Supplementary Information

## A Fluorescent ESIPT Benzimidazole Platform for the Ratiometric Two-Photon Imaging of ONOO<sup>-</sup> In Vitro and Ex Vivo

Maria L. Odyniec,<sup>a</sup> Sang-Jun Park, <sup>b</sup> Jordan E. Gardiner,<sup>a</sup> Emily C. Webb,<sup>a</sup> Adam C. Sedgwick,<sup>c</sup> Juyoung Yoon, <sup>d</sup> Steven D. Bull,<sup>a\*</sup> Hwan Myung Kim,<sup>\*b</sup> Tony D. James.<sup>\*a</sup>

<sup>a</sup>Department of Chemistry, University of Bath, BA2 7AY, UK. Email: <u>T.D.James@bath.ac.uk</u> <u>S.D.Bull@bath.ac.uk</u>

<sup>b</sup>Department of Chemistry, Ajou University, 16499, Suwon, Korea. Email: <u>kimhm@ajou.ac.kr</u>

<sup>c</sup>Department of Chemistry, University of Texas at Austin, 105 E, 24<sup>th</sup> Street, A5300, Austin, USA.

<sup>d</sup>Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea.

## **Table of Contents**

| Experimental               | 2                                                                                                                                                                                           |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMR                        | 7                                                                                                                                                                                           |
| Preparation of ROS/RNS     | 15                                                                                                                                                                                          |
| Materials and Methods      | 16                                                                                                                                                                                          |
| UV-VIS analysis            | 17                                                                                                                                                                                          |
| Mechanism of activation    | 19                                                                                                                                                                                          |
| Mass Spectrometry Analysis | 20                                                                                                                                                                                          |
| Fluorescence Analysis      | 27                                                                                                                                                                                          |
| Cell studies               | 33                                                                                                                                                                                          |
|                            | Experimental<br>NMR<br>Preparation of ROS/RNS<br>Materials and Methods<br>UV-VIS analysis<br>Mechanism of activation<br>Mass Spectrometry Analysis<br>Fluorescence Analysis<br>Cell studies |

# 1. Experimental



Figure S1 – Synthetic route to MO-E1-3

### 3-(1H-benzo[d]imidazol-2-yl)-2-hydroxybenzaldehyde (4)



2-(1*H*-benzo[d]imidazol-2-yl)phenol (2.50 g, 11.9 mmol) and HMTA (3.33 g, 23.8 mmol) were added to trifluoroacetic acid (TFA - 42 mL) and refluxed for 48 h. After which, H<sub>2</sub>O was added dropwise until a precipitate formed. The precipitate was extracted with warm EtOAc (50 mL) and washed with H<sub>2</sub>O (2 x 30 mL), brine (50 mL), dried (MgSO<sub>4</sub>), filtered and concentrated *in vacuo* to afford a bright yellow solid. The title compound was purified using column chromatography (97:3 DCM: MeOH) yielding a dark purple solid (1.00 g, 4.2 mmol, 35 %). <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$ : 9.92 (s, 1H, -CHO), 8.66 (d, J = 1.8 Hz, 1H, Ar-*H*), 8.00 (dd, J = 8.5, 1.9 Hz, 1H, Ar-*H*), 7.75 (dd, J = 6.0, 3.1 Hz, 2H, Ar-*H*), 7.41 (dd, J = 5.9, 3.1 Hz, 2H, Ar-*H*), 7.28 (d, J = 8.5 Hz, 1H, Ar-*H*) ppm. <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$ : 191.11, 163.18, 134.87, 130.07, 128.93, 124.74, 118.35, 115.08, 112.51, 79.61, 56.46 ppm. MP = 222-225 .<sup>o</sup>C. IR (thin film) v max (cm<sup>-1</sup>): 3404.90 (N-H), 3237.05 (O-H phenol), 2854.99 (C-H), 1666.75 (C=O). FTMS (p ESI): m/z calculated for C<sub>14</sub>H<sub>10</sub>O<sub>2</sub>N<sub>2</sub> requires 238.0742 for [M]<sup>+</sup>, found 238.0742.

3-(1*H*-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzyl)oxy)benzaldehyde (MO-E1)



3-(1*H*-benzo[d]imidazol-2-yl)-2-hydroxybenzaldehyde (0.91 3.81 2-(4mmol), g, (bromomethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.13, 3.81 mmol) and K<sub>2</sub>CO<sub>3</sub> (0.63 g, 4.57 mmol) were added to dry DMF (6 mL) and stirred at rt for 12 h. After the allotted time, the reaction was diluted with EtOAc (30 mL), washed with  $H_2O$  (3 x 50 mL), brine (3 x 50 mL), dried (MgSO<sub>4</sub>), filtered and concentrated in vacuo. The title compound was purified with column chromatography (20:80 EtOAc: pet ether) to afford the title compound as a white solid (0.35 g, 0.82 mmol, 22 %). <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ: 9.95 (s, 1H), 8.83 (d, J = 2.2 Hz, 1H, -CHO), 7.88 (dd, J = 8.6, 2.2 Hz, 1H, Ar-H), 7.69 (d, J = 7.7 Hz, 1H, Ar-H), 7.64 (t, J = 8.4 Hz, 3H, Ar-H), 7.50 (d, J = 7.8 Hz, 2H, Ar-H), 7.32 (d, J = 8.7 Hz, 1H, Ar-H), 7.28 - 7.19 (m, 3H, Ar-H), 5.66 (s, 2H, -O-CH<sub>2</sub>-Ar), 1.25 (s, 12H, Bpin) ppm. <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ: 191.87, 160.10, 148.27, 140.21, 135.11, 132.64, 132.37, 130.31, 126.76, 123.01, 122.28, 119.98, 119.16, 114.78, 112.50, 84.12, 70.14, 25.09 ppm. MP = 199-201 °C. IR (thin film) v max (cm<sup>-1</sup>): 3432.41 (N-H), 2979.14 (C-H), 1695.98 (C=O). FTMS (p ESI): m/z calculated for  $C_{27}H_{27}O_4N_2B$  requires 453.2100 for  $[M+H]^+$ , found 454.2223.

(3-(1*H*-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)phenyl)methanol (MO-E2)



NaBH<sub>4</sub> (0.028 g, 0.74 mmol) in MeOH (1 mL) was added to a stirring solution of 3-(1*H*-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)benzaldehyde (0.32 g, 0. 74 mmol) in DCM (5 mL). The reaction was left to stir at rt for 30 mins, until completion by TLC. The mixture was diluted with DCM (20 mL), washed with H<sub>2</sub>O (3 x 30 mL), brine (30 mL), dried (MgSO<sub>4</sub>), filtered and concentrated *in vacuo* to afford the title compound as a white solid (0.21 g, 0.46 mmol, 62 %). No further purification was required. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$ : 8.26 (d, J = 2.2 Hz, 1H, Ar-*H*), 7.66 – 7.58 (m, 4H, Ar-*H*), 7.47 (d, J = 7.8 Hz, 2H, Ar-*H*), 7.25 (dd, J = 8.6, 2.3 Hz, 1H, Ar-*H*), 7.23 – 7.15 (m, 3H, Ar-*H*), 7.05 (d, J = 8.6 Hz, 1H, Ar-*H*), 5.52 (s, 2H, O-CH<sub>2</sub>-Ar), 5.15 (q, J = 6.7, 6.3 Hz, 1H, O-*H*), 4.45 (d, J = 5.8 Hz, 2H, R-CH<sub>2</sub>-OH), 1.25 (s, 12H, Bpin) ppm. <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$ : 154.56, 149.58, 143.25, 141.07, 135.65, 135.19, 135.00, 129.60, 128.78, 126.74, 122.54, 121.97, 118.89, 113.96, 112.34, 84.09, 62.76, 25.10 ppm. MP = 239-240 °C. IR (thin film) v max (cm<sup>-1</sup>): 3404.68 (N-H), 3153.93 (O-H), 2934.16 (C-H). FTMS (p ESI): m/z calculated for C<sub>27</sub>H<sub>29</sub>O<sub>4</sub>N<sub>2</sub>B requires 479.2113 for [M]<sup>+</sup>, found 479.2117.

3-(1*H*-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)benzyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetate (MO-E3)



EDCI (50 µL) was added to a stirring solution of (3-(1H-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)phenyl)methanol (0.19 g, 0.41 mmol), indomethacin (0.15 g, 0.41 mmol) and DMAP (0.025 mmol, 0.2 mmol) in DCM (5 mL) and left for 12 h. The resulting solution was diluted with EtOAc (30 mL), washed with H<sub>2</sub>O (3 x 30 mL), brine (3 x 30 mL), dried (MgSO<sub>4</sub>) and concentrated in vacuo. The title compound was purified using column chromatography (50:50 % EtOAc: Petroleum Ether) to afford a pale yellow solid (0.13 g, 0.16 mmol, 40 %). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ: 8.63 (s, 1H, Ar-H), 7.94 – 7.90 (m, 2H, Ar-H), 7.80 (d, J = 7.2 Hz, 1H, Ar-H), 7.63 – 7.60 (m, 3H, Ar-H), 7.52 (d, J = 7.9 Hz, 2H, Ar-H), 7.43 – 7.40 (m, 3H, Ar-H), 7.34 (d, J = 8.7 Hz, 2H, Ar-H), 7.06 (d, J = 8.6 Hz, 1H, Ar-H), 6.92 (d, J = 2.5 Hz, 1H, Ar-H), 6.86 (d, J = 9.0 Hz, 1H, Ar-H), 6.64 (dd, J = 9.0, 2.5 Hz, 1H, Ar-*H*), 5.33 (s, 2H, Ar-CH<sub>2</sub>-O-R), 5.17 (s, 2H, Ar-O-CH<sub>2</sub>-Ar), 3.75 (s, 3H ,R-O-CH<sub>3</sub>), 3.71 (s, 2H, CO-CH<sub>2</sub>-C-R), 2.36 (s, 3H, RN-C-CH<sub>3</sub>), 1.38 (s, 12H, Bpin) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ: 170.65, 168.24, 156.01, 155.88, 139.14, 138.51, 135.92, 135.56, 135.11, 135.02, 133.90, 131.12, 130.76, 130.56, 130.50, 129.02, 126.80, 126.03, 125.90, 114.90, 113.02, 112.47, 111.89, 101.07, 84.06, 76.98, 76.73, 75.00, 71.49, 66.11, 55.63, 30.39, 24.89, 24.85, 24.81 ppm. MP = 96-97 °C. IR (thin film) v max (cm<sup>-1</sup>): 3432.69 (N-H), 2932.19 (C-H), 1735.21, 1679.43 (C=O). FTMS (p ESI): m/z calculated for C<sub>46</sub>H<sub>43</sub>O<sub>7</sub>N<sub>3</sub>BCl requires 794.2905 for [M]<sup>+</sup>, found 794.2919.

# 2. NMR

3-(1H-benzo[d]imidazol-2-yl)-2-hydroxybenzaldehyde (4) (500 MHz DMSO-D<sub>6</sub>)



3-(1H-benzo[d]imidazol-2-yl)-2-hydroxybenzaldehyde (4) (126 MHz, DMSO-d<sub>6</sub>)



**3-(1***H***-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)benzaldehyde (MO-E1)** (500 MHz, DMSO-*d*<sub>6</sub>)



**3-(1***H***-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)benzaldehyde (MO-E2)** (126 MHz, DMSO-*d*<sub>6</sub>)



(3-(1*H*-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzyl)oxy)phenyl)methanol (MO-E2) (500 MHz, DMSO-*d*<sub>6</sub>)



(3-(1*H*-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzyl)oxy)phenyl)methanol (MO-E3) (126 MHz, DMSO-*d*<sub>6</sub>)



155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 fl (ppm) 3-(1*H*-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)benzyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (MO-E3) (500 MHz, CDCl<sub>3</sub>)





3-(1*H*-benzo[d]imidazol-2-yl)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)benzyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (MO-E3) (126 MHz, CDCl<sub>3</sub>)





# 3. Preparation of ROS / RNS.

## ROO·

ROO· was generated from 2,2'-azobis (2-amidinopropane) dihydrochloride. AAPH (2, 2' azobis (2amidinopropane) dihydrochloride,1 M) was added into deionizer water, and then stirred at 37 °C for 30 min.

## <sup>...</sup>O<sub>2</sub>

Superoxide ( $^{-}O_2$ ) was generated from KO<sub>2</sub>. KO<sub>2</sub> and 18-crown-6 ether (2.5 eq) was dissolved in DMSO to afford a 0.25 M solution.

## ∙ОН

Hydroxyl radical ( $\cdot$ OH) was generated by the Fenton reaction. To prepare  $\bullet$ OH solution, hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>, 10 eq) was added to Fe(ClO<sub>4</sub>)<sub>2</sub> in deionised water.

## ONOO-

Simultaneously, 0.6 M KNO<sub>2</sub>, 0.6 M HCl (aq) and 0.7 M in  $H_2O_2$  in 10 mL  $H_2O$  were added to a 3 M NaOH solution (in 10 mL  $H_2O$ ) at 0 °C. The concentration of ONOO<sup>-</sup> was determined by the absorption at 302 nm ( $\mathcal{E} = 1670 \text{ cm}^{-1}\text{M}^{-1}$ ) in 0.1 M aqueous sodium hydroxide solution.

## -OCI

The concentration of  $^{-}OCI$  was determined from the absorption at 292 nm ( $\epsilon$  = 350 M<sup>-1</sup> cm<sup>-1</sup>).

## $H_2O_2$

The concentration of  $H_2O_2$  was determined from the absorption at 240 nm ( $\epsilon = 43.6 \text{ M}^{-1} \text{ cm}^{-1}$ )

## 4. Materials and Methods

### **Measurement of Two-Photon Cross Section**

The two-photon cross section ( $\delta$ ) was measured using Ti-sapphire femtosecond laser (Mai Tai HP). ESIPT probes ( $5.0 \times 10^{-6}$  M) were dissolved in PBS buffer pH = 8.2 ( $52 \% \text{ w/w H}_2\text{O}$ : MeOH), and ONOO<sup>-</sup> was added ( $5.0 \times 10^{-5}$  M). The two-photon induced fluorescence spectra was then obtained at 720–880 nm, and TPA was calculated using rhodamine 6G as the reference.

### **Two-Photon Microscopy Imaging**

RAW264.7 macrophages were cultured in DMEM (WelGene) for two days. Before imaging, medium was changed to serum free medium and the chosen ESIPT probe (5  $\mu$ M) was added. Images were acquired using multiphoton microscopes (Leica TCS SP8 MP) with Ti-sapphire femtosecond laser. Excitation wavelength was 740 nm and 2.49 W output power, which corresponded to 1.20  $\times$  10<sup>6</sup> W cm<sup>-2</sup> average power in the focal plane.

## Cell viability.

CCK-8 kit (AbCareBio CL) assay was conducted to assess the cytotoxicity of each probe. RAW264.7 macrophages were cultured in 96-well plate for one day, and then difference concentrations of **MO-E2** (0–50  $\mu$ M) were added. After incubation for 2 h, absorbances were measured at 450 nm.

## Photostability

Photostability of **MO-E2** in RAW264.7 macrophages was conducted by monitoring the changes in fluorescence intensities, which was induced by two photon excitation. The fluorescence intensities were obtained 1800 signals with 2 sec intervals for 1 h. The fluorescence intensities were collected at 380–600 nm upon excitation at 740 nm.

### **Preparation and Staining of Fresh Rat Hippocampal Slices**

A 14-day-old SD rats was used to perform tissue imaging. Rat hippocampal slices were cut into 0.4 mm thickness and transferred to glass-bottomed dishes (NEST). Slices were stained with **MO-E2** (50  $\mu$ M) in DPBS (WelGene) and incubated for 1.5 h. Slices were washed with DPBS and observed using multiphoton microscopes.

# 5. UV-VIS analysis



**Figure S2-** UV-Vis spectra of **MO-E3** (5  $\mu$ M) with and without ONOO<sup>-</sup> (50  $\mu$ M) in PBS buffer pH = 8.2 (52 % w/w H<sub>2</sub>O: MeOH) at 25 °C.



**Figure S3** - UV-Vis spectra of **MO-E2** (5  $\mu$ M) with and without ONOO<sup>-</sup> (50  $\mu$ M) in PBS buffer pH = 8.2 (52 % w/w H<sub>2</sub>O: MeOH) at 25 °C.



**Figure S4**- UV-VIS spectra of **MO-E1** (5  $\mu$ M) with (red line) and without ONOO<sup>-</sup> (10  $\mu$ M) in PBS buffer pH = 8.2 (52 % w/w H<sub>2</sub>O:MeOH) at 25 °C.

# 6. Mechanism of activation



Figure S5 – Mechanism of activation of MO-E3 on reaction with ONOO<sup>-</sup>.

# 7. Mass spectrometry analysis.



Figure S6 – Mass spectrometry analysis of products of reaction of **MO-E1-3** with ONOO<sup>-</sup>. The observed and exact mass are based on neutral mass analyses.

### Walkup MS Report



Compound specific information



### Figure: Extracted ion chromatogram (EIC) of compound.



#### Figure: Full range view of Compound spectra and potential adducts.

|          | -        |                |                      |                             | · ·                                                      |                                         | · ·                                            |                                                      |                                                             |                                                                                                             |                                                                                                                     |                                                                                                                               |                                                                                  |
|----------|----------|----------------|----------------------|-----------------------------|----------------------------------------------------------|-----------------------------------------|------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| d 2: C14 | H12 N    | 2 02: -        | FBF 5                | Spectru                     | ım (rt:                                                  | 0.59-0                                  | .77 mi                                         | n) mlo4                                              | 16 ON                                                       | 00_N                                                                                                        | eg_Loc                                                                                                              | opinjec                                                                                                                       | tion_M                                                                           |
|          | _        | _              | _                    |                             | _                                                        |                                         |                                                |                                                      |                                                             |                                                                                                             |                                                                                                                     |                                                                                                                               |                                                                                  |
|          |          |                |                      |                             |                                                          |                                         |                                                |                                                      |                                                             |                                                                                                             |                                                                                                                     |                                                                                                                               |                                                                                  |
|          | _        |                |                      | _                           | _                                                        |                                         | _                                              |                                                      | _                                                           | _                                                                                                           |                                                                                                                     | _                                                                                                                             | _                                                                                |
|          |          |                |                      |                             |                                                          |                                         |                                                |                                                      |                                                             |                                                                                                             |                                                                                                                     |                                                                                                                               |                                                                                  |
|          |          |                |                      |                             |                                                          |                                         |                                                |                                                      |                                                             |                                                                                                             |                                                                                                                     |                                                                                                                               |                                                                                  |
|          |          |                |                      |                             |                                                          |                                         |                                                |                                                      |                                                             |                                                                                                             |                                                                                                                     |                                                                                                                               |                                                                                  |
|          |          |                |                      |                             |                                                          |                                         |                                                |                                                      |                                                             |                                                                                                             |                                                                                                                     |                                                                                                                               |                                                                                  |
|          |          |                |                      |                             |                                                          |                                         |                                                |                                                      |                                                             |                                                                                                             |                                                                                                                     | _                                                                                                                             |                                                                                  |
| 240      | 245      | 250            | 255                  | 260                         | 265                                                      | 270                                     | 275                                            | 280                                                  | 285                                                         | 290                                                                                                         | 295                                                                                                                 | 300                                                                                                                           | 305                                                                              |
|          | d 2: C14 | d 2: C14 H12 N | d 2: C14 H12 N2 O2:- | d 2: C14 H12 N2 O2: - FBF 5 | d 2: C14 H12 N2 O2: - FBF Spectru<br>240 245 250 255 250 | d 2: C14 H12 N2 O2: - FBF Spectrum (rt: | d 2: C14 H12 N2 O2: - FBF Spectrum (rt: 0.59-0 | d 2: C14 H12 N2 O2: - FBF Spectrum (rt: 0.59-0.77 mi | d 2: C14 H12 N2 O2: - FBF Spectrum (rt: 0.58-0.77 min) mIo4 | d 2: C14 H12 N2 O2: - FBF Spectrum (rt: 0.59-0.77 min) mlo416 ON<br>240 245 250 255 260 265 270 275 280 285 | d 2: C14 H12 N2 O2: - FBF Spectrum (rt: 0.59-0.77 min) mIo416 ONOO_N<br>240 245 250 255 250 265 270 275 280 285 290 | d 2: C14 H12 N2 O2: - FBF Spectrum (rt. 0.59-0.77 min) mIo416 ONOO_Neg_Los<br>240 245 250 255 250 265 270 275 280 285 290 295 | d 2: C14 H12 N2 O2: - FBF Spectrum (rt: 0.59-0.77 min) mIo416 ONOO_Neg_LoopInjec |

Figure: Zoomed Compound spectra view (red boxes indicating expected theoretical isotope spacing and abundance)

#### Commound lostone neak List

| Compound isotope peak List |   |        |            |             |  |  |  |
|----------------------------|---|--------|------------|-------------|--|--|--|
| m/z                        | z | Abund  | Formula    | Ion         |  |  |  |
| 239.0810                   | 1 | 8816.7 | C14H12N2O2 | (M-H)-      |  |  |  |
| 240.0855                   | 1 | 1832.5 | C14H12N2O2 | (M-H)-      |  |  |  |
| 241.0869                   | 1 | 500.3  | C14H12N2O2 | (M-H)-      |  |  |  |
| 299.0988                   | 1 | 1137.0 | C14H12N2O2 | (M+CH3COO)- |  |  |  |

Figure S7 – Mass Spectroscopic data of MO-E3 in the presence of ONOO-

## Walkup MS Report



### Compound specific information



### Figure: Extracted ion chromatogram (EIC) of compound.



Figure: Full range view of Compound spectra and potential adducts.

| 3- |   |   |      |      |        |           | _     |
|----|---|---|------|------|--------|-----------|-------|
|    |   |   |      |      |        |           |       |
|    |   | _ | <br> | <br> |        |           |       |
|    | _ |   | <br> | <br> |        |           |       |
|    |   |   |      |      |        | 285 0951  |       |
|    |   | _ |      | <br> | ([C14H | 12N2O2]+i | норо) |

#### Figure: Zoomed Compound spectra view (red boxes indicating expected theoretical isotope spacing and abundance)

| Compound isotope peak List |   |          |            |           |  |  |  |
|----------------------------|---|----------|------------|-----------|--|--|--|
| m/z                        | z | Abund    | Formula    | Ion       |  |  |  |
| 239.0825                   | 1 | 341418.3 | C14H12N2O2 | (M-H)-    |  |  |  |
| 240.0855                   | 1 | 52631.9  | C14H12N2O2 | (M-H)-    |  |  |  |
| 241.0875                   | 1 | 5430.3   | C14H12N2O2 | (M-H)-    |  |  |  |
| 242.0619                   | 1 | 956.9    | C14H12N2O2 | (M-H)-    |  |  |  |
| 243.0653                   | 1 | 474.3    | C14H12N2O2 | (M-H)-    |  |  |  |
| 285.0951                   | 1 | 295.9    | C14H12N2O2 | (M+HCOO)- |  |  |  |
| 286.1207                   | 1 | 201.8    | C14H12N2O2 | (M+HCOO)- |  |  |  |

--- End Of Report ---

Figure S8 - Mass Spectroscopic data of MO-E2 in the presence of ONOO-

## Walkup MS Report



### Compound specific information



### Figure: Extracted ion chromatogram (EIC) of compound.



### Figure: Full range view of Compound spectra and potential adducts.

| 10 6 | Cpd | 1: | C14 | H10 | N2  | 02: - | FBF | Spec      | trum       | (rt: 4.      | 11-4.        | 19, 4        | .35-4      | .42 m        | iin) ml | 0410 | + ON | 00_ | Neg | 5mi |
|------|-----|----|-----|-----|-----|-------|-----|-----------|------------|--------------|--------------|--------------|------------|--------------|---------|------|------|-----|-----|-----|
|      |     |    |     |     |     |       |     |           |            |              |              |              |            |              |         |      |      |     |     |     |
| 4-   |     | T  |     |     |     |       |     |           |            |              |              |              |            | _            |         |      |      |     |     |     |
| 3-   |     | +  | _   |     |     |       |     |           | -          | _            |              |              |            | _            |         |      |      |     | _   |     |
| 2    |     |    |     |     |     |       |     |           |            |              |              |              |            |              |         |      |      |     |     |     |
| _    |     |    |     |     |     |       |     |           |            |              |              |              |            |              |         |      |      |     |     |     |
| 1-   |     | t  |     |     | -   |       |     |           |            |              |              |              |            |              |         |      |      |     | -   |     |
| 0    |     |    | ĻĻ  |     |     |       |     |           |            | _            |              |              |            |              |         |      |      |     |     |     |
|      | 23  | 5  | 240 | 0 2 | 245 | 250   | 25  | 5 2<br>Co | 60<br>unts | 265<br>vs. M | 270<br>855-1 | ) 2<br>o-Chi | 75<br>arge | 280<br>(m/z) | 285     | 29   | 0 2  | 95  | 300 | 305 |

#### Figure: Zoomed Compound spectra view (red boxes indicating expected theoretical isotope spacing and abundance)

| Compound isotope peak List |   |           |            |             |  |  |  |
|----------------------------|---|-----------|------------|-------------|--|--|--|
| m/z                        | z | Abund     | Formula    | Ion         |  |  |  |
| 237.0667                   | 1 | 4927698.0 | C14H10N2O2 | (M-H)-      |  |  |  |
| 238.0698                   | 1 | 727077.2  | C14H10N2O2 | (M-H)-      |  |  |  |
| 239.0724                   | 1 | 68637.7   | C14H10N2O2 | (M-H)-      |  |  |  |
| 240.0723                   | 1 | 6467.6    | C14H10N2O2 | (M-H)-      |  |  |  |
| 297.0870                   | 1 | 3880.3    | C14H10N2O2 | (M+CH3COO)- |  |  |  |
| 298.0457                   | 1 | 6306.6    | C14H10N2O2 | (M+CH3COO)- |  |  |  |
| 299.0328                   | 1 | 1022.0    | C14H10N2O2 | (M+CH3COO)- |  |  |  |

---- End Of Report ----

х

Figure S9 -Mass Spectroscopic data of MO-E1 in the presence of ONOO-



**Figure S10** – LCMS data of **MO-E3** (MeCN/H<sub>2</sub>0; 5:95 5 min hold to 100 % linear gradient). Top: UV chromatogram. Middle: MS chromatogram representative of peak at t = 10.606 min; determining **MO-E3**- ( $C_{46}H_{43}O_7N_3BCI$ ) with m/z 794.2 ([M+H]<sup>+</sup>). Bottom: MS chromatogram representative of peak at t = 8.241; determining boronic acid (loss of pinacol -  $C_{40}H_{33}O_7N_3BCI$ ) with 714.2 ([M+H]<sup>+</sup>)



**Figure S11** - LCMS data of **MO-E3** in the presence of  $H_2O_2$  (MeCN/ $H_2O_3$ ; 5:95 5 min hold to 100 % linear gradient). Top: UV chromatogram. Middle: MS chromatogram representative of peak at t = 5.088 min; fragments determining fluorescent product ( $C_{14}H_{12}N_2O_2$ ) found 241.1 ([M+H]<sup>+</sup>). Bottom: MS chromatogram representative of peak at t = 5.649; determining indomethacin ( $C_{19}H_{16}CINO_4$ ) found 358.1 for ([M+H]<sup>+</sup>).



**Figure S12** - LCMS data of **Indomethacin** (MeCN/H<sub>2</sub>0; 5:95 5 min hold to 100 % linear gradient).Top: UV chromatogram. Bottom: MS chromatogram representative of peak at t = 5.649; determining indomethacin ( $C_{19}H_{16}CINO_4$ ) found 358.1 for ([M+H]<sup>+</sup>).

## 8. Fluorescence Analysis







**Figure S14** - Plots of relative fluorescence intensity of **MO-E3** (5  $\mu$ M) as a function of ONOO<sup>-</sup> concentration at  $\lambda_{max}$ = 450 nm. Fluorescence studies were carried out in PBS buffer pH = 8.2 (52 % w/w H<sub>2</sub>O : MeOH) at 25 °C,  $\lambda_{ex}$ = 325 (bandwidth: 16) nm on a BMG Labtech CLARIOstar<sup>®</sup> plate reader. Calculation for LOD = limit of detection (3 $\sigma$ /k) – of the linear section of the graph.



**Figure S15** - Relative ratio of **MO-E2** (5  $\mu$ M) at 450 nm and 350 nm in the presence of ONOO<sup>-</sup> (0-7  $\mu$ M) in PBS buffer pH = 8.2 (52 % w/w H<sub>2</sub>O: MeOH) at 25 °C,  $\lambda_{ex}$  = 325 (bandwidth: 16) nm on a BMG Labtech CLARIOstar<sup>®</sup> plate reader.



**Figure S16** - Dose dependence curve of **MO-E2** (5  $\mu$ M) in the presence of ONOO<sup>-</sup> (0 - 5  $\mu$ M) in PBS buffer pH = 8.2 (52 % w/w H<sub>2</sub>O : MeOH) at 25 °C,  $\lambda_{ex=}$  = 325 (bandwidth: 16) nm on a BMG Labtech CLARIOstar<sup>®</sup> plate reader,  $\lambda_{max}$  = 450 nm.



**Figure S17** - Plots of relative fluorescence intensity of **MO-E2** (5  $\mu$ M) as a function of ONOO<sup>-</sup> concentration at  $\lambda_{max}$ = 450/350 nm. Fluorescence studies were carried out in PBS buffer pH = 8.2 (52 % w/w H<sub>2</sub>O: MeOH) at 25 °C,  $\lambda_{ex}$ = 325 (bandwidth: 16) nm on a BMG Labtech CLARIOstar<sup>®</sup> plate reader. Calculation for LOD = limit of detection (3 $\sigma$ /k) – of the linear section of the graph.



**Figure S18** - Plots of relative fluorescence intensity of **MO-E1** (5  $\mu$ M) as a function of ONOO<sup>-</sup> concentration  $\lambda_{max}$ = 450 nm. Fluorescence studies were carried out in PBS buffer pH = 8.2 (52 % w/w H<sub>2</sub>O: MeOH) at 25 °C,  $\lambda_{ex}$ = 325 (bandwidth: 16) nm on a BMG Labtech CLARIOstar<sup>®</sup> plate reader. Calculation for LOD = limit of detection (3 $\sigma$ /k) – of the linear section of the graph.



**Figure S19**- (a) Fluorescence spectra of **MO-E3** (5  $\mu$ M) in the presence of ONOO<sup>-</sup> (50  $\mu$ M), OH (100  $\mu$ M), O<sub>2</sub><sup>--</sup> (100  $\mu$ M), <sup>1</sup>O<sub>2</sub> (100  $\mu$ M), ClO<sup>-</sup> (100  $\mu$ M), ROO· (100  $\mu$ M) and H<sub>2</sub>O<sub>2</sub> (100  $\mu$ M). (b) Fluorescence selectivity of **MO-E3** (5  $\mu$ M) in the presence of ONOO<sup>-</sup> (10  $\mu$ M), ·OH (100  $\mu$ M), O<sub>2</sub><sup>--</sup> (100  $\mu$ M), <sup>1</sup>O<sub>2</sub> (100  $\mu$ M), ClO<sup>-</sup> (100  $\mu$ M), ROO· (100  $\mu$ M) and H<sub>2</sub>O<sub>2</sub> (100  $\mu$ M), <sup>1</sup>O<sub>2</sub> (100  $\mu$ M), ClO<sup>-</sup> (100  $\mu$ M), ROO· (100  $\mu$ M) and H<sub>2</sub>O<sub>2</sub> (100  $\mu$ M). The fluorescence intensity was taken at  $\lambda_{max}$ = 450 nm. All fluorescence measurements were taken after 30 mins incubation, in PBS buffer pH = 8.2 (52 % w/w H<sub>2</sub>O: MeOH) at 25 °C,  $\lambda_{ex}$  = 325 (bandwidth: 16) nm on a BMG Labtech CLARIOstar® plate reader.



**Figure S20**- (a) Fluorescence spectra of **MO-E2** (5  $\mu$ M) in the presence of ONOO<sup>-</sup> (50  $\mu$ M), ·OH (100  $\mu$ M), O<sub>2</sub><sup>--</sup> (100  $\mu$ M), <sup>1</sup>O<sub>2</sub> (100  $\mu$ M), ClO<sup>-</sup> (100  $\mu$ M), ROO· (100  $\mu$ M) and H<sub>2</sub>O<sub>2</sub> (100  $\mu$ M). (b) Fluorescence selectivity of **MO-E2** (5  $\mu$ M) in the presence of ONOO<sup>-</sup> (10  $\mu$ M), ·OH (100  $\mu$ M), O<sub>2</sub><sup>--</sup> (100  $\mu$ M), <sup>1</sup>O<sub>2</sub> (100  $\mu$ M), ClO<sup>-</sup> (100  $\mu$ M), ROO· (100  $\mu$ M) and H<sub>2</sub>O<sub>2</sub> (100  $\mu$ M), <sup>1</sup>O<sub>2</sub> (100  $\mu$ M), ClO<sup>-</sup> (100  $\mu$ M), ROO· (100  $\mu$ M) and H<sub>2</sub>O<sub>2</sub> (100  $\mu$ M). The fluorescence intensity was taken at  $\lambda_{max}$ = 450 nm. All fluorescence measurements were taken after 30 mins incubation, in PBS buffer pH = 8.2 (52 % w/w H<sub>2</sub>O: MeOH) at 25 °C,  $\lambda_{ex}$  = 325 (bandwidth: 16) nm on a BMG Labtech CLARIOstar® plate reader.



**Figure S21**- (a) Fluorescence spectra of **MO-E1** (5  $\mu$ M) in the presence of ONOO<sup>-</sup> (10  $\mu$ M), OH (100  $\mu$ M), O<sub>2</sub><sup>--</sup> (100  $\mu$ M), <sup>1</sup>O<sub>2</sub> (100  $\mu$ M), ClO<sup>-</sup> (100  $\mu$ M), ROO· (100  $\mu$ M) and H<sub>2</sub>O<sub>2</sub> (100  $\mu$ M). (b) Fluorescence selectivity of **MO-E1** (5  $\mu$ M) in the presence of ONOO<sup>-</sup> (10  $\mu$ M), OH (100  $\mu$ M), O<sub>2</sub><sup>--</sup> (100  $\mu$ M), <sup>1</sup>O<sub>2</sub> (100  $\mu$ M), ClO<sup>-</sup> (100  $\mu$ M), ROO· (100  $\mu$ M) and H<sub>2</sub>O<sub>2</sub> (100  $\mu$ M), <sup>1</sup>O<sub>2</sub> (100  $\mu$ M), ClO<sup>-</sup> (100  $\mu$ M), ROO· (100  $\mu$ M) and H<sub>2</sub>O<sub>2</sub> (100  $\mu$ M). The fluorescence intensity was taken at  $\lambda_{max}$ = 450 nm. All fluorescence measurements were taken after 30 mins incubation, in PBS buffer pH = 8.2 (52 % w/w H<sub>2</sub>O: MeOH) at 25 °C,  $\lambda_{ex}$  = 325 (bandwidth: 16) nm on a BMG Labtech CLARIOstar® plate reader.

## 9. Cell studies.

| Compound                         | $\lambda^{(2)}_{max}{}^a$ | $\Phi \delta_{max}{}^b$ |
|----------------------------------|---------------------------|-------------------------|
| MO-E3                            | 740                       | 0.25                    |
| <b>MO-E3</b> + ONOO <sup>-</sup> | 740                       | 0.67                    |
| MO-E2                            | 740                       | 0.28                    |
| <b>MO-E2</b> + ONOO <sup>-</sup> | 740                       | 1.24                    |
| MO-E1                            | 740                       | 0.26                    |
| <b>MO-E1</b> + ONOO <sup>-</sup> | 740                       | 0.27                    |

 Table S1 – Photopysical data for ESIPT probes.

a)  $\lambda_{max}$  of the two-photon emission spectra in nm. b)  $\Phi$  is the fluorescence quantum yield and  $\delta_{max}$  is the two-photon action cross sections in GM (1 GM = 10<sup>-50</sup> cm<sup>4</sup> s photon<sup>-1</sup>).



**Figure S22** - TPM fluoresce images of RAW264.7 macrophages labelled with **MO-E3** (5  $\mu$ M) for 30 min. (a) Control image. (b–c) Cells were pre-treated with (b) exogenous ONOO<sup>-</sup> (50  $\mu$ M, 30 min), (c) SIN-1 (50  $\mu$ M, 30 min) (d) Average fluorescence intensity in the corresponding TPM fluorescence images. Excitation wavelength and detection windows were 740 nm and 380–600 nm, respectively. Scale bars = 20  $\mu$ m.



**Figure S23** - Cytotoxicity assays of **MO-E2** labelled RAW264.7 macrophages using CCK-8 to determine the IC50. Cells were incubated with 0–200  $\mu$ M of **MO-E2** and the concentration of **MO-E2** which exhibited 50 % cell viability for 24, 48, and 72 h were 163.6, 125.3 and 74.7  $\mu$ M, respectively.