A Fluorescent ESIPT Benzimidazole Platform for the Ratiometric Two-Photon Imaging of ONOOㅋn Vitro and Ex Vivo

 Steven D. Bull, ${ }^{\text {** Hwan Myung Kim,*b Tony D. James.*a }}$
${ }^{\text {a }}$ Department of Chemistry, University of Bath, BA2 7AY, UK. Email: T.D.James@bath.ac.uk S.D.Bull@bath.ac.uk
${ }^{\text {b }}$ Department of Chemistry, Ajou University, 16499, Suwon, Korea. Email: kimhm@ajou.ac.kr
${ }^{\text {c }}$ Department of Chemistry, University of Texas at Austin, 105 E, $24{ }^{\text {th }}$ Street, A5300, Austin, USA.
${ }^{\text {d }}$ Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea.

Table of Contents

1. Experimental 2
2. NMR 7
3. Preparation of ROS/RNS 15
4. Materials and Methods 16
5. UV-VIS analysis 17
6. Mechanism of activation 19
7. Mass Spectrometry Analysis 20
8. Fluorescence Analysis 27
9. Cell studies 33

1. Experimental

Figure S1 - Synthetic route to MO-E1-3

3-(1H-benzo[d]imidazol-2-yl)-2-hydroxybenzaldehyde (4)

2-(1H-benzo[d]imidazol-2-yl)phenol ($2.50 \mathrm{~g}, 11.9 \mathrm{mmol}$) and HMTA ($3.33 \mathrm{~g}, 23.8 \mathrm{mmol}$) were added to trifluoroacetic acid (TFA - 42 mL) and refluxed for 48 h . After which, $\mathrm{H}_{2} \mathrm{O}$ was added dropwise until a precipitate formed. The precipitate was extracted with warm EtOAc $(50 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}$ $(2 \times 30 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford a bright yellow solid. The title compound was purified using column chromatography (97:3 DCM: MeOH) yielding a dark purple solid ($1.00 \mathrm{~g}, 4.2 \mathrm{mmol}, 35 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta: 9.92$ (s, 1H, CHO), 8.66 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 8.00(\mathrm{dd}, \mathrm{J}=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.75(\mathrm{dd}, \mathrm{J}=6.0,3.1 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.41$ (dd, J $=5.9,3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.28(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 191.11$, $163.18,134.87,130.07,128.93,124.74,118.35,115.08,112.51,79.61,56.46 \mathrm{ppm} . \mathrm{MP}=222-225{ }^{\circ}{ }^{\circ} \mathrm{C}$. IR (thin film) $v \max \left(\mathrm{~cm}^{-1}\right): 3404.90(\mathrm{~N}-\mathrm{H}), 3237.05$ (O-H phenol), 2854.99 (C-H), 1666.75 (C=O). FTMS ($p \mathrm{ESI}$): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}_{2}$ requires 238.0742 for [M$]^{+}$, found 238.0742.

3-(1H-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzyl)oxy)benzaldehyde (MO-E1)

3-(1H-benzo[d]imidazol-2-yl)-2-hydroxybenzaldehyde $\quad(0.91 \quad \mathrm{~g}, \quad 3.81 \mathrm{mmol})$, 2-(4-(bromomethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.13, 3.81 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.63 \mathrm{~g}$, $4.57 \mathrm{mmol})$ were added to dry DMF (6 mL) and stirred at rt for 12 h . After the allotted time, the reaction was diluted with EtOAc (30 mL), washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL}$), brine ($3 \times 50 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The title compound was purified with column chromatography (20:80 EtOAc: pet ether) to afford the title compound as a white solid ($0.35 \mathrm{~g}, 0.82$ mmol, 22 \%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta: 9.95(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHO}$), 7.88 (dd, J = 8.6, 2.2 Hz, 1H, Ar-H), 7.69 (d, J = 7.7 Hz, 1H, Ar-H), 7.64 (t, J = 8.4 Hz, 3H, Ar-H), $7.50(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H), 7.32 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.28-7.19$ (m, 3H, Ar-H), 5.66 (s, 2H, $\left.-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{Ar}\right), 1.25(\mathrm{~s}, 12 \mathrm{H}$, Bpin) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta: 191.87,160.10,148.27,140.21,135.11,132.64,132.37$, $130.31,126.76,123.01,122.28,119.98,119.16,114.78,112.50,84.12,70.14,25.09 \mathrm{ppm} . \mathrm{MP}=199-$ $201{ }^{\circ} \mathrm{C}$. IR (thin film) v max $\left(\mathrm{cm}^{-1}\right): 3432.41(\mathrm{~N}-\mathrm{H}), 2979.14(\mathrm{C}-\mathrm{H}), 1695.98$ (C=O). FTMS (p ESI): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~B}$ requires 453.2100 for $[\mathrm{M}+\mathrm{H}]^{+}$, found 454.2223 .

(3-(1H-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

 yl)benzyl)oxy)phenyl)methanol (MO-E2)
$\mathrm{NaBH}_{4}(0.028 \mathrm{~g}, 0.74 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to a stirring solution of $3-(1 \mathrm{H}-$ benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)benzaldehyde ($0.32 \mathrm{~g}, 0.74 \mathrm{mmol}$) in DCM (5 mL). The reaction was left to stir at rt for 30 mins , until completion by TLC. The mixture was diluted with DCM (20 mL), washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford the title compound as a white solid ($0.21 \mathrm{~g}, 0.46$ mmol, 62 \%). No further purification was required. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta: 8.26(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}$, 1H, Ar-H), $7.66-7.58(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.25(\mathrm{dd}, \mathrm{J}=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.23 - 7.15 (m, 3H, Ar-H), 7.05 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 5.52 (s, $2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{Ar}$), 5.15 ($\mathrm{q}, \mathrm{J}=6.7,6.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{O}-\mathrm{H}$), $4.45\left(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{CH}_{2}-\mathrm{OH}\right), 1.25(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Bpin}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ : $154.56,149.58,143.25,141.07,135.65,135.19,135.00,129.60,128.78,126.74,122.54,121.97$, $118.89,113.96,112.34,84.09,62.76,25.10 \mathrm{ppm} . \mathrm{MP}=239-240^{\circ} \mathrm{C}$. IR (thin film) v max $\left(\mathrm{cm}^{-1}\right): 3404.68$ (N-H), 3153.93 (O-H), 2934.16 (C-H). FTMS (p ESI): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~B}$ requires 479.2113 for $[\mathrm{M}]^{+}$, found 479.2117.

3-(1H-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)benzyl

 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (MO-E3)

EDCI (50 $\mu \mathrm{L}$) was added to a stirring solution of (3-(1H-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)phenyl)methanol ($0.19 \mathrm{~g}, 0.41 \mathrm{mmol}$), indomethacin $(0.15 \mathrm{~g}, 0.41 \mathrm{mmol})$ and DMAP ($0.025 \mathrm{mmol}, 0.2 \mathrm{mmol}$) in DCM (5 mL) and left for 12 h . The resulting solution was diluted with EtOAc $(30 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, brine $(3 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The title compound was purified using column chromatography (50:50 \% EtOAc: Petroleum Ether) to afford a pale yellow solid ($0.13 \mathrm{~g}, 0.16 \mathrm{mmol}, 40 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ ס: $8.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.94-7.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.63-7.60(\mathrm{~m}, 3 \mathrm{H}$, Ar-H), $7.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.43-7.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.06(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-H), 6.92(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 6.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.64(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}$, 1H, Ar-H), 5.33 (s, 2H, Ar-CH2-O-R), 5.17 (s, 2H, Ar-O-CH2-Ar), 3.75 (s, 3H ,R-O-CH3), 3.71 (s, 2H, CO-$\mathrm{CH}_{2}-\mathrm{C}-\mathrm{R}$), 2.36 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{RN}-\mathrm{C}-\mathrm{CH}_{3}$), 1.38 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{Bpin}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.65,168.24$, 156.01, 155.88, 139.14, 138.51, 135.92, 135.56, 135.11, 135.02, 133.90, 131.12, 130.76, 130.56, 130.50, 129.02, 126.80, 126.03, 125.90, 114.90, 113.02, 112.47, 111.89, 101.07, 84.06, 76.98, 76.73, 75.00, $71.49,66.11,55.63,30.39,24.89,24.85,24.81 \mathrm{ppm} . \mathrm{MP}=96-97^{\circ} \mathrm{C}$. IR (thin film) $\vee \mathrm{max}\left(\mathrm{cm}^{-1}\right)$: $3432.69(\mathrm{~N}-\mathrm{H}), 2932.19(\mathrm{C}-\mathrm{H}), 1735.21,1679.43(\mathrm{C}=\mathrm{O})$. FTMS (p ESI): m / z calculated for $\mathrm{C}_{46} \mathrm{H}_{43} \mathrm{O}_{7} \mathrm{~N}_{3} \mathrm{BCl}$ requires 794.2905for [M] ${ }^{+}$, found 794.2919.

2. NMR

3-(1H-benzo[d]imidazol-2-yl)-2-hydroxybenzaldehyde (4) (500 MHz DMSO-D ${ }_{6}$)

3-(1H-benzo[d]imidazol-2-yl)-2-hydroxybenzaldehyde (4) (126 MHz, DMSO- d_{6})

3-(1H-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)benzyl)oxy)benzaldehyde (MO-E1) ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$)

$\stackrel{\text { 学 }}{1}$

$\stackrel{8}{i}$

3-(1H-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)benzyl)oxy)benzaldehyde (MO-E2) (126 MHz, DMSO- d_{6})

-25.09

(3-(1H-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)benzyl)oxy)phenyl)methanol (MO-E2) (500 MHz , DMSO- d_{6})

(3-(1H-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)benzyl)oxy)phenyl)methanol (MO-E3) (126 MHz , DMSO- d_{6})

[^0]3-(1H-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)benzyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (MO-E3) ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3-(1H-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)benzyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (MO-E3) (126 MHz, CDCl ${ }_{3}$)

[^1]
3. Preparation of ROS / RNS.

ROO.

ROO• was generated from 2,2'-azobis (2-amidinopropane) dihydrochloride. AAPH (2, 2’ azobis (2amidinopropane) dihydrochloride, 1 M) was added into deionizer water, and then stirred at $37^{\circ} \mathrm{C}$ for 30 min .

O_{2}

Superoxide (${ }^{-} \mathrm{O}_{2}$) was generated from $\mathrm{KO}_{2} . \mathrm{KO}_{2}$ and 18 -crown- 6 ether (2.5 eq) was dissolved in DMSO to afford a 0.25 M solution.
. OH
Hydroxyl radical ($\cdot \mathrm{OH}$) was generated by the Fenton reaction. To prepare $\bullet \circ \mathrm{OH}$ solution, hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}, 10 \mathrm{eq}\right)$ was added to $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2}$ in deionised water.

ONOO
Simultaneously, $0.6 \mathrm{M} \mathrm{KNO}_{2}, 0.6 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ and 0.7 M in $\mathrm{H}_{2} \mathrm{O}_{2}$ in $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ were added to a 3 M NaOH solution (in $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) at $0{ }^{\circ} \mathrm{C}$. The concentration of ONOO^{-}was determined by the absorption at $302 \mathrm{~nm}\left(\varepsilon=1670 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right)$ in 0.1 M aqueous sodium hydroxide solution.

OCl
The concentration of ${ }^{-} \mathrm{OCl}$ was determined from the absorption at $292 \mathrm{~nm}\left(\varepsilon=350 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$.
$\mathrm{H}_{2} \mathrm{O}_{2}$
The concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ was determined from the absorption at $240 \mathrm{~nm}\left(\varepsilon=43.6 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$

4. Materials and Methods

Measurement of Two-Photon Cross Section

The two-photon cross section (δ) was measured using Ti-sapphire femtosecond laser (Mai Tai HP). ESIPT probes $\left(5.0 \times 10^{-6} \mathrm{M}\right)$ were dissolved in PBS buffer $\mathrm{pH}=8.2\left(52 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}\right)$, and ONOO^{-} was added ($5.0 \times 10^{-5} \mathrm{M}$). The two-photon induced fluorescence spectra was then obtained at 720-880 nm , and TPA was calculated using rhodamine 6G as the reference.

Two-Photon Microscopy Imaging

RAW264.7 macrophages were cultured in DMEM (WelGene) for two days. Before imaging, medium was changed to serum free medium and the chosen ESIPT probe ($5 \mu \mathrm{M}$) was added. Images were acquired using multiphoton microscopes (Leica TCS SP8 MP) with Ti-sapphire femtosecond laser. Excitation wavelength was 740 nm and 2.49 W output power, which corresponded to $1.20 \times 10^{6} \mathrm{~W}$ cm^{-2} average power in the focal plane.

Cell viability.

CCK-8 kit (AbCareBio CL) assay was conducted to assess the cytotoxicity of each probe. RAW264.7 macrophages were cultured in 96-well plate for one day, and then difference concentrations of MOE2 $(0-50 \mu \mathrm{M})$ were added. After incubation for 2 h , absorbances were measured at 450 nm .

Photostability

Photostability of MO-E2 in RAW264.7 macrophages was conducted by monitoring the changes in fluorescence intensities, which was induced by two photon excitation. The fluorescence intensities were obtained 1800 signals with 2 sec intervals for 1 h . The fluorescence intensities were collected at 380-600 nm upon excitation at 740 nm .

Preparation and Staining of Fresh Rat Hippocampal Slices

A 14-day-old SD rats was used to perform tissue imaging. Rat hippocampal slices were cut into 0.4 mm thickness and transferred to glass-bottomed dishes (NEST). Slices were stained with MO-E2 ($50 \mu \mathrm{M}$) in DPBS (WelGene) and incubated for 1.5 h . Slices were washed with DPBS and observed using multiphoton microscopes.

5. UV-VIS analysis

Figure S2- UV-Vis spectra of MO-E3 $(5 \mu \mathrm{M})$ with and without ONOO- $(50 \mu \mathrm{M})$ in PBS buffer pH = $8.2\left(52 \% \mathrm{w} / \mathrm{w}_{2} \mathrm{O}\right.$: MeOH$)$ at $25^{\circ} \mathrm{C}$.

Figure S3 - UV-Vis spectra of MO-E2 $(5 \mu \mathrm{M})$ with and without ONOO $(50 \mu \mathrm{M})$ in PBS buffer $\mathrm{pH}=8.2\left(52 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}\right.$: $\mathrm{MeOH})$ at $25{ }^{\circ} \mathrm{C}$.

Figure S4- UV-VIS spectra of MO-E1 $(5 \mu \mathrm{M})$ with (red line) and without ONOO $(10 \mu \mathrm{M})$ in PBS buffer pH $=8.2(52 \% \mathrm{w} / \mathrm{w}$ $\mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}$) at $25^{\circ} \mathrm{C}$.

6. Mechanism of activation

Figure S5 - Mechanism of activation of MO-E3 on reaction with ONOO.

7. Mass spectrometry analysis.

Figure S6 - Mass spectrometry analysis of products of reaction of MO-E1-3 with ONOO-. The observed and exact mass are based on neutral mass analyses.

Compound specific information

Figure: Extracted ion chromatogram (EIC) of compound.

Figure: Full range view of Compound spectra and potential adducts.

Figure: Zoomed Compound spectra view (red boxes indicating expected theoretical isotope spacing and abundance)

Compound isotope peak List

m/z	z	Abund	Formula	Ion
239.0810	1	8816.7	C14H12N2O2	(M+1)-
240.0855	1	1832.5	C14H12N2O2	(M-1)-
241.0869	1	500.3	C14H12N2O2	(M-1)-
299.0988	1	1137.0	C14H12N2O2	(M+CH3COO)-

Figure S7 - Mass Spectroscopic data of MO-E3 in the presence of ONOO

Compound specific information

Figure: Extracted ion chromatogram (EIC) of compound.

Figure: Full range view of Compound spectra and potential adducts.

Figure: Zoomed Compound spectra view
(red boxes indicating expected theoretical isotope spacing and abundance)
Compound isotope peak List

m / z	z	Abund	Formula	Ion
239.0825	1	341418.3	C14H12N2O2	$(M-H)-$
240.0855	1	52631.9	C14H12N2O2	$(M-H)-$
241.0875	1	5430.3	C14H12N2O2	$(M-H)-$
242.0619	1	956.9	C14H12N2O2	$(M-H)-$
243.0653	1	474.3	C14H12N2O2	$(M-\mathrm{H})-$
285.0951	1	295.9	C14H12N2O2	$(M+\mathrm{HCOO})-$
286.1207	1	201.8	C14H12N2O2	$(M+\mathrm{HCOO})-$

--- End of Report --

Figure $\mathbf{5 8}$ - Mass Spectroscopic data of MO-E2 in the presence of ONOO

Compound specific information

Figure: Extracted ion chromatogram (EIC) of compound.

Figure: Full range view of Compound spectra and potential adducts.

Figure: Zoomed Compound spectra view
(red boxes indicating expected theoretical isotope spacing and abundance)
Compound isotope peak List

m / z	z	Abund	Formula	Ion
237.0667	1	4927698.0	C14H10N2O2	(M-H)-
238.0698	1	727077.2	C14H10N2O2	(M-H)-
239.0724	1	68637.7	C14H10N2O2	(M-H)-
240.0723	1	6467.6	C14H10N2O2	(M-H)-
297.0870	1	3880.3	C14H10N2O2	(M+CH3COO)-
298.0457	1	6306.6	C14H10N2O2	(M+CH3COO)-
299.0328	1	1022.0	C14H10N2O2	(M+CH3COO)-

-- End Of Report --

Figure S9 -Mass Spectroscopic data of MO-E1 in the presence of ONOO

LC-MS analysis

Figure S10 - LCMS data of MO-E3 (MeCN/H20; 5:95 5 min hold to 100 \% linear gradient). Top: UV chromatogram. Middle: MS chromatogram representative of peak at $t=10.606 \mathrm{~min}$; determining MO-E3- $\left(\mathrm{C}_{46} \mathrm{H}_{43} \mathrm{O}_{7} \mathrm{~N}_{3} \mathrm{BCl}\right)$ with $\mathrm{m} / \mathrm{z} 794.2\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. Bottom: MS chromatogram representative of peak at $t=8.241$; determining boronic acid (loss of pinacol $-\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{O}_{7} \mathrm{~N}_{3} \mathrm{BCl}$) with $714.2\left([\mathrm{M}+\mathrm{H}]^{+}\right)$

Figure S11 - LCMS data of MO-E3 in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$ ($\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} ; 5: 955 \mathrm{~min}$ hold to 100% linear gradient). Top: UV chromatogram. Middle: MS chromatogram representative of peak at $t=5.088 \mathrm{~min}$; fragments determining fluorescent product $\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ found $241.1\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. Bottom: MS chromatogram representative of peak at $\mathrm{t}=5.649$; determining indomethacin $\left(\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClNO}_{4}\right)$ found 358.1 for $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Figure S12 - LCMS data of Indomethacin (MeCN/ $\mathrm{H}_{2} \mathrm{O} ; 5: 955 \mathrm{~min}$ hold to 100% linear gradient).Top: UV chromatogram. Bottom: MS chromatogram representative of peak at $t=5.649$; determining indomethacin $\left(\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClNO}_{4}\right)$ found 358.1 for ($\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$.

8. Fluorescence Analysis

Figure S13 - Relative fluorescence intensity of MO-E3 ($5 \mu \mathrm{M}$) at 450 nm in the presence of ONOO ($0-30 \mu \mathrm{M}$) in PBS buffer $\mathrm{pH}=8.2\left(52 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}\right)$ at $25{ }^{\circ} \mathrm{C}, \lambda_{\mathrm{ex}}=325$ (bandwidth: 16) nm on a BMG Labtech CLARIOstar${ }^{\circledR}$ plate reader.

Figure S14 - Plots of relative fluorescence intensity of MO-E3 (5 $\mathbf{~ M}$) as a function of ONOO- concentration at $\boldsymbol{\lambda}_{\text {max }}=450 \mathrm{~nm}$. Fluorescence studies were carried out in PBS buffer $\mathrm{pH}=8.2\left(52 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}\right)$ at $25{ }^{\circ} \mathrm{C}, \lambda_{\mathrm{ex}}=325$ (bandwidth: 16) nm on a BMG Labtech CLARIOstar ${ }^{\otimes}$ plate reader. Calculation for LOD $=$ limit of detection ($3 \sigma / \mathrm{k}$) - of the linear section of the graph.

Figure S15 - Relative ratio of MO-E2 $(5 \mu \mathrm{M})$ at 450 nm and 350 nm in the presence of ONOO $(0-7 \mu \mathrm{M})$ in PBS buffer $\mathrm{pH}=$ 8.2 ($52 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}$) at $25^{\circ} \mathrm{C}$, $\lambda_{\mathrm{ex}}=325$ (bandwidth: 16) nm on a BMG Labtech CLARIOstar ${ }^{\circledR}$ plate reader.

Figure S16 - Dose dependence curve of MO-E2 $(5 \mu \mathrm{M})$ in the presence of ONOO $(0-5 \mu \mathrm{M})$ in PBS buffer $\mathrm{pH}=8.2(52 \%$ $\mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}$) at $25{ }^{\circ} \mathrm{C}$, $\lambda_{\text {ex }}=325$ (bandwidth: 16) nm on a BMG Labtech CLARIOstar ${ }^{\circledR}$ plate reader, $\lambda_{\max }=450 \mathrm{~nm}$.

Figure S17 - Plots of relative fluorescence intensity of MO-E2 $(5 \mu \mathrm{M})$ as a function of ONOO concentration at $\boldsymbol{\lambda}_{\max }=$ $450 / 350 \mathrm{~nm}$. Fluorescence studies were carried out in PBS buffer $\mathrm{pH}=8.2\left(52 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}\right)$ at $25{ }^{\circ} \mathrm{C}, \lambda_{\text {ex }}=325$ (bandwidth: 16) nm on a BMG Labtech CLARIOstar ${ }^{\circledR}$ plate reader. Calculation for LOD = limit of detection ($3 \sigma / \mathrm{k}$) - of the linear section of the graph.

Figure S18 - Plots of relative fluorescence intensity of MO-E1 ($5 \mu \mathrm{M}$) as a function of ONOO ${ }^{-}$concentration $\lambda_{\max }=450 \mathrm{~nm}$. Fluorescence studies were carried out in PBS buffer $\mathrm{pH}=8.2\left(52 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}\right)$ at $25^{\circ} \mathrm{C}$, $\lambda_{\text {ex }}=325$ (bandwidth: 16) nm on a BMG Labtech CLARIOstar ${ }^{\circledR}$ plate reader. Calculation for LOD $=$ limit of detection $(3 \sigma / k)-$ of the linear section of the graph.

Figure S19- (a) Fluorescence spectra of MO-E3 $(5 \mu \mathrm{M})$ in the presence of ONOO $(50 \mu \mathrm{M}), \mathrm{OH}(100 \mu \mathrm{M}), \mathrm{O}_{2}{ }^{-}(100 \mu \mathrm{M}),{ }^{1} \mathrm{O}_{2}$ $(100 \mu \mathrm{M})$, CIO $(100 \mu \mathrm{M})$, ROO $\cdot(100 \mu \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(100 \mu \mathrm{M})$. (b) Fluorescence selectivity of MO-E3 ($5 \mu \mathrm{M}$) in the presence of ONOO $-(10 \mu \mathrm{M}), \cdot \mathrm{OH}(100 \mu \mathrm{M}), \mathrm{O}_{2}{ }^{-}(100 \mu \mathrm{M}),{ }^{1} \mathrm{O}_{2}(100 \mu \mathrm{M})$, ClO- $(100 \mu \mathrm{M})$, ROO $\cdot(100 \mu \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(100 \mu \mathrm{M})$. The fluorescence intensity was taken at $\lambda_{\max }=450 \mathrm{~nm}$. All fluorescence measurements were taken after 30 mins incubation, in PBS buffer $\mathrm{pH}=8.2$ ($52 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}$) at $25^{\circ} \mathrm{C}$, $\lambda_{\mathrm{ex}}=325$ (bandwidth: 16) nm on a BMG Labtech CLARIOstar ${ }^{\circledR}$ plate reader.

Figure S2O- (a) Fluorescence spectra of MO-E2 $(5 \mu \mathrm{M})$ in the presence of ONOO- $(50 \mu \mathrm{M}), \cdot \mathrm{OH}(100 \mu \mathrm{M}), \mathrm{O}_{2} \cdot(100 \mu \mathrm{M}),{ }^{1} \mathrm{O}_{2}$ $(100 \mu \mathrm{M}), \mathrm{ClO}^{-}(100 \mu \mathrm{M})$, ROO $\cdot(100 \mu \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(100 \mu \mathrm{M})$. (b) Fluorescence selectivity of MO-E2 ($5 \mu \mathrm{M}$) in the presence of ONOO $(10 \mu \mathrm{M}), \cdot \mathrm{OH}(100 \mu \mathrm{M}), \mathrm{O}_{2} \cdot(100 \mu \mathrm{M}),{ }^{1} \mathrm{O}_{2}(100 \mu \mathrm{M})$, CIO $(100 \mu \mathrm{M})$, ROO $\cdot(100 \mu \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(100 \mu \mathrm{M})$. The fluorescence intensity was taken at $\lambda_{\max }=450 \mathrm{~nm}$. All fluorescence measurements were taken after 30 mins incubation, in PBS buffer $\mathrm{pH}=8.2\left(52 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}\right)$ at $25{ }^{\circ} \mathrm{C}, \lambda_{\mathrm{ex}}=325$ (bandwidth: 16) nm on a BMG Labtech CLARIOstar ${ }^{\circledR}$ plate reader.
(a)

(b)

Figure S21- (a) Fluorescence spectra of MO-E1 ($5 \mu \mathrm{M}$) in the presence of ONOO- $(10 \mu \mathrm{M})$, $\mathrm{OH}(100 \mu \mathrm{M}), \mathrm{O}_{2}-(100 \mu \mathrm{M}),{ }^{1} \mathrm{O}_{2}$ $(100 \mu \mathrm{M})$, CIO- $(100 \mu \mathrm{M})$, ROO $(100 \mu \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(100 \mu \mathrm{M})$. (b) Fluorescence selectivity of MO-E1 ($5 \mu \mathrm{M}$) in the presence of ONOO $(10 \mu \mathrm{M})$, OH $(100 \mu \mathrm{M}), \mathrm{O}_{2}^{-}(100 \mu \mathrm{M}),{ }^{1} \mathrm{O}_{2}(100 \mu \mathrm{M})$, CIO- $(100 \mu \mathrm{M})$, ROO• $(100 \mu \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(100 \mu \mathrm{M})$. The fluorescence intensity was taken at $\lambda_{\max }=450 \mathrm{~nm}$. All fluorescence measurements were taken after 30 mins incubation, in PBS buffer pH = 8.2 ($52 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}$) at $25{ }^{\circ} \mathrm{C}$, $\lambda_{\text {ex }}=325$ (bandwidth: 16) nm on a BMG Labtech CLARIOstar ${ }^{\circledR}$ plate reader.

9. Cell studies.

Table S1 - Photopysical data for ESIPT probes.

Compound	$\lambda^{(2)}{ }_{\max }{ }^{a}$	$\Phi \delta_{\max }{ }^{\mathrm{b}}$
MO-E3	740	0.25
MO-E3 + ONOO		
MO-E2	740	0.67
MO-E2 + ONOO-	740	0.28
MO-E1	740	1.24
MO-E1 + ONOO	0.26	

a) $\lambda_{\max }$ of the two-photon emission spectra in nm . b) Φ is the fluorescence quantum yield and $\delta_{\max }$ is the twophoton action cross sections in GM (1 GM $=10^{-50} \mathrm{~cm}^{4}$ s photon ${ }^{-1}$).

Figure S22 - TPM fluoresce images of RAW264.7 macrophages labelled with MO-E3 (5 $\mu \mathrm{M}$) for 30 min . (a) Control image. (b-c) Cells were pre-treated with (b) exogenous $\mathrm{ONOO}^{-}(50 \mu \mathrm{M}, 30 \mathrm{~min})$, (c) SIN-1 ($50 \mu \mathrm{M}, 30 \mathrm{~min}$) (d) Average fluorescence intensity in the corresponding TPM fluorescence images. Excitation wavelength and detection windows were 740 nm and 380-600 nm, respectively. Scale bars $=20 \mu \mathrm{~m}$.

Figure S23 - Cytotoxicity assays of MO-E2 labelled RAW264.7 macrophages using CCK-8 to determine the IC50. Cells were incubated with $0-200 \mu \mathrm{M}$ of MO-E2 and the concentration of MO-E2 which exhibited 50% cell viability for 24,48 , and 72 h were $163.6,125.3$ and $74.7 \mu \mathrm{M}$, respectively.

[^0]: $\begin{array}{lllllllllllllll}155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 \\ f 1(\mathrm{ppm}) & 80\end{array}$

[^1]: $\begin{array}{lllllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 90 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 1 \\ f 1(\mathrm{ppm})\end{array}$

