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Section E. References

Section A. General

All chemicals and solvents were purchased from commercial sources and used as supplied
without further purification unless otherwise noted. Perylene 3,4,9,10-teteracarboxylicacid
dianhydride (PTCDA, 98%), propionic acid (analytical reagent grade), dimethylformamide (DMF,
analytical reagent grade), N-methyl-2-pyrrolidone (NMP, analytical reagent grade) , 4-tert-
butylphenol (analytical reagent grade), m-butylamine (analytical reagent grade) and Cs,COj;
(analytical reagent grade) were obtained from the commercial suppliers. 1, 6, 7, 12-
Tetrachloroperylene-3, 4, 9, 10-tetracarboxylic dianhydride3!! and 4-amino-3,5-di-methyl-
pyrazolel82 were prepared according to the literatures. Deuterated solvents were purchased from
Sigma-Aldrich and J&K scientific. 1D and 2D NMR spectra were conducted on a Bruker BioSpin
AVANCE III 400 or a JEOL JNM-ECZ400S/L.1 NMR spectrometer. The NMR chemical shifts (8)
are reported in ppm (parts per million) with respect to either the internal tetramethylsilane (TMS)
or solvent residue signals. The UV-Vis spectra were measured on UV-2700 from Shimadzu or
Perkin-Elmer Lambda 950 spectrometers. Electro-spray-ionization time-of-flight mass
spectroscopy (ESI-TOF-MS) of complexes were recorded on Impact II UHR-TOF mass
spectrometry from Bruker, with tuning mix as the internal standard. ESI-MS spectra of ligands
and precursors were recorded on Exactive Plus mass spectrometry from Thermo Fisher Scientific.
Luminescence spectra and photoluminescence quantum yields were measured on a FS5 from

Edinburgh Instruments Ltd with an integration sphere.

Section B. Synthesis and characterization of compounds
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Scheme S1. Synthesis route for precursors S1, S2 and ligands 1 and 3.

1. Synthesis of N,N’-bis(3,5-dimethyl-1H-pyrazole-4-yl)-1,6,7,12-tetrachloroperylene-

3,4,9,10-tetracarboxy diimide (S1). 4-Amino-3,5-dimethylpyrazole (1.048 g, 9.44 mmol) was
added to a mixture of 1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxylic dianhydride (0.996 g,
1.88 mmol) and propionic acid (20 mL) under argon atmosphere. The reaction mixture was stirred
and heated at 140 °C for 24 h. After being cooled to room temperature, the resultant precipitate
was filtered and washed with deionized water until the filtrate became neutral. The crude product
was purified by silica gel column chromatography with petroleum ether (PE) and dichloromethane
(DCM) (from 3:1 to 1:10 v/v) to give product S1 as a red solid 1.077 g (1.50 mmol, 80% yield).
'H NMR (400 MHz, DMSO-d) 8 12.50 (s, 2H), 8.64 (s, 4H), 2.05 (s, 12H). *C NMR (100 MHz,
CF;COOD) 6 163.40, 145.80, 136.91, 134.76, 131.58, 130.60, 123.78, 121.76, 115.12, 8.28. ESI-MS:
m/z calculated for [C34H;3sCI4N¢O4-H] 714.0138, found 714.0163.

2. Synthesis of N,N-bis(3,5-dimethyl-1H-pyrazole4-yl)- 1,6,7,12-(4-(tert-butyl)phenoxy)-

perylene-3,4,9,10-tetracarboxylic diimide (1). N,N’-bis(3,5-dimethyl-pyrazole)- 1,6,7,12-
tetrachloroperylene-3,4,9,10-tetracarboxy diimide (0.215 g, 0.30 mmol), 4-t-butylphenol (0.270 g,
1.80 mmol) and Cs,CO; (0.616 g, 1.90 mmol) were suspended in NMP (10 mL) and stirred under
argon atmosphere at 100 °C for 3 h. After being cooled to room temperature, the reaction mixture
was dropped into 1 N HCI (200 mL) under stirring. The solid was separated by filtration, and then

washed successively with deionized water (3 X 30 mL) and methanol (3 x 30 mL). The crude
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product was purified by silica gel column chromatography with PE and DCM (from 5:1 to 1:3 v/v)
to give ligand 1 as a dark red solid (0.246 g, 0.21 mmol, 69% yield). '"H NMR (400 MHz, DMSO-
de) 6 12.38 (s, 2H), 7.94 (s, 4H), 7.32 (d, ] = 7.8 Hz, 8H), 6.91 (d, ] = 7.8 Hz, 8H), 1.94 (s, 6H),
1.87 (s, 6H), 1.25 (s, 36H). 3C NMR (100 MHz, CF;COOD) 3 166.12, 159.41, 154.98, 151.66,
147.70, 135.54, 129.13, 124.55, 123.75, 122.85, 121.98, 121.36, 117.18, 36.07, 32.34, 10.15. ESI-
MS m/z calculated for [C74H7oN¢Og-H]- 1170.5250, found 1170.5304.

3. Synthesis of N-(n-butyl)-N’-(3, 5-di-methyl-pyrazole)-1, 6, 7, 12-tetrachloroperylene-3, 4, 9,
10-tetracarboxy diimide (S2)

1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxylic dianhydride (2.120 g, 4.00 mmol) and 4-
amino-3,5-dimethyl-pyrazole (0.450 g, 4.05 mmol) was dissolved in toluene (50 mL) in a two-
necked flask. Under argon atmosphere, n-butylamine (0.5 mL, 5 mmol) was added to the system.
The mixture was first stirred at room temperature for 30 min and then at 110 © C for 12 h. After
being cooled to room temperature, the toluene solvent was removed under reduced pressure. The
solid obtained was washed with deionized water until the filtrate became neutral. The crude
product was purified by silica gel column chromatography with PE and DCM (from 3:1 to 1:5 v/v)
to give product S2 as a red solid (0.624g, 0.92 mmol, 23% yield). 'H NMR (400 MHz, CDCl;): &
8.74 (s, 2H), 8.71 (s, 2H), 4.23 (t, ] = 7.4 Hz, 2H), 2.19 (s, 6H), 1.75 (m, 2H), 1.48 (m, 2H), 1.01
(t, J=7.2 Hz, 3H). BC NMR (100 MHz, CDCl;) 8 162.24, 161.73, 135.58, 135.42, 133.49, 132.99,
132.74, 131.63, 131.51, 129.05, 128.48, 123.69, 123.41, 123.10, 40.77, 30.18, 20.34, 13.84, 10.76.
ESI-MS: m/z calculated for [C33H,(CI14N404-H] 678.0204, found 678.0222.

4. Synthesis of N-(n-butyl)-N’-(3, 5-di-methyl-pyrazole) - 1, 6, 7, 12-(4-(tert-butyl)phenoxy)-
3,4,9,10-tetracarboxy diimide (3)

N-(n-butyl)-N’-(3, 5-di-methyl-pyrazole)-1, 6, 7, 12-tetrachloroperylene-3, 4, 9, 10-tetracarboxy
diimide (0.400 g, 0.59 mmol), 4-t-butylphenol (0.496 g, 3.33 mmol) and Cs,CO; (1.238 g, 3.80
mmol) were added into DMF (40 mL) and the suspension was stirred under argon atmosphere at
100 °C for 3 h. After being cooled to room temperature, the reaction mixture was dropped into 1
N HCI (400 mL) under stirring. The solid was separated by filtration, and then washed
successively with water (3 x 30 mL) and methanol (3 x 30 mL). The crude product was purified
by silica gel column chromatography with PE and DCM (from 5:1 to 1:2 v/v) to give ligand 3 as a
dark red solid (556 mg, 0.49 mmol, 82% yield). '"H NMR (400 MHz, CF;COOD) & 8.35 (s, 2H),
8.24 (s, 2H), 7.39 (d, J = 8.6 Hz, 4H), 7.36 (d, J = 8.6 Hz, 4H), 6.94 (d, J = 8.6 Hz, 4H), 6.88 (d, J
= 8.6 Hz, 4H), 4.08 (br, 2H), 2.37 (s, 6H), 1.59 (m, 2H), 1.40 (m, 2H), 1.37 (s, 18H), 1.35 (s, 18H),
0.95 (t,J= 7.2 Hz, 3H). 3C NMR (100 MHz, CF;COOD) 167.61, 166.60, 159.08, 154.88, 154.60,
151.38, 151.16, 147.74, 135.07, 134.72, 128.99, 128.93, 124.99, 123.68, 123.58, 123.52, 123.24,
122.14, 121.95, 121.37, 121.12, 121.08, 117.43, 43.66, 36.14, 36.10, 32.39, 32.30, 31.54, 21.85,
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14.27, 10.25. ESI-TOF-MS: m/z calculated for [C73H7,N4Og+H]™ 1133.5423, found 1133.5461.

5. Synthesis of metallacycle 2. Ligand 1 (11.7 mg, 10.0 umol) was treated with BpyPd(NOs),
(7.16 mg, 19.0 umol) in DMSO (1 mL) at 90 °C for 10 h. A homogeneous dark-red solution was
obtained and 'H NMR confirmed the quantitative formation of (Bpy)sPdg(1-2H)4-(NO3)s (2). 'H
NMR (400 MHz, DMSO-ds) 6 8.77 (br, 4H), 8.48 (br, 4H), 8.09 (br, 4H), 7.95 (br, 4H), 7.88 (br,
4H), 7.41 (br, 8H), 7.03 (br, 8H), 2.23 (br, 12H), 1.33 (br, 36H). '*C NMR (100 MHz, DMSO-d;)
5 162.58,162.16, 157.17, 156.01, 155.77, 153.09, 149.76, 147.61, 147.46, 143.04, 133.12, 128.68,
127.28, 125.15, 123.87, 123.50, 120.03, 119.73, 119.36, 114.68, 34.68, 34.59, 31.71, 31.61, 12.66.
ESI-TOF-MS: m/z calculated for [M-8-NOs]®* 847.2290, found 847.2290.

6. Synthesis of complex 4. Ligand 3 (11.3 mg, 10.0 umol) was treated with BpyPd(NO3), (4.30
mg, 11.0 pumol) in DMSO (1 mL) at 90 °C for 10 h. A homogeneous dark-red solution was
obtained and 'H NMR spectrum confirmed the quantitative formation of (Bpy),Pdy(3-2H),(NOs),
(4). 'H NMR (400 MHz, DMSO-dy) 8 8.73 (br, 2H), 8.46 (br, 2H), 7.91 (br, 8H), 7.32 (br, 8H),
6.88 (br, 8H), 3.93 (br, 2H), 2.19 (br, 6H), 1.54 (br, 2H), 1.24 (br, 38H), 0.87 (t, J = 7.2 Hz, 3H).
3C NMR (100 MHz, DMSO-dg) & 162.58, 161.94, 157.20, 155.73, 152.97, 152.73, 150.06, 147.49,
147.37, 143.05, 132.88, 132.67, 128.61, 127.11, 126.92, 126.66, 125.07, 122.94, 119.92, 119.78,
119.69, 119.15, 114.71, 34.96, 34.62, 34.55, 34.46, 34.41, 31.67, 31.60, 31.52, 31.48, 29.58, 22.55,
20.27, 14.09. ESI-TOF-MS: m/z calculated for [M-2-NO3]** 1394.5022 found 1394.5089.

7. Single crystal X-ray diffraction study

The X-ray diffraction study for metallacycle 2 was carried out at a SuperNova Dual Source
diffractometer from Agilent Technologies, using the Cu source. Data reduction was performed
with the CrysAlisPro package.[33] The structure was solved by direct method and refined by full-
matrix least-squares on F? with anisotropic displacement using the SHELX software package.[54
Some of solvent molecules were highly disordered and could not be reasonably located. These

residual intensities were removed by PLATON/SQUEEZE routine.[S3]

Crystal data for 2: Space group P-1, a = 22.2838(7) A, b =27.0021(9) A, ¢ =29.9657(6) A, V =
16907.2(9) A3, Z = 1, T = 293 K. Anisotropic least-squares refinement on 60159 independent
merged reflections (Rijy= 0.1297) converged at residual wR2 = 0.2907 for all data; residual R1 =
0.1135 for 27647 observed data [I > 20 (I)], and goodness of fit (GOF) = 0.981.
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Table S1. Crystal data and structure refinement for metallacycle 2.

Empirical formula C408 H400 N48 064 Pd8

Formula weight 7850.94

Temperature 293 K

Wavelength 1.54184 A

Crystal system Triclinic

Space group P-1

Unit cell dimensions a=22.2838(7) A o= 87.829(2)°.
b=27.0021(9) A B=86.244(2)°.
c=29.9657(6) A y=70.024(3)°.

Volume 16907.2(9) A3

Z 1

Density (calculated) 0.771 Mg/m3

Absorption coefficient 2.048 mm'!

F(000) 4064

Crystal size

0.5x0.3x0.3 mm3

Theta range for data collection

3.405 to 69.198°.

Index ranges

26<=h<=26, -32<=k<=32, -36<=I<=18

Reflections collected

113024

Independent reflections

60159 [R(int) = 0.1297]

Completeness to theta = 67.684°

97.2%

Refinement method

Full-matrix least-squares on F2

Data / restraints / parameters

60159/2312 /2185

Goodness-of-fit on F?

0.981

Final R indices [[>2sigma(])]

R1=0.1135, wR2 = 0.2907
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R indices (all data)

R1=0.1726, wR2 = 0.3556

Extinction coefficient

n/a

Largest diff. peak and hole

2.066 and -1.112 e. A3
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Figure S1 '"H NMR spectrum of S1 (400 MHz, DMSO-ds, 298 K). Signals labeled with star

denote solvent (PE) residue.
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Figure S2 3C NMR spectrum of S1 (100 MHz, CF;COOD, 298 K). Signal labeled with star denotes
solvent (DCM) residue.

S9



DTS

8Tl — = - 96°SE
€181~ 1) e
ot - Hw il
Qo
(2]
=
D b
2
: 3
968°0-
9169 dU. 66|
60£L O =17
622 i
956'L— VM Wﬁ a -— 00%}
Q
°
Q
LS.
8LET1- o 1 szl

10.5

12.0

13.5

3.0 2.0 1.0 0.0

4.0

5.0

6.0
ppm

8.0 7.0

9.0

Figure S3 "H NMR spectrum of ligand 1 (400 MHz, DMSO-dg, 298 K).

(wdd) 1y
123456 @
O O
i 0 o
- Salad®a®:
anglgle® ]
=Wl
- . o)
Q do
(8]
-
L

clx

7.0 6.0 5.0 4.0 3.0 2.0 1.0
Ppm

8.0

Figure S4 'H-'"H COSY spectrum of ligand 1 (400 MHz, DMSO-ds, 298 K).

S10



o Lwr—9eu =
 EEEREEEREE 28 g
JotEs CoScEeEN £q g
N s & \i |
Iirl—NH
)8
O v{ 15
e <
L\,l [;ﬁ lgo )
’\ro e O
>ATC ]T]/ U\,
s i-;?u/ b 16
5 1041@1 (13
1 34 6
- ! 341 ..I_ 89 b
1"f0 I 1&)0 ‘ 1I30 I 1:10 I Qb 8IC' 7I0 6I0 5IC' 40 3.0 26 1I0 0 —‘i

ppm

Figure S5 3C NMR spectrum of ligand 1 (100 MHz, CF;COOD, 298 K). The '3C NMR for this

compound is difficult to measure due to its poor solubility, even in CF;COOD.

________________________________________ 4
T —
50
N-NH
/{i 7)‘5\- 16(9)
15(1) E
g

@ fstﬂz W)'\ L100 =
NI e U;;r 108
07 “NLO
A 150

Nl

10 9 8 7 6 S 4 3 2 1 0 -1



Figure S6 'H-{'3C} HSQC spectrum of ligand 1 (400 MHz, CF;COOD, 298 K).
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Figure S16 ESI-MS (negative mode) of ligand 1 with the observed and simulated isotope patterns
of the [M-H]- peak.
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Figure S17 ESI-MS (negative mode) of S2 with the observed and simulated isotope patterns of
the [M-H]- peak.
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this compound is difficult to measure possibly due to aggregation and poor solubility.
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Figure S26 'H DOSY spectrum of complex 4 (400 MHz, DMSO-d;, 298 K).
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Figure S27 ESI-TOF-MS (positive mode) of metallacycle 2 with the observed and simulated
isotope patterns of the [M-8-NO3]®* peak.

S24



Intens. CLX645_2-a,4_01_5069.d: +MS, 0.1min #7]
x106
[Pd,(bpy),L,I**
31 2
1394.5089
2_
1
353.3327 1590.0921 1880.4586
0 ; ; T ‘ 4 ; ‘ "
600 800 1000 1200 1400 1600 1800 2000 2200 miz
Intens. | (C7aH71N20g)2Pda(CroN2Hs)2(NO3)o, M, 1393.4989
25001
N Simulated
1394.5022
2000 24
1394.0021
2+ 2+
13935018 1396.0033
1500+
2+
2+ 1396.5036
13930014
1000 2+
1397.0041
2+ 24
925010 1397.5045,
500 5t 2+
1398.00512+
241392.0009 56 ST
1391.5009&
A i
x10% +MS, 0.1min #7
41
34 2+ Observed
1394.5089
2+
1394.0091
24+ 2+
1393.5088 1396.0099
2.
2+
2+ 13965102
1393.0086
2+
1397.0106
11 o 2+
Ly 1397.5111
e Jtues.ous
] 1398.5122
: | . ‘ J | :
1390 1392 1394 1396 1398 1400 miz

Figure S28 ESI-TOF-MS (positive mode) of complex 4 with the observed and simulated isotope

patterns of the [M-2-NO;]** peak.
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Figure S29 Ortep drawing of the asymmetric unit in the crystal structure of metallacycle 2 at 30%
probability level. C gray, H white, N blue, O red, Pd green.

Figure S30 (A) The preferred conformation of the phenoxyl substituents of bay-substituted
Perylene-Diimide ligands in the structure of 2, showing a propeller-like conformation with the

dihedral angles of the two naphthalene subunits. (B) Side view for the structure of metallacycle 2.
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Figure S31 Crystal structure packing of metallacycle 2 from the view along (A) c axis and (B) a
axis. The solvents, counter ions and all H atoms are omitted for clarity. The steric congestion
evoked by #-butylphenol substituents in the bay positions leads to the core distortion and
suppresses the aggregation of the central perylene diimide chromophores toward face-to-face n-n

stacking.

Section C. Photophysical properties and singlet oxygen production
1. Photophysical data for all compounds 1-4.
The absolute quantum yield (QY) measurement was performed on the FS5 spectrofluorometer

from Edinburg Photonics (SC-30 Intergrating Sphere). The QY is defined as:

number of photon emitted Lsampte

QY = number of photon absorbed = E eference — Esample

where QY is the quantum yield, Lgmplc is the emission intensity of sample, Ecference and Egample are
the intensities of the excitation light not absorbed by the sample and the reference sample,

respectively.S¢ For our liquid samples, the reference would be a cuvette containing DMSO only.
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Figure S32 The emission spectra of ligand 1 (black) and metallacycle 2 (red) in H,O (c = 10 uM,
slits = 6-4).
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Figure S33 The UV-Vis spectra of metallacycle 2 in different solvents.
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Figure S34 The emission spectra of ligand 3 and complex 4 in H,O (c = 10 pM, slits = 6-4).
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Figure S35 Quantum yield of ligand 1 in DMSO (298 K, ¢ = 2x10% M, dex = 447 nm, QY =
57.7%).
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Figure S36 Quantum yield of metallacycle 2 in DMSO (298 K, ¢ = 2x10°M, Lex= 486 nm, QY =
50.7%).
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Figure S37 Quantum yield of ligand 3 in DMSO (298 K, ¢ = 8x10% M, Xex = 447 nm, QY =
44.7%).
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Figure S38 Quantum yield of complex 4 in DMSO (298 K, ¢ = 4x10° M, Aex = 447 nm, QY =
46.1%).
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Figure S39 Excited state decay curve with single exponential fit for ligand 1 under anaerobic

condition at 298 K (A = 377 nm).
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Figure S40 Excited state decay curve with single exponential fit for metallacycle 2 under

anaerobic condition at 298 K (A, = 377 nm).
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Figure S41 Excited state decay curve with single exponential fit for ligand 3 under anaerobic
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conditions at 298 K (Aex = 377 nm).
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Figure S42 Excited state decay curve with single exponential fit for complex 4 under anaerobic

condition at 298 K (A = 377 nm).
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Figure S43 The concentration-dependent UV-Vis absorption spectra of ligand 1 (A) and
metallacycle 2 (B) in solution (Vyae/ Vomso = 150/1), which revealed that the absorbance of
ligand 1 starts to level-off when its concentration is beyond 3 x 10° M, while that of the
metallacycle 2 keeps increasing up to 3 x 10-* M. This indicates that the cationic metallacycle 2
has much better water solubility than free ligand 1. Inserted photos show the solubility of ligand 1
and metallacycle 2 at the concentration of 1 x 10> M. The plots of absorbance at 463 nm for

ligand 1 (C) and 436 nm for metallacycle 2 (D) versus concentration.
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Figure S44 Fluorescence emission spectra of (A) Ligand 1 and (B) metallacycle 2 (Ax = 486 nm,
Cpaga = 0.25 uM, cp = 25.00 uM, slits = 1.5-1) with insets showing the plots of maximum
emission intensity of ligands versus H,O fraction in HO/DMSO mixtures and photographs of
corresponding compound in pure DMSO and 50 % H,O fractions mixed solution upon excitation

at 365 nm using an UV lamp.

Table S2. Summary of photophysical data.

abs em
Amax (nm) e/10° (M-lcm-l) max (nm) Tobs (IlS)
Cpd QY (%)
DMS 298 K

Water DMSO | Water DMSO | Water

57.7
1 578 541 0.39 0.19 617 638/686 | 3.684
(Aex = 447nm)
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51.0

(Aex = 537nm)

PdgLy 50.7
580 571 1.55 1.23 627 644 3.527

2 (Aex = 486nm)

3.24
(t1, 69.7%) | 44.7
3 577 582 0.33 0.17 618 683/634
5.54 (Aex = 44Tnm)

(12, 30.3%)

3.47
Pd,L, (11, 61.7%) | 46.1
580|594 079 036 |619 | 646/699
! 4.99 (hex = 447nm)

(12, 37.3%)

2. 10, generation of all compounds in DMSO solution

The rate constants (k) of singlet oxygen (!0,) production have been measured under strictly
controlled experimental conditions: 1) Photo-irradiation with a Xe lamp with wavelength of 510
(£10) nm at calibrated photo-power of 0.25 W ¢cm2; 2) DPBF (150 uM) was used as 'O, scavenger
in DMSO solvent; 3) The optical density at 510 nm (ODsyg o) values of ligand 1(c = 20 uM),
ligand 3 (c = 15 uM), metallacycle 2 (¢ = 5 pM) and complex 4 (¢ = 7.5 pM) solutions have been
adjusted to 0.25, respectively. The solutions were bubbled with O, for 10 min before irradiation
and O, gasbag were applied to both systems. UV—visible measurements were carried out at room
temperature. The 'O, generation rate constants of the sensitizer can be calculated from In(A¢/A;) =
kt, where A, and A, denote the initial and final absorbance of DPBF at 418 nm, £ is the slope of
the corresponding linear curves after plotting In(A¢/A;) vs time. For all compounds, the average
rate constants of 'O, generation and standard deviation are calculated from three times

measurements of the 'O, generation rate constants.
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Figure S45 (A-C) Time-dependent UV-Vis absorption spectra of DPBF in a DMSO solution of
ligand 1 under O, atmosphere (Irradiation at Ay, = 510 nm). (D-E) The corresponding In(A¢/Ay)

plots for the absorption at Agp= 418 nm versus time. The rate constants of 'O, generation for 1

were determined to be 0.0069 (£0.0005) s-!.
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Figure S46 (A-C) Time-dependent UV-Vis absorption spectra of DPBF in a DMSO solution of
metallacycle 2 under O, atmosphere (Irradiation at Ay = 510 nm). (D-E) The corresponding

In(Ao/A,) plots for the absorption at A,,= 418 nm versus time. The rate constants of 'O,

generation for 2 were determined to be 0.0179 (£0.0006) s™.
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Figure S47 (A-C) Time-dependent UV-Vis absorption spectra of DPBF in a DMSO solution of
ligand 3 under O, atmosphere (Irradiation at Ay, = 510 nm). (D-E) The corresponding In(A¢/Ay)

plots for the absorption at A.,= 418 nm versus time. The rate constants of 'O, generation for 3

were determined to be 0.0113 (£0.0006) s-!.
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Figure S48 (A-C) Time-dependent UV-Vis absorption spectra of DPBF in a DMSO solution of
complex 4 under O, atmosphere (Irradiation at Ay, = 510 nm). (D-E) The corresponding In(A¢/Ay)
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plots for the absorption at A= 418 nm versus time. The rate constants of 'O, generation for 4

were determined to be 0.0191 (2-0.0009) s™'.

Section D. Stability, Bio-Imaging, Cellular Uptake and Photodynamic Therapy

1. Stability of metallacycle 2 in aqueous media. The stability experiment was performed by
measuring the changes in the UV-Vis spectra of metallacycle 2 in aqueous solutions at different
pH conditions (¢ = 10 uM) for 24 h using Perkin-Elmer Lambda 950 spectrometer. Different pH
values adjusted by phosphate-buffered saline (PBS) were used to simulate the physiological
condition (pH = 7.4), tumor microenvironment (pH = 6.8) and lysosome environment (pH = 5.3),

respectively.

2. Cell culture and MTT assay: Human cervical cancer cell lines (HeLa and Siha) and human
normal cervical immortalized squamous cell line (Ectl/E6E7) used in this study were purchased
from American Type Culture Collection (ATCC, Manassas, VA). The cells were exposed with
different concentration of ligand 1, metallacycle 2, ligand 3, complex 4 and BpyPd(NO;), for 6 h,
and then irradiated with or without light from a light-emitting diode (LED, 560 nm) with different
doses at 0.1 W/cm? or 0.15 W/cm? for 2 min. The cells were incubated for another 24 h, and

investigated the cell viability by MTT assay.[S7]

3. Flow Cytometric Analysis: Flow cytometry was used to examined the anticancer mechanisms
of metallacycle 2 triggered by PDT. Briefly, HeLa cells (2x10* cells/mL, 6 mL) were seeded in 6
cm petri dish and attached for 24 h. Then the cells were incubated with metallacycle 2 at 5 uM or
10 uM for 6 h, then the cells were irradiated with LED (560 nm) at 0.15 W/cm? for 2 min. The
treated cells were incubated for another 24 h, and then collected, fixed with 75% ethanol solution

for 2 h in -20 °C, and stained with PI in darkness at room temperature for 1 h. Then the stained
cells were analyzed on Beckman CytoFLEX S flow cytometer. 58]

4. Measurement of singlet oxygen generation (10,) in HeLa cells triggered by metallacycle 2
and PDT: The 'O, generation in HeLa cells triggered by metallacycle 2 and PDT detected by
DPBF assay. 51 Briefly, HeLa cells (1x105cells/mL, 0.1 mL) were seeded in 96-well plates and
attached for 24 h. The cells were stained with the probe of DPBF (20 uM) for 1 h, and then added
the different concentration of Ligand 1 or metallacycle 2 (2.5, 5, 10, 20 uM). The 96-well plates
were analyzed for 'O, generation in the HeLa cells within 100 minutes using a cell imaging multi-
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mode reader (Cytation 5, BioTek Instruments, Inc.) at excitation and emission wavelengths of 410
and 484 nm, respectively. After 100 minutes, the cells were irradiated with LED (560 nm) at 0.15
W/cm? for 2 min, and then continue examining the 'O, generation in the HeLa cells for another 60

min.

5. Real-time living cell imaging: Real-time observation of the cellular uptake and localization of
Ligand 1, metallacycle 2 and BpyPd(NO;), were monitored by living cell imaging. Briefly, HeLa
cells (8x10* cells/mL, 2 mL) were seeded in 35 mm Confocal dishes with coverglass bottom and
attached for 24 h. The cells were stained with Hoechst 33342 for 0.5 h, and added with 10 uM of
ligand 1, metallacycle 2, ligand 3, complex 4 and BpyPd(NO;), in the cells, respectively. After
incubated with drugs for 6 h, 12 h and 24 h, the cells images were captured with fluorescence
microscope. The cells also collected with pancreatin and analyzed the cellular uptake on Beckman
CytoFLEX S flow cytometer with channel of PE.

6. Cell distribution of metallacycle 2: HeLa cells (8x10* cells/mL, 2 mL) were seeded in 35 mm
confocal dishes with coverglass bottom and attached for 24 h. The cells were stained with
Phalloidin green for 2 h and Hoechst 33342 for 0.5 h, and then treated with 10 pM of metallacycle
2 and incubated for another 12 h or 24 h. After washing with PBS twice, cell images were

captured with z-stack mode by a confocal fluorescence microscope (ZEISS LSMS800).

7. Cell localization of metallacycle 2: HeLa cells (8x10% cells/mL, 2 mL) were seeded in 35 mm
Confocal dishes with coverglass bottom and attached for 24 h. The cells were stained with Lyso-
Tracker green for 2 h and Hoechst 33342 for 0.5 h, and then treated with 10 uM of metallacycle 2
and incubated for another 12 h or 24 h. After washing with PBS twice, cell images were captured
with z-stack mode by a confocal fluorescence microscope (ZEISS LSM800). The colocalization of

metallacycle 2 and lysosome were analyzed with Imaris.

8. In vivo fluorescence imaging of metallacycle 2: The HelLa xenografts nude mice were
intravenously injected with 2 mg/kg of metallacycle 2, then anesthetized and monitored using a
fluorescence imaging system (Night OWL II LB 983) at different time points (0, 8, 12, 24, 48 and
72 h). After injection for 48 and 72 h, the main organs of heart, liver, spleen, lungs, kidney and
tumor of each group were taken out and the fluorescence distribution also investigated using the
fluorescence imaging technique. The 8-um sections of tumor tissues were obtained and stained the
nucleus with Hoechst 33342 for 0.5 h. The red fluorescence of metallacycle 2 in tumor sections

was captured with fluorescence microscope. All of the animal studies were performed in strict

accordance with the national guidelines for the care and use of laboratory animals (Laboratory
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animal-Guideline for ethical review of animal welfare. GB/T 35892-2018) and was approved by
the Animal Experimentation Ethics Committee of Jinan University (Guangzhou, China).

9. In vivo biocompatibility and safety evaluation of metallacycle 2: 8-week-old BALB/c mice
were randomly separated into three groups (10 mice/group), and then intravenously injected with
saline, metallacycle 2 or complex 4 (2 mg/kg, injection volume: 100 pL). After 3 days, the whole
blood samples (about 500 pulL) were collected in EDTA anticoagulant tubes from the retroorbital
plexus of the mouse eye (one half mice). The blood routine examination was performed on
automatic hematology analyzer for animal (Mindray, BC-2800vet). The blood samples were also
collected from the other half mice and centrifuged at 3000 rpm to obtain the serum and performed
the hematological analysis. Biochemical parameters including ALT (alanine aminotransferase),
AST (aspartate transaminase), ALB (albumin), TP (total protein), UREA (urea), BUN (blood urea
nitrogen), CREA (creatinine), UA (uricacid). The major organs of mice including heart, liver,
spleen, lung and kidney, were obtained and performed the H&E staining to conduct the

Pathological analysis.

10. In vitro cellular uptake of metallacycle 2: Different chemical endocytosis inhibitors were
performed to investigate the cellular uptake behavior of metallacycle 2.1561 Briefly, HeLa cells
(8x10%cells/mL, 0.1 mL) were seeded in 96-well plates and attached for 24 h. The cells were pre-
treated with NaN; (10 mM), chlorpromazine (10 pg/mL), sucrose (0.45 M), dynasore (1.6 mM),
nystatin (10 pg/mL) and incubated at 4 °C for 1 h. HeLa cells were then incubated with 10 uM of
metallacycle 2 for different periods of time at 37 °C or 4 °C. The control groups were incubated
with metallacycle 2 at 37 °C only. At the end of the incubation, the medium was removed from
the wells and the cells were rinsed three times with cold PBS to remove the particles outside the
cells. After that, 100 pL of 0.5% Triton X-100 in 0.2 M NaOH solution was added to lyse the cells.
A standard curve for metallacycle 2 was constructed by suspending different concentrations in the
same plate. The 96-well plates were analyzed with fluorescence intensity of metallacycle 2 by a
cell imaging multi-mode reader (Cytation 5, BioTek Instruments, Inc.) at excitation and emission
wavelengths of 550 and 627 nm, respectively. The uptake of metallacycle 2 in HeLa cells was

calculated from the standard curve and expressed as the quantity (ug) per 10° cells.
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Figure S49 Changes in UV-Vis spectra (left) and emission spectra (right) of metallacycle 2 versus
time in PBS buffer at pH =7.4 (¢ = 10 uM).
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Figure S50 Changes in UV-Vis spectra (left) and emission spectra (right) of metallacycle 2 versus
time in PBS buffer at pH =6.8 (¢ = 10 uM).
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Figure S51 Changes in UV-Vis spectra (left) and emission spectra (right) of metallacycle 2 versus

time in PBS buffer at pH =5.3 (¢ = 10 uM).
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Figure S52 Siha cell viability of metallacycle 2 combined with PDT. The cells were incubated with

metallacycle 2 for 24 h.
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Figure S53 Cell viability of ligand 1 combined with PDT. The cells were incubated with ligand 1
for 24 h.

S44



Figure S54 1Csy values of ligand 1, BpyPd(NOs3), and metallacycle 2 against normal human
cervical immortalized squamous cells (Ectl/E6E7). The cells were treated with these molecules
for 72 h.
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Figure S55 Metallacycle 2 enhanced PDT-induced cell cycle arrest in HeLa cells. The cells were
incubated with metallacycle 2 for 24 h.
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Figure S56 Concentration effect of ligand 1 on PDT-induced singlet oxygen overproduction in
HeLa cells.
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Figure S57 Intracellular trafficking of metallacycle 2 (10 uM) in HeLa cells.
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Figure S58 Intracellular trafficking of ligand 1 (10 uM) in HeLa cells.
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Figure S59 Intracellular trafficking of BpyPd(NOs), (10 uM) in HeLa cells.

Table S3 Blood routine examination of mice treated with metallacycle 2 or complex 4. The mice

were intravenously injected with 2 mg/kg of metallacycle 2 or complex 4 for 3 days.

Parameter Control Metallacycle 2 Complex 4 Unit Standard
WBC 5.4+1.31 5.22+0.72 5.3+0.83 10%/L 0.8-6.8

Lymph# 3.77+0.95 3.95+0.44 4.06+0.62 10°/L 0.7-5.7
Mon# 0.2+0.13 0.2+0.08 0.16+0.05 10%/L 0.0-0.3
Gran# 1.43+0.29 1.07£0.22 1.08+£0.23 10%/L 0.1-1.8

Lymph% 69.77+1.75 75.72+2.01 76.26£2.01 % 55.8-90.6
Mon% 3.57+£0.29 3.8+0.45 3.56+0.58 % 1.8-6.0
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Gran% 26.67+£2.03 21.33+£0.74
RBC 8.49+0.48 7.78+0.58
HGB 125.67+6.81 117.75+10.81
RDW 16.6+0.17 16.03£0.35
PLT 1306.5+500.89 1293+468.62

20.18+2.03

8.44+0.47

130.8+6.06

16.2440.55

1465+147.02

%
10'2/L
g/L
%

10°/L

8.6-38.9

6.36-9.42

110-143

13-17

450-1590

WBC: White Blood Cell, Lymph#: Lymphocyte, Mon#: Monocyte, Gran#: Granulocyte, Lymph%:
Lymphocyte Percentage, Mon%: Monocyte Percentage, Gran%: Granulocyte Percentage, RBC:
red blood cell, HGB: hemoglobin, RDW: Coefficient of variation of erythrocyte distribution width,

PLT: platelet.
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Figure S60 Hematological analysis of mice treated with treated with metallacycle 2 or complex 4

for 3 days.
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Figure S61 H&E staining of the heart, liver, spleen, lung, and kidney after treatment with

metallacycle 2 or complex 4 for 3 days (Scale bars are 50 pm).
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Figure S62 Intracellular uptake of metallacycle 2 in HelLa cells after pretreated with different
endocytosis inhibitors. HeLa cells were pretreated with various endocytosis inhibitors for 1 h and then
incubated with 10 uM of metallacycle 2 for different periods of time at 37 °C or 4 °C. The control

groups were incubated with metallacycle 2 only at 37 °C.
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Figure S63 Changes in UV-Vis spectra of metallacycle 2 extracted from cell lysate after
incubated with HeLa cells for 24 h.
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Figure S64 Changes in emission spectra of metallacycle 2 extracted from cell lysate after
incubated with HeLa cells for 24 h.
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Figure S65 ESI-MS spectra for metallacycle 2 in water at pH = 5.3 containing lysozme after 2 h.
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Figure S66 Changes in UV-Vis absorption (left) and emission spectra (right) of ligand 1 versus
time in PBS buffer at pH = 5.3 containing lysozyme (c = 20 uM).
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Figure S67 Changes in UV-Vis absorption (left) and emission spectra (right) of metallacycle 2

versus time in PBS buffer at pH = 5.3 containing lysozyme (c = 10 pM).
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Figure S68 Changes in UV-Vis absorption (left) and emission spectra (right) of ligand 3 versus
time in PBS buffer at pH = 5.3 containing lysozyme (¢ = 20 uM).
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Figure S69 Changes in UV-Vis absorption (left)

and emission spectra (right) of complex 4 versus time in PBS buffer at pH = 5.3 containing

lysozyme (¢ =20 uM).
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