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This document contains a detailed account of the issues faced when trying to isolate

contributions to φneut from local and distant sources. Also given are solvent density

profiles ρ(z) in the presence of the neutral solute for the different systems studied, and

the position of the solute at the interface is indicated in each instance. Solute-solvent

radial distribution functions g(r) are shown for q = −e, 0 and +e with the solute

in the center of the slab. Details underlying the piecewise linear response model are

also presented. A brief description of how P0(φsolv) is obtained is given.
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I. ELECTROSTATIC CONTRIBUTIONS FROM NEAR AND FAR

The challenge of identifying and interpreting a potential drop across the liquid-vapor

interface can be viewed as an issue of partitioning molecules between distinct regions of

space.

Consider a macroscopic droplet of liquid bounded by an interface S with the vapor phase

(as illustrated in Fig. S1). The origin of our coordinate system lies deep within the bulk

liquid phase. We will aim to calculate the average electric potential 〈φ〉 at the origin,

distinguishing contributions of molecules that are far from the probe (including those at the

phase boundary) from those that lie nearer the origin. Specifically, we will divide the two

populations at an imaginary surface B that is also deep within the bulk liquid. We will

take B to be distant enough from the origin that liquid structure on this surface is bulk in

character, even if the microscopic vicinity of the origin is complicated by a solute’s excluded

volume.
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FIG. S1. Sketch of a macroscopic droplet of liquid (shaded region at right) surrounded by dilute

vapor. The two phases contact at a macroscopically smooth interface S. The surface B within the

droplet is a mathematical device to isolate the electrostatic contribution of molecules residing near

the phase boundary S. The droplet’s overall scale L is a macroscopic distance. A magnified view

of a microscopic region straddling B is shown at left. Molecules intersected by B (dashed white

line) could reasonably be assigned to either the near (inside B) or far (outside B) domains.
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A. Partitioning schemes

The vast majority of molecules in the droplet are unambiguously located either outside B

(“far”) or inside B (“near”). A tiny fraction straddle the surface B. In the case of water this

could involve a molecule’s oxygen atom lying on one side of B, while its hydrogen atoms lie

on the other. One division scheme (an M-scheme) would judge the molecule’s location based

on the O atom; another M-scheme might base the classification on the molecule’s center of

charge. A still different scheme (a P-scheme) could divide the molecule in two, with some

pieces “near” and other pieces “far”. (The M-scheme and the P-scheme are well known in

the literature. See e.g. Ref. 1.) The total potential φ at the probe site is not sensitive to

which of these schemes is chosen. But its contributions φnear and φfar from atoms/molecules

in the near and far regions are sensitive, in an offsetting way.

Let’s first treat the M scheme, with the molecule’s near/far classification based on the

position r(0) of some site within the molecule (say, its O atom). The average far-field potential

in this case is

〈φM
far〉 = N

∫
outside B

dr

∫
dΩ p(r,Ω)

∑
α

qα
|r+Δrα(Ω)| , (S1)

where N is the total number of molecules in the droplet and α indexes charged sites within

each molecule. Here, p(r,Ω) = 〈δ(r− r(0))δ(Ω−Ω(0))〉 is the joint probability distribution

of a molecule’s position (i.e., r(0)) and intramolecular configuration Ω(0) (specified relative

to the reference position r(0), as indicated by the superscript).2 By Δrα = rα − r(0) we

denote the displacement of charge qα from the reference point r(0). This intramolecular

displacement is entirely determined by Ω(0).

For the P-scheme, each charge α contributes to φP
far if rα lies outside B. The corresponding

far-field potential is

〈φP
far〉 = N

∑
α

∫
outside B

dr

∫
dΩ pα(r,Ω)

qα
|r| (S2)

= N
∑
α

∫
outside B

dr

∫
dΩ p(r−Δrα,Ω)

qα
|r| (S3)

where pα(r,Ω) is the joint probability distribution for site position rα and intramolecular

configuration of a solvent molecule. In Eq. S3 we have made use of the connection

pα(r,Ω) = 〈δ(r− rα)δ(Ω−Ω(0))〉 = 〈δ(r−Δrα − r(0))δ(Ω−Ω(0))〉 (S4)

= p(r−Δrα(Ω),Ω) (S5)
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between the distributions p and pα.

B. Multipole expansion

Since the entire “far” region is macroscopically distant from the origin, small-Δrα expan-

sions of |r+Δrα|−1 and p(r−Δrα,Ω) are well justified. These yield

∑
α

qα
|r+Δrα| =

(∑
α

qαΔrα

)
· ∇1

r
+

1

2

(∑
α

qαΔrαΔrα

)
: ∇∇1

r
+ . . . (S6)

and

∑
α

qαp(r−Δrα,Ω) = −∇ ·
∑
α

qαΔrαp(r,Ω) +
1

2
∇∇ :

∑
α

qαΔrαΔrαp(r,Ω) + . . . (S7)

where we have omitted leading terms proportional to
∑

α qα, which vanish by molecular

charge neutrality. When carried through subsequent calculations, terms beyond quadrupole

order in these expansions would vanish due either to symmetry or to the macroscopic scale

of the droplet.

Defining dipole and quadrupole densities as

m(r) = N

∫
dΩ p(r,Ω)

∑
α

qαΔrα (S8)

and

Q(r) =
N

2

∫
dΩ p(r,Ω)

∑
α

qαΔrαΔrα (S9)

we can write

〈φM
far〉 =

∫
outside B

dr

(
m(r) · ∇1

r
+Q(r) : ∇∇1

r
+ . . .

)
(S10)

and

〈φP
far〉 =

∫
outside B

dr
1

r
(−∇ ·m(r) +∇∇ : Q(r) + . . .) (S11)

Integrating by parts, and noting that m(r) and ∇ : Q(r) vanish both on B and at infinity,

〈φP
far〉 =

∫
outside B

dr

(
m(r) · ∇1

r
−
(
∇1

r

)
· (∇ ·Q(r)

))
(S12)

=

∫
outside B

dr

(
m(r) · ∇1

r
−∇ ·

(
∇1

r
·Q(r)

)
+Q(r) : ∇∇1

r

)
(S13)
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Using the divergence theorem,

〈φP
far〉 = 〈φM

far〉 −
∫
B

dR n̂(R) ·
(
∇ 1

R
·Q(R)

)
(S14)

where R is a point on B and n̂(R) is the corresponding local inward-pointing normal vector.

Since B lies within the bulk liquid, where the average quadrupole density Qliq is isotropic,

Q(r) = I (TrQliq/3) everywhere on this surface. As a result,

〈φP
far〉 = 〈φM

far〉+
TrQliq

3

∫
inside B

dr∇21

r
(S15)

= 〈φM
far〉 −

4π

3
TrQliq (S16)

These two measures of the far-field potential are thus different. Moreover, the quadrupole

trace that determines this difference depends on the choice of r(0). This ambiguity is a

well-known feature of the so-called Bethe potential −(4π/3)TrQliq.
3–8

C. Dipole surface potential

To simplify the result for 〈φM
far〉, note that Q(r) is isotropic everywhere outside B, except

in the microscopic vicinity of S. In the bulk regions of the far domain, we then have

Q(r) : ∇∇r−1 ∝ δ(r) = 0. The final term in Eq. S10 therefore has nonzero contributions

only from a thin shell whose volume is proportional to L2, where L is the macroscopic scale

of the droplet. Since ∇∇r−1 ∼ L−3 in this shell, the quadrupolar contribution to 〈φM
far〉 has

a negligible magnitude, L−1. As a result,

〈φM
far〉 =

∫
outside B

drm(r) · ∇1

r
(S17)

This integral similarly has nonzero contributions only from a microscopically thin shell of

broken symmetry, centered on the phase boundary S. Since the macroscopic surface is very

smooth on this scale, and because the average dipole density points normal to the locally

planar interface, the far-field potential may be written

〈φM
far〉 =

∫
S

dR

∫
dz m⊥(z) n̂(R) · ∇1

r
, (S18)

where R is the point on S nearest to r, the coordinate z = (r−R)·n̂(R) is the perpendicular

displacement from the liquid-vapor interface, n̂(R) is the outward-pointing normal of S, and
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m⊥(z)n̂(R) is the average dipole field at r. Neglecting contributions of O(z/L), we may

replace r−1 by R−1, and easily evaluate the surface integral, yielding

〈φM
far〉 = −4π

∫ zvap

zliq

dz m⊥(z), (S19)

where the integral is performed in the direction from liquid (zliq < 0) to vapor (zvap > 0).

For the case of a perfectly planar interface, this result is a familiar component of the surface

potential, identified by Remsing et al. as the surface dipole contribution.4,7 As they note,

its value depends on the reference position r(0) defining the molecular reference frame. In

our calculation this dependence arises from the way molecules are classified relative to the

dividing surface B.

D. Near-field potential

In evaluating 〈φfar〉, we have made no assumptions about the liquid’s structure near the

probe. If the origin lies inside a solute’s excluded volume, then the near-field potential is

complicated by the microscopically heterogeneous arrangement of solvent molecules in its

vicinity. If, however, the probe is simply a point within the isotropic bulk liquid, then 〈φnear〉
can be easily determined.

For a probe that resides in uniform bulk liquid, m(r) = 0 and Q(r) = Qliq everywhere

inside B. In the P-scheme we can conclude immediately from the analogue of Eq. S11 that

〈φnear〉 = 0. In the M-scheme we have

〈φM
near〉 =

∫
inside B

dr
TrQliq

3
∇21

r
= −4π

3
TrQliq (S20)

In either case the total potential sums to

〈φ〉 = 〈φM
near〉+ 〈φM

far〉 (S21)

= 〈φP
near〉+ 〈φP

far〉 (S22)

= −4π

∫ zvap

zliq

dz m⊥(z)− 4π

3
TrQliq (S23)

These calculations of local and nonlocal contributions to the mean electrostatic potential

resemble previous developments of surface potential in many ways.4,5,7–12 Ours are somewhat

more general than standard calculations, in that we do not require a specific shape of the

liquid domain. (The standard development presumes an idealized geometry of the liquid
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phase e.g. planar interface or spherical droplet, and integrates the resulting 1-dimensional

Poisson equation.) More interestingly, it places the ambiguities surrounding surface potential

in an easily conceived context: The electrostatic bias of an interface is not well defined

because there is no unique way to assign molecules to that interface. Any attempt to do

so carries an arbitrariness that (in the case of water) is comparable in magnitude to the

apparent surface potential itself.
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II. SOLVENT DENSITY PROFILES AND SOLUTE-SOLVENT RADIAL

DISTRIBUTION FUNCTIONS

(a)

(b)

FIG. S2. (a) Average solvent density ρ(z), plotted as a function of the coordinate z perpendicular

to the liquid-vapor interface, with the solute (R = 0.240 nm) located in the bulk (zliq = 0nm, solid

blue line), and at the interface (zint = 1nm, dashed orange line). The dotted green line is drawn

at z = zint. Only half (z > 0 nm) of the solvent profile is shown. (b) Radial distribution function

g(r), plotted as a function of the distance r between the solute’s center and the oxygen atom of a

water molecule, with the solute at z = zliq with q = −e, 0, and +e. The vertical dot-dashed gray

line is drawn at r = R.
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(a)

(b)

FIG. S3. (a) ρ(z) with the solute (R = 0.317 nm) located in the bulk (zliq = 0nm, solid blue line),

and at the interface (zint = 1nm, dashed orange line). The dotted green line is drawn at z = zint.

Only half (z > 0 nm) of the profile is shown. (b) g(r) with the solute at z = zliq with q = −e, 0,

and +e. The vertical dot-dashed gray line is drawn at r = R.
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(a)

(b)

FIG. S4. (a) ρ(z) with the solute (R = 0.415 nm) located in the bulk (zliq = 0nm, solid blue line),

and at the interface (zint = 1nm, dashed orange line). The dotted green line is drawn at z = zint.

Only half (z > 0 nm) of the profile is shown. (b) g(r) with the solute at z = zliq with q = −e, 0,

and +e. The vertical dot-dashed gray line is drawn at r = R.
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(a)

(b)

FIG. S5. (a) ρ(z) with the solute (R = 0.75 nm) located in the bulk (zliq = 0nm, solid blue line),

and at the interface (zint = 1.75 nm, dashed orange line). The dotted green line is drawn at z = zint.

Only half (z > 0 nm) of the profile is shown. (b) g(r) with the solute at z = zliq with q = −e, 0,

and +e. The vertical dot-dashed gray line is drawn at r = R.
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(a)

(b)

FIG. S6. (a) ρ(z) with the solute (R = 1.0 nm) located in the bulk (zliq = 0nm, solid blue line), and

at the interface (zint = 1.75 nm, dashed orange line). The dotted green line is drawn at z = zint.

Only half (z > 0 nm) of the profile is shown. (b) g(r) with the solute at z = zliq with q = −e, 0,

and +e. The vertical dot-dashed gray line is drawn at r = R.
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III. EVALUATING PIECEWISE LINEAR RESPONSE

A. Outline

Here we present details of the piecewise linear response (PLR) model discussed in the

main article. The PLR model is based on the observation that solvent response to charging

a solute is linear for both anions and cations, but differs between the two cases.13–15 In such

a model, the average electrostatic potential due to the solvent at the center of a charged

cavity can be written as

〈φsolv〉q =

⎧⎪⎨
⎪⎩
φneut − βq〈(δφsolv)

2〉+ (q ≥ qc)

φneut − βq〈(δφsolv)
2〉− − βqc [〈(δφsolv)

2〉+ − 〈(δφsolv)
2〉−] (q < qc),

(S24)

where qc is the value of the ‘crossover charge’ between the two linear regimes, 〈(δφsolv)
2〉+

is the variance of φsolv for q ≥ qc, and 〈(δφsolv)
2〉− is the variance of φsolv for q < qc. (As

written, it is implicitly assumed that qc ≤ 0, as suggested by simulations.) Let us define

J = [〈(δφsolv)
2〉+ − 〈(δφsolv)

2〉−]. Fchg is then,

Fchg(q) =

⎧⎪⎨
⎪⎩
qφneut − βq2

2
〈(δφsolv)

2〉+ (q ≥ qc)

qφneut − βq2

2
〈(δφsolv)

2〉− − βJ
(
qqc − q2c

2

)
(q < qc),

(S25)

and ψ is,

ψ(q) =

⎧⎪⎨
⎪⎩
φneut (q ≤ |qc|)
φneut − βJ

4q
(q − |qc|)2 (q > |qc|).

(S26)

In general, φneut, qc and J will depend upon solute size, and whether or not the solute is

located in bulk or at the interface.

B. Results

Figures S7, S8 and S9 show 〈φsolv〉q vs q for R = 0.240 nm, 0.317 nm and 0.415 nm,

respectively, both for the solute in bulk and at the interface. Note that these results have

not been corrected for the finite size of the simulation cell: we will correct φneut for finite

size effects when computing Δadsψ
(PLR), where other finite size effects largely cancel.16 For

R = 0.317 nm and R = 0.415 nm we can see that PLR is broadly reasonable for the solute
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(a)

(b)

FIG. S7. 〈φsolv〉q vs q for R = 0.240 nm with the solute located (a) in bulk and (b) at the interface.

The dashed and dotted lines show linear fits to the left and right shaded regions, respectively.

in bulk, but some small deviations are seen. These deviations are more pronounced when

the solute is at the interface. For R = 0.240 nm, the above PLR model breaks down at large

negative q, but it remains reasonable for smaller values of the absolute charge. By fitting

straight lines to the anion and cation response, we can obtain values for qc, 〈(δφsolv)
2〉+ and

〈(δφsolv)
2〉−. The results from using these in Eq. S26 to compute Δadsψ

(PLR) are presented in

Fig. 4b in the main article. Results for R = 0.75 nm and R = 1nm are not shown because,

while anion and cation response do still differ, the degree of nonlinearity is much less on an

absolute scale than for the smaller solutes. This makes it challenging to reliably obtain qc.
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(a)

(b)

FIG. S8. 〈φsolv〉q vs q for R = 0.317 nm with the solute located (a) in bulk and (b) at the interface.

The dashed and dotted lines show linear fits to the left and right shaded regions, respectively.

(a)

(b)

FIG. S9. 〈φsolv〉q vs q for R = 0.415 nm with the solute located (a) in bulk and (b) at the interface.

The dashed and dotted lines show linear fits to the left and right shaded regions, respectively.
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IV. CONSTRUCTING P0(φsolv)

In order to compute Fchg(q) from Eq. 7, we require P0(φsolv), the probability distribution

of φsolv. For the range of q of interest, i.e. −1 ≤ q/e ≤ 1, sampling P0 directly (in

the absence of solute charge) would yield grossly insufficient data in the extreme wings of

the distribution. Instead, we obtain P0 by histogram reweighting using MBAR.17 As an

illustration, Fig. S10 (a) shows probability distributions Pq(φsolv) of φsolv at the center of the

solute (R = 0.240 nm) with different values of q. Using data from simulations across the full

range of q, we then construct P0(φsolv), as shown in Fig. S10 (b).

(a)

(b)

FIG. S10. (a) Pq(φsolv) for q/e = −1.0,−0.9, . . . , 0.0, . . . , 0.9, 1.0 with R = 0.240 nm. Solid lines

indicate normalized Gaussian distributions and are included as a guide to the eye. (b) P0(φsolv)

reconstructed from the set of Pq using MBAR17 (solid line). The dashed line indicates a normalized

Gaussian distribution with mean and variance obtained from the simulation at q/e = 0. Note that

finite size corrections have not been applied to these plots.
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12L. Horváth, T. Beu, M. Manghi, and J. Palmeri, J. Chem. Phys. 138, 154702 (2013).

13G. Hummer, L. R. Pratt, and A. E. Garćıa, J. Phys. Chem. 100, 1206 (1996).
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