Supporting Information

Why RuO₂ electrodes catalyze electrochemical CO₂ reduction to methanol rather than methane; or perhaps neither of those?

Ebrahim Tayyebi¹, Javed Hussain¹, Egill Skúlason^{1,2,*}

¹Science Institute, University of Iceland, VR-III, 107 Reykjavík, Iceland

²Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, VR-III, 107 Reykjavík, Iceland

*Corresponding Author: egillsk@hi.is

Table S1. Recent experimental results for electrochemical CO_2 reduction reaction on RuO_2 and RuO_2 -based catalysts.

Electrode	CO ₂ saturated electrolyte	рН	Potential (V)	Time	Faradic efficiency (%)				
				(min)	СН ₃ ОН	нсоон	H ₂	СО	CH ₄
RuO ₂ (35)/TiO ₂ (65) ¹	0.05 M Hg ₂ SO ₄	1.2	-0.15 vs RHE	>2400	24	2			
$\begin{array}{c} \text{Ag-doped} \\ \text{RuO}_2(35) / \\ \text{TiO}_2(65)^{-1} \end{array}$	0.05 M Hg ₂ SO ₄	1.2	-0.15 vs RHE		2	78			
Rh ₂ O ₃ (20)/ TiO ₂ (80) ¹	0.05 M Hg ₂ SO ₄	1.2	-0.15 vs RHE		5				
RuO ₂ (25) / MoO ₂ (30) / TiO ₂ (45) ¹	0.05 M Hg ₂ SO ₄	1.2	-0.15 vs RHE		12	<1			
$\begin{array}{c} RuO_2(20) / \\ Co_3O_4(10) / \\ SnO_2(8) / \\ TiO_2(62)^1 \end{array}$	0.05 M Hg ₂ SO ₄	1.2	-0.15 vs RHE		7	18			
RuO ₂ /TiO ₂ ¹	0.2 M Na ₂ SO ₄	4.0	Water reduction potential	>2400	76				

RuO ₂ /TiO ₂ ¹	0.2 M phosphate buffer	5.2	Water reduction potential	>2400	35				
RuO ₂ /TiO ₂ ¹	0.5 M KHCO3	7.6	Water reduction potential	>2400	5				
RuO ₂ /TiO ₂ ¹	0.2 M Na ₂ SO ₄	4.0	Water reduction potential	>2400	53				
$\begin{array}{c} \text{Cu-doped} \\ \text{RuO}_2\left(75\right) / \\ \text{TiO}_2\left(25\right)^2 \end{array}$	0.5 M KHCO ₃	7.2 to 7.3	-0.15 vs RHE		29.8	4.2			
RuO ₂ ³	0.5 M NaHCO ₃	8.3	-0.15 vs RHE	480	17.2				
Cu-doped RuO ₂ ³	0.5 M NaHCO ₃	8.3	-0.15 vs RHE	480	41.3				
Cd-doped RuO ₂ ³	0.5 M NaHCO ₃	8.3	-0.15 vs RHE	480	38.2				
RuO ₂ - coated boron doped diamond ⁴	0.05 M Hg ₂ SO ₄	5.9	0.21 vs RHE	206	8.12	32.66	39.88	0.005	0.11
RuO ₂ - coated boron doped diamond ⁴	0.05 M Hg ₂ SO ₄	7.3	0.09 vs RHE	356	4.77	37.45	44.85	0.003	0.12
RuO ₂ /TiO ₂ nano particles composite ⁵	0.5 M NaHCO ₃	8.5	-0.15 vs RHE	120	40.2				
RuO ₂ /TiO ₂ nano tubes composite ⁵	0.5 M NaHCO ₃	8.5	-0.15 vs RHE	120	60.5				
RuO ₂ ⁶	0.1 M KHCO ₃	6.8	-0.50 vs RHE	>900	0.00	0.00	>95	0.00	0.00

RuO ₂ ⁶	0.1 M KHCO ₃	6.8	-0.90 vs RHE	>900	0.00	<0.2	>90	0.1<	0.00
RuO ₂ (50)/TiO ₂ (50) ⁶	0.1 M KHCO3	6.8	-0.75 vs RHE	>900	0.00	0.5<	>95	0.5<	0.00
RuO ₂ (25)/TiO ₂ (75) ⁶	0.1 M KHCO3	6.8	-0.75 vs RHE	>900	0.00	0.00	>90	1.00<	0.00
Cu-doped RuO ₂ (25)/TiO ₂ (75) ⁶	0.1 M KHCO3	6.8	-0.75 vs RHE	>900	0.00	5.00<	83<	12.5<	0.00
RuO ₂ (25)/SnO ₂ (75) ⁶	0.1 M KHCO3	6.8	-1.00 vs RHE	>900	0.00	3.00<	95<	2.00<	0.00
RuO ₂ (10)/SnO ₂ (90) ⁶	0.1 M KHCO ₃	6.8	-1.00 vs RHE	>900	0.00	3.00<	94<	6.00<	0.00

Figure S1:Relative energy as a function of elapsed time from *ab initio* molecular dynamic simulation at 300 K of 84 H₂O molecules on top of a $RuO_2(110)$ surface.

Figure S2. a) top view of O*CO where the carbon atom binds to a bridge site and b) side view of *OCO* where two oxygen atoms bind to a bridge site and the adjacent CUS.

Figure S3. DFT calculated barrier for CO_2 protonation to COOH on $RuO_2(110)$ surface. Similar value for activation energy of CO_2 to COOH has been obtained on $RuO_2(110)$ when there is one CO as spectator on the surface (figure S2). (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S4. DFT calculated barrier for CO_2 protonation to COOH on $RuO_2(110)$ surface where CO spectator is included. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S5. DFT calculated barrier for COOH protonation to CO and H_2O on $RuO_2(110)$ surface. Similar value for activation energy is expected to be obtained on $RuO_2(110)$ surface even without the presence of spectator. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S6. DFT calculated barrier for CO desorption on $RuO_2(110)$ surface. (IS) initial state and (FS) final state are shown on the top of the figure.

Figure S7. DFT calculated barrier for CO protonation to COH on $RuO_2(110)$ surface. (IS) initial state and (FS) final state are shown on the top of the figure. The proton is transferred to CO from the adjacent H₂O molecule using a concerted Grotthuss mechanism of proton transfer from the next H₂O molecule on the CUS.

Figure S8. DFT calculated barrier for CO protonation to CHO on $RuO_2(110)$ surface. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S9. DFT calculated barrier for CO_2 protonation to OCHO_b in a bidentate adsorption configuration on RuO₂(110) surface. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S10. DFT calculated barrier for OCHO reconfiguration from bidentate configuration OCHO_b to monodentate configuration OCHO_m on $RuO_2(110)$ surface. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S11. DFT calculated barrier for OCHO_m protonation to HCOOH on $RuO_2(110)$ surface. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S12. DFT calculated barrier for formic acid desorption on $RuO_2(110)$ surface. (IS) initial state and (FS) final state are shown on the top of the figure.

Figure S13. DFT calculated barrier for HCOOH protonation to H_2COOH on $RuO_2(110)$ surface. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S14. DFT calculated barrier for H_2COOH protonation to CH_2O and H_2O on $RuO_2(110)$ surface. (IS) initial state and (FS) final state are shown on the top of the figure.

Figure S15. DFT calculated barrier for H_2COOH protonation to $H_2C(OH)_2$ on $RuO_2(110)$ surface. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S16. DFT calculated barrier for H_2COOH protonation to $H_2C(OH)_2$ on $RuO_2(110)$ surface. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S17. DFT calculated barrier for methanediol desorption on $RuO_2(110)$ surface. (IS) initial state and (FS) final state are shown on the top of the figure.

Figure S18. DFT calculated barrier for CH_2O protonation to CH_3O on $RuO_2(110)$ surface. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S19. DFT calculated barrier for CH_3O protonation to $CH_3OH(aq)$ on $RuO_2(110)$ surface. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S20. DFT calculated barrier for CH_3O protonation to $CH_4(g)$ on $RuO_2(110)$ surface. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S21. DFT calculated barrier for CH₃O protonation to \cdot CH₃+OH(br)+OH(cus) on RuO₂(110) surface. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S22. DFT calculated barrier for OH (br) reconfiguration to O(br) on $RuO_2(110)$ surface. (IS) initial state, and (FS) final state are shown on the top of the figure.

Figure S23. DFT calculated barrier for \cdot CH₃ protonation to CH₄(g) on RuO₂(110) surface. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S24. DFT calculations for O protonation to OH on $RuO_2(110)$ surface. (IS) initial state and (FS) final state are shown on the top of the figure.

Figure S25. DFT calculations for OH protonation to $H_2O(l)$ on $RuO_2(110)$ surface. (IS) initial state and (FS) final state are shown on the top of the figure.

Figure S26. DFT calculations for transferring H to vacant bridge site on $RuO_2(110)$ surface. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S27. DFT calculations for H protonation to H_2 on $RuO_2(110)$ surface. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

Figure S28. DFT calculations for H protonation to H_2 on $RuO_2(110)$ surface where CO is spectator. (IS) initial state, (SP) saddle point and (FS) final state are shown on the top of the figure.

References

- 1 A. Bandi, J. Electrochem. Soc., 1990, 137, 2157.
- 2 A. Bandi, J. Electrochem. Soc., 1992, 139, 1605.
- 3 J. P. Popić, M. L. Avramov-Ivić and N. B. Vuković, J. Electroanal. Chem., 1997, 421, 105–110.
- 4 N. Spataru, K. Tokuhiro, C. Terashima, T. N. Rao and A. Fujishima, *J. Appl. Electrochem.*, 2003, **33**, 1205–1210.
- 5 Qu, J., Zhang, X., Wang, Y. & Xie, C. *Electrochim. Acta* **50**, 3576–3580 (2005).
- 6 S. Mezzavilla, Y. Katayama, R. Rao, J. Hwang, A. Regoutz, Y. Shao-Horn, I. Chorkendorff and I. E. L. Stephens, *J. Phys. Chem. C*, 2019, **123**, 17765–17773.