03, CHCl₃).

2-[[*N*-Methyl-(1*R*,2*R*)-2-(2phenylthioureido)cyclohexan-1-yl]-(2-aminomethyl)]-4-(dimethylamino)phenylboronic Acid (1h)

White amorphous; ¹H NMR (CDCl₃, 400 MHz) δ 8.27 (br s, 1H), 7.59 (d, *J* = 8.1 Hz, 1H), 7.40–7.28 (m, 4H), 7.24–7.20 (m, 1H), 6.58 (dd, *J*₁ = 8.1 Hz, *J*₂ = 1.8 Hz, 1H), 6.44 (d, *J* = 1.8 Hz, 1H), 6.17 (br s, 1H), 4.70–4.60 (m, 1H), 3.66 (d, *J* = 12.4 Hz, 1H), 3.62 (d, *J* = 12.4 Hz, 1H), 3.06–2.96 (m, 1H), 2.97 (s, 6H), 2.59 (dd, *J*₁ = 9.6 Hz, *J*₂ = 1.6 Hz, 1H), 2.38–2.28 (m, 1H), 2.31 (s, 3H), 2.08–2.00 (m, 1H), 1.88–1.80 (m, 1H), 1.75–1.67 (m, 1H), 1.45–1.31 (m, 2H), 1.29–1.15 (m, 2H), two *O*-H or *N*-H protons was not observed; ¹³C NMR (CD₃CN, 100 MHz) δ 180.2, 151.7, 137.7, 137.4, 129.4 (2C), 129.0. 126.0, 124.9 (2C), 114.4, 110.5, 62.1, 61.1, 55.6, 40.1 (2C), 34.3, 33.2, 24.9, 24.7, 22.0, one carbon peak could not be observed; IR (ATR): 3269, 2936, 1601, 1353 cm⁻¹; HRMS (ESI): calcd for C₂₃H₃₄BN₄O₂S [M+H]⁺ 441.2494, found 441.2483; [α]p²⁸ +23.2 (*c* 0.98, CHCl₃).

5. Optimization of the reaction condition

Table S1. Optimization in CCl4^a

PhSH + 2a	Me OH MS	(10 mol%) 4Å (50 mg) Ph S CCl ₄ Me r.t., 24 h (S)	O OH -4a	$ \begin{array}{c} S \\ N \\ H \\ H \\ H \\ $	$\begin{array}{l} \textbf{1a}: R^1 = H, \ R^2 = H, \ R^3 = \\ \textbf{1b}: R^1 = NO_2, \ R^2 = H, \ F \\ \textbf{1c}: R^1 = OMe, \ R^2 = H, \ H \\ \textbf{1d}: R^1 = H, \ R^2 = CF_3, \ R \\ \textbf{1e}: R^1 = H, \ R^2 = OMe, \ R^3 = \\ \textbf{1f}: R^1 = H, \ R^2 = H, \ R^3 = \\ \textbf{1g}: R^1 = H, \ R^2 = H, \ R^3 = \\ \textbf{1h}: R^1 = H, \ R^2 = H, \ R^3 = \\ \end{array}$	= H R ³ = H R ³ = H R ³ = H = CF ₃ = OMe = NMe ₂
	Entry	catalyst	concentration	yield ^b (%)	ee ^c (%)	
			(M)			
	1	1a	0.1	90	41 (<i>S</i>)	
	2	1b	0.1	78	22 (<i>S</i>)	
	3	1c	0.1	96	69 (<i>S</i>)	
	4	1d	0.1	81	41 (<i>S</i>)	
	5	1e	0.1	87	40 (<i>S</i>)	
	6	1f	0.1	76	11 (<i>S</i>)	
	7	1g	0.1	83	28 (<i>S</i>)	
	8	1h	0.1	69	6 (<i>R</i>)	
	9	1a	0.02	46	24 (<i>S</i>)	
	10	1a	0.05	63	38 <i>(S</i>)	
	11	1a	0.2	91	57 (<i>S</i>)	
	12	1a	0.4	86	72 (<i>S</i>)	
	13	1a	1	88	76 (<i>S</i>)	
	14 ^d	1a	2	91	81 (<i>S</i>)	
	15 ^d	1g	2	78	75 (<i>S</i>)	

^a Unless otherwise noted, the reaction was carried out with 2a (0.1 mmol), 3a (1.0 equiv), catalyst (0.1 equiv), and 4Å MS (50 mg) in CCl₄ at room temperature for 24 h.

^b Isolated yield after treatment with TMSCHN₂.

 $^{\rm c}$ Estimated by chiral HPLC after treatment with TMSCHN_2. Absolute configuration is shown in the brackets. $^{\rm d}$ 4Å MS (20 mg)

Table S2. Optimization in hexane and CH₂Cl₂^a

Pł :	nSH + O M Me OH	la (10 mol%) IS 4Å (50 mg) solvent r.t., 24 h Me (S)-4a	H H H H H H H H H H H H H H H H H H H	
Entry	solvent	concentration (M)	yield ^b (%)	ee ^c (%)
1	<i>n</i> -hexane	0.02	16	19 (<i>R</i>)
2	<i>n</i> -hexane	0.05	25	23 (<i>S</i>)
3	<i>n</i> -hexane	0.1	28	48 (<i>S</i>)
4	<i>n</i> -hexane	0.2	36	61 (<i>S</i>)
5	<i>n</i> -hexane	0.4	34	70 (<i>S</i>)
6	CH ₂ Cl ₂	1	72	64 (<i>S</i>)
7	<i>n</i> -hexane/CH ₂ Cl ₂	1	56	74 (<i>S</i>)

^a Unless otherwise noted, the reaction was carried out with **2a** (0.1 mmol), **3a** (1.0 equiv), catalyst (0.1 equiv), and 4Å MS (50 mg) in solvent at room temperature for 24 h.

^b Isolated yield after treatment with TMSCHN₂.

^c Estimated by chiral HPLC after treatment with TMSCHN₂. Absolute configuration is shown in the brackets.

Table S3. Optimization in acetone^a

PhSH + A A A A A A A A A A					
Entry	concentration (M)	yield ^b (%)	ee ^c (%)		
1	0.02	33	75 (<i>R</i>)		
2	0.05	57	82 (<i>R</i>)		
3	0.1	68	82 (<i>R</i>)		
4	0.2	86	57 (R)		
5	0.4	85	41 (<i>R</i>)		
6 ^d	0.1	83	81 (<i>R</i>)		

^a Unless otherwise noted, the reaction was carried out with **2a** (0.1 mmol), **3a** (1.0 equiv), catalyst (0.1 equiv), and

 4\AA MS (50 mg) in acetone at room temperature for 24 h.

^b Isolated yield after treatment with TMSCHN₂.

^c Estimated by chiral HPLC after treatment with TMSCHN₂. Absolute configuration is shown in the brackets.

^d 4Å MS (100 mg)

6. Control experiments

Table S4. Screening of mono- and bi-functional catalyst^a

PhSH 2a	+ Me OH -	Italyst (10 mol%) MS 4Å (50 mg) Ph 0.1 M Solvent Me r.t., 24 h Me	S O or H S OH Me	о ————————————————————————————————————
$\begin{array}{ c c c c }\hline & S & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & $	CF ₃ CF ₃ CF ₃ N H H H H H S-1	N(<i>i</i> -P) N _{Me}	r) ₂ CF ₃ B(O OH) ₂ CF ₃ S-3	H) ₂ OMe S-4
Entry	catalyst	solvent	yield ^b (%)	ee ^c (%)
1	1a	acetone	68	81 (<i>R</i>)
2 ^d	1a	acetone	11	15 (<i>R</i>)
3	S-1	acetone	13	12 (<i>R</i>)
4	S-2	acetone	28	-
5	S-3	acetone	ND	-
6	S-4	acetone	ND	-
7	1a	CCl ₄	90	41 (<i>S</i>)
8 ^d	1a	CCl ₄	ND	-
9	S-1	CCl4	3	5 (<i>R</i>)
10	S-2	CCl ₄	90	-
11	S-3	CCl ₄	ND	-
12	S-4	CCl ₄	ND	-

^a Unless otherwise noted, the reaction was carried out with 2a (0.1 mmol), 3a (1.0 equiv), catalyst (0.1 equiv), and

4Å MS in solvent (1.0 mL) at room temperature for 24 h.

^b Isolated yield after treatment with TMSCHN₂.

^c Estimated by chiral HPLC after treatment with TMSCHN₂. Absolute configuration is shown in the brackets.

^d Without 4Å MS.

Scheme S1. A control experiment using α , β -unsaturated ester 3a-[OMe]

7. Asymmetric thia-Michael addition

General procedure for the synthesis of 4a and their methyl esters 4a-[OMe] as described in Table 1.

To a stirred suspension of (*E*)-crotonic acid **3a** (0.10 mmol), boronic acid catalyst **1a-h** (10 mol%), and activated MS 4Å in an appropriate solvent, was added benzenethiol **2a** (100 mol%) in the same solvent at room temperature. The reaction mixture was stirred at room temperature for 24 h, and directly purified by flash chromatography on silica gel (*n*-hexane/ethyl acetate = 4:1 to ethyl acetate/methanol = 7:3) to afford the crude product **4a**. To the solution of crude **4a** in toluene/methanol (0.75 mL/0.25 mL) was slowly added a solution of TMSCHN₂ in Et₂O (2.0 M, 0.25 mL, 0.5 mmol) at 0°C. The resulting mixture was stirred at 0°C for 30 min, before being quenched with AcOH, until yellow color of the solution disappeared. After evaporation of the reaction mixture, the residue was purified by flash chromatography on silica gel (*n*-hexane/ethyl acetate = 20:1) to afford methyl esters **4a-[OMe]** as a colorless oil; The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, $\lambda = 254$ nm, retention times: 5.5 min 6.5 min].

(entry 1): The reaction with **3a** (8.6 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (50 mg) in CCl₄ (1.0 mL) gave the crude product (*S*)-4a. The same treatment as described in general procedure afford the desired product (*S*)-4a-[OMe] (18.9 mg, 90%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (41% ee).

(entry 2): The reaction with **3a** (8.7 mg, 0.10 mmol), **1a** (3.9 mg, 0.01 mmol), **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (50 mg) in CH₂Cl₂ (1.0 mL) gave the crude product (*S*)-4a. The same treatment as described in general procedure afford the desired product (*S*)-4a-[OMe] (4.4 mg, 21%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (22% ee).

(entry 3): The reaction with **3a** (8.6 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (50 mg) in *n*-hexane (1.0 mL) gave the crude product (*S*)-4a. The same treatment as described in general procedure afford the desired product (*S*)-4a-[OMe] (5.9 mg, 28%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (49% ee).

(entry 4): The reaction with **3a** (8.8 mg, 0.10 mmol), **1a** (4.1 mg, 0.01 mmol), **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (50 mg) in CH₃CN (1.0 mL) gave the crude product (*R*)-4a. The same treatment as described in general procedure afford the desired product (*R*)-4a-[OMe] (7.6 mg, 36%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (39% ee).

(entry 5): The reaction with **3a** (8.7 mg, 0.10 mmol), **1a** (4.1 mg, 0.01 mmol), **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (50 mg) in acetone (1.0 mL) gave the crude product (*R*)-4a. The same treatment as described in general procedure afford the desired product (*R*)-4a-[OMe] (14.3 mg, 68%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (82% ee).

(entry 6): The reaction with **3a** (8.7 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (50 mg) in MeOH (1.0 mL) gave not the desired product **4a**.

(entry 7): The reaction with **3a** (8.8 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol) and **2a** (10 μ L, 0.10 mmol) without activated MS 4Å in CCl₄ (1.0 mL) gave not the desired product **4a**.

(entry 8): The reaction with 3a (8.6 mg, 0.10 mmol), 1a (4.1 mg, 0.01 mmol) and 2a (10 µL, 0.10 mmol) without activated MS 4Å in acetone (1.0 mL) gave the crude product (*R*)-4a. The same treatment as described in general procedure afford the desired product (*R*)-4a-[OMe] (2.3 mg, 11%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (15% ee).

(entry 9): The reaction with **3a** (8.7 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) gave the crude product (*S*)-4a. The same treatment as described in general procedure afford the desired product (*S*)-4a-[OMe] (19.1 mg, 91%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (81% ee).

(entry 10): The reaction with **3a** (8.7 mg, 0.10 mmol), **1b** (4.3 mg, 0.01 mmol), benzenethiol **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (50 mg) in acetone (1.0 mL) gave the crude product (*R*)-4a. The same treatment as described in general procedure afford (*R*)-4a-[OMe] (7.4 mg, 35%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (33% ee).

(entry 11): The reaction with **3a** (8.7 mg, 0.10 mmol), **1c** (4.5 mg, 0.01 mmol), benzenethiol **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (50 mg) in acetone (1.0 mL) gave the crude product (*R*)-4a. The same treatment as described in general procedure afford (*R*)-4a-[OMe] (14.1 mg, 67%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (78% ee).

(entry 12): The reaction with **3a** (8.7 mg, 0.10 mmol), **1d** (4.6 mg, 0.01 mmol), benzenethiol **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (50 mg) in acetone (1.0 mL) gave the crude product (*R*)-4a. The same treatment as described in general procedure afford (*R*)-4a-[OMe] (12.0 mg, 57%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (80% ee).

(entry 13): The reaction with **3a** (8.7 mg, 0.10 mmol), **1e** (4.4 mg, 0.01 mmol), benzenethiol **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (50 mg) in acetone (1.0 mL) gave the crude product (*R*)-4a. The same treatment as described in general procedure afford (*R*)-4a-[OMe] (12.9 mg, 61%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (68% ee).

(entry 14): The reaction with **3a** (8.7 mg, 0.10 mmol), **1f** (4.7 mg, 0.01 mmol), benzenethiol **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (50 mg) in acetone (1.0 mL) gave the crude product (*R*)-4a. The same treatment as described in general procedure afford (*R*)-4a-[OMe] (7.3 mg, 35%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (45% ee).

(entry 15): The reaction with **3a** (8.7 mg, 0.10 mmol), **1g** (4.3 mg, 0.01 mmol), benzenethiol **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (50 mg) in acetone (1.0 mL) gave the crude product (*R*)-4a. The same treatment as described in general procedure afford (*R*)-4a-[OMe] (15.4 mg, 73%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (92% ee).

(entry 16): The reaction with **3a** (8.6 mg, 0.10 mmol), **1h** (4.5 mg, 0.01 mmol), benzenethiol **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (50 mg) in acetone (1.0 mL) gave the crude product (*R*)-4a. The same treatment as described in general procedure afford (*R*)-4a-[OMe] (11.1 mg, 53%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (45% ee).

(entry 17): The reaction with **3a** (8.6 mg, 0.10 mmol), **1g** (4.4 mg, 0.01 mmol), benzenethiol **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) gave the crude product (*R*)-4a. The same treatment as described in general procedure afford (*R*)-4a-[OMe] (16.8 mg, 80%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (92% ee).

(entry 18): The reaction with **3a** (8.6 mg, 0.10 mmol), **1g** (4.3 mg, 0.01 mmol), **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) gave the crude product (*S*)-4a. The same treatment as described in general procedure afford the desired product (*S*)-4a-[OMe] (16.4 mg, 78%). The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (75% ee).

Methyl (S)-3-(phenylthio)butanoate ((S)-4a-[OMe])

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 7.5 Hz, 2H), 7.35–7.23 (m, 3H), 3.67 (s, 3H), 3.67–3.57 (m, 1H), 2.65 (dd, *J*₁ = 15.7 Hz, *J*₂ = 5.8 Hz, 1H), 2.44 (dd, *J*₁ = 15.7 Hz, *J*₂ = 8.1 Hz, 1H), 1.33 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 139.7, 130.7 (2C), 128.9 (2C), 128.7, 51.7, 41.6, 39.4, 20.8; IR (ATR): 1738 cm⁻¹; HRMS (ESI): calcd for C₁₁H₁₄NaO₂S [M+Na]⁺ 233.0607, found 233.0608; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, λ = 254 nm, retention times: (major) 6.2 min (minor) 5.2 min]; [α]_D²⁸ +20.9 (*c* 0.97, CHCl₃) for 81% ee. (Lit ⁸⁴: [α]_D²⁵ +24.9 (*c* 1.09, CHCl₃) for 97% ee, (*S*) enantiomer)

Methyl (R)-3-(phenylthio)butanoate ((R)-4a-[OMe])

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, λ = 254 nm, retention times: (major) 5.6 min (minor) 6.6 min]; [α]_D²⁴ -25.9 (*c* 0.98, CHCl₃) for 92% ee.

General procedure for the synthesis of 4 and their methyl esters 4-[OMe] as described in Figure 2, 3. (in CCl₄)

To a stirred suspension of α , β -unsaturated carboxylic acid **3** (0.10 mmol), boronic acid catalyst **1a** (10 mol%), and activated MS 4Å (20 mg) in CCl₄ (25 µL), was added arylthiol **2** (100 mol%) in the same solvent (25 µL) at room temperature. The reaction mixture was stirred at room temperature for 24 h, and directly purified by flash chromatography on silica gel (*n*-hexane/ethyl acetate = 4:1 to ethyl acetate/methanol = 7:3) to afford the crude product **4**. To the solution of crude **4** in toluene/methanol (0.75 mL/0.25 mL) was slowly added a solution of TMSCHN₂ in Et₂O (2.0 M, 0.25 mL, 0.5 mmol) at 0°C. The resulting mixture was stirred at 0°C for 30 min, before being quenched

with AcOH, until yellow color of the solution disappeared. After evaporation of the reaction mixture, the residue was purified by flash chromatography on silica gel (n-hexane/ethyl acetate = 20:1) to afford methyl esters **4-[OMe]**. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis.

(in acetone)

To a stirred suspension of α , β -unsaturated carboxylic acid **3** (0.10 mmol), boronic acid catalyst **1g** (10 mol%), and activated MS 4Å (100 mg) in acetone (0.50 mL), was added arylthiol **2** (100 mol%) in the same solvent (0.50 mL) at room temperature. The reaction mixture was stirred at room temperature for 24 h, and directly purified by flash chromatography on silica gel (*n*-hexane/ethyl acetate = 4:1 to ethyl acetate/methanol = 7:3) to afford the crude product **4**. To the solution of crude **4** in toluene/methanol (0.75 mL/0.25 mL) was slowly added a solution of TMSCHN₂ in Et₂O (2.0 M, 0.25 mL, 0.5 mmol) at 0°C. The resulting mixture was stirred at 0°C for 30 min, before being quenched with AcOH, until yellow color of the solution disappeared. After evaporation of the reaction mixture, the residue was purified by flash chromatography on silica gel to afford methyl esters **4-[OMe]**. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis.

Methyl (S)-3-((4-methoxyphenyl)thio)butanoate ((S)-4b-[OMe])

Me OMe (S)-4b-[OMe]

(Figure 2): The reaction with (*E*)-crotonic acid **3a** (8.8 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), 4methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4b. The same treatment as described in general procedure afford (*S*)-4b-[OMe] (21.1 mg, 88%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (82% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 3.81 (s, 3H), 3.67 (s, 3H), 3.49–3.38 (m, 1H), 2.59 (dd, $J_I = 15.7$ Hz, $J_2 = 6.4$ Hz, 1H), 2.40 (dd, $J_I = 15.7$ Hz, $J_2 = 8.1$ Hz, 1H), 1.28 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 159.8, 136.4 (2C), 123.4, 114.4 (2C), 55.3, 51.7, 41.6, 40.4, 20.8; IR (ATR): 1738, 1247 cm⁻¹; HRMS (ESI): calcd for C₁₂H₁₇O₃S [M+H]⁺ 241.0893, found 241.0895; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 11.9 min (minor) 9.8 min]; [α]_D²⁸ +17.5 (*c* 0.94, CHCl₃) for 82% ee.

Methyl (R)-3-((4-methoxyphenyl)thio)butanoate ((R)-4b-[OMe])

OMe Me (R)-4b-[OMe]

(Figure 2): The reaction with (*E*)-crotonic acid **3a** (8.7 mg, 0.10 mmol), **1g** (4.4 mg, 0.01 mmol), 4methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-4b. The same treatment as described in general procedure afford (*R*)-4b-[OMe] (20.5 mg, 85%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (91% ee).

(Scheme 1): The reaction with (*E*)-crotonic acid **3a** (8.6 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), 4methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-4b. The same treatment as described in general procedure afford (*R*)-4b-[OMe] (17.8 mg, 74%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (90% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, λ = 254 nm, retention times: (major) 10.3 min (minor) 12.2 min]; [α]_D²⁸ –18.5 (*c* 0.95, CHCl₃) for 91% ee.

Methyl (S)-3-((3,4-dimethoxyphenyl)thio)butanoate ((S)-4c-[OMe])

(Figure 2): The reaction with (*E*)-crotonic acid **3a** (8.7 mg, 0.10 mmol), **1a** (4.1 mg, 0.01 mmol), 3,4dimethoxybenzenethiol **2c** (14 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4c. The same treatment as described in general procedure afford (S)-4c-[OMe] (21.4 mg, 79%) after flash chromatography using *n*-hexane/ethyl acetate = 4:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (84% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.07 (dd, $J_I = 8.1$ Hz, $J_2 = 2.2$ Hz, 1H), 7.01 (d, J = 2.2 Hz, 1H), 6.82 (d, J = 8.1 Hz, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 3.68 (s, 3H), 3.53–3.44 (m, 1H), 2.61 (dd, $J_I = 15.6$ Hz, $J_2 = 6.4$ Hz, 1H), 2.42 (dd, $J_I = 15.6$ Hz, $J_2 = 8.2$ Hz, 1H), 1.30 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 149.3, 148.9, 127.6, 123.8, 117.6, 111.3, 55.94, 55.88, 51.7, 41.6, 40.4, 20.8; IR (ATR): 1734, 1254 cm⁻¹; HRMS (FAB): calcd for C₁₃H₁₈NaO₄S [M+Na]⁺ 293.0824, found 293.0819; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 12.4 min (minor) 11.2 min]; [α]_D²⁸ +21.0 (*c* 1.03, CHCl₃) for 84% ee.

Methyl (R)-3-((3,4-dimethoxyphenyl)thio)butanoate ((R)-4c-[OMe])

(Figure 2): The reaction with (*E*)-crotonic acid **3a** (8.6 mg, 0.10 mmol), **1g** (4.2 mg, 0.01 mmol), 3,4dimethoxybenzenethiol **2c** (14 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-4c. The same treatment as described in general procedure afford (*R*)-4c-[OMe] (20.6 mg, 76%) after flash chromatography using *n*-hexane/ethyl acetate = 4:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (90% ee).

(Scheme 1): The reaction with (*E*)-crotonic acid **3a** (8.6 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), 3,4dimethoxybenzenethiol **2c** (14 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-4c. The same treatment as described in general procedure afford (*R*)-4c-[OMe] (22.2 mg, 82%) after flash chromatography using *n*-hexane/ethyl acetate = 4:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (90% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, λ = 254 nm, retention times: (major) 10.6 min (minor) 11.7 min]; [α]_D²⁵ –21.5 (*c* 1.04, CHCl₃) for 90% ee.

Methyl (S)-3-((2-methoxyphenyl)thio)butanoate ((S)-4d-[OMe])

(Figure 2): The reaction with (*E*)-crotonic acid **3a** (8.7 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), 2methoxybenzenethiol **2d** (12 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4d. The same treatment as described in general procedure afford (*S*)-4d-[OMe] (15.4 mg, 64%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (84% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, J_1 = 7.2 Hz, J_2 = 1.7 Hz, 1H), 7.29–7.23 (m, 1H), 6.92 (dd, J_1 = J_2 = 7.2 Hz, 1H), 6.88 (d, J = 8.1 Hz, 1H), 3.89 (s, 3H), 3.80–3.70 (m, 1H), 3.65 (s, 3H), 2.66 (dd, J_1 = 15.7 Hz, J_2 = 5.2 Hz, 1H), 2.43 (dd, J_1 = 15.7 Hz, J_2 = 9.3 Hz, 1H), 1.33 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 158.8, 133.6, 128.9, 121.9, 120.9, 110.8, 55.7, 51.6, 41.6, 37.3, 20.6; IR (ATR): 1738, 1246 cm⁻¹; HRMS (ESI): calcd for C₁₂H₁₇O₃S [M+H]⁺ 241.0893, found 241.0891; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, λ = 254 nm, retention times: (major) 16.6 min (minor) 13.2 min]; [α]_D²⁷ +2.4 (*c* 0.95, CHCl₃) for 84% ee.

Methyl (R)-3-((2-methoxyphenyl)thio)butanoate ((R)-4d-[OMe])

OMe (R)-4d-[OMe]

(Figure 2): The reaction with (*E*)-crotonic acid **3a** (8.8 mg, 0.10 mmol), **1g** (4.3 mg, 0.01 mmol), 2methoxybenzenethiol **2d** (12 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 48 h gave the crude product (*R*)-4d. The same treatment as described in general procedure afford (*R*)-4d-[OMe] (17.6 mg, 73%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (86% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, λ = 254 nm, retention times: (major) 12.8 min (minor) 15.9 min]; [α]_D²⁵ – 3.3 (*c* 1.01, CHCl₃) for 86% ee.

Methyl (S)-3-((4-(tert-butyl)phenyl)thio)butanoate ((S)-4e-[OMe])

(Figure 2): The reaction with (*E*)-crotonic acid **3a** (8.6 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), 4-*tert*butylbenzenethiol **2e** (17 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4e. The same treatment as described in general procedure afford (*S*)-4e-[OMe] (24.7 mg, 93%) after flash chromatography using *n*-hexane/ethyl acetate = 20:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (80% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.7 Hz, 2H), 7.33 (d, *J* = 8.7 Hz, 2H), 3.66 (s, 3H), 3.62–3.52 (m, 1H), 2.65 (dd, *J*₁ = 15.7 Hz, *J*₂ = 5.8 Hz, 1H), 2.43 (dd, *J*₁ = 15.7 Hz, *J*₂ = 8.1 Hz, 1H), 1.34–1.29 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 150.8, 133.1 (2C), 129.9, 126.0 (2C), 51.7, 41.7, 39.5, 34.5, 31.2 (3C), 20.8; IR (ATR): 1739 cm⁻¹; HRMS (ESI): calcd for C₁₅H₂₃O₂S [M+H]⁺ 267.1413, found 267.1414; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, λ = 254 nm, retention times: (major) 6.9 min (minor) 5.5 min]; [α]_D²⁰ +9.9 (*c* 0.96, CHCl₃) for 80% ee.

Methyl (R)-3-((4-(tert-butyl)phenyl)thio)butanoate ((R)-4e-[OMe])

t-Bu OMe (R)-4e-[OMe]

(Figure 2): The reaction with (*E*)-crotonic acid **3a** (8.6 mg, 0.10 mmol), **1g** (4.3 mg, 0.01 mmol), 4-*tert*butylbenzenethiol **2e** (17 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-4e. The same treatment as described in general procedure afford (*R*)-4e-[OMe] (23.4 mg, 88%) after flash chromatography using *n*-hexane/ethyl acetate = 20:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (90% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, λ = 254 nm, retention times: (major) 5.6 min (minor) 6.9 min]; [α]_D²⁰ –11.9 (*c* 0.94, CHCl₃) for 90% ee.

Methyl (S)-3-((4-chlorophenyl)thio)butanoate ((S)-4f-[OMe])

OMe (S)-4f-[OMe]

(Figure 2): The reaction with (*E*)-crotonic acid **3a** (8.7 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), 4-chlorobenzenethiol **2f** (14.5 mg, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4f. The same treatment as described in general procedure afford (*S*)-4f-[OMe] (17.3 mg, 71%) after flash chromatography using *n*-hexane/ethyl acetate = 20:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (83% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) & 7.37 (d, *J* = 8.8 Hz, 2H), 7.29 (d, *J* = 8.8 Hz, 2H), 3.68 (s, 3H), 3.63–3.54

(m, 1H), 2.61 (dd, $J_1 = 15.6$ Hz, $J_2 = 6.0$ Hz, 1H), 2.44 (dd, $J_1 = 15.6$ Hz, $J_2 = 8.2$ Hz, 1H), 1.32 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 134.3 (2C), 132.7, 132.2, 129.1 (2C), 51.8, 41.5, 39.8, 20.9; IR (ATR): 1739, 1096 cm⁻¹; HRMS (FAB): calcd for C₁₁H₁₃ClNaO₂S [M+Na]⁺ 267.0222, found 267.0218; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 7.4 min (minor) 6.0 min]; $[\alpha]_D^{28}$ +13.6 (*c* 1.04, CHCl₃) for 83% ee.

Methyl (R)-3-((4-chlorophenyl)thio)butanoate ((R)-4f-[OMe])

CI~

(Figure 2): The reaction with (*E*)-crotonic acid 3a (8.8 mg, 0.10 mmol), 1g (4.4 mg, 0.01 mmol), 4-chlorobenzenethiol 2f (14.5 mg, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-4f. The same treatment as described in general procedure afford (*R*)-4f-[OMe] (17.4 mg, 71%) after flash chromatography using *n*-hexane/ethyl acetate = 20:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (45% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, λ = 254 nm, retention times: (major) 6.1 min (minor) 7.3 min]; [α]_D²⁵ –9.3 (*c* 0.88, CHCl₃) for 45% ee.

Methyl 3-((4-(trifluoromethyl)phenyl)thio)butanoate (4g-[OMe])

OMe 4a-[OMe]

(Figure 2): The reaction with (*E*)-crotonic acid **3a** (8.8 mg, 0.10 mmol), **1a** (3.9 mg, 0.01 mmol), 4- (trifluoromethyl)benzenethiol **2g** (14 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product **4g**. The same treatment as described in general procedure afford **4g-[OMe]** (25.1 mg, 90%) after flash chromatography using *n*-hexane/ethyl acetate = 20:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (0% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.7 Hz, 2H), 7.48 (d, J = 8.7 Hz, 2H), 3.81–3.70 (m, 1H), 3.68 (s, 3H), 2.67 (dd, $J_I = 15.7$ Hz, $J_2 = 5.8$ Hz, 1H), 2.49 (dd, $J_I = 15.7$ Hz, $J_2 = 8.1$ Hz, 1H), 1.38 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 139.7, 136.7 (2C), 128.7 (q, J = 32.9 Hz), 125.8 (q, J = 3.8 Hz, 2C), 124.0 (q, J = 272 Hz), 51.8, 41.4, 38.6, 20.8; IR (ATR): 1739, 1327, 772 cm⁻¹; HRMS (ESI): calcd for C₁₂H₁₄F₃O₂S [M+H]⁺ 279.0661, found 279.0659; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, $\lambda = 254$ nm, retention times: 5.8 min, 7.4 min]

Methyl (R)-3-((4-(trifluoromethyl)phenyl)thio)butanoate ((R)-4g-[OMe])

OMe (R)-4g-[OMe]

(Figure 2): The reaction with (*E*)-crotonic acid **3a** (8.6 mg, 0.10 mmol), **1g** (4.3 mg, 0.01 mmol), 4-(trifluoromethyl)benzenethiol **2g** (14 μ L, 0.10 mmol), activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-4g. The same treatment as described in general procedure afford (*R*)-4g-[OMe] (20.9 mg, 75%) after flash chromatography using *n*-hexane/ethyl acetate = 20:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (15% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, λ = 254 nm, retention times: (major) 5.8 min (minor) 7.4 min]; [α]_D²⁴ – 3.1 (*c* 0.90, CHCl₃) for 15% ee.

Methyl (S)-3-(phenylthio)hexanoate ((S)-4h-[OMe])

(Figure 3): The reaction with (*E*)-hexe-2-noic acid **3b** (11.4 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), benzenethiol **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) gave the desired product (*S*)-4h. The same treatment as described in general procedure afford (*S*)-4h-[OMe] (20.8 mg, 87%) after flash chromatography using *n*-hexane/ethyl acetate = 20:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (81% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.42 (m, 2H), 7.33–7.22 (m, 3H), 3.66 (s, 3H), 3.55–3.45 (m, 1H), 2.60 (dd, $J_1 = 15.7$ Hz, $J_2 = 7.0$ Hz, 1H), 2.53 (dd, $J_1 = 15.7$ Hz, $J_2 = 7.5$ Hz, 1H), 1.63–1.40 (m, 4H), 0.92 (t, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 133.9, 132.9 (2C), 128.9 (2C), 127.3, 51.7, 44.8, 40.4, 36.7, 20.1, 13.8; IR (ATR): 1740 cm⁻¹; HRMS (ESI): calcd for C₁₃H₁₉O₂S [M+H]⁺ 239.1100, found 239.1100; HPLC [Chiralcel IC, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 7.5 min (minor) 6.7 min]; $[\alpha]_D^{19}$ +9.3 (*c* 0.98, CHCl₃) for 81% ee.

Methyl (R)-3-(phenylthio)hexanoate ((R)-4h-[OMe])

(Figure 3): The reaction with (*E*)-hexe-2-noic acid **3b** (11.5 mg, 0.10 mmol), **1g** (4.3 mg, 0.01 mmol), benzenethiol **2a** (10 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) gave the desired product (*R*)-4h. The same treatment as described in general procedure afford (*R*)-4h-[OMe] (18.3 mg, 77%) after flash chromatography using *n*-hexane/ethyl acetate = 20:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (80% ee).

Colorless oil; HPLC [Chiralcel IC, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, λ = 254 nm, retention times: (major) 6.8 min (minor) 7.3 min]; [α]_D²⁵ –9.6 (*c* 1.01, CHCl₃) for 80% ee.

Methyl (S)-3-((4-methoxyphenyl)thio)hexanoate ((S)-4i-[OMe])

(Figure 3): The reaction with (*E*)-hexe-2-noic acid **3b** (11.4 mg, 0.10 mmol), **1a** (4.1 mg, 0.01 mmol), 4methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4i. The same treatment as described in general procedure afford (*S*)-4i-[OMe] (22.3 mg, 83%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (82% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 3.67 (s, 3H), 3.34–3.25 (m, 1H), 2.54 (dd, $J_1 = 15.7$ Hz, $J_2 = 7.3$ Hz, 1H), 2.47 (dd, $J_1 = 15.7$ Hz, $J_2 = 7.3$ Hz, 1H), 1.62–1.41 (m, 4H), 0.91 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 159.7, 136.4 (2C), 123.5, 114.4 (2C), 55.3, 51.6, 45.7, 40.3, 36.5, 20.1, 13.8; IR (ATR): 1739, 1246 cm⁻¹; HRMS (ESI): calcd for C₁₄H₂₁O₃S [M+H]⁺ 269.1206, found 269.1204; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 16.4 min (minor) 13.0 min]; $[\alpha]_D^{27}$ +8.6 (*c* 1.01, CHCl₃) for 82% ee.

Methyl (R)-3-((4-methoxyphenyl)thio)hexanoate ((R)-4i-[OMe])

MeO OMe (R)-4i-[OMe]

(Figure 3): The reaction with (*E*)-hexe-2-noic acid **3b** (11.4 mg, 0.10 mmol), **1g** (4.2 mg, 0.01 mmol), 4methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-4i. The same treatment as described in general procedure afford (*R*)-4i-[OMe] (21.4 mg, 80%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (94% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, λ = 254 nm, retention times: (major) 13.0 min (minor) 16.5 min]; [α]_D²⁵ –9.7 (*c* 1.01, CHCl₃) for 94% ee.

Methyl (S)-3-((3,4-dimethoxyphenyl)thio)hexanoate ((S)-4j-[OMe])

MeC MeC OMe (S)-4j-[OMe]

(Figure 3): The reaction with (*E*)-hexe-2-noic acid **3b** (11.5 mg, 0.10 mmol), **1a** (3.9 mg, 0.01 mmol), 3,4dimethoxybenzenethiol **2c** (14 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4j. The same treatment as described in general procedure afford (*S*)-4j-[OMe] (25.5 mg, 85%) after flash chromatography using *n*-hexane/ethyl acetate = 4:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (81% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.06 (dd, $J_1 = 8.1$ Hz, $J_2 = 2.2$ Hz, 1H), 7.02 (d, J = 2.2 Hz, 1H), 6.81

(d, *J* = 8.1 Hz, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 3.68 (s, 3H), 3.38–3.31 (m, 1H), 2.56 (dd, *J*₁ = 15.6 Hz, *J*₂ = 7.3 Hz, 1H), 2.50 (dd, $J_1 = 15.6$ Hz, $J_2 = 7.3$ Hz, 1H), 1.59–1.43 (m, 4H), 0.92 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) & 172.2, 149.2, 148.8, 127.6, 123.7, 117.7, 111.3, 55.92, 55.87, 51.6, 45,7, 40.3, 36.6, 20.1, 13.8; IR (ATR): 1735, 1252 cm⁻¹; HRMS (FAB): calcd for C₁₅H₂₂NaO₄S [M+Na]⁺ 321.1137, found 321.1134; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 9.7 min (minor) 8.7 min]; $[\alpha]_D^{19}$ +10.5 (c 0.93, CHCl₃) for 81% ee.

Methyl (R)-3-((3,4-dimethoxyphenyl)thio)hexanoate ((R)-4j-[OMe])

(Figure 3): The reaction with (E)-hexe-2-noic acid **3b** (11.5 mg, 0.10 mmol), **1g** (4.3 mg, 0.01 mmol), 3,4dimethoxybenzenethiol 2c (14 µL, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (R)-4j. The same treatment as described in general procedure afford (R)-4j-[OMe] (24.2 mg, 81%) after flash chromatography using n-hexane/ethyl acetate = 4:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (88% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, λ = 254 nm, retention times: (major) 9.0 min (minor) 10.0 min]; $[\alpha]_D^{25}$ –10.9 (*c* 0.99, CHCl₃) for 88% ee.

Methyl (S)-3-((2-methoxyphenyl)thio)hexanoate ((S)-4k-[OMe])

(Figure 3): The reaction with (E)-hexe-2-noic acid 3b (11.4 mg, 0.10 mmol), 1a (4.1 mg, 0.01 mmol), 2methoxybenzenethiol 2d (12 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (S)-4k. The same treatment as described in general procedure afford (S)-4k-[OMe] (16.6 mg, 62%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (83% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, J_1 = 7.5 Hz, J_2 = 1.6 Hz, 1H), 7.25 (ddd, J_1 = 8.2 Hz, J_2 = 7.5 Hz, $J_3 = 1.6$ Hz, 1H), 6.92 (ddd, $J_1 = J_2 = 7.5$ Hz, $J_3 = 1.2$ Hz, 1H), 6.87 (dd, $J_1 = 8.2$ Hz, $J_2 = 1.2$ Hz, 1H), 3.89 (s, 3H), 3.68–3.59 (m, 1H), 3.62 (s, 3H), 2.63 (dd, $J_1 = 15.7$ Hz, $J_2 = 5.9$ Hz, 1H), 2.52 (dd, $J_1 = 15.7$ Hz, $J_2 = 8.1$ Hz, 1H), 1.65–1.45 (m, 4H), 0.92 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 158.8, 133.4, 128.6, 122.3, 120.9, 110.8, 55.7, 51.6, 42.5, 40.5, 36.7, 20.0, 13.8; IR (ATR): 1739, 1246 cm⁻¹; HRMS (FAB): calcd for $C_{14}H_{20}NaO_{3}S$ [M+Na]⁺ 291.1031, found 291.1024; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 13.5 min (minor) 10.2 min]; $[\alpha]_D^{19} - 8.5$ (c 1.06, CHCl₃) for 83% ee.

Methyl (R)-3-((2-methoxyphenyl)thio)hexanoate ((R)-4k-[OMe])

(Figure 3): The reaction with (*E*)-hexe-2-noic acid **3b** (11.5 mg, 0.10 mmol), **1g** (4.3 mg, 0.01 mmol), 2methoxybenzenethiol **2d** (12 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 48 h gave the crude product (*R*)-4k. The same treatment as described in general procedure afford (*R*)-4k-[OMe] (17.4 mg, 65%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (90% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, λ = 254 nm, retention times: (major) 9.9 min (minor) 12.7 min]; $[\alpha]_D^{25}$ +9.1 (*c* 0.80, CHCl₃) for 90% ee.

Methyl (S)-3-((4-methoxyphenyl)thio)-5-phenylpentanoate ((S)-4l-[OMe])

(Figure 3): The reaction with (*E*)-5-Phenylpent-2-enoic acid **3c** (17.6 mg, 0.10 mmol), **1a** (4.1 mg, 0.01 mmol), 4methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4I. The same treatment as described in general procedure afford (*S*)-4I-[OMe] (30.1 mg, 91%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (82% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.7 Hz, 2H), 7.31–7.25 (m, 3H), 7.22–7.16 (m, 2H), 6.85 (d, J = 8.7 Hz, 2H), 3.81 (s, 3H), 3.66 (s, 3H), 3.34–3.24 (m, 1H), 2.97–2.88 (m, 1H), 2.82–2.73 (m, 1H), 2.59 (dd, $J_I = 15.7$ Hz, $J_2 = 7.0$ Hz, 1H), 2.50 (dd, $J_I = 15.7$ Hz, $J_2 = 7.0$ Hz, 1H), 1.91–1.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 159.8, 141.4, 136.6 (2C), 128.40 (2C), 128.37 (2C), 125.9, 122.9, 114.5 (2C), 55.3, 51.7, 45.4, 40.3, 35.8, 33.0; IR (ATR): 1739, 1246 cm⁻¹; HRMS (ESI): calcd for C₁₉H₂₃O₃S [M+H]⁺ 331.1362, found 331.1358; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 19.0 min (minor) 21.3 min]; [α]_D²⁸ –6.9 (*c* 0.95, CHCl₃) for 82% ee.

Methyl (R)-3-((4-methoxyphenyl)thio)-5-phenylpentanoate ((R)-4l-[OMe])

(Figure 3): The reaction with (*E*)-5-Phenylpent-2-enoic acid 3c (17.7 mg, 0.10 mmol), 1g (4.3 mg, 0.01 mmol), 4methoxybenzenethiol 2b (12 µL, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-4I. The same treatment as described in general procedure afford (*R*)-4I-[OMe] (24.8 mg, 75%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (88% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, λ = 254 nm, retention times: (major) 21.0 min (minor) 19.5 min]; [α]_D²⁹ +7.2 (*c* 0.97, CHCl₃) for 88% ee.

Methyl (S)-3-((3,4-dimethoxyphenyl)thio)-5-phenylpentanoate ((S)-4m-[OMe])

(Figure 3): The reaction with (*E*)-5-Phenylpent-2-enoic acid **3c** (17.7 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), 3,4dimethoxybenzenethiol **2c** (14 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4m. The same treatment as described in general procedure afford (*S*)-4m-[OMe] (31.4 mg, 87%) after flash chromatography using *n*-hexane/ethyl acetate = 4:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (84% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.26 (m, 2H), 7.23–7.15 (m, 3H), 7.07 (dd, $J_1 = 8.2$ Hz, $J_2 = 2.0$ Hz, 1H), 7.00 (d, J = 2.0 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.67 (s, 3H), 3.37–3.28 (m, 1H), 2.97–2.88 (m, 1H), 2.84–2.75 (m, 1H), 2.60 (dd, $J_1 = 15.7$ Hz, $J_2 = 7.3$ Hz, 1H), 2.53 (dd, $J_1 = 15.7$ Hz, $J_2 = 7.3$ Hz, 1H), 1.95–1.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 149.4, 148.9, 141.3, 128.4 (4C), 127.8, 126.0, 123.3, 117.8, 111.3, 55.92, 55.90, 51.7, 45.4, 40.4, 35.8, 33.0; IR (ATR): 1734, 1501, 1251 cm⁻¹; HRMS (FAB): calcd for C₂₀H₂₄NaO₄S [M+Na]⁺ 383.1293, found 383.1290; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 18.4 min (minor) 23.0 min]; [α]p¹⁹–6.5 (*c* 0.92, CHCl₃) for 84% ee.

Methyl (R)-3-((3,4-dimethoxyphenyl)thio)-5-phenylpentanoate ((R)-4m-[OMe])

(Figure 3): The reaction with (*E*)-5-Phenylpent-2-enoic acid 3c (17.6 mg, 0.10 mmol), 1g (4.4 mg, 0.01 mmol), 3,4dimethoxybenzenethiol 2c (14 µL, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-4m. The same treatment as described in general procedure afford (*R*)-4m-[OMe] (26.3 mg, 73%) after flash chromatography using *n*-hexane/ethyl acetate = 4:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (90% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, λ = 254 nm, retention times: (major) 22.3 min (minor) 18.1 min]; [α]_D¹⁹ +6.9 (*c* 1.00, CHCl₃) for 90% ee.

Methyl (S)-3-((2-methoxyphenyl)thio)-5-phenylpentanoate ((S)-4n-[OMe])

(S)-4n-[OMe]

(Figure 3): The reaction with (*E*)-5-Phenylpent-2-enoic acid **3c** (17.6 mg, 0.10 mmol), **1a** (4.1 mg, 0.01 mmol), 2methoxybenzenethiol **2d** (12 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*R*)-4n. The same treatment as described in general procedure afford (*R*)-4n-[OMe] (19.2 mg, 58%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (80% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, $J_1 = 7.5$ Hz, $J_2 = 1.6$ Hz, 1H), 7.30–7.23 (m, 3H), 7.21–7.15 (m, 3H), 6.91 (ddd, $J_1 = J_2 = 7.5$ Hz, $J_3 = 1.1$ Hz, 1H), 6.87 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.1$ Hz, 1H), 3.86 (s, 3H), 3.68–3.60 (m, 1H), 3.61 (s, 3H), 2.97–2.87 (m, 1H), 2.84–2.74 (m, 1H), 2.67 (dd, $J_1 = 15.7$ Hz, $J_2 = 5.9$ Hz, 1H), 2.56 (dd, $J_1 = 15.7$ Hz, $J_2 = 8.1$ Hz, 1H), 2.00–1.83 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 159.0, 141.6, 133.8, 128.9, 128.4 (2C), 128.3 (2C), 125.9, 121.8, 121.0, 110.8, 55.7, 51.6, 42.4, 40.4, 36.2, 32.9; IR (ATR): 1737, 1475, 1245 cm⁻¹; HRMS (FAB): calcd for C₁₉H₂₂NaO₃S [M+Na]⁺ 353.1187, found 353.1193; HPLC [Chiralcel AD-H, *n*-hexane/2-propanol = 97/3, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 8.4 min (minor) 9.3 min]; [α]D²⁰ –2.7 (*c* 1.01, CHCl₃) for 80% ee.

Methyl (R)-3-((2-methoxyphenyl)thio)-5-phenylpentanoate ((R)-4n-[OMe])

(Figure 3): The reaction with (*E*)-5-Phenylpent-2-enoic acid **3c** (17.6 mg, 0.10 mmol), **1g** (4.4 mg, 0.01 mmol), 2methoxybenzenethiol **2d** (12 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 48 h gave the crude product (*R*)-4n. The same treatment as described in general procedure afford (*R*)-4n-[OMe] (22.1 mg, 67%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (87% ee).

Colorless oil; HPLC [Chiralcel AD-H, *n*-hexane/2-propanol = 97/3, 1.0 mL/min, λ = 254 nm, retention times: (major) 9.3 min (minor) 8.6 min]; [α]_D²⁵ +2.8 (*c* 0.97, CHCl₃) for 87% ee.

Methyl (S)-3-((3,4-dimethoxyphenyl)thio)pentanoate ((S)-4o-[OMe])

(Figure 3): The reaction with (*E*)-pent-2-enoic acid **3d** (10.1 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), 3,4dimethoxybenzenethiol **2c** (14 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*R*)-40. The same treatment as described in general procedure afford (*S*)-40-[OMe] (23.6 mg, 83%) after flash chromatography using *n*-hexane/ethyl acetate = 4:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (89% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.06 (dd, $J_I = 8.1$ Hz, $J_2 = 2.2$ Hz, 1H), 7.02 (d, J = 2.2 Hz, 1H), 6.81 (d, J = 8.1 Hz, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 3.68 (s, 3H), 3.33–3.25 (m, 1H), 2.56 (dd, $J_I = 15.7$ Hz, $J_2 = 7.3$ Hz, 1H), 2.51 (dd, $J_I = 15.7$ Hz, $J_2 = 7.3$ Hz, 1H), 1.68–1.50 (m, 2H), 1.06 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 149.2, 148.8, 127.6, 123.8, 117.7, 111.3, 55.91, 55.85, 51.7, 47,5, 39.8, 27.3, 11.3; IR (ATR): 1738, 1254 cm⁻¹; HRMS (FAB): calcd for C₁₄H₂₀NaO₄S [M+Na]⁺ 307.0980, found 307.0977; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 11.8 min (minor) 10.6 min]; [α]_D¹⁹+9.5 (*c* 1.01, CHCl₃) for 83% ee.

Methyl (R)-3-((3,4-dimethoxyphenyl)thio)pentanoate ((R)-4o-[OMe])

MeO MeC OMe (R)-40-[OMe]

(Figure 3): The reaction with (*E*)-pent-2-enoic acid **3d** (10.0 mg, 0.10 mmol), **1g** (4.3 mg, 0.01 mmol), 3,4dimethoxybenzenethiol **2c** (14 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-40. The same treatment as described in general procedure afford (*R*)-40-[OMe] (21.9 mg, 77%) after flash chromatography using *n*-hexane/ethyl acetate = 4:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (89% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, λ = 254 nm, retention times: (major) 10.4 min (minor) 11.9 min]; [α]_D²⁵ -10.3 (*c* 1.05, CHCl₃) for 89% ee.

Methyl (S)-3-((4-methoxyphenyl)thio)octanoate ((S)-4p-[OMe])

OMe

(S)-4p-[OMe]

(Figure 3): The reaction with (*E*)-oct-2-enoic acid **3e** (14.2 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), 4methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4**p**. The same treatment as described in general procedure afford (*S*)-4**p**-[**OMe**] (24.3 mg, 82%) after flash chromatography using *n*-hexane/ethyl acetate = 20:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (84% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 9.5 Hz, 2H), 6.85 (d, J = 9.5 Hz, 2H), 3.80 (s, 3H), 3.66 (s, 3H), 3.33–3.24 (m, 1H), 2.54 (dd, $J_1 = 15.7$ Hz, $J_2 = 7.3$ Hz, 1H), 2.47 (dd, $J_1 = 15.7$ Hz, $J_2 = 7.3$ Hz, 1H), 1.58–1.40 (m, 4H), 1.36–1.22 (m, 4H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 159.7, 136.4 (2C), 123.5, 114.4 (2C), 55.3, 51.6, 46.0, 40.3, 34.3, 31.5, 26.5, 22.5, 14.0; IR (ATR): 1739, 1246 cm⁻¹; HRMS (FAB): calcd for C₁₆H₂₄NaO₃S [M+Na]⁺ 319.1344, found 319.1339; HPLC [Chiralcel IC, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 13.8 min (minor) 11.1 min]; [α]_D¹⁹ +4.7 (*c* 0.96, CHCl₃) for 84% ee.

Methyl (R)-3-((4-methoxyphenyl)thio)octanoate ((R)-4p-[OMe])

(Figure 3): The reaction with (*E*)-oct-2-enoic acid **3e** (14.3 mg, 0.10 mmol), **1g** (4.4 mg, 0.01 mmol), 4methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-4p. The same treatment as described in general procedure afford (*R*)-4p-[OMe] (24.5 mg, 83%) after flash chromatography using *n*-hexane/ethyl acetate = 20:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (91% ee).

Colorless oil; HPLC [Chiralcel IC, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, λ = 254 nm, retention times: (major) 11.1 min (minor) 14.0 min]; [α]_D²⁵ –5.0 (*c* 0.95, CHCl₃) for 91% ee.

Methyl (S)-3-((4-methoxyphenyl)thio)decanoate ((S)-4q-[OMe])

(Figure 3): The reaction with (*E*)-dec-2-enoic acid **3f** (17.0 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), 4methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4q. The same treatment as described in general procedure afford (*S*)-4q-[OMe] (25.6 mg, 79%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (81% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 3.66 (s, 3H), 3.33–3.23 (m, 1H), 2.54 (dd, $J_1 = 15.7$ Hz, $J_2 = 7.3$ Hz, 1H), 2.48 (dd, $J_1 = 15.7$ Hz, $J_2 = 7.3$ Hz, 1H), 1.57–1.40 (m, 4H), 1.34–1.22 (m, 8H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 159.7, 136.4 (2C), 123.4, 114.4 (2C), 55.3, 51.7, 46.0, 40.3, 34.3, 31.8, 29.2, 29.1, 26.8, 22.6, 14.1; IR (ATR): 1739, 1246 cm⁻¹; HRMS (ESI): calcd for C₁₈H₂₉O₃S [M+H]⁺ 325.1832, found 325.2829; HPLC [Chiralcel AD-H, *n*-hexane/2-propanol = 95/5, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 10.1 min (minor) 8.5 min]; [α]_D¹⁹ +5.0 (*c* 0.93, CHCl₃) for 81% ee.

Methyl (R)-3-((4-methoxyphenyl)thio)decanoate ((R)-4q-[OMe])

(Figure 3): The reaction with (*E*)-dec-2-enoic acid **3f** (17.1 mg, 0.10 mmol), **1g** (4.2 mg, 0.01 mmol), 4methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-4q. The same treatment as described in general procedure afford (*R*)-4q-[OMe] (24.7 mg, 76%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (88% ee). Colorless oil; HPLC [Chiralcel AD-H, *n*-hexane/2-propanol = 95/5, 1.0 mL/min, λ = 254 nm, retention times: (major) 8.8 min (minor) 10.3 min]; [α]_D²⁶ –5.2 (*c* 1.01 CHCl₃) for 88% ee.

Methyl (S)-3-((4-methoxyphenyl)thio)-4-methylpentanonate ((R)-4r-[OMe])

Ν

(Figure 3): The reaction with (*E*)-4-methylpent-2-enoic acid **3g** (11.4 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), 4methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4**r**. The same treatment as described in general procedure afford (*S*)-4**r**-[**OMe**] (19.9 mg, 74%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (72% ee).

(Figure 3, Reaction with benzoic acid): The reaction with (*E*)-4-methylpent-2-enoic acid **3g** (11.5 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), benzoic acid (12.2 mg, 0.1 mmol), 4-methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4r. The same treatment as described in general procedure afford (*S*)-4r-[OMe] (16.7 mg, 62%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (88% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.8 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 3.64 (s, 3H), 3.35–3.27 (m, 1H), 2.61 (dd, $J_1 = 15.6$ Hz, $J_2 = 6.0$ Hz, 1H), 2.49 (dd, $J_1 = 15.6$ Hz, $J_2 = 8.6$ Hz, 1H), 1.97–1.88 (m, 1H), 1.03 (d, J = 6.8 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 159.4, 135.4 (2C), 125.3, 114.5 (2C), 55.3, 53.8, 51.7, 37.6, 31.7, 19.5, 19.1; IR (ATR): 1739, 1494, 1247 cm⁻¹; HRMS (FAB): calcd for C₁₄H₂₁O₃S [M+H]⁺ 269.1215, found 269.1211; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 10.0 min (minor) 6.5 min]; [α]_D¹⁹ +3.3 (*c* 1.03, CHCl₃) for 88% ee.

Methyl (R)-3-((4-methoxyphenyl)thio)-4-methylpentanonate ((S)-4r-[OMe])

(Figure 3): The reaction with (*E*)-4-methylpent-2-enoic acid **3g** (11.4 mg, 0.10 mmol), **1g** (4.3 mg, 0.01 mmol), 4methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 48 h gave the crude product (*R*)-4r. The same treatment as described in general procedure afford (*R*)-4r-[OMe] (16.0 mg, 60%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (91% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, λ = 254 nm, retention times: (major) 6.7 min (minor) 10.9 min]; [α]_D²⁷ -3.3 (*c* 1.00, CHCl₃) for 91% ee.

Methyl (R)-3-((4-methoxyphenyl)thio)-4,4,4-trifluorobutanoate ((R)-4s-[OMe])

(Figure 3): The reaction with (*E*)-4,4,4-trifluoro-but-2-enoic acid **3h** (14.0 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), 4-methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product **4s**. The same treatment as described in general procedure afford **4s-[OMe]** (26.2 mg, 89%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (0% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H), 3.80–3.76 (m, 1H), 3.78 (s, 3H), 2.84 (dd, J_I = 16.7 Hz, J_2 = 3.8 Hz, 1H), 2.62 (dd, J_I = 16.7 Hz, J_2 = 10.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 160.6, 137.0 (2C), 126.3 (q, J = 279 Hz), 122.0, 114,7 (2C), 55.3, 52.3, 50.0 (q, J = 29.3 Hz), 34.1 (q, J = 2.1 Hz); IR (ATR): 1745, 1494, 1248 cm⁻¹; HRMS (FAB): calcd for C₁₂H₁₃F₃NaO₃S [M+Na]⁺ 317.0435, found 317.0431; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, λ = 254 nm, retention times: 8.1 min 10.9 min].

Methyl (R)-3-((4-methoxyphenyl)thio)-4,4,4-trifluorobutanoate ((S)-4s-[OMe])

OMe (S)-4s-[OMe]

(Figure 3): The reaction with (*E*)-4,4,4-trifluoro-but-2-enoic acid **3h** (14.1 mg, 0.10 mmol), **1g** (4.2 mg, 0.01 mmol), 4-methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product **4s**. The same treatment as described in general procedure afford **4s-[OMe]** (25.0 mg, 85%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (0% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 99/1, 1.0 mL/min, λ = 254 nm, retention times: 7.3 min 9.8 min].

Methyl (R)-4-(benzyloxy)-3-((4-methoxyphenyl)thio)butanoate ((R)-4t-[OMe])

(Figure 3): The reaction with (*E*)-4-(benzyloxy)but-2-enoic acid **3i** (19.3 mg, 0.10 mmol), **1a** (4.1 mg, 0.01 mmol), 4-methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*R*)-4t. The same treatment as described in general procedure afford (*R*)-4t-[OMe] (26.7 mg, 77%) after flash chromatography using *n*-hexane/ethyl acetate = 4:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (82% ee). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 10.1 Hz, 2H), 7.36–7.27 (m, 5H), 6.83 (d, *J* = 10.1 Hz, 2H), 4.49 (d, *J* = 12.0 Hz, 1H), 4.47 (d, *J* = 12.0 Hz, 1H), 3.80 (s, 3H), 3.65 (s, 3H), 3.65–3.61 (m, 1H), 3.57–3.49 (m, 1H), 3.47–3.43 (m, 1H), 2.77 (dd, *J*₁ = 15.8 Hz, *J*₂ = 6.3 Hz, 1H), 2.50 (dd, *J*₁ = 15.8 Hz, *J*₂ = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 159.9, 137.9, 136.3 (2C), 128.3 (2C), 127.7 (3C), 123.0, 114.5 (2C), 73.0, 71.8, 55.3, 51.8, 45.0, 37.0; IR (ATR): 1737, 1247 cm⁻¹; HRMS (ESI): calcd for C₁₉H₂₂NaO₄S [M+Na]⁺ 369.1131, found 369.1130; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, λ = 254 nm, retention times: (major) 16.0 min (minor) 14.4 min]; [α]_D²⁰ +20.0 (*c* 1.04, CHCl₃) for 82% ee.

Methyl (S)-4-(benzyloxy)-3-((4-methoxyphenyl)thio)butanoate ((S)-4t-[OMe])

(Figure 3): The reaction with (*E*)-4-(benzyloxy)but-2-enoic acid **3i** (19.3 mg, 0.10 mmol), **1g** (4.4 mg, 0.01 mmol), 4-methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*S*)-4t. The same treatment as described in general procedure afford (*S*)-4t-[OMe] (25.0 mg, 72%) after flash chromatography using *n*-hexane/ethyl acetate = 4:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (94% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, λ = 254 nm, retention times: (major) 15.4 min (minor) 17.2 min]; [α]_D²⁸ –21.4 (*c* 1.00, CHCl₃) for 94% ee.

Methyl (S)-4-(benzyloxy)-3-((4-methoxyphenyl)thio)butanoate ((S)-4u-[OMe])

(Figure 3): The reaction with (*E*)-6-(benzoyloxy)hex-2-enoic acid **3j** (23.5 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), 4-methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4u. The same treatment as described in general procedure afford (*S*)-4u-[OMe] (31.9 mg, 82%) after flash chromatography using *n*-hexane/ethyl acetate = 4:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (87% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.5$ Hz, 2H), 7.57 (dd, $J_1 = J_2 = 7.5$ Hz, 1H), 7.48–7.38 (m, 4H), 6.81 (d, J = 8.8 Hz, 2H), 4.34 (t, J = 6.4 Hz, 2H), 3.78 (s, 3H), 3.66 (s, 3H), 3.39–3.29 (m, 1H), 2.60 (dd, $J_1 = 15.7$ Hz, $J_2 = 7.3$ Hz, 1H), 2.50 (dd, $J_1 = 15.7$ Hz, $J_2 = 7.3$ Hz, 1H), 2.17–2.07 (m, 1H), 1.99–1.89 (m, 1H), 1.78–1.54 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 166.5, 159.9, 136.7 (2C), 132.9, 130.3, 129.5 (2C), 128.3 (2C), 122.7, 114.5 (2C), 64.5, 55.3, 51.7, 45.5, 40.3, 30.6, 26.1; IR (ATR): 1722, 1278 cm⁻¹; HRMS (FAB): calcd for C₂₁H₂₄NaO₅S [M+Na]⁺ 411.1242, found 411.1248; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 26.3 min (minor) 20.8 min]; [α]_D²⁰ +1.0 (*c* 1.04, CHCl₃) for 87% ee.

Methyl (R)-4-(benzyloxy)-3-((4-methoxyphenyl)thio)butanoate ((R)-4u-[OMe])

(Figure 3): The reaction with (*E*)-6-(benzoyloxy)hex-2-enoic acid **3j** (23.4 mg, 0.10 mmol), **1g** (4.3 mg, 0.01 mmol), 4-methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-4u. The same treatment as described in general procedure afford (*R*)-4u-[OMe] (31.5 mg, 81%) after flash chromatography using *n*-hexane/ethyl acetate = 4:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (80% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, λ = 254 nm, retention times: (major) 20.3 min (minor) 25.0 min]; $[\alpha]_D^{26}$ –0.1 (*c* 1.01, CHCl₃) for 80% ee.

Methyl (S)-3-((3,4-dimethoxyphenyl)thio)-5-(3,4-dimethoxyphenyl)pentanoate ((S)-4v-[OMe])

(Figure 3): The reaction with (*E*)-5-(3,4-dimethoxyphenyl)pent-2-enoic acid **3k** (23.5 mg, 0.10 mmol), **1a** (4.1 mg, 0.01 mmol), 3,4-dimethoxybenzenethiol **2c** (14 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4v. The same treatment as described in general procedure afford (*S*)-4v-[OMe] (28.2 mg, 67%) after flash chromatography using *n*-hexane/ethyl acetate = 2:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (84% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.06 (dd, $J_1 = 8.2$ Hz, $J_2 = 2.0$ Hz, 1H), 7.00 (d, J = 2.0 Hz, 1H), 7.84–7.76 (m, 2H), 6.74–6.66 (m, 2H), 3.88 (s, 3H), 3.86 (s, 9H), 3.67 (s, 3H), 3.37–3.27 (m, 1H), 2.91–2.82 (m, 1H), 2.80–2.71 (m, 1H), 2.60 (dd, $J_1 = 15.6$ Hz, $J_2 = 7.3$ Hz, 1H), 2.56 (dd, $J_1 = 15.6$ Hz, $J_2 = 7.3$ Hz, 1H), 1.92–1.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 149.4, 148.87, 148.82, 147.3, 133.9, 127.7, 123.4, 120.2, 117.7, 111.7, 111.3, 111.2, 55.91, 55.89, 55.88, 55.79, 51.7, 45.3, 40.3, 35.9, 32.5; IR (ATR): 1733, 1506, 1254 cm⁻¹; HRMS (FAB): calcd for C₂₂H₂₈NaO₆S [M+Na]⁺ 443.1504, found 443.1501; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 90/10, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 17.3 min (minor) 21.3 min]; [α]_D²⁰ –2.0 (*c* 1.05, CHCl₃) for 84% ee.

Methyl (R)-3-((3,4-dimethoxyphenyl)thio)-5-(3,4-dimethoxyphenyl)pentanoate ((R)-4v-[OMe])

(Figure 3): The reaction with (*E*)-5-(3,4-dimethoxyphenyl)pent-2-enoic acid **3k** (23.5 mg, 0.10 mmol), **1g** (4.3 mg, 0.01 mmol), 3,4-dimethoxybenzenethiol **2c** (14 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL)

for 24 h gave the crude product (*R*)-4v. The same treatment as described in general procedure afford (*R*)-4v-[OMe] (35.3 mg, 84%) after flash chromatography using *n*-hexane/ethyl acetate = 2:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (94% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 90/10, 1.0 mL/min, λ = 254 nm, retention times: (major) 21.2 min (minor) 17.2 min]; [α]_D²⁵ +2.4 (*c* 1.04, CHCl₃) for 94% ee.

Methyl (S)-3-((3,4-dimethoxyphenyl)thio)-5-(4-(trifluoromethyl)phenyl)pentanoate ((S)-4w-[OMe])

(Figure 3): The reaction with (*E*)-5-(4-(trifluoromethyl)phenyl)pent-2-enoic acid **31** (24.4 mg, 0.10 mmol), **1a** (4.0 mg, 0.01 mmol), 3,4-dimethoxybenzenethiol **3c** (14 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4w. The same treatment as described in general procedure afford (*S*)-4w-[OMe] (36.0 mg, 84%) after flash chromatography using *n*-hexane/ethyl acetate = 4:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (82% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.1 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.06 (dd, *J*₁ = 8.2 Hz, *J*₂ = 2.0 Hz, 1H), 6.98 (d, *J* = 2.2 Hz, 1H), 6.81 (d, *J* = 8.4 Hz, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.67 (s, 3H), 3.34–3.25 (m, 1H), 3.03–2.94 (m, 1H), 2.92–2.83 (m, 1H), 2.62 (dd, *J*₁ = 15.7 Hz, *J*₂ = 7.3 Hz, 1H), 2.52 (dd, *J*₁ = 15.7 Hz, *J*₂ = 7.3 Hz, 1H), 1.97–1.88 (m, 1H), 1.86–1.76 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 149.5, 148.9, 145.4, 128.7 (2C), 128.4 (q, *J* = 32.5 Hz), 127.8, 125.3 (q, *J* = 3.7 Hz, 2C), 124.3 (q, *J* = 272 Hz), 123.1, 117.7, 111.4, 55.92, 55.90, 51.8, 45.3, 40.3, 35.3, 32.8; IR (ATR): 1737, 1504, 1326, 1253 cm⁻¹; HRMS (FAB): calcd for C₂₁H₂₃F₃NaO₄S [M+Na]⁺ 451.1167, found 451.1174; HPLC [Chiralcel IC, *n*-hexane/2-propanol = 95/5, 1.0 mL/min, λ = 254 nm, retention times: (major) 13.8 min (minor) 11.8 min]; [α]p²⁰–8.5 (*c* 0.96, CHCl₃) for 82% ee.

Methyl (R)-3-((3,4-dimethoxyphenyl)thio)-5-(4-(trifluoromethyl)phenyl)pentanoate ((R)-4w-[OMe])

(Figure 3): The reaction with (*E*)-5-(4-(trifluoromethyl)phenyl)pent-2-enoic acid **31** (24.5 mg, 0.10 mmol), **1g** (4.3 mg, 0.01 mmol), 3,4-dimethoxybenzenethiol **3c** (14 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-4w. The same treatment as described in general procedure afford (*R*)-4w-[**OMe**] (31.4 mg, 73%) after flash chromatography using *n*-hexane/ethyl acetate = 4:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (90% ee).

Colorless oil; HPLC [Chiralcel IC, *n*-hexane/2-propanol = 95/5, 1.0 mL/min, λ = 254 nm, retention times: (major) 12.1 min (minor) 14.0 min]; [α]_D²⁵ +8.9 (*c* 1.02, CHCl₃) for 90% ee.

Methyl (S)-3-((4-methoxyphenyl)thio)-4-(2,4,5-trifluorophenyl)butanoate ((S)-4x-[OMe])

(Figure 3): The reaction with (*E*)-4-(2,4,5-trifluorophenyl)but-2-enoic acid **3m** (21.6 mg, 0.10 mmol), **1g** (4.0 mg, 0.01 mmol), 4-methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4x. The same treatment as described in general procedure afford (*S*)-4x-[OMe] (30.7 mg, 83%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (69% ee).

(Figure 3, Reaction with benzoic acid): The reaction with (*E*)-4-(2,4,5-trifluorophenyl)but-2-enoic acid **3m** (21.6 mg, 0.10 mmol), **1g** (4.0 mg, 0.01 mmol), benzoic acid (12.3 mg, 0.1 mmol), 4-methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (20 mg) in CCl₄ (50 μ L) for 24 h gave the crude product (*S*)-4x. The same treatment as described in general procedure afford (*S*)-4x-[OMe] (24.0 mg, 65%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (77% ee).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 9.6 Hz, 2H), 7.04 (ddd, $J_1 = 13.0$ Hz, $J_2 = 6.2$ Hz, $J_3 = 4.2$ Hz, 1H), 6.91–6.80 (m, 3H), 3.81 (s, 3H), 3.66 (s, 3H), 3.60–3.51 (m, 1H), 2.91 (dd, $J_1 = 14.3$ Hz, $J_2 = 7.3$ Hz, 1H), 2.81 (dd, $J_1 = 14.3$ Hz, $J_2 = 7.3$ Hz, 1H), 2.60–2.44 (m, 2H), ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 159.3, 156.1 (ddd, J = 245, 9.6, 2.4 Hz), 148.9 (ddd, J = 250, 14.4, 12.8 Hz), 146.5 (ddd, J = 245, 12.0, 4.0 Hz), 136.2 (2C), 123.1, 121.9 (ddd, J = 18.1, 4.8, 4.8 Hz), 119.0 (ddd, J = 19.2, 4.8, 1.6 Hz), 114.6 (2C), 105.3 (dd, J = 28.0, 20.8 Hz), 55.3, 51.8, 45.9, 39.1, 33.7; IR (ATR): 1738, 1518, 1247 cm⁻¹; HRMS (FAB): calcd for C₁₈H₁₇F₃NaO₃S [M+Na]⁺ 393.0748, found 393.0752; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, $\lambda = 254$ nm, retention times: (major) 11.1 min (minor) 7.8 min]; [α]_D¹⁹ +1.7 (*c* 0.94, CHCl₃) for 77% ee.

Methyl (R)-3-((4-methoxyphenyl)thio)-4-(2,4,5-trifluorophenyl)butanoate ((R)-4x-[OMe])

The reaction with (*E*)-4-(2,4,5-trifluorophenyl)but-2-enoic acid **3m** (21.7 mg, 0.10 mmol), **1g** (4.3 mg, 0.01 mmol), 4-methoxybenzenethiol **2b** (12 μ L, 0.10 mmol), and activated MS 4Å (100 mg) in acetone (1.0 mL) for 24 h gave the crude product (*R*)-4x. The same treatment as described in general procedure afford (*R*)-4x-[OMe] (29.6 mg, 80%) after flash chromatography using *n*-hexane/ethyl acetate = 10:1 as eluent. The enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis (90% ee).

Colorless oil; HPLC [Chiralcel OD-H, *n*-hexane/2-propanol = 98/2, 1.0 mL/min, λ = 254 nm, retention times: (major) 8.0 min (minor) 11.1 min]; [α]_D²⁷ -2.2 (*c* 1.00, CHCl₃) for 90% ee.

8. ¹¹B NMR experiments of the catalyst-substrate complex

- 8-1.¹¹B NMR titration experiment of **1a** with crotonic acid **3a** (10 equiv) and MS 4Å in CDCl₃ (0.033 M)
 - (a) A sample for ¹¹B NMR was prepared by decantation of a stirred suspension of **1a** (10.1 mg, 0.025 mmol) and activated MS 4Å (75 mg) in CDCl₃ (0.75 mL) at room temperature for 1 h.
 - (b) A sample for ¹¹B NMR was prepared by decantation of a stirred suspension of **1a** (10.1 mg, 0.025 mmol), crotonic acid **3a** (22.1 mg, 0.25 mmol, 10 equiv), and activated MS 4Å (75 mg) in CDCl₃ (0.75 mL) at room temperature for 1 h.
 - (c) A sample for ¹¹B NMR was prepared by decantation of a stirred suspension of **1a** (10.1 mg, 0.025 mmol), crotonic acid **3a** (22.1 mg, 0.25 mmol, 10 equiv), and activated MS 4Å (75 mg) in CDCl₃ (0.75 mL) at room temperature for 4 h.
 - (d) A sample for ¹¹B NMR was prepared by decantation of a stirred suspension of **1a** (10.1 mg, 0.025 mmol), crotonic acid **3a** (22.1 mg, 0.25 mmol, 10 equiv), and activated MS 4Å (75 mg) in CDCl₃ (0.75 mL) at room temperature for 24 h.

Figure S1. The time-course study of ¹¹B NMR spectra of 1a and crotonic acid 3a (10 equiv) in CDCl₃ (0.033 M). (a) *cat* 1a with MS 4Å; (b) 1 h; (c) 4 h; (d) 24 h.

- 8-2. ¹¹B NMR titration experiment of **1a** (0.033 M) with benzenethiol **2a**, crotonic acid **3a** and MS 4Å in CDCl₃ (0.033 M)
 - (a) A sample for ¹¹B NMR was prepared by decantation of a stirred suspension of **1a** (10.1 mg, 0.025 mmol) and activated MS 4Å (75 mg) in CDCl₃ (0.75 mL) at room temperature for 4 h.
 - (b) A sample for ¹¹B NMR was prepared by decantation of a stirred suspension of **1a** (10.1 mg, 0.025 mmol), benzenethiol **2a** (26 μ L, 0.25 mmol, 10 equiv), and activated MS 4Å (75 mg) in CDCl₃ (0.75 mL) at room temperature for 4 h.
 - (c) A sample for ¹¹B NMR was prepared by decantation of a stirred suspension of **1a** (10.1 mg, 0.025 mmol), crotonic acid **3a** (22.1 mg 0.25 mmol, 10 equiv), and activated MS 4Å (75 mg) in CDCl₃ (0.75 mL) at room temperature for 4 h.
 - (d) A sample for ¹¹B NMR was prepared by decantation of a stirred suspension of **1a** (10.1 mg, 0.025 mmol), benzenethiol **2a** (26 μL, 0.25 mmol, 10 equiv), crotonic acid **3a** (21.7 mg 0.25 mmol, 10 equiv), and activated MS 4Å (75 mg) in CDCl₃ (0.75 mL) at room temperature for 4 h.
 - (e) A sample for ¹¹B NMR was prepared by decantation of a stirred suspension of **1a** (10.0 mg, 0.025 mmol), benzenethiol **2a** (26 μL, 0.25 mmol, 10 equiv), crotonic acid **3a** (22.0 mg 0.25 mmol, 10 equiv), and activated MS 4Å (75 mg) in CD₂Cl₂ (0.75 mL) at room temperature for 4 h.

Figure S2. ¹¹B NMR titration experiments of **1a** with benzenethiol **2a** and crotonic acid **3a** in CDCl₃ (0.033 M). (a) *cat* **1a** with MS 4Å (b) *cat* **1a** with **2a** (10 equiv) and MS 4Å; (c) *cat* **1a** with **3a** (10 equiv) and MS 4Å; (d) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å; (e) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å; (e) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å; (e) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å; (f) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å; (f) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å; (f) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å; (f) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å; (f) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å; (f) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å; (f) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å; (f) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å; (f) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å; (f) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å; (f) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å; (f) *cat* **1a** with **2a** (10 equiv), **3a** (10 equiv) and MS 4Å in **CD**₂**C**₁.

- 8-3. ¹¹B NMR titration experiment of **1a** with crotonic acid **3a** (10 equiv) and MS 4Å in acetone- d_6 (0.033 M)
 - (a) A sample for ¹¹B NMR was prepared by decantation of a stirred suspension of **1a** (10.1 mg, 0.025 mmol) and activated MS 4Å (75 mg) in acetone- d_6 (0.75 mL) at room temperature for 1 h.
 - (b) A sample for ¹¹B NMR was prepared by decantation of a stirred suspension of **1a** (10.1 mg, 0.025 mmol), crotonic acid **3a** (21.7 mg, 0.25 mmol, 10 equiv), and activated MS 4Å (75 mg) in acetone-*d*₆ (0.75 mL) at room temperature for 1 h.
 - (c) A sample for ¹¹B NMR was prepared by decantation of a stirred suspension of **1a** (10.1 mg, 0.025 mmol), crotonic acid **3a** (21.7 mg, 0.25 mmol, 10 equiv), and activated MS 4Å (75 mg) in acetone-*d*₆ (0.75 mL) at room temperature for 4 h.
 - (d) A sample for ¹¹B NMR was prepared by decantation of a stirred suspension of **1a** (10.1 mg, 0.025 mmol), crotonic acid **3a** (21.7 mg, 0.25 mmol, 10 equiv), and activated MS 4Å (75 mg) in acetone-*d*₆ (0.75 mL) at room temperature for 24 h.

Figure S3. The time-course study of 11B NMR spectra of **1a** and crotonic acid **3a** (10 equiv) in acetone-*d6* (0.033 M). (a) *cat* **1a** with MS 4Å; (b) 1 h; (c) 4 h; (d) 24 h.

9. MS analysis

C₂₅H₃₄BN₃O₄S Exact Mass: 483.2363

Figure S4. ESI-MS (negative) spectrum of the sample prepared in CDCl₃

9-2. ESI-MS spectrum of the sample prepared in acetone

Figure S5. ESI-MS (negative) spectrum of the sample prepared in acetone- d_6 (Figure 4c)
10. Computational studies

The molecular geometries for the transition states were first estimated by Reaction plus software package, based on the nudged elastic band (NEB) method,^{S5} and were subsequently re-optimized at B3LYP/6-31G(d,p) level using Gaussian09 software package.^{S6} A single point energy calculation was further performed at wB97Xd/6-311+G(d,p) in acetone.

Figure S6. TS via s-cis configuration

Figure S7. TS via s-trans configuration (+2.0 kcal/mol)

The coordinates of each structures

s-cis	
Zero-point correction=	0.714040 (Hartree/Particle)
Thermal correction to Energy=	0.758435
Thermal correction to Enthalpy=	0.759379
Thermal correction to Gibbs Free Energy=	0.629623
Sum of electronic and zero-point Energies=	-2644.802528
Sum of electronic and thermal Energies=	-2644.758133
Sum of electronic and thermal Enthalpies=	-2644.757189
Sum of electronic and thermal Free Energies=	-2644.886945
E(RB3LYP)=-2645.51656802	
E(RwB97XD)=-2645.39333936	
Imaginary frequency = 1747i	

2.27159200	-2.74273800	0.11231700
4.07634800	-4.88537600	-0.06091900
1.98264300	-3.83854500	-0.70591000
3.46812700	-2.74704700	0.83635900
4.37949000	-3.79953500	0.76458400
2.88270300	-4.90462600	-0.78946500
5.30525200	-3.78281100	1.33521700
2.65645900	-5.75582900	-1.42571800
4.77193300	-5.71626500	-0.13756200
3.57094000	-1.52353800	1.70266300
2.75127100	-0.43487400	1.02445400
1.43798600	-1.40131100	0.38311200
4.58229300	-1.18028300	1.92115000
0.91416900	-0.83878800	-0.87862100
0.49822400	-1.41953300	1.49891400
-0.34822600	-0.49263300	-1.18705400
-0.99979700	0.31917300	-0.52812600
-0.59943100	-2.19700100	1.43876200
-0.13143200	-1.72784200	-2.96804800
-1.87608200	-0.46190900	-3.15461500
-2.40308000	0.34228500	-2.64939000
3.07824400	-1.70681500	2.66242400
3.51235900	0.23518600	-0.16387600
3.85855100	2.24888600	-1.66716700
5.73824500	0.62237900	-1.35331900
5.37759900	2.08237000	-1.62718400
5.04640900	0.08757600	-0.08765700
3.17956500	1.74040100	-0.37519100
3.44005000	1.70298400	-2.52405400
5.43787000	0.00321500	-2.20966500
5.79336300	2.72235300	-0.83726700
5.43263500	0.62324600	0.79039200
3.17284100	-0.31813800	-1.04206400
3.58113400	3.30002100	-1.78108900
6.82136300	0.49678900	-1.24435900
5.82253800	2.41987900	-2.56985800
5.31534100	-0.96486000	0.01939600
	2.27159200 4.07634800 1.98264300 3.46812700 4.37949000 2.88270300 5.30525200 2.65645900 4.77193300 3.57094000 2.75127100 1.43798600 4.58229300 0.91416900 0.49822400 -0.34822600 -0.99979700 -0.59943100 -0.13143200 -1.87608200 -2.40308000 3.07824400 3.51235900 3.85855100 5.73824500 5.37759900 5.04640900 3.17956500 3.44005000 5.43787000 5.43787000 5.79336300 5.43263500 3.17284100 3.58113400	2.27159200-2.742738004.07634800-4.885376001.98264300-3.838545003.46812700-2.747047004.37949000-3.799535002.88270300-4.904626005.30525200-3.782811002.65645900-5.755829004.77193300-5.716265003.57094000-1.523538002.75127100-0.434874001.43798600-1.401311004.58229300-1.401311004.58229300-1.41953300-0.91416900-0.838788000.49822400-1.41953300-0.34822600-0.49263300-0.34822600-0.49263300-0.59943100-2.19700100-0.13143200-1.72784200-1.87608200-0.46190900-2.403080000.342285003.07824400-1.706815003.512359000.235186003.858551002.248886005.738245000.622370005.046409000.087576003.179565001.740401003.440050001.702984005.437870000.003215005.432635000.623246003.17284100-0.318138003.581134003.300021006.821363000.496789005.822538002.419879005.31534100-0.96486000

Ν	1.75168100	2.01695200	-0.42213600
Н	1.15928400	1.27090900	-0.75778400
С	1.16827900	3.18389700	-0.00018300
Н	3.58434200	2.32441800	0.45808800
Ν	-0.19608000	3.10452100	-0.03298900
Н	-0.55930500	2.16268400	-0.18181300
С	-1.21829800	4.05751400	0.16658500
С	-3.42875800	5.76533800	0.49574200
С	-2.52323600	3.53670100	0.25027000
С	-1.03023700	5.44521200	0.24158000
С	-2.13602800	6.28015900	0.40653600
С	-3.61413900	4.38383900	0.41330500
Н	-2.67369600	2.46244800	0.18213100
Н	-0.03313700	5.85600400	0.18109700
Н	-4.27866200	6.42829400	0.62593400
Н	1.05089900	-3.86625200	-1.26188900
С	-2.02485400	-0.59046100	-4.63092600
Н	-1.33223300	0.12429100	-5.10491800
Н	-1.80773100	-1.97600400	-1.95390100
Н	-1.75012600	-1.58726800	-4.98641400
С	2.37757000	0.54442600	2.09564100
Н	1.91115600	-0.00569200	2.90902200
Н	1.67025600	1.27343900	1.71914300
Н	3.27210400	1.05255900	2.46467000
Н	-4.61200800	3.95924000	0.47580000
Н	-1.97456700	7.35295200	0.46481900
S	2.08964500	4.49272900	0.54055100
С	-1.41626200	-2.22020300	2.67109900
0	-0.91209800	-2.83170100	0.44277100
С	-0.84952500	-1.12406900	-2.41863600
Н	-2.28615900	-2.86697500	2.60181800
С	-1.15831000	-1.51421900	3.77890600
Н	-0.28110800	-0.87056300	3.78972800
С	-1.99605000	-1.53244200	5.01900200
Н	-2.36174000	-0.52553300	5.25611300
Н	-2.85679700	-2.19873200	4.91881000
Н	-1.40474800	-1.85838300	5.88402500
С	-4.18581000	-1.13969900	0.14839600

С	-4.59043700	-1.90836700	-0.95766700
С	-5.91869300	-2.36424900	-1.02359800
С	-6.82226600	-2.05546700	-0.00788600
С	-6.41362700	-1.29532000	1.08950500
С	-5.09393800	-0.84215200	1.16295900
Н	-3.16578300	-0.77600000	0.20406500
Н	-6.23216600	-2.96395800	-1.87203500
Н	-7.84573700	-2.41419200	-0.07215500
Н	-7.11782000	-1.05788200	1.88163500
Н	-4.76846100	-0.24939900	2.01336100
S	-3.47513600	-2.30504000	-2.28368600
Н	-3.03427600	-0.34991700	-4.96682400

s-trans

Zero-point correction=	0.714675 (Hartree/Particle)
Thermal correction to Energy=	0.758979
Thermal correction to Enthalpy=	0.759923
Thermal correction to Gibbs Free Energy=	0.630985
Sum of electronic and zero-point Energies=	-2644.802354
Sum of electronic and thermal Energies=	-2644.758050
Sum of electronic and thermal Enthalpies=	-2644.757106
Sum of electronic and thermal Free Energies=	-2644.886044
E(RB3LYP)=-2645.51702898	
E(RwB97XD)=-2645.39149350	
Imaginary frequency = 543i	

Λ	1
υ	1

С	1.65780900	2.06714900	0.73992800
С	3.45117900	4.22073300	0.84189700
С	2.93139600	1.94224000	0.17644600
С	1.30512900	3.27875500	1.34322200
С	2.18054900	4.36176800	1.40646200
С	3.82218300	3.01858200	0.23076400
Н	1.88784300	5.29604200	1.88015800
Н	4.81183100	2.92195200	-0.20701400
Н	4.15082200	5.05121600	0.87409000
С	-0.08065800	3.20173800	1.91925000
Ν	-0.84082400	2.16989600	1.09393100

В	0.45059100	1.02069600	0.81345200
Н	-0.62649600	4.14376200	1.97309600
0	0.31921500	0.31518900	-0.49134200
0	0.34593400	0.16876200	1.98681200
С	0.10468800	-0.98109200	-0.71757000
0	-0.69649900	-1.66587800	-0.09670700
С	0.87229800	-1.55030000	-1.88330900
Н	0.43066700	-2.48788900	-2.22454600
С	6.30862800	-2.45024800	-1.90528900
Н	1.52318500	0.36148000	-2.62603900
Н	-0.04033500	2.79149600	2.93268000
С	-1.33263800	2.74107600	-0.27544200
С	-2.99422000	2.68581500	-2.19265800
С	-1.75546300	4.80967700	-1.71657500
С	-3.05536400	4.21166300	-2.25298600
С	-1.42068500	4.28201000	-0.31127700
С	-2.69220500	2.16690500	-0.76782900
Н	-2.22012200	2.31110500	-2.87706500
Н	-0.92847900	4.56132600	-2.39583900
Н	-3.90363300	4.56588200	-1.65198700
Н	-2.18563200	4.62938600	0.39660300
Н	-0.55525100	2.44075800	-0.98160500
Н	-3.94469400	2.24176300	-2.49908500
Н	-1.80883200	5.90347800	-1.68004900
Н	-3.23933200	4.54466000	-3.28047800
Н	-0.46582500	4.71558400	-0.00965100
Ν	-2.75667800	0.71294100	-0.74566300
Н	-1.88971400	0.21560100	-0.87878100
С	-3.89891700	-0.01442200	-0.52056100
Н	-3.49595000	2.52163000	-0.11438900
Ν	-3.62949100	-1.34879700	-0.39525300
Н	-2.64099900	-1.57185700	-0.29094300
С	-4.45403600	-2.49155000	-0.29716900
С	-5.86960800	-4.91289900	-0.10968200
С	-3.79042700	-3.68727600	0.03417000
С	-5.83418400	-2.51889400	-0.54161600
С	-6.52407700	-3.72792000	-0.44366900
С	-4.49372900	-4.88341100	0.12664400

Н	-2.71834800	-3.66935100	0.21329900	
Н	-6.35386800	-1.60608700	-0.79310000	
Н	-6.42103100	-5.84516900	-0.03558900	
Н	3.22640200	1.01017600	-0.29697900	
С	1.42894700	-1.05949100	-4.33271400	
Н	1.95040000	-1.92662600	-1.35069300	
Н	0.48193900	-0.79593000	-4.83347800	
Н	1.57654200	-2.13536900	-4.45660700	
С	-1.96492700	1.68120900	1.95709900	
Н	-1.54796900	1.38007400	2.91451300	
Н	-2.44939300	0.82375400	1.50578700	
Н	-2.69329300	2.48118700	2.11177800	
Н	-3.96161700	-5.79455800	0.38442300	
Н	-7.59359600	-3.73435700	-0.63417400	
S	-5.40708300	0.72774600	-0.36622600	
С	1.29349300	-0.75124000	2.25981700	
0	2.25087800	-0.95760200	1.53285700	
С	1.07652800	-1.50697700	3.51222600	
Н	1.88875800	-2.18626200	3.75565900	
С	-0.01763200	-1.42723500	4.27914300	
Н	-0.81211500	-0.74850200	3.97633100	
С	-0.24935300	-2.22065300	5.52659300	
Н	-1.15173500	-2.83737500	5.43134600	
Н	0.59445600	-2.87683300	5.75562200	
Н	-0.41628600	-1.55813100	6.38524200	
С	1.34423500	-0.67328500	-2.89926000	
С	5.27943800	-1.85187800	-1.15411800	
С	5.56105400	-1.39393600	0.14818200	
С	6.84027200	-1.53966100	0.68027200	
С	7.86118300	-2.11629500	-0.08074400	
С	7.59198500	-2.56725800	-1.37559600	
Н	6.08950300	-2.81766200	-2.90293500	
Н	4.76146300	-0.95156400	0.73363000	
Н	7.04449800	-1.19511800	1.69036300	
Н	8.85984600	-2.21804300	0.33446100	
Н	8.38093000	-3.02209700	-1.96836700	
S	3.64846200	-1.67753000	-1.82274500	
Н	2.22593700	-0.52292200	-4.85178500	

11. Reference

- S1. Hayama, N.; Azuma, T.; Kobayashi, Y.; Takemoto, Y. Chem. Pharm. Bull. 2016, 64, 704-717.
- S2. Harada, S.; Morikawa, T.; Nishida, A. Org. Lett. 2013, 15, 5314-5317.
- S3. Hayama, N.; Kuramoto, R.; Földes, T.; Nishibayashi, K.; Kobayashi, Y.; Pápai, I.; Takemoto, Y. J. Am. Chem. Soc. 2018, 140, 12216-12225.
- S4. Nishimura, K.; Ono, M.; Nagaoka, Y.; Tomioka, K. J. Am. Chem. Soc. 1997, 119, 12974-12975.
- S5. G. Henkelman, H. Jónsson, J. Chem. Phys. 2000, 113, 9978-9985.
- S6. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, H. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01. Gaussian, Inc.: Wallingford, CT, 2009.

12. Copies of ¹H and ¹³C NMR charts

13. Copies of HPLC Chart

(S)-4a-[OMe] (table 1, entry 1)

(S)-4a-[OMe] (table 1, entry 3)

reaction catalyzed by 1a in hexane

(*R*)-4a-[OMe] (table 1, entry 5)

reaction catalyzed by 1a in acetone

rac-4a-[OMe]

(*S*)-4a-[OMe] (table 1, entry 2)

(*R*)-4a-[OMe] (table 1, entry 4)

reaction catalyzed by 1a in CH₃CN

(*R*)-4a-[OMe] (table 1, entry 8)

reaction catalyzed by 1a in acetone without MS 4Å

(*R*)-4a-[OMe] (table 1, entry 9)

(*R*)-4a-[OMe] (table 1, entry 11)

reaction catalyzed by 1c in acetone

(*R*)-4a-[OMe] (table 1, entry 13)

reaction catalyzed by 1e in acetone

(R)-4a-[OMe] (table 1, entry 15)

reaction catalyzed by 1g in acetone

(*R*)-4a-[OMe] (table 1, entry 10)

reaction catalyzed by 1b in acetone

(*R*)-4a-[OMe] (table 1, entry 12)

reaction catalyzed by 1d in acetone

(*R*)-4a-[OMe] (table 1, entry 14)

reaction catalyzed by 1f in acetone

(*R*)-4a-[OMe] (table 1, entry 16)

reaction catalyzed by 1h in acetone

(*R*)-4a-[OMe] (table 1, entry 17) reaction catalyzed by 1g with MS 4Å (100mg)

(S)-4a-[OMe] (table s-1, entry 2)

reaction catalyzed by 1b in CCl₄

(S)-4a-[OMe] (table s-1, entry 4)

reaction catalyzed by 1d in CCl4

(S)-4a-[OMe] (table s-1, entry 6)

reaction catalyzed by 1f in CCl₄

(S)-4a-[OMe] (table 1, entry 18)

reaction catalyzed by 1g in CCl₄ (50 µL)

(S)-4a-[OMe] (table s-1, entry 3)

reaction catalyzed by 1c in CCl₄

(*S*)-4a-[OMe] (table s-1, entry 5)

reaction catalyzed by 1e in CCl₄

(S)-4a-[OMe] (table s-1, entry 7)

(*R*)-4a-[OMe] (table s-1, entry 8)

reaction catalyzed by 1h in CCl₄

(*S*)-4a-[OMe] (table s-1, entry 10)

reaction catalyzed by 1a in CCl₄ (2 mL)

(S)-4a-[OMe] (table s-1, entry 12)

reaction catalyzed by 1a in CCl₄ (0.25 mL)

(*R*)-4a-[OMe] (table s-2, entry 1)

reaction catalyzed by 1a in *n*-hexane (5 mL)

(*S*)-**4a-[OMe]** (table s-1, entry 9)

reaction catalyzed by 1a in CCl₄ (5 mL)

(S)-4a-[OMe] (table s-1, entry 11)

reaction catalyzed by **1a** in CCl₄ (0.5 mL)

(*S*)-4a-[OMe] (table s-1, entry 13)

reaction catalyzed by 1a in CCl₄ (0.1 mL)

(*S*)-4a-[OMe] (table s-2, entry 2)

reaction catalyzed by 1a in *n*-hexane (2 mL)

(*S*)-4a-[OMe] (table s-2, entry 4)

reaction catalyzed by **1a** in *n*-hexane (0.5 mL)

(*S*)-4a-[OMe] (table s-2, entry 6)

reaction catalyzed by 1a in CH₂Cl₂ (0.1 mL)

(*R*)-4a-[OMe] (table s-3, entry 1)

reaction catalyzed by 1a in acetone (5 mL)

(*R*)-4a-[OMe] (table s-3, entry 4)

reaction catalyzed by 1a in acetone (0.5 mL)

(*S*)-4a-[OMe] (table s-2, entry 5)

reaction catalyzed by 1a in *n*-hexane (0.25 mL)

(*S*)-4a-[OMe] (table s-2, entry 7)

reaction catalyzed by 1a in n-hexane/CH₂Cl₂ (0.1 mL)

(*R*)-4a-[OMe] (table s-3, entry 2)

reaction catalyzed by **1a** in acetone (2 mL)

(*R*)-4a-[OMe] (table s-3, entry 5)

reaction catalyzed by 1a in acetone (0.25 mL)

(*R*)-4a-[OMe] (table s-3, entry 6) reaction catalyzed by 1a with MS 4Å (100mg)

(*R*)-4a-[OMe] (table s-4, entry 9)

reaction catalyzed by S-1 in CCl₄

(*R*)-4a-[OMe] (table s-4, entry 13)

3a (0.1 mmol) in CDCl₃ (0.3 mL)

(S)-4a-[OMe] (table s-4, entry 16

reaction with acetone in CCl₄ (0.1mmol)

(S)-4a-[OMe] (table s-4, entry 3)

reaction catalyzed by S-1 in acetone

(*R*)-4a-[OMe] (table s-4, entry 13)

2a-[OMe] instead of 2a

(S)-4a-[OMe] (table s-4, entry 14)

3a (0.01 mmol) in CDCl₃ (0.3 mL)

rac-4b-[OMe]

(*R*)-4b-[OMe]

1 Det.A Ch1 / 254nm

reaction catalyzed by 1g in acetone

retention time (r

(*R*)-4b-[OMe]

(S)-4b-[OMe]

reaction catalyzed by 1a in acetone

reaction catalyzed by 1a in CCl₄

area 3196978 153750 area (%) 95.411 4.589

rac-4c-[OMe]

(*R*)-4c-[OMe]

reaction catalyzed by 1g in acetone

 peak#
 retention time (min)
 area
 area (%)

 1
 10.634
 6467041
 95.007

 2
 11.712
 340913
 4.993

(S)-4c-[OMe]

(*R*)-4c-[OMe]

reaction catalyzed by 1a in acetone

reaction catalyzed by 1a in CCl₄

0 Det.A Ch1 / 254nm

reaction catalyzed by 1a in CCl₄

rac-4d-[OMe]

Det.A Ch1

20.0 min

(R)-4d-[OMe]

reaction catalyzed by 1g in acetone

(*R*)-4e-[OMe]

reaction catalyzed by 1g in acetone

(S)-4d-[OMe]

OMe

(S)-4e-[OMe]

rac-4f-[OMe]

(*R*)-4f-[OMe]

reaction catalyzed by 1g in acetone

rac-4g-[OMe]

(*R*)-4g-[OMe]

reaction catalyzed by 1g in acetone

(*S*)-4f-[OMe]

(S)-4g -[OMe]

rac-4h-[OMe]

$(R)-\mathbf{4h}-\mathbf{[OMe]}$

reaction catalyzed by 1g in acetone

 peak#
 retention time (min)
 area
 area (%)

 1
 6.760
 928297
 89.962

 2
 7.347
 103356
 10.018

rac-4i-[OMe]

(R)-4i-[OMe]

reaction catalyzed by 1g in acetone

(S)-4h-[OMe]

(S)-4i-[OMe]

rac-4j-[OMe]

(R)-4j-[OMe]

reaction catalyzed by 1g in acetone

rac-4k-[OMe]

(*R*)-4k-[OMe]

reaction catalyzed by 1g in acetone

(S)-4j-[OMe]

(S)-4k-[OMe]

(S)-4l-[OMe]

(S)-4m-[OMe]

reaction catalyzed by 1a in CCl₄

rac-4l-[OMe]

(R)-4l-[OMe]

reaction catalyzed by 1g in acetone

rac-4m-[OMe]

(R)-4m-[OMe]

reaction catalyzed by 1g in acetone

(S)-4n-[OMe]

(S)-40-[OMe]

reaction catalyzed by 1a in CCl₄

rac-4n-[OMe]

(*R*)-4n-[OMe]

reaction catalyzed by 1g in acetone

rac-4o-[OMe]

(R)-4o-[OMe]

reaction catalyzed by 1g in acetone

rac-4p-[OMe]

$(R)-\mathbf{4p-[OMe]}$

reaction catalyzed by 1g in acetone

rac-4q-[OMe]

(*R*)-4q-[OMe]

reaction catalyzed by 1g in acetone

(S)-4p-[OMe]

(S)-4q-[OMe]

rac-4r-[OMe]

(*R*)-4r-[OMe]

reaction catalyzed by 1a in CCl₄

(*R*)-4r-[OMe]

reaction catalyzed by 1a in CCl4 with benzoic acid

(S)-4r-[OMe]

1 Det A Ch1 / 254nm

reaction catalyzed by 1g in acetone

8 9 10 11

12

13 min

rac-4s-[OMe]

(S)-4s-[OMe]

reaction catalyzed by 1g in acetone

rac-4t-[OMe]

(*R*)-4t-[OMe]

peak#

reaction catalyzed by 1g in acetone

(R)-4s-[OMe]

OMe

(*S*)-4t-[OMe]

rac-4u-[OMe]

(*R*)-4u-[OMe]

reaction catalyzed by 1g in acetone

retention time (m

MeO

MeO

(R)-4v-[OMe]

OMe

MeO

MeO

ЭМе

2718280 306197 area (%) 89.876 10.124

rac-4v-[OMe]

(*R*)-4v-[OMe]

reaction catalyzed by 1g in acetone

(S)-4v-[OMe]

MeO

MeO

(S)-4v-[OMe]

MeO

MeO

(S)-4u-[OMe]

reaction catalyzed by 1a in CCl₄

rac-4w-[OMe]

(S)-4w-[OMe]

reaction catalyzed by 1a in CCl₄

(*R*)-4w-[OMe]

reaction catalyzed by 1g in acetone

rac-4x-[OMe]

area (%) 50.071 49.929 peak# retention time (m 6077195 6059895 .469 chromatogram hym384 C:¥Users¥Admin¥Desktop¥data hayama¥thia¥4v¥hym364.lcd mV 500 Det.A Ch1 250 ۲ ۶۲ 7.5 10.0 12.5 15.0 min 1 Det.A Ch1 / 254nm

(*R*)-4x-[OMe]

reaction catalyzed by 1g in acetone

(S)-4x-[OMe]

(S)-4x-[OMe]

reaction catalyzed by 1a in CCl4 with benzoic acid

