Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

> Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Supporting Information for Silanol: A bifunctional group for peptide synthesis and late-stage functionalization

Qi-Long Hu, Ke-Qiang Hou, Jian Li, Yang Ge, Zhen-Dong Song, Albert S.C. Chan and Xiao-Feng Xiong*

Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yatsen University, 510006, Guangzhou, Guangdong, P. R. China. E-mail: xiongxf7@mail.sysu.edu.cn

Table of contexts

1.	General Information	S1		
2.	Optimization of reaction conditions	S1		
3.	Synthesis of coupling partners 2f-2i	S3		
4.	Removal of silanol group	S4		
5.	Synthesis of building blocks 1a-1f	S4		
6.	Synthesis of dipeptide substrates 4b-4o	S6		
7.	Synthesis of polypeptides 6a-6n	S10		
8.	Pd-catalyzed olefination of substrates	\$15		
9.	NMR analysis and structural confirmation	S26		
10.	¹ H NMR and ¹³ C NMR spectras	S28		
Refe	ReferencesS			

1. General Information

Commercially available materials and solvents purchased from Alfa Aesar, Sigma-Aldrich, *J&K* Chemical, or 3A Chemical and were used as received. No attempts were made to optimize yields for substrate synthesis.

Protected Fmoc-amino acids and coupling reagents were purchased from Bidepharm. DCM, DCE, DMF, and TFA were purchased from J&K Chemical and were used without further purification.

Flash chromatography was performed using Silica gel (200-300 mesh) purchased from Qingdao Haiyang Chemical. 2-Cl-Trt resin (0.98 mmol/g) were purchased from Tianjin Nankai HECHENG.

Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker (400 or 500 MHz) spectrometer. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCI3 or MeOD solution. ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), dd (doublet of doublets); m (multiplets), and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker [(400 MHz) (100 MHz) or (500 MHz) (125 MHz)] spectrometer.

High resolution mass spectral analysis (HRMS) was performed on Finnigan MAT 95 XP mass spectrometer (Thermo Electron Corporation).

Analytical thin layer chromatography was performed on Polygram SIL G/UV254 plates. Visualization was accomplished with short wave UV light, or KMnO₄ staining solutions followed by heating. Flash column chromatography was performed using silica gel (200-300 mesh) or neutral alumina column (200-300 mesh) with solvents distilled prior to use.

2. Optimization of reaction conditions

	Boc				~~	Boo
t-Bu. OH Si O O t-Bu O	,,,,ŇH − +	COO- <i>t</i> Bu ⁻ ∬ 2a	Pd(OAc) ₂ (10 mmo Li ₂ CO ₃ (2.0 eq) oxidant (3.0 eq) DCE, 90 °C, 24h	l%) <i>t</i> -Bu → Si <i>t</i> -Bu	ОН 0 0 С007-Ви	 3aa
	Entry	Oxidant	Solvent	Yield[%]	_	
	1	AgOAc	DCE	< 5%	_	
	2	Cu(OAc)	2 DCE	< 5%		
	3	Cu(OTf)2	2 DCE	n.d		
	4	BQ	DCE	n.d		
	5	AgOTf	DCE	n.d		
	6	K2s2O8	DCE	n.d		
	7	PhI(OAc)	2 DCE	47%		
	8	Oxygen	DCE	< 5%		
	9	Ag ₂ CO ₃	DCE	12%		

Table S1. Optimization of oxidant for olefination of 1a with 2a

[a] Reaction conditions: **1a** (0.1 mmol, 1.0 equiv), **2a** (0.4 mmol, 4.0 equiv), Pd(OAc)₂ (0.01 mmol, 0.1 equiv), oxidant (0.3 mmol, 3.0 equiv), Li₂CO₃ (0.2 mmol, 2.0 equiv) in DCE (1.0 mL) under 90 °C for 24 h.

t-Bu OH Si⊂O′ t-BúO′	Boc NH 0 0 +	COO- <i>t</i> Bu	catalyst (10 mmol% Li ₂ CO ₃ (2.0 eq) PhI(OAc) ₂ (3.0 eq)	%) t-Bu Ol → Si t-BúO	o	Boc NH
	1a Entry	2a cata	lyst	/ield[%]	COO <i>t</i> -Bu	3aa
	1	Pd(T	FA)2	26%	-	
	2	NiC		n.d		
	3	Pd(OI	H) ₂ /C	20%		
	4	Pd(Pl	Ph3)4	21%		
	5	Pd(d	ba) ₂	18%		
	6	Pd(Ph ₃	P)2Cl2	27%		
	7	Pd		25%		
	8	Pd(O	Ac) ₂	47%		

Table S2. Optimization of catalyst for olefination of 1a with 2a.

[a] Reaction conditions: **1a** (0.1 mmol, 1.0 equiv), **2a** (0.4 mmol, 4.0 equiv), catalyst (0.01 mmol, 0.1 equiv), PhI(OAc)₂ (0.3 mmol, 3.0 equiv), Li₂CO₃ (0.2 mmol, 2.0 equiv) in DCE (1.0 mL) under 90 °C for 24 h.

<i>t-</i> Bu C Si√	Boc NH +	catalyst (10 mmol	$\stackrel{\text{\%})}{\rightarrow} \begin{array}{c} t \text{-Bu} \\ \text{Si} \\ t \text{-Bu} \\ t \end{array} \begin{array}{c} \text{OH} \\ OH$	Boc NH
<i>t-</i> Bu ²	0´ ◇ 0´ `0´ 1a	││ Phl(OAc)₂ (3.0 eq) 2a DCE, 90 °C, 24h	COOt-Bu	3aa
	Entry	base	Yield[%]	
	1	Cs ₂ CO ₃	n.d	
	2	K ₂ CO ₃	n.d	
	3	K ₃ PO ₄	n.d	
	4	K ₂ HPO ₄	n.d	
	5	KH ₂ PO ₄	31%	
	6	PivOK	n.d	
	7	Na ₂ CO ₃	< 5%	
	8	NaHCO ₃	22%	
	9	Na ₂ HPO ₄	26%	
	10	NaOAc	16%	
	11	Li ₃ PO ₄	58%	
	12	LiH ₂ PO ₄	38%	
	13	LiOAc	< 5%	
_	14	DBU	n.d	

Table S3. Optimization of base for olefination of 1a with 2a

.

[a] Reaction conditions: 1a (0.1 mmol, 1.0 equiv), 2a (0.4 mmol, 4.0 equiv), Pd(OAc)₂ (0.01 mmol, 0.1 equiv), PhI(OAc)₂ (0.3 mmol, 3.0 equiv), Base (0.2 mmol, 2.0 equiv) in DCE (1.0 mL) under 90 °C for 24 h.

Table S4. Optimization of additive for olefination of 1a with 2a.						
	Boc		Pd(OAc) ₂ (10 mmol%) additive (20 mmol%)) 	\uparrow	Boc , NH
t-Bu OH Si O t-Bu		+ [] 2a	Li ₃ PO ₄ (2.0 eq) PhI(OAc) ₂ (3.0 eq) DCE, 90 °C, 24h	t-Bu O	° 0″	~o~
	Entry	additive		Yield[%])t-Bu	344
	1	BQ		75%		
	2	Ac-G-OH	ł	36%		
	3	(+)-Menthyl(O ₂ C)	-Leu-OH	45%		
	4	Boc-Ile-O	н	26%		
	5	(<i>t</i> -Bu)₃P		< 5%		
	6	6-methylpyridi	n-2-ol	48%		
	7	PivOH		33%		
	8	AcOH		28%		
_	9	Ac ₂ O		46%		

[a] Reaction conditions: 1a (0.1 mmol, 1.0 equiv), 2a (0.4 mmol, 4.0 equiv), Pd(OAc)₂ (0.01 mmol, 0.1 equiv), additive (0.02 mmol, 0.2 equiv), PhI(OAc)₂ (0.3 mmol, 3.0 equiv), Li₃PO₄ (0.2 mmol, 2.0 equiv) in DCE (1.0 mL) under 90 °C for 24 h.

3. Synthesis of coupling partners 2f-2i

Coupling partners 2a-2e were commercially available, 2f-2h were synthesized according to the reported procedure^[1], **2i** was synthesized according to the reported procedure^[2].

4. Removal of silanol group

Figure S1. Removal of silanol from 3aa by treating with TBAF under r.t for 30 min.

To a solution of **3b** (85 mg, 0.15 mmol)in THF was added the solution of TBAF in THF, kept stirring at r.t for 30 min then evaporated and purified via Purified via flash column chromatography on silica gel (eluent: PE/EA = 5/1) to afford the compound **8a** as white solid, (77mg, 91%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, *J* = 16.2 Hz, 1H), 7.60 (s, 1H), 7.19 (d, *J* = 2.0 Hz, 1H), 6.95 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.76 (dd, *J* = 8.2, 2.6 Hz, 1H), 6.50 (d, *J* = 16.2 Hz, 1H), 5.08 (d, *J* = 8.2 Hz, 1H), 4.53 (d, *J* = 6.8 Hz, 1H), 3.72 (s, 3H), 3.04 (dd, *J* = 13.8, 5.4 Hz, 1H), 2.93 (dd, *J* = 13.8, 6.8 Hz, 1H), 1.54 (s, 9H), 1.42 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.51, 167.69, 155.26, 154.95, 139.51, 131.83, 130.34, 129.59, 127.48, 121.79, 120.17, 116.63, 80.68, 80.30, 54.58, 52.35, [Sc])

37.60, 28.30, 28.25; **HRMS** (ESI) calcd. for C₂₂H₃₁NO₇ [M+Na]⁺ : 444.1993, found: 444.1975.

Figure S2. Synthesis of building blocks.

Synthesis of **1a**: Silanol was loaded according to the amended literature procedure^[3]. To a solution of TEA (3.64 g, 36 mmol) in dry DMF (10 mL), 'Bu₂SiCl₂ (2.56 g, 12 mmol) was added at 0 °C under Argon atmosphere via a syringe. After 15 min agitated, the solution of Boc-Tyr-OMe (2.95 g, 10 mmol) in dry DMF (10 mL) was added very slowly via drop funnel standing for 30 min, then the reaction mixture was warmed to r.t and kept stirring for another 2 h. Cold 1N NaHCO₃ (20 mL) was then added and the reaction mixture was stirred for 1 h. The reaction mixture was diluted by EA (100 mL), the organic layer was collected and washed by water (100 mL x 3). brine, dried over Na₂SO₄ and evaporated. The residue was purified via flash column chromatography on silica gel (eluent: PE / EA = 20/1) to afford the compound **1a**.

Compound **1a**, white solid, (3.42g, 76%); ¹**H NMR** (400 MHz, CDCl₃) δ 6.93 (q, J = 8.6 Hz, 4H), 5.04 (d, J = 8.2 Hz, 1H), 4.52 (dd, J = 13.8, 6.2 Hz, 1H), 3.66 (s, 3H), 3.22 (s, 1H), 3.05 - 2.90 (m, 2H), 1.40 (s, 9H), 1.05 (s, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.64, 155.20, 154.93, 130.16, 128.36, 119.90, 79.98, 54.57, 52.17, 37.61, 29.70, 28.31, 27.53, 27.47, 27.45, 27.38, 27.30, 27.28, 27.22, 25.96, 20.63; **HRMS** (ESI) calcd. for C₂₃H₃₉NO₆Si [M+Na]⁺ : 476.2439, found: 476.2419.

Synthesis of **1b**: To a solution of compound **1a** (2.27 g, 5 mmol) in MeOH/H₂O (30 mL, 1/1), LiOH (240 mg, 10 mmol) was added under r.t and the reaction mixturee was stirred for 30 min. After the removal of MeOH under vaccum, the aqueous layer was adjusted to pH 2~3 by 1N HCI (a.q) and extracted with DCM (20 mL x3), the combined organic layer was dried over Na₂SO₄ and evaporated. The residue was purified via flash column chromatography on silica gel (eluent: DCM / MeOH = 50 / 1) to afford compound **1b**.

Compound **1b**, white solid, (1.97 g, 89%);¹**H NMR** (400 MHz, CDCl₃) δ 7.04 (d, *J* = 8.4 Hz, 2H), 6.95 (d, *J* = 8.4 Hz, 2H), 5.04 (d, *J* = 7.6 Hz, 1H), 4.57 (d, *J* = 5.6 Hz, 1H), 3.11 (dd, *J* = 13.6, 4.6 Hz, 1H), 3.02 (dd, *J* = 13.6, 5.6 Hz, 1H), 1.43 (s, 9H), 1.08 (s, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 175.71, 155.48, 154.85, 130.34, 128.37, 119.92, 80.31, 54.38, 37.12, 28.31, 27.36, 27.20, 20.62, 20.58, 19.81; **HRMS** (ESI) calcd. for C₂₂H₃₇NO₆Si [M+Na]⁺ : 462.2282, found: 462.2275.

Synthesis of 1c: Compound 1b (880 mg, 2 mmol) was added to a solution of 25% TFA/DCM, kept stirring at r.t for 1 h then evaporated. sat.NaHCO₃ (a.q, 10 mL) and ACN (10 mL) was added to the resulting mixture and kept stirring under r.t for 30 min, followed by the addition of Fmoc-OSu (745 mg, 2.2 mmol) and kept stirring for another 3 h. After the removal of ACN, the aqueous layer was adjusted to pH 2~3 with 1N HCI (a.q) and extracted with DCM (20 mL x3), the combined organic layer was dried over Na₂SO₄ and evaporated. Purified via Purified via flash column chromatography on silica gel (eluent: DCM / MeOH = 100 / 1) to afford compound 1c.

Compound **1c**, white solid, (708 mg, 63%), ¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, J = 7.6 Hz, 2H), 7.55 (t, J = 6.6 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.29 (t, J = 7.4 Hz, 2H), 6.97 (d, J = 8.2 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 5.26 (d, J = 8.2 Hz, 1H), 4.65 (dd, J = 13.4, 5.6 Hz, 1H), 4.43 (dd, J = 10.2, 7.4 Hz, 1H), 4.33 (dd, J = 10.4, 7.2 Hz, 1H), 4.19 (t, J = 7.0 Hz, 1H), 3.11 (dd, J = 14.0, 5.4 Hz, 1H), 3.03 (dd, J = 14.0, 6.0 Hz, 1H), 1.04 (s, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 175.73, 155.85, 155.00, 143.78, 143.66, 141.34, 130.35, 127.95, 127.77, 127.11, 125.13, (12, 37.03, 27.35, 20.59; **HRMS** (ESI) calcd for CapHapNOcSi [M+H]⁺ : 562.2619

125.08, 120.02, 67.15, 54.67, 47.12, 37.03, 27.35, 20.59; HRMS (ESI) calcd. for $C_{32}H_{39}NO_6Si [M+H]^+$: 562.2619, found: 562.2629.

Synthesis of **1e**: Compound **1a** (680 mg, 1.5 mmol) was added to a solution of 25% TFA/DCM, and the reaction mixture was stirred at r.t for 1 h then evaporated. Diluted by sat.NaHCO₃ (a.q, 15 mL), the aqueous layer was extracted by DCM (15 mL x 3). The combined organic layer was dried over Na₂SO₄ and evaporated to afford the crude compound **1e**. Compound **1e** was used directly in the next step without purification.

Compound **1e**, white solid, (crude porduct); **¹H NMR** (400 MHz, CDCl₃) δ 7.02 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 3.70 (s, 3H), 3.70 - 3.65 (m, 1H), 3.01 (dd, J = 13.6, 5.2 Hz, 1H), 2.81 (dd, J = 13.6, 7.8 Hz, 1H), 1.31 (d, J = 19.2 Hz, 1H), 1.26 (s, 1H), 1.07 (s, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 154.72, 130.20, 129.47, 119.93, 55.82, 52.00, 40.17, 27.37, 27.25, 20.61, 19.79; **HRMS** (ESI) calcd. for C₁₈H₃₁NO₄Si [M+H]⁺ : 354.2076, found: 354.2065.

Synthesis of 1d: Compound 1e was added to a solution of TEA (303 mg, 3 mmol) in DCM (6 mL), followed by the addition of Alloc-CI (271 mg, 2.25mmol) dropwise via syringe under 0 °C, kept stirring for 1 h. Diluted by DCM (15 mL), the organic layer was washed by water (20 mL x 2), brine, dried over Na₂SO₄ and evaporated to afford crude compound 1f. To a solution of crude compound 1f (601 mg) in MeOH/H₂O (10 mL, 1:1), LiOH (72 mg, 3 mmol) was added under r.t and kept stirring for 30 min. The reaction mixture was concentrated under vaccum and the aqueous layer was adjusted to pH 2~3 by 1N HCI (a.q) and extracted with DCM (10 mL x3), the combined organic layer was dried over Na₂SO₄ and evaporated. The residue was purified via flash column chromatography on silica gel (eluent: DCM / MeOH = 100 / 1) to afford compound 1d.

Compound **1d**, white solid, (369 mg, 58% in 3 steps); ¹**H NMR** (400 MHz, CDCl₃) δ 7.00 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 8.4 Hz, 2H), 5.85 (m, 1H), 5.36 (d, J = 8.4 Hz, 1H), 5.26 (d, J = 16.8 Hz, 1H), 5.19 (d, J = 10.6 Hz, 1H), 4.61 (dd, J = 13.6, 5.8 Hz, 1H), 4.52 (d, J = 5.6 Hz, 2H), 3.08 (dd, J = 14.0, 5.4 Hz, 1H), 3.01 (dd, J = 14.0, 6.2 Hz, 1H), 1.05 (s, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 175.59, 155.97, 154.95, 132.40, 130.30, 128.07, 120.01, 118.06, 66.09, 54.71, 37.08, 27.37, 20.62, 20.60; **HRMS** (ESI) calcd. for C₂₁H₃₃NO₆Si [M+H]⁺ : 424.2150, found:

424.2161.

6. Synthesis of dipeptide substrates 4b-4o

General procedure for dipeptide synthesis :

Typically, to a solution of *N*-Boc protected amino acid (1.5 mmol) in DCM (10 mL) was added 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDCI, 2.0 mmol) in one portion, followed by the addition of the relevant methyl amino acid ester (1.0 mmol) in DCM (5 mL) dropwise. After stirring under r.t for 3 h, the reaction mixture was partitioned between DCM and water, the aqueous layer was extracted with DCM, and the combined organic phase was wash by brine and dried over Na_2SO_4 then evaporated. The residue was purified via flash column to afford pure dipeptide as white solid.

Figure S3. Dipeptides substrates bearing Tyr residue.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 15/1) to yield compound **4b** as white solid, (393 mg, 75%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.03 (d, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 8.6 Hz, 2H), 6.61 (s, 1H), 5.23 (s, 1H), 4.35 (s, 1H), 4.16 (q, *J* = 7.0 Hz, 2H), 4.00 - 3.79 (m, 3H), 2.96 (t, *J* = 8.6 Hz, 2H), 1.39 (s, 9H), 1.25 (t, *J* = 7.0 Hz, 3H), 1.06 (s, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.94, 169.49, 155.55, 154.82, 130.13, 128.94, 120.06, 80.18, 61.52, 55.79, 41.29, 37.74, 28.26, 27.39, 20.66, N, 125 (t, *J* = 7.070

20.60, 14.10; HRMS (ESI) calcd. for C₂₆H₄₄N₂O₇Si [M+Na]⁺ : 547.2810, found: 547.2788.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 15/1) to yield compound **4c** as white solid, (373 mg, 71%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.04 (d, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 8.6 Hz, 2H), 6.53 (d, *J* = 5.8 Hz, 1H), 5.21 (s, 1H), 4.60 - 4.44 (m, 1H), 4.31 (s, 1H), 3.70 (s, 3H), 2.96 (td, *J* = 13.8, 6.8 Hz, 2H), 1.41 (s, 9H), 1.32 (d, *J* = 7.2 Hz, 3H), 1.07 (d, *J* = 1.4 Hz, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.89, 171.10, 155.42, 154.85, 130.18, 128.85, 120.08, 80.16, 55.84, 52.45, 48.04,

37.71, 28.26, 27.39, 20.68, 20.57, 18.24; HRMS (ESI) calcd. for C₂₆H₄₄N₂O7Si [M+Na]⁺: 547.2810, found: 547.2807.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 15/1) to yield compound **4d** as white solid, (460 mg, 81%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.03 (d, *J* = 8.6 Hz, 2H), 6.92 (d, *J* = 8.6 Hz, 2H), 6.26 (d, *J* = 7.8 Hz, 1H), 5.14 (s, 1H), 4.57 (td, *J* = 8.6, 5.0 Hz, 1H), 4.27 (d, *J* = 7.0 Hz, 1H), 3.69 (s, 3H), 3.54 (s, 1H), 2.96 (qd, *J* = 14.0, 7.0 Hz, 2H), 1.62 - 1.52 (m, 2H), 1.49 - 1.45 (m, 1H), 1.41 (s, 9H), 1.07 (d, *J* = 1.8 Hz, 18H), 0.88 (t, *J* = 5.8 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.90, 171.18, 155.47, 154.75, 130.21, 128.95, 120.12, 80.21, 55.97, 52.34, 50.62, 41.56, 37.40, 28.25, 27.38, 24.61, 22.75, 21.85, 20.71, 20.53;

HRMS (ESI) calcd. for C₂₉H₅₀N₂O₇Si [M+Na]⁺ : 589.3280, found: 589.3302.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 12/1) to yield compound **4e** as white solid, (345 mg, 66%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.02 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 6.33 (d, *J* = 8.6 Hz, 1H), 5.14 (s, 1H), 4.44 (dd, *J* = 8.6, 5.2 Hz, 1H), 4.26 (d, *J* = 6.2 Hz, 1H), 3.68 (s, 3H), 2.95 (qd, *J* = 13.8, 7.2 Hz, 2H), 2.11 - 2.00 (m, 1H), 1.40 (s, 9H), 1.05 (d, *J* = 2.4 Hz, 18H), 0.83 (dd, *J* = 11.8, 7.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.86, 171.43, 155.51, 154.79, 130.14, 128.96,

120.14, 80.16, 59.88, 57.18, 52.17, 37.36, 31.33, 28.26, 27.39, 20.70, 20.54, 18.81, 17.75; **HRMS** (ESI) calcd. for $C_{28}H_{48}N_2O_7Si$ [M+Na]⁺ : 575.3123, found: 575.3114.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 16/1) to yield compound **4f** as white solid, (464 mg, 82%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.03 (d, *J* = 8.4 Hz, 2H), 6.92 (d, *J* = 8.4 Hz, 2H), 6.31 (d, *J* = 9.2 Hz, 1H), 5.16 (s, 1H), 4.38 (d, *J* = 9.2 Hz, 1H), 4.25 (d, *J* = 6.8 Hz, 1H), 3.68 (s, 3H), 3.40 (s, 1H), 2.95 (qd, *J* = 13.8, 7.4 Hz, 2H), 1.42 (s, 9H), 1.07 (d, *J* = 3.8 Hz, 18H), 0.89 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.39, 171.21, 155.51, 154.72, 130.11, 129.06, 120.20, 80.21, 60.01, 56.37, 51.88, 37.36, 34.80, 28.27, 27.38, 26.39, 20.72, 20.51; **HRMS**

(ESI) calcd. for C₂₉H₅₀N₂O₇Si [M+H]⁺ : 567.3460, found: 567.3460.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 18/1) to yield compound **4g** as white solid, (515 mg, 85%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.02 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 8.4 Hz, 2H), 6.45 (d, *J* = 5.2 Hz, 1H), 5.28 (d, *J* = 9.6 Hz, 1H), 4.58 (td, *J* = 8.6, 5.4 Hz, 1H), 4.28 (s, 2H), 3.67 (s, 3H), 2.94 (d, *J* = 7.0 Hz, 2H), 1.74 (d, *J* = 12.2 Hz, 1H), 1.60 (ddd, *J* = 14.6, 13.6, 9.8 Hz, 5H), 1.47 (dd, *J* = 9.0, 5.6 Hz, 1H), 1.41 (s, 9H), 1.27 - 1.12 (m, 5H), 1.07 (s, 18H), 0.94 - 0.82 (m, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.95, 171.41, 155.54, 154.82, 130.17, 128.83, 120.07, 80.15, 55.90, 52.26, 50.07, 40.01, 37.41, 33.84, 33.34,

32.39, 28.26, 27.40, 26.32, 26.04, 25.92, 20.69, 20.56; **HRMS** (ESI) calcd. for $C_{32}H_{54}N_2O_7Si [M+Na]^+$: 629.3593, found: 629.3563.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 15/1) to yield compound **4h** as white solid, (dr : 4/1, 375 mg, 68%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.10 (d, *J* = 8.4 Hz, 2H), 6.95 (d, *J* = 8.4 Hz, 2H), 5.54 (dd, *J* = 16.6, 8.8 Hz, 1H), 4.62 (dd, *J* = 15.8, 7.4 Hz, 1H), 4.46 (d, *J* = 6.8 Hz, 1H), 3.70 (s, 3H), 3.65 - 3.51 (m, 1H), 3.31 - 3.09 (m, 1H), 2.97 (dd, *J* = 13.6, 7.4 Hz, 1H), 2.83 (dd, *J* = 13.2, 6.8 Hz, 1H), 2.23 - 2.07 (m, 1H), 1.88 (s, 2H), 1.37 (s, 9H), 1.06 (s, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.28, 171.22, 155.32, 154.87, 130.48, 128.58, 119.79, 79.63, 58.91, 53.38,

52.18, 46.87, 38.41, 28.31, 27.42, 24.76, 20.72, 20.63; **HRMS** (ESI) calcd. for C₂₈H₄₆N₂O₇Si [M+HOOC]⁻: 595.3056, found: 595.3049.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 10/1) to yield compound **4i** as white solid, (482 mg, 77%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.04 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 8.4 Hz, 2H), 6.70 (d, *J* = 8.0 Hz, 1H), 5.03 (s, 1H), 4.80 - 4.70 (m, 1H), 4.31 (s, 1H), 3.72 (s, 3H), 2.98 (ddd, *J* = 20.6, 13.8, 7.0 Hz, 2H), 2.86 (dd, *J* = 16.8, 4.6 Hz, 1H), 2.67 (dt, *J* = 11.2, 4.6 Hz, 1H), 1.41 (s, 9H), 1.40 (s, 9H), 1.07 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 171.26, 170.90, 169.69, 155.21, 154.83, 130.14, 128.64, 120.12, 81.82, 80.06, 55.77, 52.60, 48.67, 37.62,

37.51, 28.24, 27.95, 27.39, 20.63, 20.58; HRMS (ESI) calcd. for C₃₁H₅₂N₂O₉Si [M+H]⁺ : 625.3515, found: 625.3510.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 10/1) to yield compound **4j** as white solid, (482 mg, 77%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.08 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 6.53 (d, J = 8.8 Hz, 1H), 5.15 (s, 1H), 4.48 (dd, J = 9.2, 1.8 Hz, 1H), 4.38 (d, J = 5.8 Hz, 1H), 4.18 (dt, J = 6.4, 4.6 Hz, 1H), 3.69 (s, 3H), 3.01 (d, J = 6.8 Hz, 2H), 1.43 (s, 9H), 1.13 (d, J = 12.0 Hz, 3H), 1.09 (s, 9H), 1.07 (d, J = 3.4 Hz, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.89, 170.90, 155.25, 154.67, 130.29, 129.04, 120.06, 79.91, 74.14, 67.42, 57.76, 55.93, 52.24, 37.69, 28.27, 27.39, 20.70, 20.54; **HRMS** (ESI) calcd. for C₃₁H₅₄N₂O₈Si

[M+Na]⁺: 633.3542, found: 633.3567.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 10/1) to yield compound **4k** as white solid, (462 mg, 67%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.04 (d, *J* = 8.4 Hz, 2H), 6.96 (d, *J* = 8.4 Hz, 2H), 6.37 (d, *J* = 8.0 Hz, 1H), 5.01 (s, 1H), 4.66 (s, 1H), 4.55 (dd, *J* = 12.6, 7.6 Hz, 1H), 4.34 (d, *J* = 4.8 Hz, 1H), 3.99 (s, 1H), 3.71 (s, 3H), 3.27 - 3.16 (m, 1H), 3.07 (dd, *J* = 13.0, 6.4 Hz, 2H), 2.85 (dd, *J* = 13.8, 7.2 Hz, 1H), 1.81 (ddd, *J* = 15.6, 10.4, 5.4 Hz, 1H), 1.69 (s, 2H), 1.63 - 1.55 (m, 1H), 1.44 (s, 18H), 1.23

- 1.14 (m, 2H), 1.07 (s, 9H), 1.05 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.29, 171.17, 156.20, 155.16, 154.61, 133.38, 130.34, 120.20, 80.32, 79.53, 55.73, 52.45, 52.04, 40.37, 37.12, 32.08, 29.61, 28.44, 28.29, 27.45, 27.37, 22.27, 20.76, 20.55; **HRMS** (ESI) calcd. for C₃₄H₅₉N₃O₉Si [M+H]⁺ : 682.4093, found: 682.4060.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 18/1) to yield compound **4I** as white solid, (455 mg, 75%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.25 (q, *J* = 6.4 Hz, 3H), 7.08 - 7.00 (m, 4H), 6.93 (d, *J* = 8.4 Hz, 2H), 6.34 (d, *J* = 7.8 Hz, 1H), 5.10 (d, *J* = 3.2 Hz, 1H), 4.79 (dd, *J* = 12.4, 5.8 Hz, 1H), 4.39 - 4.19 (m, 1H), 3.68 (s, 3H), 3.05 (tt, *J* = 13.8, 6.9 Hz, 2H), 2.93 (d, *J* = 6.8 Hz, 2H), 1.42 (s, 9H), 1.08 (d, *J* = 2.4 Hz, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.50, 170.74, 155.31, 154.90, 136.51, 130.12, 129.42, 128.67, 126.98, 119.98, 80.26, 77.36, 77.04, 76.72, 55.66, 53.46, 52.26, 38.29, 37.19, 28.24, 27.39, 20.63, 20.59;

HRMS (ESI) calcd. for C₃₂H₄₈N₂O₇Si [M+Na]⁺ : 623.3123, found: 623.3100.

59.75, 53.35, 52.23, 37.13, 31.01, 28.30, 27.40, 20.64, 19.13, 17.76; **HRMS** (ESI) calcd. for C₂₈H₄₈N₂O₇Si [M+Na]⁺ : 575.3123, found: 575.3114.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 18/1) to yield compound **4n** as white solid, (455 mg, 75%); ¹**H NMR** (400 MHz, CDCl₃) δ 6.92 (q, *J* = 8.6 Hz, 4H), 6.55 (d, *J* = 7.0 Hz, 1H), 5.17 (d, *J* = 8.6 Hz, 1H), 4.78 (dd, *J* = 13.2, 6.2 Hz, 1H), 4.04 - 3.90 (m, 1H), 3.66 (s, 3H), 3.14 (s, 1H), 2.99 (d, *J* = 5.6 Hz, 2H), 1.81 (d, *J* = 4.0 Hz, 1H), 1.43 (s, 9H), 1.07 (s, 18H), 0.87 (dd, *J* = 10.4, 4.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.80, 171.52, 155.79, 154.99, 130.10, 128.10, 120.01, 79.97, 59.10, 53.34, 52.23, 37.25, 37.13, 28.31, 27.40, 24.66, 20.62, 15.37, 11.34; HRMS (ESI) calcd. for C₂₉H₅₀N₂O₇Si [M+Na]⁺ : 589.3280, found:

589.3280.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 18/1) to yield compound **4o** as white solid, (465 mg, 82%); ¹**H NMR** (400 MHz, CDCl₃) δ 6.91-6.97 (m, 4H), 6.16 (d, *J* = 7.2 Hz, 1H), 5.29 (d, *J* = 9.0 Hz, 1H), 4.80 (dd, *J* = 13.0, 6.0 Hz, 1H), 3.85 (d, *J* = 9.6 Hz, 1H), 3.71 (s, 3H), 3.04 (d, *J* = 5.2 Hz, 2H), 1.47 (s, 9H), 1.08 (s, 18H), 0.97 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.73, 170.62, 155.77, 155.01, 130.12, 128.01, 120.06, 79.76, 62.34, 53.23, 52.21, 36.95, 34.57, 28.34, 27.38, 26.42, 20.60; **HRMS** (ESI) calcd. for C₂₉H₅₀N₂O₇Si [M+Na]⁺ : 589.3280, found:

589.3262.

7. Synthesis of polypeptides 6a-6n

General procedure :

2-CTC resin (510 mg, 0.50 mmol) was swelled in dry DCM (3 mL) for 10 min, and then drained. A mixture of Fmoc-AA1-OH (1.5 mmol) and DIEA (1.60 mmol) in of DCM (3 mL) was added to the resin, the reaction mixture was stirred at room temperature for 2 h. The resin was drained, washed with capping solution DCM/MeOH/DIEA (4 mL, 17:2:1, v/v), DCM (4 mL), DMF (4 mL), and DCM (4 mL) 3 times each. Then, 10% piperidine in DMF (4 mL) was added to the resin and the reaction mixture was agitated for 2 min then drained, and washed with DMF (4 mL) three times. This procedure was repeated once. After that, a mixture of Fmoc-AA2-OH (1.5 mmol), HATU (2.0 mmol) and collidine (2.0 mmol) in DMF (4 mL) was added to the resin and the reaction was agitated for 2 h. The resin was drained and washed with DMF (4 mL) three times. 10% piperidine (4 mL) in DMF was added to the resin and the reaction mixture was agitated for 2 min, the resin was drained and washed with DMF (4 mL) three times. This procedure was repeated once. The peptide elongation procedure was ended with the coupling of N-Boc protected AAs. A mixture of Boc-AAx-OH (1.5 mmol), HATU (2.0 mmol) and collidine (2.0 mmol) in DMF (4 mL) was added to the resin and the reaction mixture was agitated at room temperature for 2h. The resin was drained, washed with DMF (4 mL) three times, and 20% piperidine in DMF (4 mL) was added to the resin and the reaction mixture was agitated for 10 min, the resin was drained and washed with DMF (4 mL), MeOH (4 mL), and DCM (4 mL) for 3 times each. To the resin was added the solution of 25% HFIP in DCM (4 mL), the mixture was kept agitating for another 30 min, the solution was collected and the resin was washed by DCM (4 mL) for 3 times. The combined solution part was evaporated in *vacuo* to give the crude polypeptides as pale yellow solid.

To the mixture of MeI (1.0 mmol) and the crude polypeptide obtained above in DMF (5 mL) was added K_2CO_3 (1.5 mmol) in one portion. After 2 h stirring at r.t, the reaction mixture was partitioned between EA and water, the organic phase was wash by water 3 times, brine, and dried over Na_2SO_4 then evaporated. Purified via flash column to afford pure polypeptide as white solid.

To a solution of compound **6a** (453 mg, 0.8 mmol) in MeOH/H₂O (20 mL, v/v = 1/1), was added LiOH (38 mg, 1.6 mmol) under r.t and kept stirring for 30 min. After the removal of MeOH under vaccum, the aqueous layer was adjusted to pH 2~3 via 1N HCI (a.q) and extracted by DCM (20 mL x3), the combined organic layer was dried over Na₂SO₄ and evaporated. The resulting crude acid was obtained as white solid and used directly to the next step. The corresponding amine was added to the solution of

crude acid and EDCI (191 mg, 1.0 mmol) in DCM and kept stirring at r.t for 2h, the reaction mixture was partitioned between DCM and water, the aqueous layer was extracted with DCM, and the combined organic phase was wash by brine and dried over Na₂SO₄ then evaporated. Purified by flash column chromatography on silica gel (eluent: PE/EA = 3/1) to yield compound **6a** as white solid, (465 mg, 36%); ¹H NMR (400 MHz, CDCl₃) δ 7.01 (d, *J* = 8.2 Hz, 2H), 6.89 (d, *J* = 8.2 Hz, 2H), 6.71 (s, 1H), 6.18 (s, 1H), 5.36 (s, 1H), 4.28-4.19 (m, 4H), 4.08 (dd, *J* = 18.2, 5.2 Hz, 1H), 4.02 - 3.91 (m, 1H), 3.02 (dd, *J* = 13.6, 5.6 Hz, 1H), 2.86 (dd, *J* = 13.6, 8.6 Hz, 1H), 1.43 (s, 9H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.09 (s, 9H), 1.06 (s, 9H), 0.93 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 171.27, 170.02, 169.64, 155.47, 154.73, 129.95, 129.01, 120.53, 80.10, 61.58, 60.45, 56.69, 41.25, 38.01, 34.64, 28.31, 27.42, 27.37, 26.40, 20.91, 20.31, 14.13; HRMS (ESI) calcd. for C₃₂H₅₅N₃O₈Si [M+H]⁺ : 638.3831, found: 638.3834.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 3/1) to yield compound **6b** as white solid, (249 mg, 78%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.00 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 7.2 Hz, 1H), 6.42 (s, 1H), 5.30 (s, 1H), 4.55 (p, J = 7.2 Hz, 1H), 4.30 (t, J = 7.8 Hz, 2H), 4.06 (d, J = 23.8 Hz, 1H), 3.73 (s, 3H), 2.95 (ddd, J = 30.2, 13.8, 7.2 Hz, 2H), 1.79 (d, J = 5.8 Hz, 1H), 1.47 (d, J = 3.8 Hz, 2H), 1.41 (s, 9H), 1.39 (d, J = 3.0 Hz, 3H), 1.08 (s, 9H), 1.06 (s, 9H),

0.85 (dd, J = 11.6, 7.0 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.03, 171.46, 170.31, 155.53, 154.80, 130.00, 128.87, 120.33, 80.14, 57.59, 56.25, 52.41, 47.96, 37.53, 37.00, 28.28, 27.41, 27.38, 24.69, 20.81, 20.43, 18.06, 15.19, 11.19; **HRMS** (ESI) calcd. for C₃₂H₅₅N₃O₈Si [M+H]⁺ : 638.3831, found: 638.3805.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 4/1) to yield compound **6c** as white solid, (240 mg, 72%); **¹H NMR** (400 MHz, CDCl₃) δ 7.02 (d, *J* = 8.6 Hz, 2H), 6.91 (d, *J* = 8.6 Hz, 2H), 6.62 (d, *J* = 8.0 Hz, 1H), 6.36 (d, *J* = 8.6 Hz, 1H), 5.22 (d, *J* = 6.4 Hz, 1H), 4.58 (td, *J* = 8.6, 5.2 Hz, 1H), 4.34 - 4.22 (m, 2H), 3.72 (s, 4H), 2.96 (ddd, *J* = 32.8, 13.9, 6.8 Hz, 2H), 2.11 - 2.00 (m, 1H), 1.93 (s, 1H), 1.72 - 1.56 (m, 1H), 4.54 (dd, *J* = 4.22 (m, 2H), 3.72 (s, 4H), 2.96 (ddd, *J* = 3.6 Hz, 1.56 (m, 1H), 1.55 (dd, *J* = 1.56 (m, 1H), 1.55 (dd, *J* = 1.56 (m, 1H), 1.56 (dd, *J* = 1.56 (m, 1H), 1.56 (m, 1H), 1.56 (dd, *J* = 1.56 (m, 1H), 1.56 (m, 1H

3H), 1.41 (s, 9H), 1.08 (s, 9H), 1.06 (s, 9H), 0.94 (dd, J = 6.0, 2.6 Hz, 6H), 0.89 (d, J = 6.8 Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.05, 171.48, 170.53, 155.53, 154.81, 130.02, 128.90, 120.39, 80.23, 58.44, 56.26, 52.26, 50.80, 41.12, 37.44, 30.80, 28.28, 27.39, 27.37, 24.86, 22.79, 21.93, 20.80, 20.43, 19.03, 17.94; **HRMS** (ESI) calcd. for C34H59N3O8Si [M+H]⁺ : 666.4144, found: 666.4124.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 4/1) to yield compound **6d** as white solid, (268 mg, 81%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.00 (d, *J* = 8.6 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 2H), 6.78 (d, *J* = 8.8 Hz, 1H), 6.29 (d, *J* = 8.6 Hz, 1H), 5.34 (d, *J* = 5.8 Hz, 1H), 4.50 (dd, *J* = 8.8, 5.2 Hz, 1H), 4.32 (dd, *J* = 17.2, 8.8 Hz, 2H), 3.92 (s, 1H), 3.74 (s, 3H), 3.00 (dd, *J* = 13.8, 6.4 Hz, 1H), 2.89 (dd, *J* = 13.8, 7.8 Hz, 1H), 2.17 (dq, *J* = 13.6, 6.8 Hz, 1H), 1.99 (s, 1H), 1.79 - 1.70 (m, 1H),

 $\begin{array}{l} 1.49 - 1.44 \ (m, 1H), \ 1.41 \ (s, 9H), \ 1.09 \ (s, 9H), \ 1.06 \ (s, 9H), \ 0.97 - 0.92 \ (m, 6H), \ 0.87 - 0.81 \ (m, 6H). \ {}^{13}\textbf{C}\ \textbf{NMR} \ (101 \ \text{MHz}, \text{CDCI}_3) \ \delta \ 172.09, \ 171.41, \ 170.65, \ 155.46, \ 154.74, \ 129.98, \ 128.98, \ 120.45, \ 80.04, \ 57.77, \ 57.19, \ 56.23, \ 52.15, \ 37.58, \ 37.13, \ 31.10, \ 28.28, \ 27.41, \ 27.38, \ 24.82, \ 20.85, \ 20.39, \ 18.87, \ 18.01, \ 15.20, \ 11.21. \ \textbf{HRMS} \ (\text{ESI}) \ \text{calcd. for} \ C_{34}H_{59}N_3O_8\text{Si} \ [\text{M+H]}^+: \ 666.4144, \ found: \ 666.4124. \end{array}$

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 4/1) to yield compound **6e** as white solid, (242 mg, 75%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.01 (d, *J* = 8.4 Hz, 2H), 6.92 (d, *J* = 8.4 Hz, 2H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.52 (d, *J* = 6.6 Hz, 1H), 5.24 (d, *J* = 7.8 Hz, 1H), 4.59 - 4.46 (m, 2H), 4.31 (d, *J* = 4.8 Hz, 1H), 3.89 (d, *J* = 4.8 Hz, 1H), 3.72 (s, 3H), 2.99 (dd, *J* = 13.4, 6.4 Hz, 1H), 2.90 (dd, *J* = 13.8, 7.0 Hz, 1H), 1.65

(td, J = 10.3, 4.0 Hz, 2H), 1.57 (d, J = 9.0 Hz, 1H), 1.40 (s, 9H), 1.27 (d, J = 6.8 Hz, 3H), 1.08 (s, 9H), 1.06 (s, 9H), 0.94 (t, J = 5.2 Hz, 6H); ¹³**C** NMR (101 MHz, CDCl₃) δ 173.17, 171.66, 171.33, 155.44, 154.87, 130.04, 128.73, 120.33, 80.23, 55.95, 52.31, 50.91, 48.75, 41.11, 37.83, 28.28, 27.40, 27.39, 24.84, 22.75, 21.95, 20.78, 20.46, 18.16; HRMS (ESI) calcd. for $C_{32}H_{55}N_3O_8Si$ [M+H]⁺ : 638.3831, found: 638.3830.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 4/1) to yield compound **6f** as white solid, (239 mg, 66%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.00 (d, *J* = 8.4 Hz, 2H), 6.88 (d, *J* = 8.4 Hz, 2H), 6.39 (d, *J* = 8.8 Hz, 1H), 6.25 (d, *J* = 9.0 Hz, 1H), 5.27 (d, *J* = 6.8 Hz, 1H), 4.45 (d, *J* = 8.2 Hz, 1H), 4.33 - 4.20 (m, 3H), 3.70 (s, 3H), 3.01 (dd, *J* = 12.6, 5.2 Hz, 1H), 2.88 (dd, *J* = 13.6, 8.2 Hz, 1H), 1.42 (s, 9H), 1.22 (d, *J* = 6.4 Hz, 3H), 1.12 (s, 9H), 1.09 (s, 9H), 1.05 (s, 9H), 0.97 (s, 9H); ¹³**C**

NMR (101 MHz, CDCl₃) δ 170.98, 170.75, 170.16, 155.27, 154.66, 129.88, 129.13, 120.52, 79.91, 74.28, 67.00, 60.61, 58.03, 56.55, 52.08, 37.93, 35.20, 28.29, 27.40, 27.36, 26.33, 21.25, 20.89, 20.28. **HRMS** (ESI) calcd. for C₃₇H₆₅N₃O₉Si [M+H]⁺ : 724.4563, found: 724.4533.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 4/1) to yield compound **6g** as white solid, (262 mg, 77%); ¹**H NMR** (400 MHz, CDCl₃) δ 6.96 - 6.87 (m, 4H), 6.70 (d, J = 8.8 Hz, 1H), 6.52 (d, J = 7.6 Hz, 1H), 5.31 (d, J = 8.6 Hz, 1H), 4.79 (dd, J = 13.6, 6.4 Hz, 1H), 4.28 (d, J = 9.2 Hz, 1H), 3.97 (d, J = 7.4 Hz, 1H), 3.83 (s, 1H), 3.68 (s, 3H), 3.07 - 2.95 (m, 2H), 2.20 (d, J = 7.6 Hz, 1H), 1.87 (dd, J = 8.0, 4.8 Hz, 1H), 1.52 (s, 1H), 1.07 (d, J = 0.6 Hz, 18H), 0.97 (s, 9H), 0.93 - 0.88 (m, 6H);

¹³**C NMR** (101 MHz, CDCl₃) δ 171.87, 169.93, 155.88, 155.01, 130.00, 127.96, 120.11, 79.84, 60.44, 59.56, 53.23, 52.23, 36.94, 36.79, 34.60, 28.31, 27.41, 26.51, 24.84, 20.67, 20.58, 15.61, 11.28; **HRMS** (ESI) calcd. for $C_{34}H_{59}N_3O_8Si$ [M+H]⁺: 680.4234, found: 680.4260.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 4/1) to yield compound **6h** as white solid, (226 mg, 65%); ¹**H NMR** (400 MHz, CDCl₃) δ 6.91 (q, *J* = 8.8 Hz, 4H), 6.76 (d, *J* = 8.8 Hz, 1H), 6.62 (d, *J* = 7.8 Hz, 1H), 5.36 (d, *J* = 9.0 Hz, 1H), 4.79 (dd, *J* = 13.8, 6.4 Hz, 1H), 4.31 (d, *J* = 9.2 Hz, 1H), 3.97 (s, 1H), 3.67 (s, 3H), 3.06 - 2.93 (m, 2H), 2.17 - 2.05 (m, 1H), 1.43 (s, 9H), 1.07 (d, *J* = 1.2 Hz, 18H), 0.97 (s, 9H), 0.92 (dd, *J* = 6.4, 4.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.92, 79.81 60.43 53 29 52 21 36 98 34 59 30 61 28 31 27 42

170.02, 155.99, 155.02, 129.99, 127.96, 120.08, 79.81, 60.43, 53.29, 52.21, 36.98, 34.59, 30.61, 28.31, 27.42, 26.51, 20.66, 20.60, 19.34, 18.06; **HRMS** (ESI) calcd. for $C_{34}H_{59}N_3O_8Si$ [M+H]⁺ : 666.4144, found: 666.4134.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 2/1) to yield compound **6***i* as white solid, (199 mg, 55%); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.13 (d, *J* = 9.0 Hz, 1H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 8.4 Hz, 2H), 6.55 (s, 1H), 5.72 (d, *J* = 7.6 Hz, 1H), 4.48 (d, *J* = 5.6 Hz, 1H), 4.44 – 4.38 (m, 2H), 4.14 (dd, *J* = 18.0, 6.0 Hz, 1H), 3.86 (dd, *J* = 18.0, 5.1 Hz, 1H), 3.72 (s, 3H), 3.03 (dd, *J* = 13.6, 5.6 Hz,

1H), 2.87 (dd, J = 13.4, 8.4 Hz, 1H), 1.93 – 1.89 (m, 1H), 1.42 (s, 9H), 1.12 (s, 9H), 1.10 (s, 9H), 1.07 (s, 9H), 0.84 (dd, J = 6.6, 3.4 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.40, 171.21, 170.71, 169.94, 155.50, 154.47, 129.95, 129.28, 120.53, 79.74, 60.65, 58.30, 56.28, 52.12, 40.99, 38.58, 33.89, 31.47, 28.33, 27.34, 26.64, 21.03, 20.17, 18.91, 18.27; **HRMS** (ESI) calcd. for C₃₆H₆₂N₄O₉Si [M+H]⁺ : 723.4359, found: 723.4377.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 2/1) to yield compound **6j** as white solid, (203 mg, 52%); ¹**H NMR** (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.2 Hz, 1H), 7.15 (d, *J* = 9.4 Hz, 1H), 6.92 (dd, *J* = 16.2, 8.4 Hz, 2H), 6.81 (t, *J* = 9.4 Hz, 2H), 6.24 (d, *J* = 8.6 Hz, 1H), 5.37 (d, *J* = 8.6 Hz, 1H), 4.44 (d, *J* = 9.8 Hz, 1H), 4.40 (d, *J* = 9.6 Hz, 1H), 4.14 (d, *J* = 9.6 Hz, 1H), 3.64 (s, 3H), 3.01 (dd, *J* = 12.8, 4.2 Hz, 1H),

2.66 (t, J = 12.2 Hz, 1H), 2.15 (dd, J = 16.4, 6.6 Hz, 1H), 1.36 (s, 9H), 1.11 (s, 9H), 1.01 (s, 15H), 0.91 (s, 9H), 0.69 (s, 9H); ¹³**C** NMR (101 MHz, CDCl₃) δ 171.57, 171.18, 171.15, 169.94, 155.71, 154.57, 129.51, 129.40, 121.23, 79.43, 60.25, 59.43, 59.37, 57.58, 51.64, 39.09, 34.48, 34.17, 30.01, 28.35, 27.46, 27.31, 26.84, 26.05, 21.44, 19.77, 19.33, 19.22; HRMS (ESI) calcd. for C₄₀H₇₀N₄O₉Si [M+H]⁺ : 779.4985, found: 779.5023.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: DCM/MeOH = 25/1) to yield compound **6k** as white solid, (214 mg, 55%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.14 (d, *J* = 8.2 Hz, 1H), 7.05 (d, *J* = 8.8 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 2H), 6.79 (d, *J* = 8.2 Hz, 2H), 5.92 (s, 1H), 5.67 (d, *J* = 8.2 Hz, 1H), 4.65 – 4.55 (m, 1H), 4.32 – 4.21 (m, 3H), 3.63 (s, 3H), 2.96 (dd, *J* = 13.2, 4.8 Hz, 1H), 2.70 (dd, *J* = 13.2, 9.8 Hz, 1H), 1.69

(dq, J = 13.6, 6.8 Hz, 1H), 1.58 - 1.44 (m, 3H), 1.35 (s, 9H), 1.07 (s, 9H), 1.03 (s, 9H), 1.00 (s, 9H), 0.81 - 0.76 (m, 6H), 0.72 (dd, J = 10.4, 6.8 Hz, 6H); 13 **C NMR** (101 MHz, CDCI₃) δ 173.05, 171.17, 170.02, 155.40, 154.38, 129.81, 129.43, 120.84, 79.72, 60.57, 58.05, 56.74, 52.11, 50.26, 41.05, 38.89, 33.77, 31.59, 28.36, 27.37, 27.33, 26.62, 24.61, 22.94, 21.52, 21.14, 19.99, 18.69, 18.38; **HRMS** (ESI) calcd. for C₄₀H₇₀N₄O₉Si [M+H]⁺ : 779.4985, found: 779.5016.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: DCM/MeOH = 25/1) to yield compound **6I** as white solid, (211 mg, 47%); ¹H NMR (400 MHz, MeOD) δ 8.40 (d, *J* = 9.0 Hz, 1H), 8.27 (d, *J* = 7.6 Hz, 1H), 8.18 (d, *J* = 9.4 Hz, 1H), 7.89 (d, *J* = 9.0 Hz, 1H), 6.93 (d, *J* = 8.2 Hz, 2H), 6.77 (d, *J* = 8.4 Hz, 2H), 6.51 (d, *J* = 8.4 Hz, 1H),

4.58 – 4.38 (m, 5H), 3.61 (s, 3H), 2.90 (dd, J = 13.8, 3.8 Hz, 1H), 2.68 (dd, J = 13.6, 9.4 Hz, 1H), 1.96 – 1.87 (m, 1H), 1.55 (dd, J = 15.6, 6.8 Hz, 3H), 1.27 (s, 9H), 0.91 (t, J = 12.8 Hz, 36H), 0.84 – 0.80 (m, 6H), 0.77 (dd, J = 6.0, 4.4 Hz, 6H); ¹³**C NMR** (101 MHz, MeOD) δ 173.09, 172.69, 172.09, 171.16, 170.87, 156.22, 154.83, 129.92, 129.46, 119.28, 79.12, 78.06, 60.23, 60.07, 58.65, 55.76, 51.24, 50.68, 40.06, 37.19, 34.66, 34.09, 30.94, 27.47, 26.71, 26.11, 25.97, 24.51, 22.05, 20.62, 20.26, 20.22, 18.34; **HRMS** (ESI) calcd. for C₄₆H₈₀N₅O₁₀Si [M+H]⁺ : 892.5825, found: 892.5862.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: DCM/MeOH = 20/1) to yield compound **6m** as white solid, (200 mg, 45%); ¹H NMR (400 MHz, MeOD) $\overline{0}$ 8.27 (d, J = 7.6 Hz, 1H), 8.04 (d, J = 11.8 Hz, 1H), 7.92 (d, J = 9.0 Hz, 1H), 6.94 (d, J = 8.0 Hz, 2H), 6.78 (d, J = 8.0 Hz, 2H), 6.49 (d, J = 8.6 Hz, 1H), 4.59 (d, J = 9.2 Hz, 1H),

4.40 (dd, J = 14.6, 7.2 Hz, 3H), 4.33 (d, J = 9.2 Hz, 1H), 3.60 (s, 3H), 2.88 (dd, J = 13.6, 3.6 Hz, 1H), 2.67 (dd, J = 13.6, 9.8 Hz, 1H), 1.93 (dd, J = 13.8, 7.0 Hz, 1H), 1.59 (dd, J = 13.6, 6.6 Hz, 1H), 1.54 – 1.48 (m, 2H), 1.26 (s, 9H), 0.94 (s, 18H), 0.92 (s, 9H), 0.88 (s, 9H), 0.83 – 0.77 (m, 12H); ¹³C NMR (101 MHz, MeOD) δ 173.01, 172.77, 172.05, 171.97, 171.01, 156.16, 154.84, 129.87, 129.41, 119.27, 79.13, 78.06, 60.17, 58.35, 55.65, 51.18, 50.63, 39.90, 37.37, 34.32, 34.13, 31.16, 27.44, 26.70, 26.06, 25.91, 24.52, 22.01, 20.61, 20.26, 20.22, 18.60, 17.77; HRMS (ESI) calcd. for C₄₆H₈₀N₅O₁₀Si [M+H]⁺ : 892.5825, found: 892.5858.

According to the general procedure, the crude product was purified by flash column chromatography on silica gel (eluent: DCM/MeOH = 20/1) to yield compound **6n** as white solid, (198 mg, 40%); ¹**H NMR** (400 MHz, MeOD) δ 8.64 (d, *J* = 9.0 Hz, 1H), 8.46 (d, *J* = 8.2 Hz, 1H), 8.32 (d, *J* = 6.8 Hz, 1H), 7.05 (d, *J* = 8.2 Hz, 2H), 6.86 (d, *J* = 8.2 Hz, 2H), 4.66 (dd, *J* =

39.0, 18.4 Hz, 8H), 3.73 (s, 3H), 3.03 – 2.95 (m, 1H), 2.81 (dd, J = 13.4, 9.4 Hz, 1H), 2.04 (d, J = 6.8 Hz, 2H), 1.66 (d, J = 4.6 Hz, 3H), 1.37 (s, 9H), 1.04 (s, 27H), 0.98 (s, 9H), 0.90 (dd, J = 12.8, 4.4 Hz, 18H); ¹³**C NMR** (101 MHz, MeOD) δ 173.14, 172.71, 172.16, 172.06, 171.06, 170.47, 156.11, 154.78, 129.96, 129.45, 119.26, 79.02, 78.06, 59.80, 58.40, 57.99, 55.53, 51.30, 50.66, 40.08, 37.69, 34.35, 34.04, 31.31, 31.00, 27.54, 26.75, 26.38, 26.08, 24.57, 22.06, 20.83, 20.26, 18.66, 18.35, 18.20, 17.98; **HRMS** (ESI) calcd. for C₅₁H₉₀N₆O₁₁Si [M+H]⁺ : 991.6510, found: 991.6528.

8. Pd-catalyzed olefination of substrates

General procedure:

To a 15 ml sealed reaction tube, peptide substrate (0.20 mmol), olefination reagent (0.8 mmol), Pd(OAc)₂ (0.02 mmol), BQ (0.04 mmol), Li₃PO₄ (0.4 mmol), PhI(OAc)₂ (0.60 mmol) and DCE (2.0 ml) was added. The reaction mixture was stirred at 90 °C for 24 h, cooled to room temperature and diluted with EA (5.0 ml). The resulting solution was filtered through a Celite pad, concentrated under reduced pressure and further purified by column chromatography. The resulting products were typically obtained as colorless oil.

Compound **3aa**, (81 mg, 73%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, J = 16.2 Hz, 1H), 7.24 (s, 1H), 7.14 (d, J = 8.4 Hz, 1H), 6.95 (dd, J = 8.4, 2.0 Hz, 1H), 6.26 (d, J = 16.2 Hz, 1H), 5.04 (d, J = 8.2 Hz, 1H), 4.53 (dd, J = 13.2, 6.0 Hz, 1H), 3.67 (s, 3H), 3.35 (s, 1H), 3.02 (dd, J = 13.8, 5.6 Hz, 1H), 2.94 (dd, J = 13.8, 6.0 Hz, 1H), 1.50 (s, 9H), 1.40 (s, 9H), 1.06 (s, 18H); ¹³**C NMR** (126 MHz, CDCl₃) δ 172.35, 166.40, 155.08, 153.93, 138.48, 131.82, 128.72, 127.84, 124.99, 120.12, 119.96, 80.23, 80.08, 54.47, 52.25, 37.64, 28.30, 28.22, 27.40, 20.73; **HRMS** (ESI) calcd. for C₃₀H₄₉NO₈Si [M+Na]⁺: 602.3120, found: 602.3092.

Compound **3ab**, (71 mg, 66%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (d, *J* = 16.2 Hz, 1H), 7.27 (s, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 6.99 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.38 (d, *J* = 16.2 Hz, 1H), 5.05 (d, *J* = 7.8 Hz, 1H), 4.55 (d, *J* = 6.6 Hz, 1H), 3.79 (s, 3H), 3.69 (s, 3H), 3.05 (dd, *J* = 13.6, 5.4 Hz, 1H), 2.96 (dd, *J* = 13.6, 6.0 Hz, 1H), 1.41 (s, 9H), 1.08 (s, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.34, 167.72, 155.08, 154.17, 140.15, 132.23, 128.82, 127.98, 124.69, 120.09, 117.35, 80.09, 54.44, 52.25, 51.61, 37.65, 28.28, 27.36, 20.72; **HRMS** (ESI) calcd. for C₂₇H₄₃NO₈Si [M+Na]⁺ : 560.2650, found: 560.2630.

Compound **3ac**, (78 mg, 71%), colorless oil, ¹**H NMR** (500 MHz, CDCl₃) δ 8.12 (d, *J* = 16.5 Hz, 1H), 7.27 (s, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 6.36 (d, *J* = 16.5 Hz, 1H), 5.04 (s, 1H), 4.55 (d, *J* = 5.5 Hz, 1H), 4.24 (q, *J* = 6.5 Hz, 2H), 3.70 (s, 3H), 3.05 (d, *J* = 13.0 Hz, 1H), 2.96 (d, *J* = 12.5 Hz, 1H), 1.42 (s, 9H), 1.31 (t, *J* = 6.5 Hz, 3H), 1.08 (s, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 172.32, 167.20, 155.06, 154.05, 139.67, 132.16, 128.83, 127.83, 124.76, 120.04, 117.83, 80.08, 77.29, 77.04, 76.78, 60.34, 54.44, 52.26, 37.66, 28.30, 27.37, 20.73, 14.26; **HRMS** (ESI) calcd. for C₂₈H₄₅NO₈Si [M+Na]⁺ : 574.2807,

Compound **3ad**, (98mg, 80%), pale yellow oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (dd, J = 23.2, 17.8 Hz, 1H), 7.23 (d, J = 2.0 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H), 6.97 (dd, J = 8.4, 2.0 Hz, 1H), 6.17 (dd, J = 19.2, 17.8 Hz, 1H), 5.00 (d, J = 7.8 Hz, 1H), 4.53 (d, J = 6.2 Hz, 1H), 4.15 - 4.04 (m, 4H), 3.69 (s, 3H), 3.04 (dd, J = 13.8, 5.4 Hz, 1H), 2.94 (dd, J = 13.4, 6.4 Hz, 1H), 1.40 (s, 9H), 1.32 (t, J = 7.0 Hz, 6H), 1.05 (s, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.34, 155.06, 153.88, 143.95, 132.07, 128.81, 127.65, 120.34, 114.44, 112.53, 80.04, 61.82, 61.77, 54.45, 52.26, 37.68, 28.30, 27.42, 20.72, 16.42, 16.36; **HRMS** (ESI)

calcd. for C₂₉H₅₀NO₉PSi [M+Na]⁺ : 638.2885, found: 638.2881.

Compound **3ae**, (63mg, 55%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (s, 1H), 7.17 (d, *J* = 4.6 Hz, 1H), 7.14 (d, *J* = 2.8 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 6.13 (dd, *J* = 16.0, 7.8 Hz, 1H), 5.29 (q, *J* = 7.8 Hz, 1H), 5.07 (d, *J* = 7.8 Hz, 1H), 4.64 (t, *J* = 8.4 Hz, 1H), 4.55 (d, *J* = 6.0 Hz, 1H), 4.23 (t, *J* = 8.0 Hz, 1H), 3.69 (s, 3H), 3.04 (dd, *J* = 12.6, 4.8 Hz, 1H), 2.99 - 2.89 (m, 1H), 2.16 - 2.03 (m, 1H), 1.40 (s, 9H), 1.05 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 172.48, 155.13, 154.94, 153.11, 132.22, 130.92, 128.77, 127.45, 125.08, 122.13, 119.90, 80.10, 78.37, 69.37, 54.50, 52.27, 37.73, 28.30, 27.38, 20.72, 20.69; HRMS (ESI) calcd. for C₂₈H₄₃NO₉Si [M+Na]⁺ : 589.2610, found: 589.2617.

Compound **3af**, (86mg, 68%), pale yellow oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, J = 15.8 Hz, 1H), 7.36 (t, J = 8.0 Hz, 2H), 7.27 - 7.23 (m, 3H), 7.21 (d, J = 7.8 Hz, 2H), 7.07 (d, J = 8.6 Hz, 1H), 6.86 (d, J = 15.8 Hz, 1H), 5.06 (d, J = 7.8 Hz, 1H), 4.56 (d, J = 6.4 Hz, 1H), 3.70 (s, 3H), 3.07 (dd, J = 13.6, 5.0 Hz, 1H), 2.94 (dd, J = 13.6, 6.4 Hz, 1H), 1.41 (s, 9H), 0.99 (s, 18H); ^{13}C NMR (101 MHz, CDCl₃) δ 172.26, 155.10, 154.84, 149.64, 141.66, 133.85, 129.78, 129.22, 128.80, 127.06, 122.38, 121.94, 120.34, 120.07, 116.20, 80.28, 54.34, 52.38, 37.60, 28.30, 27.27, 20.62; HRMS (ESI) calcd. for C₃₁H₄₅NO₉SSi [M+Na]⁺ : 658.2477, found: 658.2478.

compound **3ag**, (79mg, 64%), pale yellow oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (d, J = 15.6 Hz, 1H), 7.23 - 7.16 (m, 2H), 7.01 (dd, J = 8.6, 2.0 Hz, 1H), 6.63 (d, J = 15.6 Hz, 1H), 5.03 (d, J = 8.0 Hz, 1H), 4.61 - 4.50 (m, 1H), 3.70 (s, 3H), 3.25 (q, J = 7.0 Hz, 4H), 3.05 (dd, J = 13.8, 5.8 Hz, 1H), 2.95 (dd, J = 13.8, 6.4 Hz, 1H), 1.41 (s, 9H), 1.21 (t, J = 7.0 Hz, 6H), 1.07 (s, 18H); ¹³**C** NMR (101 MHz, CDCl₃) δ 172.32, 155.08, 154.18, 136.44, 132.48, 129.03, 128.41, 124.57, 123.21, 120.16, 80.12, 54.40, 52.31, 41.84, 37.66, 28.30, 27.35, 20.68, 14.56; HRMS (ESI) calcd. for C₂₉H₅₀N₂O₈SSi [M+Na]⁺: 637.2949, found: 637.2935.

Compound **3ah**, (93mg, 69%), pale yellow oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (d, *J* = 15.6 Hz, 1H), 7.22 (d, *J* = 1.0 Hz, 1H), 7.17 (d, *J* = 8.4 Hz, 1H), 7.03 (d, *J* = 8.4 Hz, 1H), 6.82 (d, *J* = 15.6 Hz, 1H), 5.05 (d, *J* = 7.8 Hz, 1H), 4.56 (d, *J* = 6.8 Hz, 1H), 4.40 (dd, *J* = 8.8, 2.6 Hz, 1H), 3.74 (s, 3H), 3.72 (s, 3H), 3.48 - 3.39 (m, 2H), 3.06 (dd, *J* = 13.8, 5.6 Hz, 1H), 2.97 (dd, *J* = 13.8, 6.3 Hz, 1H), 2.30 - 2.20 (m, 1H), 2.08 - 1.93 (m, 3H), 1.41 (s, 9H), 1.08 (s, 9H), 1.07 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.13, 172.32, 155.11, 154.29, 137.82, 132.73, 129.05, 128.63, 123.09, 120.35, 80.12, 60.42, 54.41, 52.50, 52.34, 47.76, 37.60, 31.08, 28.29, 27.38, 27.23, 25.95, 24.84, 20.71, 20.69; **HRMS** (ESI) calcd. for C₃₁H₅₀N₂O₁₀SSi [M+Na]⁺ : 693.2848, found: 693.2832.

Compound **3ai**, (90mg, 61%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 16.2 Hz, 1H), 7.27 (d, *J* = 1.6 Hz, 1H), 7.08 (d, *J* = 8.4 Hz, 1H), 7.02 (dd, *J* = 8.4, 1.8 Hz, 1H), 6.28 (d, *J* = 16.2 Hz, 1H), 5.61 (d, *J* = 9.8 Hz, 1H), 5.50 (qd, *J* = 6.2, 2.2 Hz, 1H), 5.06 (d, *J* = 8.2 Hz, 1H), 4.54 (dd, *J* = 9.8, 2.2 Hz, 2H), 4.06 (s, 1H), 3.72 (s, 3H), 3.69 (s, 3H), 3.06 (dd, *J* = 13.8, 5.6 Hz, 1H), 2.96 (dd, *J* = 13.8, 6.2 Hz, 1H), 1.47 (s, 9H), 1.42 (s, 9H), 1.36 (d, *J* = 6.4 Hz, 3H), 1.10 (s, 9H), 1.06 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.27, 171.46, 165.57, 156.05, 155.03, 154.29, 140.59, 132.54, 129.05, 127.64, 124.55, 120.61, 116.95, 80.22, 80.06, 70.69, 57.36, 54.44, 52.74, 52.27, 37.65, 28.34, 28.30, 27.40, 27.36, 20.80, 20.68, 16.95; **HRMS** (ESI) calcd. for C₃₆H₅₈N₂O₁₂Si [M+Na]⁺ : 761.3677, found: 761.3510.

Compound **5ba**, (68mg, 52%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, *J* = 16.2 Hz, 1H), 7.34 (d, *J* = 2.0 Hz, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 7.04 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.61 (s, 1H), 6.30 (d, *J* = 16.2 Hz, 1H), 5.18 (d, *J* = 6.8 Hz, 1H), 4.38 (d, *J* = 5.8 Hz, 1H), 4.18 (q, *J* = 7.2 Hz, 2H), 4.02 - 3.88 (m, 2H), 2.99 (ddd, *J* = 20.4, 13.8, 7.2 Hz, 2H), 1.51 (s, 9H), 1.39 (s, 9H), 1.26 (t, *J* = 7.2 Hz, 4H), 1.07 (d, *J* = 2.0 Hz, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.64, 169.45, 166.41, 155.49, 153.86, 138.40, 131.88, 129.23, 127.81, 125.11, 120.19, 120.11, 80.36, 80.17, 61.59, 55.65, 41.30, 37.67, 28.25, 28.23, 27.40, 20.77, 20.72, Si [M, HOOC]; 605.2591

Compound **5ca**, (88mg, 66%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 16.2 Hz, 1H), 7.33 (d, J = 2.0 Hz, 1H), 7.16 (d, J = 8.4 Hz, 1H), 7.04 (dd, J = 8.4, 1.8 Hz, 1H), 6.62 (d, J = 5.6 Hz, 1H), 6.29 (d, J = 16.2 Hz, 1H), 5.21 (d, J = 6.0 Hz, 1H), 4.58 - 4.47 (m, 1H), 4.34 (d, J = 3.6 Hz, 1H), 3.71 (s, 3H), 2.98 (d, J = 6.4 Hz, 2H), 1.51 (s, 9H), 1.40 (s, 9H), 1.34 (d, J = 7.2 Hz, 3H), 1.07 (d, J = 1.8 Hz, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.91, 170.95, 166.43, 155.42, 153.92, 138.44, 131.97, 129.10, 127.83, 125.08, 120.11, 80.30, 80.17, 55.55, 52.53, 48.08, 37.67, 28.25, 28.23, 27.41, 20.78, 20.72, 18.27; **HRMS**

(ESI) calcd. for C33H54N2O9Si [M+Na]⁺ : 673.3491, found: 673.3458.

Compound **5da**, (75mg, 54%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 16.2 Hz, 1H), 7.35 (d, J = 2.0 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.04 (dd, J = 8.4, 2.0 Hz, 1H), 6.40 - 6.22 (m, 2H), 5.11 (d, J = 3.6 Hz, 1H), 4.58 (td, J = 8.6, 5.0 Hz, 1H), 4.30 (d, J = 6.8 Hz, 1H), 3.70 (s, 3H), 2.99 (d, J = 6.8 Hz, 2H), 1.58 (dd, J = 10.8, 5.4 Hz, 2H), 1.51 (s, 9H), 1.42 (s, 9H), 1.25 (s, 1H), 1.08 (d, J = 2.0 Hz, 18H), 0.89 (dd, J = 6.0, 4.2 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.90, 170.93, 166.34, 155.37, 153.81, 138.35, 131.95, 129.22, 127.88, 125.20, 120.29, 120.09, 80.34, 80.12, 55.69, 52.33, 50.71, 41.62, 37.33, 28.25, 28.23, 27.39, 24.69, 22.73, 21.88, 20.76, 20.68; **HRMS** (ESI) calcd.

for $C_{36}H_{60}N_2O_9Si \ [M+Na]^+$: 715.3960, found: 715.3990.

Compound **5ea**, (62mg, 46%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, J = 16.2 Hz, 1H), 7.34 (d, J = 2.0 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.04 (dd, J = 8.4, 2.0 Hz, 1H), 6.37 (d, J = 8.4 Hz, 1H), 6.30 (d, J = 16.2 Hz, 1H), 5.11 (s, 1H), 4.48 (dd, J = 8.6, 5.0 Hz, 1H), 4.30 (d, J = 6.6 Hz, 1H), 3.70 (s, 3H), 3.33 (s, 1H), 2.99 (d, J = 6.8 Hz, 2H), 2.15 - 2.05 (m, 1H), 1.51 (s, 9H), 1.42 (s, 9H), 1.08 (d, J = 1.8 Hz, 18H), 0.85 (dd, J = 11.4, 6.8 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.86, 171.13, 166.33, 155.43, 153.81, 138.29, 131.93, 129.25, 127.79, 125.20, 120.25, 120.13, 80.34, 80.12, 57.15, 55.87, 52.21, 37.26, 120.25, 120.14, 120.1

31.31, 28.28, 28.24, 27.40, 27.39, 20.77, 20.70, 18.81, 17.72; HRMS (ESI) calcd. for $C_{35}H_{58}N_2O_9Si$ [M+Na]⁺ : 710.3804, found: 710.3811.

Compound **5fa**, (87mg, 63%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 16.2 Hz, 1H), 7.32 (d, J = 2.0 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 7.01 (dd, J = 8.4, 2.0 Hz, 1H), 6.58 (d, J = 7.2 Hz, 1H), 6.29 (d, J = 16.2 Hz, 1H), 5.25 (s, 1H), 4.39 (d, J = 9.4 Hz, 1H), 4.29 (d, J = 7.2 Hz, 1H), 3.67 (s, 3H), 3.06 - 2.90 (m, 2H), 1.51 (s, 9H), 1.41 (s, 9H), 1.08 (s, 18H), 0.91 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.30, 171.27, 166.41, 155.59, 153.95, 138.43, 131.88, 130.07, 129.14, 127.65, 125.09, 120.16, 120.12, 80.34, 80.11, 60.09, 56.11, 51.85, 37.01, 34.81, 28.25, 28.23, 27.44, 27.42, 26.44, 20.78, 20.75; **HRMS** 737 4050, found: 737 4019

(ESI) calcd. for C₃₆H₆₀N₂O₉Si [M+HOOC]⁻: 737.4050, found: 737.4019.

Compound **5ga**, (69mg, 47%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 16.2 Hz, 1H), 7.35 (d, J = 2.0 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 7.04 (dd, J = 8.4, 2.0 Hz, 1H), 6.30 (d, J = 16.2 Hz, 2H), 5.16 (s, 1H), 4.58 (td, J = 8.6, 5.6 Hz, 1H), 4.30 (d, J = 6.4 Hz, 1H), 3.69 (s, 3H), 2.97 (dd, J = 13.6, 7.0 Hz, 3H), 1.77 - 1.55 (m, 7H), 1.51 (s, 9H), 1.41 (s, 9H), 1.20 - 1.11 (m, 3H), 1.07 (d, J = 2.4 Hz, 18H), 0.95 - 0.79 (m, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.01, 171.05, 166.39, 155.42, 153.86, 138.40, 131.97, 129.19, 127.85, 125.12, 120.19, 120.12, 80.28, 80.13, 55.68, 52.36, 50.13, 40.06, 37.43, 33.92, 33.34, 32.45, 28.28, 28.23, 27.41, 27.40, 26.31, 26.06, 25.93, 20.79, 20.70; **HRMS** (ESI) calcd. for C₃₉H₆₄N₂O₉Si [M+Na]⁺ : 755.4273, found: 755.4254.

Compound **5ha**, (57mg, 42%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 16.2 Hz, 1H), 7.45 (d, *J* = 1.6 Hz, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 7.10 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.39 (d, *J* = 16.2 Hz, 1H), 5.38 (d, *J* = 9.0 Hz, 1H), 4.64 (dd, *J* = 15.2, 6.8 Hz, 1H), 4.50 (dd, *J* = 8.2, 4.0 Hz, 1H), 3.74 (s, 3H), 3.68 - 3.61 (m, 1H), 3.27 (dt, *J* = 9.6, 6.6 Hz, 1H), 3.02 (dd, *J* = 13.8, 7.1 Hz, 1H), 2.87 (dd, *J* = 13.6, 6.0 Hz, 1H), 2.17 (ddd, *J* = 16.0, 8.2, 3.0 Hz, 1H), 1.92 (d, *J* = 3.6 Hz, 3H), 1.51 (s, 9H), 1.44 (d, *J* = 3.0 Hz, 1H), 1.39 (s, 9H), 1.08 (d, *J* = 2.0 Hz, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.25, 170.73, 166.52, 155.21, 153.84, 138.56, 132.56, 13

128.85, 128.21, 124.95, 120.14, 119.82, 79.95, 79.72, 58.81, 53.03, 52.33, 46.93, 38.13, 28.97, 28.31, 28.23, 27.42, 27.41, 24.81, 20.79, 20.73; **HRMS** (ESI) calcd. for $C_{35}H_{56}N_2O_9Si$ [M+H]⁺ : 677.3828, found: 677.3807.

Compound **5ia**, (79mg, 53%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 16.2 Hz, 1H), 7.35 (d, J = 2.0 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.05 (d, J = 8.2 Hz, 1H), 6.83 (d, J = 8.2 Hz, 1H), 6.30 (d, J = 16.2 Hz, 1H), 5.07 (d, J = 5.6 Hz, 1H), 4.77 (dt, J = 8.6, 4.4 Hz, 1H), 4.35 (s, 1H), 3.73 (s, 3H), 3.07 - 2.94 (m, 2H), 2.89 (dd, J = 17.0, 4.4 Hz, 1H), 2.66 (dd, J = 17.0, 4.8 Hz, 1H), 1.51 (s, 9H), 1.40 (d, J = 4.4 Hz, 18H), 1.08 (d, J = 2.2 Hz, 18H); ¹³**C NMR** (101 MHz, CDCl₃) δ 170.92, 169.83, 166.36, 155.14, 153.81, 138.40, 131.98, 128.97, 127.85, 125.12, 120.15, 81.97, 80.20, 80.11, 55.50, 52.73, 48.59,

37.66, 37.49, 28.26, 28.24, 27.98, 27.41, 20.75, 20.71; HRMS (ESI) calcd. for $C_{38}H_{62}N_2O_{11}Si$ [M+HOOC]⁻ : 795.4105, found: 795.4079.

Compound **5ja**, (83mg, 56%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 16.2 Hz, 1H), 7.40 (s, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.08 (d, J = 8.2 Hz, 1H), 6.49 (d, J = 9.0 Hz, 1H), 6.32 (d, J = 16.2 Hz, 1H), 5.16 (d, J = 7.4 Hz, 1H), 4.47 (dd, J = 9.0, 1.7 Hz, 1H), 4.41 (d, J = 6.2 Hz, 1H), 4.19 (qd, J = 6.2, 1.6 Hz, 1H), 3.70 (s, 3H), 3.24 (s, 1H), 3.03 (qd, J = 14.0, 6.4 Hz, 2H), 1.51 (s, 10H), 1.42 (s, 10H), 1.10 (d, J = 6.4 Hz, 3H), 1.07 (s, 18H), 1.07 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 171.55, 170.88, 166.40, 155.17, 153.75, 138.46, 132.20, 129.28, 127.99, 125.03, 120.12, 120.00, 80.01, 74.13, 67.27, 57.79, 55.54, 52.31, 37.73, 28.28, 28.24, 27.41, 20.82, 20.77, 20.69; **HRMS** (ESI)

calcd. for C₃₈H₆₄N₂O₁₀Si [M+HOOC]⁻: 781.4312, found: 731.4285.

Compound **5kc**, (76mg, 48%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, J = 16.2 Hz, 1H), 7.34 (s, 1H), 7.21 (d, J = 8.4 Hz, 1H), 7.04 (d, J = 8.4 Hz, 1H), 6.71 (s, 1H), 6.38 (d, J = 16.2 Hz, 1H), 5.14 (s, 1H), 4.80 (s, 1H), 4.55 (dd, J = 12.6, 7.8 Hz, 1H), 4.40 (s, 1H), 4.23 (q, J = 7.2 Hz, 2H), 3.69 (s, 3H), 3.09 (dd, J = 23.4, 9.8 Hz, 3H), 2.94 (dd, J = 13.8, 6.2 Hz, 1H), 1.85 - 1.76 (m, 1H), 1.63 - 1.56 (m, 1H), 1.43 (s, 9H), 1.41 (s, 9H), 1.30 (t, J = 7.2 Hz, 3H), 1.27 - 1.18 (m, 4H), 1.08 (s, 9H), 1.06 (s, 9H); ¹³C

NMR (101 MHz, CDCl₃) δ 172.26, 171.30, 167.19, 156.23, 155.44, 154.35, 139.65, 132.22, 130.23, 128.02, 124.74, 120.29, 117.81, 80.38, 79.41, 60.25, 55.40, 52.40, 52.08, 40.30, 37.10, 31.97, 29.51, 28.43, 28.26, 27.44, 27.38, 22.42, 20.81, 20.72, 14.24; **HRMS** (ESI) calcd. for C₄₁H₆₉N₃O₁₁Si [M+HOOC]⁻ : 836.4734, found: 836.4715.

Compound **5**Ia, (52mg, 36%), pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 16.2 Hz, 1H), 7.33 (d, J = 1.8 Hz, 1H), 7.23 (t, J = 6.2 Hz, 3H), 7.11 (d, J = 8.4 Hz, 1H), 7.04 (s, 1H), 7.00 (dd, J = 7.6, 1.8 Hz, 2H), 6.29 (d, J = 16.2 Hz, 1H), 6.23 (d, J = 7.2 Hz, 1H), 5.35 (t, J = 4.6 Hz, 1H), 5.01 (d, J = 5.8 Hz, 1H), 4.79 (dd, J = 13.4, 6.2 Hz, 1H), 4.27 (d, J = 6.6 Hz, 1H), 3.68 (s, 3H), 3.03 (dd, J = 13.8, 7.4 Hz, 2H), 2.95 (d, J = 6.6 Hz, 2H), 1.51 (s, 9H), 1.41 (s, 9H), 1.07 (s, 9H), 1.06 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 171.43, 170.71, 166.32, 153.81, 151.89, 138.27, 135.56, 131.96, 129.20, 128.59, 127.82, 127.17, 120.27, 120.13, 80.15, 55.69, 53.22, 52.39, 37.97, 37.59, 28.27, 28.24, 27.39, 27.32, 20.76, 20.68; HRMS (ESI) calcd. for

C₄₁H₆₉N₃O₁₁Si [M+HOOC]⁻: 771.3894, found: 771.3857.

Compound **5ma**, (73mg, 54%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, *J* = 16.2 Hz, 1H), 7.25 (d, *J* = 2.0 Hz, 1H), 7.12 (d, *J* = 8.4 Hz, 1H), 6.95 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.66 (d, *J* = 6.8Hz, 1H), 6.26 (d, *J* = 16.2 Hz, 1H), 5.11 (d, *J* = 8.4 Hz, 1H), 4.83 (dd, *J* = 13.8, 6.1 Hz, 1H), 4.02 (s, 1H), 3.67 (s, 3H), 3.00 (s, 2H), 2.09 (dd, *J* = 13.1, 6.6 Hz, 1H), 1.51 (s, 9H), 1.41 (s, 9H), 1.08 (d, *J* = 3.8 Hz, 18H), 0.93 (d, *J* = 6.8 Hz, 3H), 0.87 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.68, 171.08, 166.38, 155.88, 154.08, 138.38, 131.86, 128.37, 127.65,

125.07, 120.12, 120.00, 80.20, 80.00, 59.74, 53.24, 52.32, 37.25, 30.96, 28.27, 28.22, 27.42, 20.79, 20.72, 19.18, 17.66; HRMS (ESI) calcd. for $C_{35}H_{58}N_2O_9Si$ [M+Na]⁺ : 701.3804, found: 701.3825.

Compound **5na**, (66mg, 48%), colorless oil, ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 16.2 Hz, 1H), 7.25 (d, J = 2.0 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H), 6.95 (dd, J = 8.4, 2.0 Hz, 1H), 6.64 (d, J = 6.8 Hz, 1H), 6.27 (d, J = 16.2 Hz, 1H), 5.10 (d, J = 8.0 Hz, 1H), 4.83 (dd, J = 13.8, 6.2 Hz, 1H), 4.01 (s, 1H), 3.85 (s, 1H), 3.67 (s, 3H), 3.01 (s, 2H), 1.83 (tdd, J = 13.2, 8.4, 5.0 Hz, 1H), 1.51 (s, 9H), 1.43 (d, J = 6.4 Hz, 2H), 1.42 (s, 9H), 1.08 (d, J = 2.8 Hz, 18H), 0.90 - 0.84 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.67, 166.40, 155.80, 154.07, 138.41, 131.86, 128.41, 127.62, 125.07, 120.10, 120.04, 80.21, 80.05, 59.23, 53.23, 52.32,

37.22, 28.28, 28.22, 27.42, 24.62, 20.78, 20.72, 15.43, 11.42; **HRMS** (ESI) calcd. for C₃₆H₆₀N₂O₉Si [M+Na]⁺ : 715.3960, found: 715.3945.

Compound **50a**, (79mg, 57%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, J = 16.2 Hz, 1H), 7.24 (s, 1H), 7.10 (d, J = 8.4 Hz, 1H), 6.92 (dd, J = 8.4, 1.4 Hz, 1H), 6.43 (d, J = 7.2 Hz, 1H), 6.25 (d, J = 16.2 Hz, 1H), 5.29 (d, J = 9.4 Hz, 1H), 4.80 (dd, J = 13.8, 6.2 Hz, 1H), 3.89 (d, J = 9.4 Hz, 1H), 3.65 (s, 3H), 3.08 - 2.90 (m, 2H), 1.49 (s, 9H), 1.40 (s, 9H), 1.06 (d, J = 4.0 Hz, 18H), 0.95 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 171.66, 170.91, 166.42, 155.82, 154.12, 138.41, 131.87, 128.32, 127.60, 125.12, 120.13, 120.04, 80.20, 79.85, 62.25, 53.24, 52.28, 37.07, 34.56, 28.32, 28.22, 27.42, 26.46, 20.77, 20.73; **HRMS** (ESI) 4039 found: 737 4050

calcd. for $C_{36}H_{60}N_2O_9Si \ [M+HOOC]^-$: 737.4039, found: 737.4050.

Compound **7aa**, (69mg, 45%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 16.2 Hz, 1H), 7.33 (s, 1H), 7.08 (d, J = 8.4 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.82 (s, 1H), 6.53 (d, J = 7.8 Hz, 1H), 6.29 (d, J = 16.2 Hz, 1H), 5.36 (d, J = 7.8 Hz, 1H), 4.33 (d, J = 8.4 Hz, 2H), 4.20 (dd, J = 14.2, 7.0 Hz, 2H), 4.10 (dd, J = 18.1, 5.6 Hz, 1H), 3.87 (dd, J = 18.2, 4.6 Hz, 1H), 3.04 - 2.90 (m, 2H), 1.51 (s, 9H), 1.42 (s, 9H), 1.27 (t, J = 7.0 Hz, 4H), 1.07 (d, J = 14.2 Hz, 18H), 0.94 (d, J = 11.4 Hz, 9H); ¹³**C**

NMR (101 MHz, CDCl₃) δ 171.19, 170.18, 169.62, 166.37, 155.50, 153.82, 138.45, 131.88, 129.22, 127.65, 125.22, 120.34, 120.14, 80.16, 61.54, 60.53, 56.28, 41.27, 37.55, 34.76, 28.30, 28.23, 27.44, 27.41, 26.48, 20.88, 20.60, 14.12; **HRMS** (ESI) calcd. for C₃₉H₆₅N₃O₁₀Si [M+HOOC]⁻ : 808.4421, found: 808.4415.

Compound **7ba**, (62mg, 41%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 16.2 Hz, 1H), 7.35 (d, J = 1.8 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 7.00 (dd, J = 8.4, 1.8 Hz, 1H), 6.53 (d, J = 7.2 Hz, 1H), 6.42 (d, J = 8.4 Hz, 1H), 6.30 (d, J = 16.2 Hz, 1H), 5.11 (d, J = 6.6 Hz, 1H), 4.53 (p, J = 7.2 Hz, 1H), 4.35 - 4.20 (m, 2H), 3.74 (s, 3H), 3.55 (s, 1H), 3.05 - 2.93 (m, 2H), 1.75 (s, 2H), 1.51 (s, 9H), 1.42 (s, 9H), 1.39 (d, J = 7.2 Hz, 3H), 1.08 (d, J = 8.6 Hz, 18H), 0.86 (t, J = 6.6 Hz, 6H; ¹³**C NMR** (101 MHz, CDCl₃) δ 173.01, 171.15, 170.18, 166.35,

155.49, 153.87, 138.36, 131.76, 129.13, 127.69, 125.27, 120.29, 120.26, 80.44, 80.21, 57.66, 56.02, 52.47, 48.08, 37.33, 37.09, 28.27, 28.23, 27.41, 27.38, 24.72, 20.84, 20.63, 18.06, 15.20, 11.29; **HRMS** (ESI) calcd. for $C_{39}H_{65}N_3O_{10}Si$ [M+HOOC] : 808.4421, found: 808.4486.

Compound **7ca**, (77mg, 49%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, *J* = 16.2 Hz, 1H), 7.36 (s, 1H), 7.12 (d, *J* = 8.4 Hz, 1H), 6.99 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.56 (d, *J* = 6.8 Hz, 2H), 6.31 (d, *J* = 16.2 Hz, 1H), 5.14 (d, *J* = 7.0 Hz, 1H), 4.63 - 4.54 (m, 1H), 4.35 - 4.24 (m, 2H), 3.72 (s, 3H), 2.99 (d, *J* = 6.6 Hz, 2H), 2.25 - 1.95 (m, 2H), 1.68 - 1.61 (m, 2H), 1.51 (s, 9H), 1.40 (s, 10H), 1.07 (d, *J* = 6.8 Hz, 1H), 0.93 (dd, *J* = 5.6, 3.8 Hz, 6H), 0.90 (d, *J* = 6.8 Hz, 3H), 0.86

(d, J = 6.8 Hz, 3H); ¹³**C** NMR (101 MHz, CDCl₃) δ 173.08, 171.42, 170.58, 166.36, 155.55, 153.88, 138.36, 131.80, 129.16, 127.70, 125.25, 120.40, 120.27, 80.42, 80.18, 58.48, 56.02, 52.29, 50.83, 41.12, 37.14, 28.24, 27.41, 27.37, 24.85, 22.77, 21.89, 20.83, 20.64, 19.01, 17.91; HRMS (ESI) calcd. for C₄₁H₆₉N₃O₁₁Si [M+HOOC]⁻: 836.4734, found: 836.4715.

Compound **7da**, (79mg, 50%), colorless oil, ¹H **NMR** (400 MHz, CDCl₃) δ 7.99 (d, J = 16.2 Hz, 1H), 7.36 (d, J = 2.0 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H), 6.98 (dd, J = 8.4, 2.0 Hz, 1H), 6.79 (d, J = 5.4 Hz, 1H), 6.63 (s, 1H), 6.31 (d, J = 16.2 Hz, 1H), 5.30 (d, J = 6.0 Hz, 1H), 4.51 (dd, J = 8.6, 5.2 Hz, 1H), 4.36 (dd, J = 15.8, 7.8 Hz, 2H), 3.74 (s, 3H), 2.98 (d, J = 6.8 Hz, 2H), 2.21 - 2.12 (m, 1H), 1.80 (d, J = 6.4 Hz, 1H), 1.52 (s, 9H), 1.49 - 1.43 (m, 2H), 1.40 (s, 9H), 1.09 (s, 9H), 1.07 (s, 9H), 0.93 (t, J = 6.8 Hz, 6H), 0.89 - 0.84 (m, 6H); ¹³C NMR

(101 MHz, CDCl₃) δ 172.13, 171.45, 170.83, 166.38, 155.48, 153.85, 138.48, 131.81, 129.21, 127.68, 125.16, 120.26, 120.15, 80.20, 80.12, 57.89, 57.22, 55.88, 52.15, 37.13, 31.08, 28.23, 27.41, 27.38, 24.87, 20.85, 20.63, 18.90, 17.95, 15.19, 11.26; **HRMS** (ESI) calcd. for C₄₁H₆₉N₃O₁₀Si [M+HOOC]⁻ : 836.4734, found: 836.4704.

Compound **7ea**, (59mg, 39%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 16.2 Hz, 1H), 7.35 (d, J = 2.0 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H), 6.99 (dd, J = 8.6, 2.2 Hz, 1H), 6.68 (d, J = 8.2 Hz, 1H), 6.61 (d, J = 6.8 Hz, 1H), 6.30 (d, J = 16.2 Hz, 1H), 5.14 (d, J = 8.0 Hz, 1H), 4.55 (dt, J = 8.2, 4.2 Hz, 1H), 4.50 - 4.44 (m, 1H), 4.31 (s, 1H), 3.72 (s, 3H), 2.97 (d, J = 6.6 Hz, 2H), 1.65 (dd, J = 9.8, 4.2 Hz, 2H), 1.56 (dd, J = 9.6, 2.0 Hz, 1H), 1.51 (s, 9H), 1.39 (s, 9H), 1.30 (d, J = 7.0 Hz, 3H), 1.07 (d, J = 5.8 Hz, 18H), 0.93 (dd, J = 6.0, 4.4 Hz,

6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.11, 171.55, 171.20, 166.33, 155.47, 153.91, 138.33, 131.83, 129.05, 127.66, 125.26, 120.29, 120.27, 80.45, 80.22, 55.78, 52.35, 50.93, 48.85, 41.21, 37.55, 28.24, 27.40, 27.37, 24.85, 22.74, 21.94, 20.83, 20.63, 18.07; **HRMS** (ESI) calcd. for C₃₉H₆₅N₃O₁₀Si [M+HOOC]⁻ : 808.4421, found: 808.4416.

Compound **7fa**, (84mg, 49%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, *J* = 16.2 Hz, 1H), 7.38 (d, *J* = 2.0 Hz, 1H), 7.05 (d, *J* = 8.4 Hz, 1H), 6.96 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.43 (d, *J* = 9.2 Hz, 1H), 6.37 (d, *J* = 8.6 Hz, 1H), 6.32 (d, *J* = 16.2 Hz, 1H), 5.35 (t, *J* = 4.6 Hz, 1H), 5.12 (d, *J* = 6.4 Hz, 1H), 4.43 (d, *J* = 8.6 Hz, 1H), 4.33 - 4.21 (m, 3H), 3.70 (s, 3H), 3.03 - 2.92 (m, 2H), 1.51 (s, 9H), 1.42 (s, 9H), 1.19 (d, *J* = 6.4 Hz, 3H), 1.10 (d, *J* = 9.6 Hz, 18H), 1.05 (s, 9H), 0.98 (s, 9H); ¹³C

NMR (101 MHz, CDCl₃) δ 170.82, 170.79, 170.23, 166.32, 155.27, 153.71, 138.39, 131.74, 129.93, 127.65, 125.40, 120.41, 120.28, 80.15, 80.08, 74.32, 67.00, 60.63, 58.06, 52.15, 35.24, 29.33, 28.30, 28.24, 27.40, 27.34, 27.22, 26.36, 21.28, 20.90, 20.51; **HRMS** (ESI) calcd. for C₄₄H₇₅N₃O₁₁Si [M-H]⁻ : 848.5098. Found: 848.5095.

Compound **7ga**, (72mg, 45%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, *J* = 16.2 Hz, 1H), 7.25 (d, *J* = 2.0 Hz, 1H), 7.13 (d, *J* = 8.4 Hz, 1H), 6.94 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.66 (d, *J* = 8.6 Hz, 1H), 6.39 (d, *J* = 7.8 Hz, 1H), 6.32 (d, *J* = 16.2 Hz, 1H), 5.24 (d, *J* = 8.0 Hz, 1H), 4.82 (dd, *J* = 13.2, 6.0 Hz, 1H), 4.22 (d, *J* = 9.0 Hz, 1H), 4.02 - 3.96 (m, 1H), 3.72 (s, 3H), 3.04 (qd, *J* = 14.2, 6.2 Hz, 2H), 2.03 (dd, *J* = 13.0, 7.2 Hz, 1H), 1.92 (ddd, *J* = 15.6, 6.4, 3.6 Hz, 1H), 1.73 - 1.57 (m, 1H), 1.53 (s, 9H), 1.45 (s, 9H), 1.09 (s, 18H), 0.98 (s, 9H), 0.93 - 0.90 (m, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.00, 171.68, 169.96, 166.46, 155.93, 154.10, 138.38,

131.89, 128.26, 127.55, 125.11, 120.15, 120.12, 80.18, 80.02, 60.64, 59.62, 53.13, 52.37, 36.94, 34.48, 29.33, 28.31, 28.22, 27.42, 26.53, 20.78, 20.70, 15.66, 11.29; **HRMS** (ESI) calcd. for $C_{42}H_{71}N_3O_{10}Si$ [M+HOOC]⁻ : 850.4955, found: 850.4977.

Compound **7ha**, (68mg, 43%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, J = 16.2 Hz, 1H), 7.38 (s, 1H), 7.11 (d, J = 8.2 Hz, 1H), 7.05 (d, J = 7.4 Hz, 1H), 6.91 (d, J = 7.2 Hz, 1H), 6.51 (d, J = 6.8 Hz, 1H), 6.30 (d, J = 16.2 Hz, 1H), 6.13 (d, J = 8.4 Hz, 1H), 5.25 (d, J = 8.4 Hz, 1H), 4.59 (d, J = 5.4 Hz, 1H), 4.43 (s, 1H), 3.85 (d, J = 8.8 Hz, 1H), 3.69 (s, 3H), 3.03 (d, J = 11.2 Hz, 1H), 2.97 - 2.90 (m, 1H), 2.04 (s, 1H), 1.51 (s, 9H), 1.43 (s, 9H), 1.07 (d, J = 2.4 Hz, 18H), 0.95 (s, 9H), 0.84 (d, J = 6.6 Hz, 3H), 0.80 (d, J = 6.6 Hz, 3H); 1³**C NMR** (101 MHz, CDCl₃) δ 171.73, 170.84, 170.33, 166.38, 155.74, 153.91, 138.25, 131.91, 130.13, 128.89,

127.76, 120.36, 120.24, 80.12, 79.91, 77.35, 77.03, 76.71, 62.55, 57.27, 54.64, 52.28, 34.51, 31.14, 29.33, 28.34, 28.23, 27.39, 26.54, 18.83, 17.75; **HRMS** (ESI) calcd. for C₄₁H₆₉N₃O₁₀Si [M+HOOC]⁻: 836.4734, found: 836.4718.

Compound **7ia**, (42mg, 33%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 16.4 Hz, 1H), 7.37 (s, 1H), 7.03 (d, J = 8.4 Hz, 1H), 6.92 (dd, J = 8.4, 1.8 Hz, 1H), 6.80 (d, J = 9.2 Hz, 1H), 6.33 (d, J = 16.4 Hz, 1H), 5.44 (d, J = 7.8 Hz, 1H), 4.44 (s, 1H), 4.38 – 4.29 (m, 2H), 4.12 (dd, J = 18.0, 6.0 Hz, 1H), 3.87 (dd, J = 18.0, 5.0 Hz, 1H), 3.71 (s, 3H), 3.00 – 2.90 (m, 2H), 2.03 – 1.98 (m, 1H), 1.51 (s, 9H), 1.41 (s, 9H), 1.10

(s, 9H), 1.05 (s, 18H), 0.85 (d, J = 6.8 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.37, 171.10, 170.62, 169.94, 166.43, 155.46, 153.66, 138.54, 131.84, 129.88, 129.28, 127.74, 125.35, 120.29, 80.21, 80.12, 60.84, 60.72, 58.71, 52.18, 41.06, 33.92, 31.12, 29.32, 28.30, 28.24, 27.41, 27.30, 26.61, 20.96, 20.50, 19.04, 18.11; **HRMS** (ESI) calcd. for C₄₃H₇₂N₄O₁₁Si [M-H]⁻ : 847.4894, found: 847.4859.

Compound **7ja**, (38mg, 28%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, J = 16.2 Hz, 1H), 7.45 (s, 1H), 7.10 (d, J = 8.2 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.95 (d, J = 8.4 Hz, 1H), 6.89 (d, J = 8.2 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 6.38 (d, J = 16.2 Hz, 1H), 5.99 (d, J = 7.4 Hz, 1H), 5.92 (d, J = 11.4 Hz, 1H), 4.47 (t, J = 8.6 Hz, 2H), 4.30 (t, J = 9.2 Hz, 1H), 3.74 (s, 3H), 3.04 (dd, J = 13.2, 4.7 Hz, 1H), 2.87 (dd, J = 13.2, 10.0 Hz, 1H), 2.21 – 2.14 (m, 1H), 2.07 (s, 1H),

1.54 (s, 9H), 1.45 (s, 9H), 1.18 (s, 9H), 1.08 (d, J = 6.8 Hz, 15H), 1.00 (s, 9H), 0.84 (s, 9H); ¹³**C NMR** (101 MHz, CDCI₃) δ 171.30, 171.05, 170.06, 169.32, 166.31, 155.49, 153.61, 138.55, 131.41, 129.39, 127.33, 125.89, 121.11, 120.40, 80.17, 79.69, 60.25, 60.03, 59.30, 57.07, 51.71, 38.67, 34.52, 34.32, 30.40, 28.35, 28.24, 27.41, 27.26, 26.74, 26.25, 21.28, 20.89, 20.24, 19.13; **HRMS** (ESI) calcd. for C₄₇H₈₀N₄O₁₁Si [M+H]⁺ : 905.5666, found: 905.5696.

Compound **7ka**, (43mg, 32%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 16.2 Hz, 1H), 7.38 (d, J = 1.6 Hz, 1H), 7.19 (d, J = 6.2 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.94 (d, J = 13.8 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 6.67 (s, 1H), 6.34 (d, J = 16.2 Hz, 1H), 5.59 (d, J = 7.4 Hz, 1H), 4.68 – 4.61 (m, 1H), 4.49 – 4.29 (m, 3H), 3.71 (s, 3H), 2.93 (qd, J = 13.6, 6.8 Hz, 2H), 1.89 (dt, J = 13.6, 6.8 Hz, 1H), 1.67 – 1.54 (m, 3H), 1.51 (s, 9H), 1.40 (s, 9H), 1.11 (s, 9H), 1.06 (s,

18H), 0.88 - 0.82 (m, 12H); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.16, 171.26, 170.10, 169.98, 166.47, 155.42, 153.58, 138.63, 131.84, 129.37, 127.72, 125.37, 120.80, 120.25, 80.21, 79.91, 60.59, 58.47, 55.98, 52.15, 50.47, 41.09, 38.43, 33.97, 31.41, 28.34, 28.23, 27.42, 27.30, 26.57, 24.71, 22.87, 21.62, 20.98, 20.46, 18.88, 18.34; **HRMS** (ESI) calcd. for C₄₇H₈₀N₄O₁₁Si [M+H]⁺ : 905.5666, found: 905.5702.

Compound **7kb**, (36mg, 28%), colorless oil, ¹H **NMR** (400 MHz, CDCl₃) δ 8.14 (d, J = 16.2 Hz, 1H), 7.39 (s, 1H), 7.19 (d, J = 6.0 Hz, 1H), 7.02 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.90 (d, J = 8.8 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 6.42 (d, J = 16.2 Hz, 1H), 5.67 (d, J = 7.2 Hz, 1H), 4.68 – 4.63 (m, 1H), 4.39 (dd, J = 40.2, 9.2 Hz, 3H), 3.78 (s, 3H), 3.71 (s, 3H), 3.00 – 2.86 (m, 2H), 2.03 (dd, J = 13.8, 7.8 Hz, 1H), 1.91 (dt, J = 13.8, 6.8 Hz, 1H), 1.58 (dd, J = 10.8, 4.4 Hz, 2H), 1.39 (s,

9H), 1.11 (s, 9H), 1.05 (s, 18H), 0.88 – 0.84 (m, 12H); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.16, 171.32, 170.10, 169.98, 167.74, 155.45, 153.82, 140.29, 132.22, 129.50, 127.87, 124.96, 120.40, 117.40, 79.85, 60.54, 58.39, 55.96, 52.15, 51.56, 50.46, 41.08, 38.41, 34.01, 31.47, 28.32, 27.39, 27.24, 26.57, 24.72, 22.87, 21.65, 20.96, 20.46, 18.87, 18.36; **HRMS** (ESI) calcd. for C₄₄H₇₄N₄O₁₁Si [M+H]⁺ : 863.5196, found: 863.5228

Compound **7kd**, (36mg, 26%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (dd, J = 23.2, 17.8 Hz, 1H), 7.37 (s, 1H), 7.05 (d, J = 8.4 Hz, 1H), 6.92 (d, J = 8.4Hz, 1H), 6.27 (t, J = 18.4 Hz, 1H), 5.59 (s, 1H), 4.67 – 4.60 (m, 1H), 4.43 (d, J = 8.4 Hz, 1H), 4.35 (s, 2H), 4.15 – 4.07 (m, 4H), 3.73 (s, 3H), 2.94 (d, J = 6.4 Hz, 2H), 1.94 (dd, J = 13.8, 7.0 Hz, 1H), 1.66 – 1.56 (m, 3H), 1.40 (s, 9H), 1.35 (t, J = 7.0 Hz, 6H), 1.11 (s, 9H), 1.06 (s, 18H), 0.87 (dd, J = 11.8, 5.8 Hz, 12H); ¹³**C NMR**

 $\begin{array}{l} (101 \ \text{MHz}, \ \text{CDCl}_3) \ \bar{\delta} \ 173.16, \ 171.32, \ 171.16, \ 170.14, \ 155.40, \ 153.59, \ 143.70, \ 143.61, \ 132.09, \ 129.40, \ 127.59, \ 125.58, \ 125.36, \ 120.52, \ 114.54, \ 112.62, \ 79.91, \ 61.78, \ 61.73, \ 61.70, \ 60.50, \ 58.58, \ 55.95, \ 52.15, \ 50.52, \ 41.05, \ 38.27, \ 34.04, \ 31.36, \ 28.33, \ 28.27, \ 27.43, \ 27.33, \ 26.56, \ 24.71, \ 22.86, \ 21.63, \ 20.94, \ 20.48, \ 18.91, \ 18.33, \ 16.42, \ 16.36; \ \textbf{HRMS} \ (\text{ESI}) \ \text{calcd. for } C_{46}H_{81}N_4O_{12}PSi \ [\text{M+H}]^+: \ 941.5431, \ found: \ 941.5454. \end{array}$

Compound **7kg**, (32mg, 23%), colorless oil, ¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (d, J = 15.4 Hz, 1H), 7.36 (s, 1H), 7.07 (d, J = 8.6 Hz, 1H), 6.97 (t, J = 9.4 Hz, 2H), 6.79 (d, J = 15.4 Hz, 1H), 6.33 – 6.22 (m, 1H), 5.53 (d, J = 7.4 Hz, 1H), 4.63 (dd, J = 8.6, 4.8 Hz, 1H), 4.39 – 4.25 (m, 3H), 3.73 (s, 3H), 3.28 (q, J = 7.2 Hz, 4H), 3.04 – 2.89 (m, 2H), 1.72 – 1.50 (m, 4H), 1.44 (s, 9H), 1.24 (t, J = 7.2 Hz, 6H), 1.14 (s, 9H), 1.07 (d, J = 5.8 Hz, 18H), 0.91 – 0.84 (m, 12H); ¹³**C NMR** (101 MHz, CDCl₃)

δ 173.01, 171.05, 171.00, 170.05, 155.37, 153.92, 136.26, 132.47, 129.51, 128.16, 124.57, 123.54, 120.61, 80.07, 60.61, 58.66, 56.17, 52.18, 50.50, 41.97, 41.13, 34.00, 31.22, 29.32, 28.34, 27.39, 27.25, 26.51, 24.68, 22.87, 21.57, 20.98, 20.41, 18.89, 18.22, 14.65; **HRMS** (ESI) calcd. for $C_{46}H_{81}N_5O_{11}SSi$ [M-H]⁻: 938.5350, found: 938.5389.

+

Compound **7Ia**, (33mg, 22%), colorless oil, ¹**H NMR** (400 MHz, MeOD) δ 8.05 (d, J =16.2 Hz, 1H), 7.47 (s, 1H), 7.21 (d, J = 8.4 Hz, 1H), 7.12 (d, J = 8.2 Hz, 1H), 6.38 (d, J =16.2 Hz, 1H), 4.59 (s, 1H), 4.53 (dd, J =9.6, 4.8 Hz, 4H), 4.44 – 4.40 (m, 1H), 3.72 (s, 3H), 3.05 (dd, J = 13.8, 4.2 Hz, 1H), 2.78 (dd, J = 13.6, 10.2 Hz, 1H), 2.02 (dd, J = 14.6, 5.4 Hz, 1H), 1.65 (dd, J = 14.6, 7.4 Hz, 3H), 1.53

(s, 9H), 1.37 (s, 9H), 1.08 (s, 9H), 1.06 (s, 9H), 1.04 (s, 9H), 1.00 (s, 9H), 0.93 (dd, J = 6.4, 2.4 Hz, 6H), 0.89 (dd, J = 6.4, 2.6 Hz, 6H); ¹³**C NMR** (101 MHz, MeOD) δ 173.02, 172.52, 171.88, 171.04, 170.83, 166.91, 156.29, 154.00, 139.18, 132.06, 130.02, 127.66, 124.16, 119.48, 118.93, 80.03, 79.23, 60.25, 60.01, 58.62, 55.66, 51.21, 50.50, 40.01, 36.81, 34.50, 34.09, 30.91, 27.40, 27.19, 26.70, 26.66, 25.98, 25.86, 24.47, 22.00, 20.47, 20.38, 20.34, 18.26, 18.21; **HRMS** (ESI) calcd. for C₅₃H₉₁N₅O₁₂Si [M+H]⁺ : 1018.6506, found: 1018.6498.

Compound **7ma**, (28mg, 23%), colorless oil, ¹H **NMR** (400 MHz, MeOD) δ 8.05 (d, J = 16.2 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.47 (s, 1H), 7.22 (d, J = 8.4 Hz, 1H), 7.14 – 7.07 (m, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.40 (d, J= 16.2 Hz, 1H), 4.60 (d, J = 17.8 Hz, 2H), 4.53 – 4.42 (m, 4H), 3.72 (s, 3H), 3.03 (d, J= 9.6 Hz, 1H), 2.82 – 2.72 (m, 1H), 2.10 – 2.02 (m, 1H), 1.75 – 1.66 (m, 1H), 1.66 –

1.61 (m, 2H), 1.53 (s, 9H), 1.36 (s, 9H), 1.06 (dd, J = 8.2, 4.0 Hz, 18H), 1.03 (s, 9H), 0.99 (s, 9H), 0.94 (d, J = 6.2 Hz, 6H), 0.89 (d, J = 6.4 Hz, 6H); ¹³**C NMR** (101 MHz, MeOD) δ 173.00, 172.70, 171.99, 171.00, 170.90, 166.94, 156.22, 154.03, 139.18, 132.11, 129.85, 127.65, 124.18, 119.49, 118.97, 80.05, 79.23, 60.16, 58.54, 55.51, 51.17, 50.56, 39.93, 37.12, 34.33, 34.12, 30.98, 27.39, 27.19, 26.71, 26.67, 26.00, 25.85, 24.48, 21.99, 20.39, 20.35, 20.24, 20.21, 18.52, 17.69; **HRMS** (ESI) calcd. for C₅₃H₉₁N₅O₁₂Si [M+H]⁺ : 1018.6506, found: 1018.6524.

Compound **7na**, (35mg, 21%), colorless oil, ¹H **NMR** (500 MHz, MeOD) δ 8.01 (d, *J* = 16.0 Hz, 1H), 7.42 (s, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.09 (d, *J* = 7.5 Hz, 1H), 7.03 (d, *J* = 7.0 Hz, 1H), 6.94 - 6.81 (m, 1H), 6.33 (d, *J* = 16.0 Hz, 1H), 5.34 (t, *J* = 4.5 Hz, 1H), 4.63 - 4.50 (m, 8H), 3.70 (s, 3H), 2.96 (d, *J* = 12.5 Hz,

1H), 2.78 – 2.71 (m, 1H), 2.02 – 1.94 (m, 2H), 1.62 (dd, J = 13.5, 6.8 Hz, 3H), 1.50 (s, 9H), 1.33 (s, 9H), 1.03 (d, J = 10.5 Hz, 18H), 1.01 (s, 9H), 0.96 (s, 9H), 0.88 (dd, J = 20.5, 5.5 Hz, 18H); ¹³**C NMR** (101 MHz, MeOD) δ 177.98, 173.13, 172.11, 171.06, 170.55, 166.90, 156.21, 154.00, 139.25, 132.23, 129.96, 127.72, 124.12, 119.46, 118.93, 80.00, 79.14, 70.11, 60.80, 59.95, 58.47, 58.10, 55.46, 51.27, 50.69, 39.98, 37.40, 35.15, 31.68, 29.44, 29.36, 29.08, 28.93, 27.49, 27.21, 26.73, 26.71, 24.54, 20.70, 20.39, 20.36, 20.23, 18.54, 18.34, 18.15, 17.90; **HRMS** (ESI) calcd. for C₅₈H₁₀₀N₆O₁₃Si [M+H]⁺ : 1117.7190, found: 1117.7197.

Figure S5. Determination of the configuration of exocyclic double bond in product **3aa** by ¹H NMR (400 MHz, CDCl₃). The coupRling constant was $J_{H1,H2}$ =16.0 Hz, and therefore the double bond is in *E*-configuration.

Figure S6. Determination of the olefination site on Tyr residue in product 3aa by HMBC.

9. NMR analysis and structural confirmation

Figure S7. Determination of the olefination site on Tyr residue in product 5ma by HMBC.

References

- T. Yamamoto, T. Iwasaki, T. Morita, Y. Yoshimi, J. Org. Chem. 2018, 83, 3702-3709. [1]
- [2]
- Z. Li, R. Yazaki, T. Ohshima, Org. Lett. 2016, 18, 3350-3353.
 Y. Wang, V. Gevorgyan, Angew. Chem. Int. Ed. 2015, 54, 2255-2259; Angew. Chem. 2013, 125, 11000-11004. [3]