Electronic Supplementary Information

Boron Tribromide as Reagent for

Anti-Markovnikov Addition of HBr to

Cyclopropanes

Matthew H. Gieuw, ${ }^{\text {a }}$ Shuming Chen, ${ }^{\text {b }}$ Zhihai Ke, ${ }^{\text {a }}$ K. N. Houk,*,b Ying-Yeung Yeung*,a

[^0]| Table of Contents | |
| :--- | :--- |
| S2 | A: General Information |
| S3 - S14 | B: Preparation of Substrates |
| S15 - S33 | C: Procedures of Hydro- and Deuteriobromination |
| S34 - S35 | D: Further Transformations of 2a |
| S36 - S37 | E: Control Experiments |
| S38-S45 | F: NMR Studies |
| S46 - S51 | G: Computational Studies |
| S52 | H: References |
| S53-S151 | ${ }^{1}$ H and ${ }^{13}$ C NMR Spectra |

(A) General Information

All reactions requiring anhydrous conditions were conducted by standard procedures under nitrogen atmosphere. The solvents were dried over a solvent purification system from Innovative Technology. Melting points were determined on a STUART SMP40 melting point apparatus. Infrared spectra (IR) were recorded on KBr plate with Nicolet iS10 FTIR with peaks reported in cm^{-1}. Relative intensities were indicated as s (strong, $0-33 \% \mathrm{~T}$); m (34-66\% T); w (weak 67-100\% T). ${ }^{1} \mathrm{H}$ NMR, ${ }^{11} \mathrm{~B}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker AMX500 (500 MHz) spectrometer or a Bruker AMX400 (400 MHz) spectrometer. Proton and carbon chemical shifts are reported in parts per million (ppm) values downfield from TMS (δ $0.00)$ and referenced to residual protons in NMR solvents $\left(\mathrm{CDCl}_{3}\right.$ at $\delta 7.26, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $\delta 5.32$) or carbon signals in NMR solvent $\left(\mathrm{CDCl}_{3}\right.$ at $\left.\delta 77.16\right)$. High resolution mass spectra were obtained on a ThermoFinnigan MAT 95XL spectrometer (ionization mode: ESI or EI) or Thermo QEF mass spectrometer (ionization mode: ESI or APCI/DIP). Analytical thin layer chromatography (TLC) was performed with Merck pre-coated TLC plates, silica gel 60F-254, layer thickness 0.25 mm . Flash chromatography separations were performed on Merck 60 ($0.040-0.063 \mathrm{~mm}$) mesh silica gel. Cyclopropylbenzene 1a (97%, Aldrich), cyclopropyl phenyl ketone $\mathbf{1 h}$ (TCI chemical), cyclopropyl 4-methoxyphenyl ketone $\mathbf{1 i}$ (TCI chemical), dimethyl-1,1-cyclopropanedicarboxylate 10 (TCI chemical), (bromomethyl)cyclopropane 1q (Accela), cyclopropylcarboxylic acid 1r (J\&K chemical), boron tribromide ($\mathrm{J} \& \mathrm{~K}$ chemical), $\mathrm{D}_{2} \mathrm{O}$ ($99 \% \mathrm{D}$) (Cambridge), t-BuOD $(99 \%$ D) (Aldrich) were used as received.

(B) Preparation of Substrates

(a) Preparation of aryl substrates $\mathbf{1 b - g}$

1
Method A: general procedure for the preparation of cyclopropane substrates 1 by Simmons-Smith cyclopropanation. ${ }^{1}$ Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to a flame-dried round bottom flask equipped with a dropping funnel and a magnetic stir bar. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{2} \mathrm{Zn}$ in hexanes $(1.0 \mathrm{M}, 10 \mathrm{~mL}, 10 \mathrm{mmol}, 2$ equiv) was added via syringe over 30 minutes. A solution of $\mathrm{CH}_{2} \mathrm{I}_{2}(1.6 \mathrm{~mL}, 20 \mathrm{mmol}$, 4 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was then added dropwise over 30 minutes into the solution and the resultant mixture was allowed to stir for 45 minutes at $0^{\circ} \mathrm{C}$. Next, a stock solution of $\mathrm{CCl}_{3} \mathrm{COOH}$ ($492 \mathrm{mg}, 3 \mathrm{mmol}, 0.6$ equiv) and dimethoxyethane (1.56 mL , $15 \mathrm{mmol}, 3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was prepared, and 5 mL of this stock solution was added to the reaction mixture dropwise over 30 minutes. The resultant mixture was allowed to stir for another 45 minutes at $0{ }^{\circ} \mathrm{C}$. A solution of substituted styrene (5 mmol, 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was then added into the solution at $0{ }^{\circ} \mathrm{C}$ and the resultant mixture was allowed to stir for $24-48$ hours at $22{ }^{\circ} \mathrm{C}$. The reaction was quenched by water (10 mL) and aqueous $\mathrm{HCl}(5 \mathrm{M}, 4 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layer was washed with brine (5 mL), dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (diethyl ether in n-hexane) to provide $\mathbf{1}$.
Note: 1b, $\mathbf{1 c}, \mathbf{1 p}$ are volatile and was carefully dried with rotavap at ~ 10 mbar in a 25 ${ }^{\circ} \mathrm{C}$ water bath

Method B: general procedure for the preparation of cyclopropane substrates 1 by Suzuki coupling. ${ }^{2}$ To a 100 mL Schlenk tube, the substituted aromatic bromide (5 mmol, 1 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}(3.7 \mathrm{~g}, 17.5 \mathrm{mmol}, 3.5$ equiv), tricyclohexylphosphine (140 $\mathrm{mg}, 0.5 \mathrm{mmol}$, 0.1 equiv), cyclopropylboronic acid ($558 \mathrm{mg}, 6.5 \mathrm{mmol}, 1.3$ equiv), palladium(II) acetate ($56 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.05$ equiv) and toluene:water ($21 \mathrm{~mL}, 20: 1$ v / v) were added. The Schlenk tube was then placed in a pre-heated oil bath at $110^{\circ} \mathrm{C}$.

After 10 hours, the reaction mixture was cooled to room temperature, diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with ethyl acetate $(50 \mathrm{~mL} \times 3)$. The combined organic layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (diethyl ether in n-hexane) to provide 1.
Note: 1d, 1e, $\mathbf{1 f}$ are volatile and was carefully dried with rotavap at ~ 10 mbar in a 25 ${ }^{\circ} \mathrm{C}$ water bath

1b
Synthesized by Method A
1b: Colourless oil (90% yield, 887 mg)
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.3,400 \mathrm{MHz}\right): \delta 7.37(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.89-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.69-0.65(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl $3, \mathbf{1 0 0 . 6} \mathbf{~ M H z}$) : $\delta 143.1,131.3,127.5,118.9,15.1,9.5$
Data matches with literature reported values (D. Cheng, D. Huang, Y. Shi, Org. Biomol. Chem. 2013, 11, 5588.)

Synthesized by Method A
1c: Colourless oil (82% yield, 626 mg)
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.{ }^{2}, 400 \mathrm{MHz}\right): \delta 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.70-0.66(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl3, $\mathbf{1 0 0 . 6} \mathbf{~ M H z}$) : δ 142.6, 130.1, 128.4, 127.1, 15.0, 9.4
Data matches with literature reported values (Y.-Y. Zhou, C. Uyeda, Angew. Chem. 2016, 128, 3223.)

1d
Synthesized by Method B
1d: Colourless oil (92% yield, 856 mg)
$\mathrm{R}_{\mathrm{f}}=0.77$ (n-hexane : diethyl ether $=40: 1$)
IR (KBr): 3061 (w), 2360 (w), 1643 (w), 1076 (w)
${ }^{1} \mathbf{H}$ NMR (CDCl3, $\mathbf{5 0 0} \mathbf{~ M H z}$) : $\delta 7.41-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{tt}$,
$J=8.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.05-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.76-0.73(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 145.2,130.7(\mathrm{q}, J=31.8 \mathrm{~Hz}), 129.1,128.8,124.4$ $(\mathrm{q}, J=272.1 \mathrm{~Hz}), 122.6(\mathrm{q}, J=3.8 \mathrm{~Hz}), 122.3(\mathrm{q}, J=3.8 \mathrm{~Hz}), 15.5,9.6$
${ }^{19}$ F NMR ($\mathbf{C D C l}_{3}, 470.6 \mathrm{MHz}$) : $\delta-62.6$ (s)
HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3}[\mathrm{M}]^{+}: 186.06509$; found 186.06524

1 e
Synthesized by Method B
1e: Colourless oil (95% yield, 960 mg)
$\mathrm{R}_{\mathrm{f}}=0.63$ (n-hexane : diethyl ether $=40: 1$)
IR (KBr): 3062 (w), 2360 (w), 1635 (m)
${ }^{1} \mathbf{H}$ NMR (CDCl, $\left.\mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 1.91(\mathrm{tt}, J=8.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.03-0.99(\mathrm{~m}, 2 \mathrm{H}), 0.73-0.70(\mathrm{~m}, 2 \mathrm{H})$ ${ }^{13} \mathbf{C}$ NMR (CDCl3, $125.7 \mathbf{M H z}$) : $\delta 149.6,146.8,129.6,124.2,120.7$ ($\mathrm{q}, ~ J=256.7$ Hz), 118.4, 117.9, 15.4, 9.7
${ }^{19}$ F NMR ($\mathbf{C D C l}_{3}, 470.6 \mathrm{MHz}$) : $\delta-57.7$ (s)
HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 203.06783$; found 203.06776

Synthesized by Method B
1f: Colourless oil (78% yield, 625 mg)
$\mathrm{R}_{\mathrm{f}}=0.80$ (n-hexane : diethyl ether $=40: 1$)
IR (KBr): 3062 (w), 1642 (m), 1077 (m), 749 (w)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.29(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.5,1.0$
$\mathrm{Hz}, 1 \mathrm{H}), 7.14$ (td, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ (septet, $J=7.0$
$\mathrm{Hz}, 1 \mathrm{H}), 2.03(\mathrm{tt}, J=8.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31$ (d, $J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.98-0.94(\mathrm{~m}, 2 \mathrm{H})$,
$0.71-0.68$ (m, 2H)
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 148.4,139.9,126.2,126.1,125.7,124.8,28.8$, 23.7, 13.0, 7.2

HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{12} \mathrm{H}_{16}[\mathrm{M}+\mathrm{H}]^{+}: 161.13248$; found 161.13253

1g
Synthesized by Method B
$\mathbf{1 g}$: Light brown solid (86% yield, 939 mg)
m.p.: $132-133{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}=0.67$ (n-hexane : diethyl ether $=40: 1$)
IR (KBr): 3060 (w), 1637 (m), 735 (w)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 500 \mathbf{M H z}\right): \delta 8.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 4 \mathrm{H}), 2.52-2.47(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.45(\mathrm{~m}, 2 \mathrm{H}), 0.85-0.82(\mathrm{~m}$, 2H)
${ }^{13} \mathbf{C}$ NMR (CDCl3, $\left.125.7 \mathbf{M H z}\right): \delta 134.9,131.8,131.6,129.0,126.5,126.1,125.1$, 124.9, 10.6, 9.5

HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{17} \mathrm{H}_{14}[\mathrm{M}]^{+}: 218.10900$; found 218.10900

Synthesized by Method A
1p: Colourless oil (74% yield, 489 mg)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right): \delta 7.32-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, 0.93-0.87 (m, 2H), 0.76-0.73 (m, 2H)
${ }^{13} \mathbf{C}$ NMR (CDCl3, $\mathbf{1 0 0 . 6} \mathbf{~ M H z}$) : $\delta 147.2,128.3,126.8,125.6,25.9,19.9,15.8$
Data matches with literature reported values (D. Cheng, D. Huang, Y. Shi, Org. Biomol. Chem. 2013, 11, 5588.)

1s
Synthesized by Method A
1s: Light yellow oil (99% yield, 625 mg)
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.33-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 3 \mathrm{H}), 3.21(\mathrm{dd}, J=$ $16.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H})$, $1.08(\mathrm{td}, J=8.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.06(\mathrm{q}, \mathrm{J}=3.9 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl $\left.{ }_{3}, \mathbf{1 0 0 . 6} \mathbf{~ M H z}\right): \delta 147.2,142.0,126.0,125.56,125.46,123.5,35.6$, 24.0, 16.9, 16.1

Data matches with literature reported values (J. C. Lorenz, J. Long, Z. Yang, S. Xue, Y. Xie, Y. Shi, J. Org. Chem. 2004, 69, 327-334.)
(b) Preparation of nitrile substrates $\mathbf{1} \mathbf{j} \mathbf{- m}$

This procedure follows the procedure of a previously reported literature. ${ }^{3}$
To a stirred suspension of NaH (60% in mineral oil, $2.4 \mathrm{~g}, 60 \mathrm{mmol}, 3$ equiv) in DMF $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of benzyl cyanide ($2.3 \mathrm{~g}, 20 \mathrm{mmol}, 1$ equiv) in DMF (10 mL) dropwise. The resultant mixture was stirred for 15 minutes at the same temperature. A solution of 1,2-dibromoethane ($2.6 \mathrm{~mL}, 30 \mathrm{mmol}, 1.5$ equiv) in DMF $(10 \mathrm{~mL})$ was then added dropwise and the resultant mixture was stirred at the same temperature for an additional 18 hours. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and the aqueous layer was extracted with diethyl ether $(3 \times 100 \mathrm{~mL})$. The combined organic layer was washed with brine (50 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/diethyl ether to yield $\mathbf{1 j} \mathbf{- m}$.

$\mathbf{1 j}$: Light brown solid (89% yield, 3162 mg)
m.p.: $53-54{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}=0.17$ (n-hexane : diethyl ether $=8: 1$)
IR (KBr): 3061 (w), 2237 (w), 1638 (m), 803 (w), 507 (w)
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.{ }_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.74-1.72 (m, 2H), 1.39-1.36 (m, 2H)
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 134.7,133.7,129.1,127.3,122.2,18.3,13.5$
HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+}: 178.04180$; found 178.04209

1k: Light yellow solid (89% yield, 3953 mg)
m.p.: $84-86^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}=0.17$ (n-hexane : diethyl ether $=8: 1$)
IR (KBr): 3061 (w), 2361 (w), 2234 (w), 1641 (m), 1490 (w), 1073 (m)
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.3,500 \mathbf{~ M H z}\right): \delta 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$,
1.75-1.72 (m, 2H), 1.39-1.37 (m, 2H)
${ }^{13} \mathbf{C}$ NMR (CDCl $\mathbf{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}$) : $\delta 135.3,132.1,127.6,122.2,121.7,18.4,13.6$
HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrN}[\mathrm{M}+\mathrm{H}]^{+}: 221.99129$; found 221.99130

11: yellow solid (83% yield, 3124 mg)
m.p.: $153-155{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}=0.16$ (n-hexane : diethyl ether $=2: 1$)
IR (KBr): 3060 (w), 2361 (w), 1637 (m), 1514 (w), 1347 (w)
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.\mathbf{C D}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 8.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.92-1.90 (m, 2H), 1.55-1.53 (m, 2H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}$) : $\delta 147.3,143.7,126.1,124.3,121.3,20.1,14.2$
HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 189.06584$; found 189.06584

1 m
1m: Light yellow solid (86% yield, 3324 mg)
m.p.: $42-44^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}=0.20$ (n-hexane : diethyl ether $=8: 1$)
IR (KBr): 3061 (w), 2361 (w), 2340 (w), 1639 (m), 1083 (w)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.84-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=$ $9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.50(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 133.3,133.2,132.6,129.0,127.8,127.7,126.8$, 126.4, 125.2, 123.1, 122.7, 18.2, 14.1

HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 194.09643$; found 194.09634

To a solution of THF (6 mL) and DMF (0.2 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.1 \mathrm{~g}, 15 \mathrm{mmol}, 1$ equiv), malononitrile ($990 \mathrm{mg}, 15 \mathrm{mmol}, 1$ equiv), 1,2-dibromoethane ($1.3 \mathrm{~mL}, 15 \mathrm{mmol}, 1$ equiv) and tetrabutylammonium bromide ($193 \mathrm{mg}, 0.6 \mathrm{mmol}, 0.04$ equiv) were added and the resultant mixture was stirred for 3 days. The reaction mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and ethyl acetate $(20 \mathrm{~mL})$. The aqueous solution was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with dichloromethane n-hexane to yield $\mathbf{1 n}$ as light yellow oil (21% yield, 290 mg).

$\mathrm{R}_{\mathrm{f}}=0.33$ (dichloromethane $/ n$-hexane $=2: 1$)
IR (KBr): 3059 (w), 1642 (m), 1079 (m)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, 400 \mathbf{~ M H z}$) : $\delta 1.82$ (s)
${ }^{13} \mathbf{C}$ NMR (CDCl3, $\mathbf{1 0 0 . 6} \mathbf{~ M H z}$) : $\delta 115.3,18.7,-1.2$
HRMS (EI) Calc'd for $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2}[\mathrm{M}]^{+}: 92.0369$; found 92.03698
(c) Preparation of hydroxyl substrates $\mathbf{1 t}-\mathbf{y}$

This procedure follows the procedure of a previously reported literature. ${ }^{3}$
To a stirred suspension of NaH (60% in mineral oil, $2.4 \mathrm{~g}, 60 \mathrm{mmol}, 3$ equiv) in DMF $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of benzyl cyanide ($2.3 \mathrm{~g}, 20 \mathrm{mmol}, 1$ equiv) in DMF (10 mL) dropwise. The resultant mixture was stirred for 15 minutes at the same temperature. A solution of 1,2-dibromoethane ($2.6 \mathrm{~mL}, 30 \mathrm{mmol}, 1.5$ equiv) in DMF $(10 \mathrm{~mL})$ was then added dropwise and the resulting mixture was stirred at the same temperature for an additional 18 hours. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and the aqueous layer was extracted with diethyl ether ($3 \times 100 \mathrm{~mL}$). The combined organic layer was washed with brine (50 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/diethyl ether (5:1) to yield $\mathbf{S} 1$ as colourless oil.

1-phenylcyclopropanecarbonitrile $\mathbf{S 1}$ was refluxed in aqueous LiOH (4 M) for 18 hours. The reaction mixture was cooled and aqueous $\mathrm{HCl}(5 \mathrm{M})$ was added until the $\mathrm{pH}<1$. The aqueous layer was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (30 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude product $\mathbf{S 2}$ was used directly in the next step without further purification.

To a solution of 1-phenylcyclopropanecarboxylic acid $\mathbf{S 2}$ in MeOH (20 mL) was added catalytic amount of $\mathrm{H}_{2} \mathrm{SO}_{4}(0.1 \mathrm{~mL})$ and the resultant mixture was heated at reflux for 18 hours. Upon completion, saturated aqueous NaHCO_{3} was added until pH $=8$. The aqueous layer was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (30 mL), dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude product $\mathbf{S 3}$ was used directly in the next step without further purification.

To a solution of mixture of $\mathbf{S 2}$ and $\mathbf{S 3}$ ($\sim 3 \mathrm{mmol}$ combined) in diethyl ether (15 mL)
was added the corresponding Grignard reagent $(\mathrm{MeMgBr}$ or PhMgBr$)(3 \mathrm{M}$ in diethyl ether, $4 \mathrm{~mL}, 12 \mathrm{mmol}, 4$ equiv) at $0{ }^{\circ} \mathrm{C}$. The mixture was allowed to stir overnight at the same temperature. The reaction was then quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) and the aqueous layer was extracted by diethyl ether ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/diethyl ether to yield $\mathbf{1 t}$ and $\mathbf{1 u}$.

1t: White solid
m.p.: $50-51^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}=0.33$ (n-hexane : diethyl ether $=2: 1$)
IR (KBr): 3427 (s), 2361 (w), 1640 (m), 1083 (m)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}$) : $\delta 7.40-7.39$ (m, 2H), 7.29-7.26 (m, 2H), 7.23-7.20 (m, $1 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.03-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.71-0.69(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl ${ }_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}$) : $\delta 144.1,132.1,127.8,126.7,71.5,35.3,27.9,9.3$
HRMS (ESI) Calc'd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}$ [M+Na] ${ }^{+}$: 199.10934; found 199.10941

1u: White solid
m.p.: $112-114^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}=0.47$ (n-hexane : diethyl ether $=8: 1$)
IR (KBr): 3452 (s), 1637 (m), 701 (w)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.39(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 1 \mathrm{H}), 0.98-0.89(\mathrm{~m}$, 4H)
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 144.5,142.6,132.8,128.2,127.9,127.6,127.2$, 126.9, 80.8, 33.7, 10.0

HRMS (ESI) Calc'd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$: 323.14064; found 323.14064

To a solution of the corresponding cyclopropyl methyl ketone (5 mmol) in diethyl ether (20 mL) was added MeMgBr (3 M in diethyl ether, $3.3 \mathrm{~mL}, 10 \mathrm{mmol}, 2$ equiv) at $0{ }^{\circ} \mathrm{C}$. The resultant mixture was allowed to stir overnight at the same temperature. The reaction was then quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) and the aqueous layer was extracted by diethyl ether $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and carefully dried with rotavap at ~ 10 mbar in a $25^{\circ} \mathrm{C}$ water bath due to the volatility of the product. The products $\mathbf{1 v}$ and $\mathbf{1 w}$ were then used directly in the next step without further purification.

1v
1v: Colourless oil (83% yield, 416 mg)
$\mathrm{R}_{\mathrm{f}}=0.50$ (n-hexane : ethyl acetate $=3: 1$)
IR (KBr): 3426 (s), 1642 (m), 1079 (m)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 1.18(\mathrm{~s}, 6 \mathrm{H}), 0.95(\mathrm{tt}, J=8.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.39-0.36$ (m, 2H), 0.32-0.29 (m, 2H)
${ }^{13} \mathbf{C}$ NMR (CDCl $\left.\mathbf{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 69.9,28.6,22.5,1.1$
HRMS (APCI) Calc'd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 101.09638$; found 101.09609

1w: Colourless oil (84% yield, 480 mg)
$\mathrm{R}_{\mathrm{f}}=0.57$ (n-hexane : ethyl acetate $=3: 1$)
IR (KBr): 3444 (s), 2360 (w), 1638 (m)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, 500 \mathbf{~ M H z}$) : $\delta 1.21$ (s, 6H), 1.07 (s, 3H), 0.60 (br, 2H), 0.17 (br, 2H)
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 71.7,27.2,24.1,21.6,10.1$
HRMS (ESI) Calc'd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}\left[\mathrm{M}+\mathrm{Na}+\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 155.10425 ; found 155.10423

The synthesis of cyclopropyl ketone starting material follows a literature reported procedure. ${ }^{4}$
The cyclopropyl ketone ($4.3 \mathrm{mmol}, 1$ equiv) was dissolved in diethyl ether (20 mL), and NaBH_{4} ($325 \mathrm{mg}, 2$ equiv) was added at $0{ }^{\circ} \mathrm{C}$ and stir at room temperature overnight. The reaction was then quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, and the aqueous solution was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/ethyl acetate (3:1) to yield the diastereomers $\mathbf{1 x}$ and $\mathbf{1 x}$ ' as colourless gel (combined 88% yield, 849 mg)

IR (KBr): 3396 (s), 1603 (w), 1495 (w), 698 (w)
${ }^{1} \mathbf{H}$ NMR (CDCl, $\left.500 \mathbf{M H z}\right): \delta 7.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.12-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{tt}, J=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{dt}, J=9.0,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.00(\mathrm{dt}, J=9.0,5.5 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 143.5,142.4,128.6,128.5,127.8,126.2,126.0$, $125.8,77.6,30.8,22.0,13.7$
HRMS (ESI) Calc'd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 247.10934$; found 247.10933

$\mathrm{R}_{\mathrm{f}}=0.40$ (n-hexane : ethyl acetate $=3: 1$)
IR (KBr): 3398 (s), 1600 (w), 1490 (w), 705 (w)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{tt}, J=$ $7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{tt}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.02(\mathrm{~m}, 2 \mathrm{H})$, $4.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{br}, 1 \mathrm{H}), 2.03-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.20$ (dt, $J=9.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{dt}, J=8.5,5.0,1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 143.6,142.2,128.6,128.4,127.8,126.2,126.1$, 125.8, 76.9, 30.2, 21.1, 13.7

HRMS (ESI) Calc'd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$: 247.10934; found 247.10932

The synthesis of cyclopropyl ketone starting material follows a literature reported procedure. ${ }^{4}$
The cyclopropyl ketone ($2.1 \mathrm{mmol}, 1$ equiv) was dissolved in diethyl ether (10 mL), and $\mathrm{MeMgBr}\left(3 \mathrm{M}\right.$ in diethyl ether, $1.4 \mathrm{~mL}, 4.2 \mathrm{mmol}$, 2 equiv) was added at $0{ }^{\circ} \mathrm{C}$. The resultant mixture was stirred at room temperature overnight. The reaction was then quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, and the aqueous solution was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/ethyl acetate (1:1) to yield $\mathbf{1 y}$ as a colourless thick oil. (92% yield, 341 mg)

$\mathrm{R}_{\mathrm{f}}=0.33$ (n-hexane : diethyl ether $=1: 1$)
IR (KBr): 3442 (s), 1642 (m), 1076 (m)
${ }^{1} \mathbf{H}$ NMR (CDCl, $\left.\mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{~d}, J=7.5,2 \mathrm{H}), 1.98-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{br}, 1 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 7 \mathrm{H}), 1.05(\mathrm{dt}, J$ $=9.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.89-0.85(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl $\left.{ }_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 143.3,128.4,126.1,125.6,69.6,34.2,29.2,29.1$, 19.3, 11.8

HRMS (ESI) Calc'd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}$ [M+Na] ${ }^{+}$: 199.10934; found 199.10953

(C) Procedures for Hydro- and Deuterio-bromination

Note and caution: While the reaction can be conducted in ambient condition, the reaction flask must be placed in the fume cupboard at all time before quenched by saturated NaHCO_{3} solution. For better reproducibility of results, BBr_{3} should be added at last, and the reaction flask had to be placed in a $0{ }^{\circ} \mathrm{C}$ ice bath when adding BBr_{3}. The BBr_{3} solution (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added along the inner wall of the reaction flask in one portion either by a 1 mL or 5 mL autopipette regardless of the scale. The use of apparatus with stainless steel parts (e.g. syringe) is highly discouraged as BBr_{3} can dissolve the stainless steel needle quickly, which will affect the reproducibility. It is critical to ensure the reaction mixture is being vigorously stirred.

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.75 \mathrm{~mL})$ in a 25 mL round-bottom flask with a magnetic stirrer bar, 1a ($122 \mathrm{mg}, 130 \mu \mathrm{~L}, 1 \mathrm{mmol}, 1$ equiv) and $t-\mathrm{BuOH}(143 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$, 1.5 equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $1.25 \mathrm{~mL}, 1.25 \mathrm{mmol}, 1.25$ equiv) was added into the mixture. The resultant mixture was allowed to stir for 1 h at $22{ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/diethyl ether (50:1) to yield 2a as colourless oil (77% yield, 153 mg).
$\mathrm{R}_{\mathrm{f}}=0.57$ (n-hexane : diethyl ether $=50: 1$)
IR (KBr): 3062 (w), 3026 (m), 2938 (w), 1495 (w), 1435 (w), 1242 (w), 744 (s), 699 (s)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 3 \mathrm{H}), 3.41(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.19 (quint, $J=7.0 \mathrm{~Hz}$)
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 140.7,128.7,128.6,126.3,34.3,34.1,33.2$
HRMS (EI) Calc'd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{Br}[\mathrm{M}]^{+}: 198.0039$; found 198.0037
NMR data matches with authentic sample.

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, 1b ($39.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $t-\mathrm{BuOH}(28.5 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M} \mathrm{in}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25\right.$ mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 25 h at $22{ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/diethyl ether (40:1) to yield 2b as light yellow oil (70% yield, 38.9 mg).
$\mathrm{R}_{\mathrm{f}}=0.70$ (n-hexane : diethyl ether $=40: 1$)
IR (KBr): 3451 (s), 2069 (w), 1637 (m)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.38(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.14$ (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$) ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 139.6,131.7,130.5,120.1,34.0,33.5,32.9$
HRMS (EI) Calc'd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Br}_{2}[\mathrm{M}]^{+}: 277.9123$; found 277.9119

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, 1c ($30.5 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $t-\mathrm{BuOH}(28.5 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25$ mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 17 h at $22{ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/diethyl ether (50:1) to yield $\mathbf{2 c}$ as colourless oil (54\% yield, 25.2 mg).
$\mathrm{R}_{\mathrm{f}}=0.53$ (n-hexane : diethyl ether $=50: 1$)
IR (KBr): 3061 (w), 2084 (w), 1644 (m), 1087 (m)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$,
$3.38(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.14$ (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$)

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 d}(37.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $t-\mathrm{BuOH}(28.5 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M} \mathrm{in}^{\mathrm{CH}} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25\right.$ $\mathrm{mmol}, 1.25$ equiv) was added into the mixture. The mixture was allowed to stir for 44 h at $22{ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/diethyl ether ($40: 1$) to yield $2 \mathbf{2 d}$ as colourless oil (53% yield, 28.3 mg).
$\mathrm{R}_{\mathrm{f}}=0.60$ (n-hexane : diethyl ether $=40: 1$)
IR (KBr): 3060 (w), 2076 (w), 1637 (m), 1328 (w)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.19$ (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 141.6,132.1,131.0(\mathrm{q}, J=32.2 \mathrm{~Hz}), 129.1,125.3$ (q, $J=3.9 \mathrm{~Hz}$), $124.3(\mathrm{q}, J=272.4 \mathrm{~Hz}$), (Two of the peaks are overlapped, only the peak at 127.5 and 121.0 ppm are observed), $123.3(\mathrm{q}, J=3.6 \mathrm{~Hz}), 34.0,33.9,32.8$
${ }^{19}$ F NMR ($\mathrm{CDCl}_{3}, 470.6 \mathrm{MHz}$) : $\delta-62.6$ (s)
HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrF}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 265.99125$; found 265.99113

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 e}(40.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $t-\mathrm{BuOH}(28.5 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M} \mathrm{in}^{\mathrm{CH}} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25\right.$ mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 40 h at $22{ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/diethyl ether (40:1) to yield $\mathbf{2 e}$ as colourless oil (69% yield, 39.1 mg).
$\mathrm{R}_{\mathrm{f}}=0.43$ (n-hexane : diethyl ether $=40: 1$)
IR (KBr): 3062 (w), 2084 (w), 1643 (m), 1259 (m), 1161 (w), 1083 (w)
${ }^{1} \mathbf{H}$ NMR (CDCl3, $\left.\mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.08-7.06(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17$ (quint, $J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}$) : $\delta 149.6,143.0,129.9,127.1,121.2,120.6$ (q, $J=$ 256.9 Hz), $118.8,33.9,33.8,32.8$
${ }^{19}$ F NMR ($\mathbf{C D C l}_{3}, 470.6 \mathbf{M H z}$) : $\delta-57.7$ (s)
HRMS (EI) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrF}_{3} \mathrm{O}$ [M] ${ }^{+}: 281.9862$; found 281.98602

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 f}(32.1 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $t-\mathrm{BuOH}(28.5 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 15 h at $22^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ $\mathrm{mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $\mathbf{2 f}$ as yellow oil (83% yield, 40.0 mg).
$\mathrm{R}_{\mathrm{f}}=0.70$ (n-hexane : diethyl ether $=40: 1$)
IR (KBr): 3060 (w), 2962 (s), 1634 (m), 1459 (m), 758 (m), 562 (w)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.31-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}$, $2 \mathrm{H}), 3.47(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.20$ (septet, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.15 (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.27 (d, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 146.8,137.4,129.6,126.8,125.8,125.6,34.5$, 33.6, 31.2, 28.7, 24.2

HRMS (EI) Calc'd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{Br}[\mathrm{M}]^{+}: 240.0508$; found 240.0505

2g
To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 g}\left(43.7 \mathrm{mg}, 0.2 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{H}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were
added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 12 h at $22^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $\mathbf{2 g}$ as a brown solid (quantitative yield, 59.8 mg).

```
m.p.: \(72-74{ }^{\circ} \mathrm{C}\)
\(\mathrm{R}_{\mathrm{f}}=0.60\) ( \(n\)-hexane : diethyl ether \(=40: 1\) )
```

IR (KBr): 3060 (w), 2084 (w), 1643 (m), 1079 (m)
${ }^{1} \mathbf{H}$ NMR (CDCl3, $\mathbf{5 0 0} \mathbf{~ M H z) ~ : ~} \delta 8.38$ (s, 1H), $8.31(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=$
$8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl $\left.{ }_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 133.1,131.7,129.8,129.4,126.3,125.9,125.0$, 124.2, 34.2, 34.0, 26.5

HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 299.04299$; found 299.04306

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.75 \mathrm{~mL})$ in a 25 mL round-bottom flask with a magnetic stirrer bar, $\mathbf{1 h}(146.1 \mathrm{mg}, 1.0 \mathrm{mmol}, 1$ equiv) and $t-\mathrm{BuOH}(143 \mu \mathrm{~L}, 1.5 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.25$ $\mathrm{mL}, 1.25 \mathrm{mmol}, 1.25$ equiv) was added into the mixture. The resultant mixture was allowed to stir for 18 h at $22{ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/diethyl ether (8:1) to yield $\mathbf{2 h}$ as yellow oil (90% yield, 204 mg)
$\mathrm{R}_{\mathrm{f}}=0.37$ (n-hexane : diethyl ether $=8: 1$)
IR (KBr): 3060 (w), 2084 (m), 1644 (m), 1225 (w), 1077 (m)
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.{ }_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.99-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{tt}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.55 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.19 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.31 (quint, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl $3, \mathbf{1 2 5 . 7} \mathbf{~ M H z}$) : δ 199.0, 136.8, 133.4, 128.8, 128.1, 36.7, 33.8, 27.0 HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}: 227.00660$; found 227.00668

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 i}(35.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $t-\mathrm{BuOH}(28.5 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The mixture was allowed to stir for 15 h at 22 ${ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/diethyl ether (8:1) to yield $\mathbf{2 i}$ as yellow oil (81% yield, 41.7 mg).
$\mathrm{R}_{\mathrm{f}}=0.27$ (n-hexane : diethyl ether $=8: 1$)
IR (KBr): 3060 (w), 2092 (w), 1643 (m), 1078 (w)
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.{ }_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.97(\mathrm{dt}, J=9.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-6.93(\mathrm{~m}, 2 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.30$ (quint, $J=6.5 \mathrm{~Hz}$, 2H)
${ }^{13} \mathbf{C}$ NMR (CDCl $3,125.7 \mathbf{M H z}$) : $\delta 197.5,163.7,130.5,130.0,113.9,55.6,36.3,33.9$, 27.2

HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 257.01717$; found 257.01712

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 j}$ ($35.5 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{H}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The mixture was allowed to stir for 18 h at 22 ${ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $\mathbf{2} \mathbf{j}$ as yellow oil (quantitative yield, 51.9 mg).
$\mathrm{R}_{\mathrm{f}}=0.33$ (n-hexane : diethyl ether $=3: 1$)
IR (KBr): 3060 (w), 2243 (w), 1643 (w), 1492 (m), 1249 (m), 1093 (m), 823 (m)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}$) : $\delta 7.38$ (dt, $J=9.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (dt, $J=9.0,2.5$
$\mathrm{Hz}, 2 \mathrm{H}), 4.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{ddd}, J=10.5,8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{ddd}, J=$
$10.5,6.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl ${ }_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}$) : $\delta 134.7,132.8,129.7,128.9,119.6,38.2,35.1,29.2$ HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrClN}[\mathrm{M}+\mathrm{H}]^{+}: 259.96573$; found 259.96577

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 k}$ ($44.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{H}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The mixture was allowed to stir for 18 h at 22 ${ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $\mathbf{2 k}$ as colourless oil (quantitative yield, 60.6 mg).
$\mathrm{R}_{\mathrm{f}}=0.33$ (n-hexane : diethyl ether $=3: 1$)
IR (KBr): 3056 (w), 2243 (w), 1642 (m), 1488 (w), 1073 (m), 817 (w)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}$) : $\delta 7.54$ (dt, $J=9.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25 (dt, $J=9.0,2.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{ddd}, J=10.5,7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$ (ddd, $J=$ $10.5,7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl3, $\mathbf{1 2 5 . 7} \mathbf{~ M H z) ~ : ~} \delta$ 133.3, 132.6, 129.2, 122.8, 119.5, 38.1, 35.2, 29.2
HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 303.91543$; found 303.91536

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, 11 ($37.6 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{H}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The mixture was allowed to stir for 44 h at 22 ${ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/ethyl acetate (3:1) to yield $\mathbf{2 I}$ as light yellow thick oil (83% yield, 44.7 mg).
$\mathrm{R}_{\mathrm{f}}=0.37$ (n-hexane : ethyl acetate $=3: 1$)
IR (KBr): 3059 (w), 1643 (w), 1519 (m), 1344 (m), 849 (w), 695 (w)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}$) : $\delta 8.28$ (dt, $J=9.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.59 (dt, $J=9.0,2.5$
$\mathrm{Hz}, 2 \mathrm{H}), 4.3(\mathrm{dd}, J=8.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{ddd}, J=10.5,8.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.38$
$(\mathrm{m}, 1 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}$) : $\delta 148.1,141.4,128.7,124.7,118.7,38.1,35.6,29.0$
HRMS (APCI/DIP) Calc' ${ }^{\text {d for }} \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 268.99202$; found 268.99220

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 m}\left(38.7 \mathrm{mg}, 0.2 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{H}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The mixture was allowed to stir for 17 h at 22 ${ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $\mathbf{2 m}$ as yellow oil (quantitative yield, 54.9 mg).
$\mathrm{R}_{\mathrm{f}}=0.33$ (n-hexane : diethyl ether $=3: 1$)
IR (KBr): 3057 (w), 2241 (w), 1508 (w), 1432 (w), 818 (m), 749 (m), 478 (m)
${ }^{1} \mathbf{H}$ NMR (CDCl3, $\mathbf{5 0 0} \mathbf{~ M H z}$) : $\delta 7.90-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=$ $8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (ddd, $J=10.5,8.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ (ddd, $J=10.5,6.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H})$ ${ }^{13} \mathbf{C}$ NMR (CDCl $\left.{ }_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 133.3,133.1,131.5,129.5,128.0,127.9,127.0$, 126.9, 126.8, 124.7, 120.0, 38.2, 35.8, 29.5

HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrN}[\mathrm{M}+\mathrm{H}]^{+}: 274.02259$; found 274.02246

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, 1 n ($18.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $t-\mathrm{BuOH}(28.5 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M} \mathrm{in}^{\mathrm{CH}} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25\right.$ mmol, 1.25 equiv) was added into the mixture in one portion by autopipette. The mixture was allowed to stir for 65 h at $22{ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer
was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residual solid was washed with n-hexane ($3 \times 5 \mathrm{~mL}$) and dried under vacuum to yield $\mathbf{2 n}$ as light yellow solid (65% yield, 22.5 mg).
m.p.: $83-85^{\circ} \mathrm{C}$

IR (KBr): 3060 (w), 1638 (w)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 4.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$,
2.57 (dt, $J=7.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR (CDCl $\left.{ }_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 111.7,33.5,27.2,21.7$
HRMS (EI) Calc'd for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BrN}_{2}[\mathrm{M}]^{+}: 171.9631$; found 171.96311

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.75 \mathrm{~mL})$ in a 25 mL round-bottom flask with a magnetic stirrer bar, 1 o ($158.2 \mathrm{mg}, 1.0 \mathrm{mmol}, 1$ equiv) and $t-\mathrm{BuOH}(143 \mu \mathrm{~L}, 1.5 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.25$ $\mathrm{mL}, 1.25 \mathrm{mmol}, 1.25$ equiv) was added into the mixture. The resultant mixture was allowed to stir for 18 h at $22{ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $\mathbf{2 0}$ as light yellow oil (quantitative yield, 239.0 mg).
$\mathrm{R}_{\mathrm{f}}=0.53$ (n-hexane : diethyl ether $=1: 1$)
IR (KBr): 3058 (w), 1734 (m), 1646 (m), 1216 (w), 1086 (m)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 500 \mathbf{~ M H z}\right): \delta 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.43 ($\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR (CDCl ${ }_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}$) : $\delta 169.1,52.9,49.9,31.6,30.4$
HRMS (ESI) Calc'd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{BrO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 260.97329$; found 260.97329

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 p}(26.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $t-\mathrm{BuOH}(28.5 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M} \mathrm{in}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25\right.$
mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 1 h at $22{ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 5 mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/diethyl ether (40:1) to yield 2p as colourless oil (52% yield, 22.2 mg).
$\mathrm{R}_{\mathrm{f}}=0.70$ (n-hexane: diethyl ether $=40: 1$)
IR (KBr): 3060 (w), 1641 (m), 1083 (m), 762 (w), 700 (w)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.33-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 3 \mathrm{H}), 3.35-3.31(\mathrm{~m}$, $1 \mathrm{H}), 3.23-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.97$ (sextet, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.3$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl $\left.3, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 145.6,128.7,127.2,126.5,41.2,38.4,32.3,21.9$
HRMS (EI) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{Br}[\mathrm{M}]^{+}: 212.0195$; found 212.0191

2q
To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 q}\left(27.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{H}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 23 h at $22{ }^{\circ} \mathrm{C}$. Due to the low boiling point of $2 \mathbf{q}, \mathrm{CH}_{2} \mathrm{Br}_{2}(10 \mu \mathrm{~L}, 0.143 \mathrm{mmol})$ was added as internal standard, and $100 \mu \mathrm{~L}$ of reaction mixture was extracted and added to $400 \mu \mathrm{~L}$ of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ to perform the ${ }^{1} \mathrm{H}$ crude NMR analysis. By comparing with an authentic sample of $\mathbf{2 q}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, the yield of $\mathbf{2 q}$ was determined to be 87%.

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{~mL})$ in a 25 mL round-bottom flask with a magnetic stirrer bar, $1 \mathbf{r}\left(172 \mathrm{mg}, 2 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{H}_{2} \mathrm{O}(54 \mu \mathrm{~L}, 3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.5 \mathrm{~mL}, 2.5 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 46 h at $22{ }^{\circ} \mathrm{C}$. Product 2 r was formed as indicated by HMRS analysis on the crude mixture. The reaction was then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield γ-butylrolactone as a yellow oil (67% yield, 115 mg).

IR (KBr): 3057 (w), 1760 (s), 1641 (m), 1186 (s$), 1037$ (m)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 4.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$,
2.20 (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR (CDCl $\mathbf{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}$) : $\delta 177.9,68.6,27.7,22.1$
HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 87.04406$; found 87.04395

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, 1s ($26.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{H}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 15 h at $22^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ $\mathrm{mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield 2 s as yellow oil (30% yield, 12.7 mg).
$\mathrm{R}_{\mathrm{f}}=0.50$ (n-hexane : diethyl ether $=20: 1$)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}$) : $\delta 7.21-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.15 (dd, $J=15.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.96-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=16.0$, $7.0 \mathrm{~Hz}, 2 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}$) : $\delta 142.2,126.6,124.8,42.1,38.5,38.4$
Data matches with literature reported values (Y. Bekkali, et al. Bioorg. Med. Chem. Lett. 2007, 17, 2465)

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, 1t ($35.5 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{H}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 17 h at $22^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $\mathbf{2 t}$ as colourless oil (81% yield, 51.7 mg).
$\mathrm{R}_{\mathrm{f}}=0.63$ (n-hexane : diethyl ether $=20: 1$)
IR (KBr): 3059 (w), 2969 (w), 1641 (m), 1453 (w), 1102 (w), 702 (m)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}$) : $\delta 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 3.36-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.97(\mathrm{~m}$, $2 \mathrm{H}), 2.67-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}$) : $\delta 138.6,129.7,128.5,127.7,70.7,57.2,35.4,34.7$, 32.3, 32.2
*Difficulties with obtaining HRMS for this compound were addressed below.

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 u}\left(60.1 \mathrm{mg}, 0.2 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{H}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 17 h at $22^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $\mathbf{2 u}$ as a light yellow solid (quantitative yield, 75.3 mg).
$\mathrm{R}_{\mathrm{f}}=0.60$ (n-hexane : diethyl ether $=40: 1$)
m.p.: $96-98^{\circ} \mathrm{C}$

IR (KBr): 3059 (w), 2085 (w), 1644 (m), 1442 (w), 1076 (m), 698 (w)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.42-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.08-7.02(\mathrm{~m}$, 3H), 6.96-6.94 (m, 2H), $3.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl $\left.{ }_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 142.7,142.4,142.3,140.6,137.0,130.5,129.7$, $129.4,128.5,128.3,127.6,127.2,126.8,126.3,38.7,31.3$
HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 365.07249$; found 365.07233

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 v}\left(20.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{H}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 18 h at $22{ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The
organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ $\mathrm{mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure carefully ($\sim 200 \mathrm{mbar}, 25^{\circ} \mathrm{C}$ water bath) to yield $\mathbf{2 v}$ as light yellow oil (84% yield, 41.0 mg).
$\mathrm{R}_{\mathrm{f}}=0.60$ (n-hexane : diethyl ether $=10: 1$)
IR (KBr): 3059 (w), 2085 (w), 1637 (m)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 3.45(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.94-$
1.90 (m, 2H), 1.77 (s, 6H)
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 66.8,46.0,34.4,33.6,29.9$
*Difficulties with obtaining HRMS for this compound were addressed below.

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 w}$ ($22.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{H}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 18 h at $22^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure carefully (~ 200 mbar, $25^{\circ} \mathrm{C}$ water bath) to yield $\mathbf{2 w}$ as light yellow oil (82% yield, 42.3 mg).
$\mathrm{R}_{\mathrm{f}}=0.63$ (n-hexane : diethyl ether $=10: 1$)
IR (KBr): 3057 (w), 2091 (w), 1640 (m), 1079 (m)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 3.60-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.28(\mathrm{~m}$, $1 \mathrm{H}), 1.79$ (s, 3 H), 1.75-1.72 (m, 5H), 1.05 (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl $\left.{ }_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 73.0,44.9,36.4,32.9,32.4,32.3,15.3$
*Difficulties with obtaining HRMS for this compound were addressed below.

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 x}$ or $\mathbf{1 x}^{\prime}\left(44.9 \mathrm{mg}, 0.2 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{H}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv)
were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M} \mathrm{in}^{\mathrm{CH}} \mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25\right.$ mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 15 h at $22{ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/diethyl ether (40:1) to yield $\mathbf{2 x}$ as a mixture of diastereomers ($1: 0.8,63 \%$ yield, 46.7 mg). Recrystallization from $\mathrm{CHCl}_{3} /$ hexane afforded the major diastereomer $\mathbf{2 x}$ as a colourless crystal.
$\mathrm{R}_{\mathrm{f}}=0.33$ (n-hexane : diethyl ether $=40: 1$)
m.p.: $120-121^{\circ} \mathrm{C}$

IR (KBr): 3059 (w), 2360 (w), 1636 (m), 759 (w)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}$) : $\delta 7.39-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{t}, J=$ $5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl $\left.{ }_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 141.7,129.0,128.7,127.3,54.4,38.8$
HRMS (EI) Calc'd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Br}_{2}[\mathrm{M}]^{+}: 367.9594$; found 367.95902

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, 1y ($35.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{H}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 15 h at $22^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $2 \mathbf{y}$ as yellow oil (83% yield, 53.0 mg).
$\mathrm{R}_{\mathrm{f}}=0.60$ (n-hexane : diethyl ether $=40: 1$)
IR (KBr): 3059 (w), 2084 (w), 1643 (m), 1454 (w), 1102 (w)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=8.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.40$
(m, 1H), 2.04 (ddd, $J=14.5,11.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.73$ (m, 7H)
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 141.9,128.9,128.6,127.3,66.5,55.1,45.9,37.0$,
34.7, 34.2
*Difficulties with obtaining HRMS for this compound were addressed below.

Issues with HRMS: Multiple attempts were made to obtain the HRMS of $\mathbf{2 t}, \mathbf{2 v}, \mathbf{2 w}$, $\mathbf{2 y}$ by APCI/DIP, ESI and EI but none of the target molecules could be traced. We rationalized that the tertiary bromide could be easily eliminated (TLC also showed the partial elimination of $\mathbf{2 t}, \mathbf{2 v}, \mathbf{2 w}, \mathbf{2} \mathbf{y}$ to their corresponding alkenes after left standing in CHCl_{3}). As a representative example, hydrobromination of $\mathbf{1 t}$ was repeated. After working up the reaction, $\mathrm{DBU}(36.5 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and THF (2 mL) were added and the resultant mixture was refluxed for $16 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were then added to the reaction mixture, and the organic layer was separated. Aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/diethyl ether (40:1) to yield $\mathbf{2 t} \mathbf{t}^{\prime}$ as a colourless oil (64% yield over 2 steps, 30.6 mg).

$\mathrm{R}_{\mathrm{f}}=0.66$ (n-hexane : diethyl ether $=40: 1$)
IR (KBr): 3057 (w), 2360 (m), (2340 (w), 1636 (w)
${ }^{1} \mathbf{H}$ NMR (CDCl3, $\left.\mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$, 1.56 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR (CDCl $\left.3, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 142.5,132.1,131.3,129.1,128.3,126.5,37.9$, 31.5, 22.4, 20.5

HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 239.04299$; found 239.04282

2a-D
To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.75 \mathrm{~mL})$ in a 25 mL round-bottom flask with a magnetic stirrer bar, 1a ($118 \mathrm{mg}, 1.0 \mathrm{mmol}, 1$ equiv) and t-BuOD ($120 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 1.25$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.25$ $\mathrm{mL}, 1.25 \mathrm{mmol}, 1.25$ equiv) was added into the mixture. The resultant mixture was allowed to stir for 4 h at $22{ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/diethyl ether ($50: 1$) to yield $\mathbf{2 a}-\boldsymbol{D}$ as colourless oil (75% yield, $94 \% \mathrm{D}$ incorporation, 150.0 mg). The \% D incorporation is
determined based on the integration of the residual peak relative to other peaks in ${ }^{1} \mathrm{H}$ NMR.
$\mathrm{R}_{\mathrm{f}}=0.57$ (n-hexane: diethyl ether $=50: 1$)
IR (KBr): 3060 (w), 2096 (w), 1644 (m), 1494 (w), 1270 (w), 1214 (m), 1076 (m)
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.\mathbf{C D}_{3} \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 3 \mathrm{H}), 3.41(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.81-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 140.7,128.7,128.6,126.3,34.2,33.7(J=19.6$ Hz), 33.2
HRMS (EI) Calc'd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{DBr}[\mathrm{M}]^{+}$: 199.0101 ; found 199.0103

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 e}\left(40.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{D}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 72 h at $22{ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/diethyl ether (40:1) to yield 2e-D as colourless oil (65% yield, $>99 \% \mathrm{D}$ incorporation, 36.9 mg). The $\% \mathrm{D}$ incorporation is determined based on the integration of the residual peak relative to other peaks in ${ }^{1} \mathrm{H}$ NMR. 6% of di-deuterated product on the benzylic carbon was detected.
$\mathrm{R}_{\mathrm{f}}=0.63$ (n-hexane : diethyl ether $=40: 1$)
IR (KBr): 3059 (w), 2099 (w), 1641 (m), 1489 (w), 1257 (m), 1161 (w)
${ }^{1} \mathbf{H}$ NMR (CDCl, $\left.\mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08-7.06(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.83-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 2 \mathrm{H})$ ${ }^{13} \mathbf{C}$ NMR (CDCl $3,125.7 \mathbf{M H z}$) : $\delta 149.6,143.0,129.9,127.1,121.2,120.6$ (q, $J=$ $241.2 \mathrm{~Hz}), 118.8,33.8,33.5(\mathrm{t}, J=19.4 \mathrm{~Hz}), 32.8$
${ }^{19}$ F NMR ($\mathbf{C D C l}_{3}, 470.6 \mathrm{MHz}$) : $\delta-57.7$ (s)
HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{DBrF}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 284.00027$; found 284.00059

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 j}$ ($35.5 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{D}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 22 h at $22{ }^{\circ} \mathrm{C}$, then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $\mathbf{2 j}-\mathbf{D}$ as yellow oil (quantitative yield, $97 \% \mathrm{D}$ incorporation, 52.0 mg). The product is analytically pure as shown in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. The \% D incorporation is determined based on the integration of the residual peak relative to other peaks in ${ }^{1} \mathrm{H}$ NMR.
$\mathrm{R}_{\mathrm{f}}=0.33$ (n-hexane : diethyl ether $=3: 1$)
IR (KBr): 3060 (w), 1640 (m), 1492 (m), 1284 (w), 1093 (m), 1014 (w), 823 (w)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}$) : $\delta 7.38(\mathrm{dt}, J=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (dt, $J=8.5,2.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.54 (ddd, $J=10.5,8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (ddd, $J=11.0,7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.49-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl3, $\mathbf{1 2 5 . 7} \mathbf{~ M H z}$) : $\delta 134.8,132.8,129.7$, 128.9, 119.6, 38.1, $34.8(\mathrm{t}, J$ $=20.1 \mathrm{~Hz}$), 29.2
HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{DBrClN}[\mathrm{M}+\mathrm{H}]^{+}: 260.97201$; found 260.97215

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 k}$ ($44.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{D}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 22 h at $22{ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $\mathbf{2 k}$ - \mathbf{D} as a colourless oil (quantitative yield, $97 \% \mathrm{D}$ incorporation, 60.9 mg). The product is analytically pure as shown in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. The \% D incorporation is determined based on the integration of the residual peak relative to other peaks in ${ }^{1} \mathrm{H}$ NMR.
$\mathrm{R}_{\mathrm{f}}=0.33$ (n-hexane : diethyl ether $=3: 1$)
IR (KBr): 3343, 2943, 1453, 1049, 758, $700 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}$) : $\delta 7.54(\mathrm{dt}, J=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{dt}, J=8.5,2.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.53 (ddd, $J=11.0,8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ (ddd, $J=11.0,7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.49-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl $\left.3, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 133.3,132.6,129.2,122.8,119.5,38.0,34.9(\mathrm{t}, J$ $=21.4 \mathrm{~Hz}$), 29.2
HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{DBr}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 304.92171$; found 304.92193

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.75 \mathrm{~mL})$ in a 4 mL scintillation vial with a magnetic stirrer bar, $\mathbf{1 m}$ ($38.7 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{D}_{2} \mathrm{O}(5.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 18 h at $22^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ $\mathrm{mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $\mathbf{2 m}$ - \mathbf{D} as yellow oil (quantitative yield, $97 \% \mathrm{D}$ incorporation, 55.0 mg). The product is analytically pure as shown in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. The \% D incorporation is determined based on the integration of the residual peak relative to other peaks in ${ }^{1} \mathrm{H}$ NMR.
$\mathrm{R}_{\mathrm{f}}=0.33$ (n-hexane : diethyl ether $=3: 1$)
IR (KBr): 3062 (w), 2241 (w), 1635 (m), 1280 (w), 817 (w), 749 (m), 478 (w)
${ }^{1} \mathbf{H}$ NMR (CDCl ${ }_{3}, \mathbf{5 0 0} \mathbf{~ M H z}$) : $\delta 7.90-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=$ $8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.03 \mathrm{H}), 3.57$ (ddd, $J=11.0,7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38 (ddd, $J=11.0,6.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.40(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (CDCl ${ }_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}$) : $\delta 133.3,133.1,131.5,129.5,128.0,127.9,127.0$, 126.87, 126.85, 124.6, 120.0, 38.1, $35.5(J=20.9 \mathrm{~Hz}), 29.5$

HRMS (APCI/DIP) Calc'd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{DBrN}[\mathrm{M}+\mathrm{H}]^{+}: 275.02887$; found 275.02974

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.75 \mathrm{~mL})$ in a 25 mL round-bottom flask with a magnetic
stirrer bar, 10 ($158.2 \mathrm{mg}, 1.0 \mathrm{mmol}, 1$ equiv) and $\mathrm{D}_{2} \mathrm{O}(27.0 \mu \mathrm{~L}, 1.5 \mathrm{mmol}, 1.5$ equiv) were added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.25 \mathrm{~mL}, 1.25$ mmol, 1.25 equiv) was added into the mixture in one portion by autopipette. The mixture was allowed to stir for 15 h at $22{ }^{\circ} \mathrm{C}$ and then quenched at $0{ }^{\circ} \mathrm{C}$ by saturated aqueous NaHCO_{3} solution. The organic layer was separated, and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $\mathbf{2 0}-\boldsymbol{d}$ as light yellow oil (70% yield using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard, $>97 \% \mathrm{D}$ incorporation). All deuterium was exchanged to hydrogen upon treating the crude mixture with silica gel. The assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR peaks of 20-D was based on that of $\mathbf{1 0}$. The \% D incorporation was determined based on the integration of the residual peak relative to other peaks in crude ${ }^{1} \mathrm{H}$ NMR.

IR (KBr): 3060 (w), 1734 (m), 1647 (m), 1218 (w), 1079 (m), 816 (w)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}$) : $\delta 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.40(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=6.5$
$\mathrm{Hz}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}\right): \delta 168.9,52.8,49.5(\mathrm{t}, J=20.4), 31.4,30.3$
HRMS (ESI) Calc'd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{DBrO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 261.97957$; found 261.97957

(D) Further Transformations of 2a

To a solution of DMF (10 mL) and KOAc ($197 \mathrm{mg}, 2 \mathrm{mmol}, 2$ equiv) was added 1a ($199 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv) and the resultant mixture was heated at $80{ }^{\circ} \mathrm{C}$ for 12 h . The reaction was cooled to room temperature and diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The aqueous layer was extracted by diethyl ether $(3 \times 20 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $\mathbf{5 a - O A c}$ which was used in the next step without further purification.

To a solution of 5a-OAc in $\mathbf{M e O H}(8 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(346 \mathrm{mg}, 2.5 \mathrm{mmol}, 2.5$ equiv) and the resultant mixture was allowed to stir for 12 h at $23{ }^{\circ} \mathrm{C}$. The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and the aqueous layer was extracted by ethyl acetate (3 $\times 20 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with n-hexane/ethyl acetate (1:1) to yield $\mathbf{5 a}$ as colourless oil ($93 \%, 127 \mathrm{mg}$).
$\mathrm{R}_{\mathrm{f}}=0.57$ (n-hexane : ethyl acetate $=1: 1$)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{t}, \mathrm{J}=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.75-2.72 (m, 3H), 1.95-1.90 (m, 2H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}$) : $\delta 141.9,128.42,128.38,125.8,62.0,34.2,32.1$
Data matches with literature reported values (G. Chen, C. Fu, S. Ma, Tetrahedron 2006, 62, 4444)

To a solution of acetone $/ \mathrm{H}_{2} \mathrm{O}(1: 1,10 \mathrm{~mL})$ and $\mathbf{1 a}(199 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv) was added NaN_{3} ($195 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv) and the resultant mixture was heated at $80^{\circ} \mathrm{C}$ for 12 h . The reaction was cooled to room temperature and concentrated under reduced pressure to remove most of the acetone. The remaining aqueous layer was the extracted by diethyl ether $(3 \times 20 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $\mathbf{5 b} \mathbf{b} \mathbf{-} \mathbf{3}$ which was used in the next step without further purification.

To a solution of $\mathbf{5 b} \mathbf{-} \mathbf{N}_{3}$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added catalytic amount of $\mathrm{Pd} / \mathrm{C}(\sim 10 \mathrm{wt}$ $\%)$. The flask was evacuated and backfilled with H_{2} for three times. The resultant mixture was then allowed to stir for 12 h under H_{2} (with a balloon) at $23{ }^{\circ} \mathrm{C}$. The mixture was filtered through a thin plug of celite and the residue was washed with ethyl acetate $(20 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography eluted with $\mathrm{CHCl}_{3} /$ methanol (9:1) and $1 \% \mathrm{NH}_{3}$ solution ($28 \% \mathrm{w} / \mathrm{w}$) to yield $\mathbf{5 b}$ as a colourless oil $(92 \%, 124 \mathrm{mg})$.
$\mathrm{R}_{\mathrm{f}}=0.30\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{NH}_{3}\right.$ solution $\left.(28 \% \mathrm{w} / \mathrm{w})=90: 9: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 3 \mathrm{H}), 2.72(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.65 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.77 (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.65 (br, 2H)
${ }^{13} \mathbf{C}$ NMR (CDCl $\mathbf{3}, \mathbf{1 2 5 . 7} \mathbf{~ M H z}$) : $\delta 142.1,128.39,128.37,125.8,41.7,35.3,33.3$
Data matches with literature reported values (L. Benati, G. Bencivenni, R. Leardini, D. Nanni, M. Minozzi, P. Spagnolo, R. Scialpi, G. Zanardi, Org. Lett. 2006, 8, 2499)

(E) Control Experiments

Scheme S1. Preliminary trials with different halogen sources as radical quenchers.

halogen source	$\mathbf{4 a}$	
NCS	49%	+ $\mathbf{1 a}-\mathbf{C l}(15 \%)$
DCH	26%	+ messy mixture
NIS	0%	+ unidentified products
DIH	12%	+ 4a-I (45%)

Scheme S2. Effect of reintroducing O_{2} to the reaction

Scheme S3. Effect of the hydroxyl substituent on substrate $\mathbf{1 y}$.

Note: The reaction of $\mathbf{1} \boldsymbol{y}$ was carried out with $\mathrm{D}_{2} \mathrm{O}$ as the proton source. The hydrobromination product $2 \boldsymbol{y}$ was obtained in excellent yield but there was no deuterium incorporation in the product. When the deuterated $\mathbf{1 y}$ (i.e. $\mathbf{1} \boldsymbol{y}-\mathrm{OD}$) was used as the substrate in the absence or absence of $D_{2} O$, no $2 \boldsymbol{y}$ was detected and significant amount of $\mathbf{1} \boldsymbol{y}$ was recovered. These results indicate that the OH group in $\boldsymbol{1} \boldsymbol{y}$ is crucial for the hydrobromination. It is known that cyclopropanes have a bisected conformation with π-character σ-bonds. ${ }^{5}$ A possible explanation is that the phenyl ring (via π-conjugation) ${ }^{6-7}$ and the OH group (via neighboring group effect) ${ }^{8-9}$ might activate the C - C bond in cyclopropane synergistically. This might also explain the low reactivity of 1-phenyl-2-methylcyclopropane that has no hydroxyl substituent.

(F) NMR Studies

For all NMR experiments that were done under N_{2}, NMR tubes were repeatedly dried under high vacuum and then refilled with N_{2}. All reagents and solvent (except BBr_{3}) were added to an oven-dried Schlenk equipped with stirrer bar under N_{2}, then degassed with three freeze-pump-thaw cycles under N_{2}. The solution was cooled to 0 ${ }^{\circ} \mathrm{C}$ with an ice bath, and $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was then added with autopipette to the stirring solution. The reaction mixture was quickly transferred to the NMR tube with cannula or syringe.

Figure S1. Deuteriobromination of $\mathbf{1 g}$

Note: the carbons in which protons were exchanged with deuteriums are marked with a red dot. The reaction was carried out with $1 g(0.2 \mathrm{mmol}), \mathrm{BBr}_{3}(0.25 \mathrm{mmol})$ and t-BuOD (0.3 mmol) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ for 2 hours. The reaction was then quenched with saturated NaHCO_{3} solution and ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ was carried out on the crude mixture with $\mathrm{CH}_{2} \mathrm{Br}_{2}(0.1438 \mathrm{mmol})$ as internal standard.

Figure S2. ${ }^{11} \mathrm{~B}$ NMR experiment of BBr_{3} and 1a under N_{2}

Note: ${ }^{11} B$ NMR experiments in $C D_{2} C l_{2}$ under N_{2} were conducted with [a] BBr r_{3} (1.2 equiv), PhSiH_{3} (1.2 equiv) and $\mathbf{1 a}$ (1.0 equiv) for 20 min ; [b] $\mathrm{BBr}_{3}(1.2$ equiv) and $\mathbf{1 a}$ (1.0 equiv) for 20 min.

Figure S3. ${ }^{1} \mathrm{H}$ NMR experiment of $\mathrm{BBr}_{3}, \mathrm{PhSiH}_{3}$ and $\mathbf{1 a}$

Note: ${ }^{1} H \operatorname{NMR}(500 \mathrm{MHz})$ study on a mixture of BBr_{3} (1.2 equiv), PhSiH_{3} (1.2 equiv) and $1 \boldsymbol{a}$ (1.0 equiv) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ under N_{2} at $23^{\circ} \mathrm{C}$ for 20 min was conducted.

Figure S4. ${ }^{1} \mathrm{H}$ NMR experiment of BBr_{3} and $\mathbf{1 a}$

Note: ${ }^{1} H \operatorname{NMR}(500 \mathrm{MHz})$ study on a mixture of BBr_{3} (1.2 equiv) and $\mathbf{1 a}$ (1.0 equiv) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ under N_{2} at $23^{\circ} \mathrm{C}$ for 20 min was conducted.
${ }^{1} \mathrm{H}$ NMR (500 MHz)

${ }^{11}$ B NMR (128 MHz)

[e] Addition of extra 1a (4.0 equiv)

Figure S5. NMR experiments on the reactions among $\mathrm{BBr}_{3}, i-\mathrm{PrOH}$ and 1a

Note: ${ }^{11} \mathrm{~B}$ NMR experiments on a mixture of BBr_{3} and i - PrOH in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $23{ }^{\circ} \mathrm{C}$ under air were conducted. Different species were added to the same sample, in the order from bottom to top for each set of spectra: [a] BBr_{3} (1.25 equiv) $+i$ - PrOH (1.5 equiv); [b] addition of $\mathbf{1 a}$ (1.0 equiv); [c] addition of extra $1 \boldsymbol{a}$ (1.0 equiv); [d] addition of extra $\mathbf{1 a}$ (2.0 equiv); [e] addition of extra $\mathbf{1 a}$ (4.0 equiv); [f] reference signal: pure $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for ${ }^{11} \mathrm{~B}$ NMR. It was noted that the signal 25.0 ppm diminished gradually upon the addition of cyclopropane substrate $\mathbf{1 a}$.

${ }^{11}$ B NMR (128 MHz)

[b] BBr_{3} (1.25 equiv) $+i-\mathrm{PrOH}$ (1.5 equiv) under N_{2}

[a] BBr_{3} (1.25 equiv) $+i-\mathrm{PrOH}$ (1.5 equiv) under air

Figure S6. ${ }^{11}$ B NMR experiments to study the role of O_{2}

Note: ${ }^{11} B$ NMR experiments on a mixture of BBr_{3} and i - PrOH in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $23{ }^{\circ} \mathrm{C}$ in sealed NMR tubes were conducted under different conditions. [a] under air; [b] under $N_{2} ;[c]$ under air and in the absence of $i-\mathrm{PrOH}$. The signal at 25.0 ppm was formed only when all the three components ($\mathrm{BBr}_{3}, i-\mathrm{PrOH}$ and oxygen) were present in the reaction system. The signal at 18.9 ppm could be assigned to the complex formed between BBr_{3} and $\mathrm{i}-\mathrm{PrOH}$.

Note: ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz})$ study on a mixture of allylbenzene (1 equiv), BBr3 (1.25 equiv) and $D_{2} \mathrm{O}$ (1.5 equiv) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $23{ }^{\circ} \mathrm{C}$ was conducted. Allylbenzene was added in one portion. Chemical shift of each proton is labelled accordingly.

Note: ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz})$ study on a mixture of allylbenzene (1 equiv), $\mathrm{BBr}_{3}(1.25$ equiv) and $\mathrm{D}_{2} \mathrm{O}$ (1.5 equiv) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $23{ }^{\circ} \mathrm{C}$ was conducted. Allylbenzene was added portion-wise with each potion c.a. 0.1 equiv over 40 minutes to mimic the slow generation of allylbenzene in the system. Chemical shift of each proton is labelled accordingly.
Figure S7. Control experiments with allylbenzene

(G) Computational Studies

DFT calculations were performed using Gaussian $16 .{ }^{10}$ Geometry optimizations and frequency calculations were performed at the ω B97X-D ${ }^{11} / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory. A pruned $(99,590)$ grid (default in Gaussian 16) was used in geometry optimizations to minimize orientational variations in calculated free energy corrections. ${ }^{12}$ Thermal contributions to free energies were calculated from vibrational frequencies using the quasi-rigid rotor-harmonic oscillator (RRHO) approach of Grimme. ${ }^{13}$ Optimized geometries were confirmed by frequency computations as minima (no imaginary frequency) or first-order saddle-point (one imaginary frequency) structures. Single-point energy calculations were performed at the ω B97X-D/6-311+G(d,p), SMD ${ }^{14}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ level of theory. Conformational searches were carried out in Spartan ' 18^{15} using the MMFFs force field.

The computed free energy diagram of the proposed reaction pathway is shown in the manuscript (Figure S 1). The reaction free energies ($\mathrm{kcal} / \mathrm{mol}$) of some key competing processes are shown below.

BBr_{3}

B	0.00000000	0.00000000	0.00000000
Br	0.00000000	1.89381800	0.00000000
Br	1.64009500	-0.94690900	0.00000000
Br	-1.64009500	-0.94690900	0.00000000

O_{2}

O	0.00000000	0.00000000	0.60271200
O	0.00000000	0.00000000	-0.60271200

$\mathrm{H}_{2} \mathrm{O}$

O	0.00000000	0.00000000	0.11561600
H	0.00000000	0.76650100	-0.46246200
H	0.00000000	-0.76650100	-0.46246200

A

B
Br
Br
O
O
Br
O
H
H

-0.76385500	0.08848400	0.32024100
-2.37494500	0.92232900	-0.44511800
-0.34098500	-1.75152200	-0.21578900
0.25219400	1.06729200	0.32684100
1.41421100	0.54412800	0.96212800
2.79122400	0.47522600	-0.25750400
-1.11666800	-0.11014200	1.96991400
-1.42241400	0.72461100	2.35599100
-1.79151000	-0.78842500	2.11611500

1a

C
C
C
C
C
C
H
H
H
H
H
C

-0.56064000	-1.20179700	0.15394400
0.14355700	-0.00016000	0.27209900
-0.56029000	1.20165900	0.15382300
-1.93428300	1.20449900	-0.07597200
-2.62592800	0.00020800	-0.19128900
-1.93462600	-1.20427500	-0.07583400
-0.02204800	-2.14180800	0.23962000
-0.02144500	2.14152800	0.23944800
-2.46474300	2.14757900	-0.16763600
-3.69622600	0.00035400	-0.37320800
-2.46535400	-2.14721300	-0.16740400
1.61476300	-0.00043400	0.55573500

C	2.56964100	-0.75385000	-0.33353000
C	2.56976000	0.75411200	-0.33241100
H	1.86241000	-0.00126100	1.61582700
H	2.15319200	-1.25215000	-1.20376700
H	3.40441900	-1.27026600	0.12889200
H	3.40462600	1.26970500	0.13077000
H	2.15343600	1.25376100	-1.20193500

B
Br
Br
O
O
O
H
H

-0.00242600	0.29557700	0.28238300
-1.66431000	-0.69758300	-0.04735100
1.70357800	-0.61706500	-0.08846400
-0.08782500	1.41261100	-0.91986200
-0.15319800	2.62893000	-0.43555000
-0.01097100	1.09817900	1.45127100
0.75942700	0.96340800	2.01047700
-0.10572300	2.45363500	0.56427400

B

C	3.54806400	-1.48933800	-0.00000500
C	2.23815900	-1.03574800	-0.00000200
C	1.94820200	0.35468200	0.00003900
C	3.04946900	1.25264300	-0.00001800
C	4.35329500	0.78881900	-0.00001300
C	4.61430600	-0.58585300	-0.00000300
H	3.74501700	-2.55709700	-0.00003200
H	1.42522200	-1.75515200	-0.00001300
H	2.85410800	2.32174400	-0.00003600
H	5.17660000	1.49656700	-0.00003100
H	5.63722400	-0.94795300	-0.00000500
C	0.62389700	0.85155600	0.00001400
H	0.48653300	1.93129300	-0.00011400
C	-0.59626600	-0.01818300	0.00003700
H	-0.60137600	-0.67958200	0.87787900
H	-0.60139300	-0.67965400	-0.87772000
C	-1.85177700	0.83207500	0.00002100
H	-1.90472400	1.46288700	0.88806200
H	-1.90472700	1.46289000	-0.88801700
Br	-3.48218800	-0.22171000	-0.00001100

C

B	0.00003600	-0.02570800	0.23544100
Br	-0.00465700	1.90754000	-0.20724000
Br	-1.67017100	-0.96052200	-0.19393900
Br	1.67488700	-0.95255900	-0.19388200
O	0.00003600	-0.05527500	1.89391800
H	0.78846200	0.38468200	2.24934100
H	-0.79101100	0.38003400	2.24926300

2a

C	3.45237600	-1.53702900	-0.00004800
C	2.16549600	-0.99635300	-0.00023300
C	1.97127800	0.38577700	-0.00002200
C	3.10133800	1.21282000	0.00016900
C	4.38460900	0.67905300	0.00027300
C	4.56563400	-0.70409200	0.00023500
H	3.57937300	-2.61534000	-0.00019000
H	1.31499900	-1.67036800	-0.00055900
H	2.96913200	2.29246700	0.00015600
H	5.24488500	1.34145600	0.00043100
H	5.56582500	-1.12558100	0.00034200
C	0.60015400	1.03196900	-0.00038600
H	0.52934300	1.68981500	-0.87669300
C	-0.59049700	0.07163500	-0.00048300
H	-0.55814600	-0.57675600	0.88168400
H	-0.55849400	-0.57641200	-0.88292500
C	-1.88374500	0.86095400	-0.00004600
H	-1.97143100	1.48941800	0.88732300
H	-1.97183500	1.48978400	-0.88712400
Br	-3.46493200	-0.27019100	0.00013900
H	0.52911400	1.68978900	0.87591300

D

B
Br

-0.33557900	0.00317200	0.64705900
1.07246500	1.39635200	-0.17616100
-2.02860200	-0.00254800	-0.26976000
1.07687300	-1.39515700	-0.17424300
-0.37719900	0.00296000	2.00192700
0.46972500	0.00785400	2.45502200

HOBBr_{2}

B
$-0.01135000 \quad 0.62752800 \quad 0.00033600$

Br	1.66114700	-0.31694100	-0.00001000
Br	-1.67502900	-0.29080200	-0.00002400
O	-0.03615100	1.96863300	0.00005600
H	0.83185000	2.38427900	-0.00095600

E

C	1.95071000	1.32683700	0.00000500
C	0.58640700	1.07911100	0.00000400
C	0.08434900	-0.25005800	-0.00000100
C	1.03637800	-1.30547000	0.00000100
C	2.39617900	-1.04721000	0.00000200
C	2.86628900	0.27091000	0.00000400
H	2.30893200	2.35204200	0.00001000
H	-0.10741000	1.91401100	0.00000600
H	0.67945300	-2.33208300	0.00000300
H	3.10087000	-1.87335900	0.00000300
H	3.93278500	0.47154000	0.00000000
C	-1.30225800	-0.53676000	-0.00001200
H	-1.60119400	-1.58369800	-0.00003500
C	-2.38482800	0.49632500	-0.00002600
H	-2.27079100	1.15445000	-0.87486100
H	-2.27075100	1.15451500	0.87475300
C	-3.78816700	-0.10981200	0.00002600
H	-4.55494800	0.66987500	0.00001300
H	-3.94366400	-0.73529300	-0.88503800
H	-3.94362900	-0.73523200	0.88513700

B	-0.83527200	-0.06305700	-0.00018500
Br	-2.15683400	-1.42278500	0.00003400
Br	-1.18941200	1.79320400	0.00003400
O	0.43028800	-0.56411300	-0.00022800
O	1.41692600	0.48528400	-0.00021400
Br	3.04335000	-0.34339300	0.00006000

B	0.00005200	0.46750000	0.00000000
Br	0.00005200	-0.45108500	-1.68284400
Br	0.00005200	-0.45108500	1.68284400
O	0.66759500	1.82752700	0.00000000

B	0.00767100	0.43992900	-0.57360800
Br	-1.69570600	-0.32452300	0.03067200
Br	1.69806800	-0.31541100	0.02493900
O	0.03736700	1.97700200	0.00045900
H	-0.85836300	2.34721800	0.03274400
H	0.43842500	2.03481800	0.88524500

Table S1. Calculated energies (in Hartrees). $\Delta \mathrm{G}$ values provided are corrected values after applying the quasi-rigid rotor-harmonic oscillator (RRHO) approach of Grimme. ${ }^{13}$

	$\begin{gathered} \Delta \mathbf{G} \\ {[\omega \mathrm{B} 97 \mathrm{X}-\mathrm{D} / 6-31+\mathrm{G}(\mathrm{~d}, \mathrm{p})]} \end{gathered}$	$\begin{gathered} \mathbf{E} \\ {[\omega \mathrm{B} 97 \mathrm{X}-\mathrm{D} / 6-311+\mathrm{G}(\mathrm{~d}, \mathrm{p}),} \\ \mathrm{SMD}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / / \\ \omega \mathrm{B} 97 \mathrm{X}-\mathrm{D} / 6-31+\mathrm{G}(\mathrm{~d}, \mathrm{p})] \end{gathered}$	$\mathbf{G}(\mathbf{E}+\Delta \mathbf{G})$
BBr_{3}	-0.02441	-7747.482615	-7747.507025
O_{2}	-0.016044	-150.3188962	-150.334940
$\mathrm{H}_{2} \mathrm{O}$	0.004123	-76.44045641	-76.436333
A	0.000775	-7974.24318	-7974.242405
1a	0.131582	-348.9291567	-348.797575
	0.003644	-5400.081053	-5400.077409
B	0.12743	-2923.102132	-2922.974702
C	-0.00245	-7823.941437	-7823.943887
2a	0.142247	-2923.753324	-2923.611077
D	-0.015861	-7823.290662	-7823.306523
HOBBr_{2}	-0.009874	-5249.16193	-5249.171804
E	0.13831	-349.5234664	-349.385156
	-0.00262	-5249.653175	-5249.655795
	-0.020965	-5323.608436	-5323.629401

(H) References

1. D. Cheng, D. Huang, Y. Shi, Org. Biomol. Chem. 2013, 11, 5588.
2. D. J. Wallace, C. Chen, Tetrahedron Lett. 2002, 43, 6987.
3. M. H. Gieuw, V. M-Y. Leung, Z. Ke, Y.-Y. Yeung, Adv. Synth. Cat. 2018, 360, 4306.
4. J. Xu, N. B. Samsuri, H. A. Duong, Chem. Commun. 2016, 52, 3372.
5. A. D. Walsh, Trans. Faraday Soc. 1970, 45, 179.
6. J. W. Lauher, J. A. Ibers, J. Am. Chem. Soc. 1975, 97, 561.
7. S. Rosenfeld, C. W. Tingle, J. Am. Chem. Soc. 1994, 116, 12049.
8. H. Zipse, Top. Curr. Chem. 2006, 236, 163.
9. J. Berges, N. Varmenot, A. Scemama, Z. Abedinzadeh, K. Bobrowski, J. Phys. Chem. A 2008, 112, 7015.
10. Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
11. J. D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
12. A. N. Bootsma, S. Wheeler, ChemRxiv. 2019, Preprint.
13. S. Grimme, Chem. Eur. J. 2012, 18, 9955.
14. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
15. Spartan '18, Wavefunction, Inc.

1d
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

1d
125.7 MHz, ${ }^{13} \mathrm{C}$ NMR
CDCl_{3}

$470.6 \mathrm{MHz},{ }^{19} \mathrm{~F}$ NMR
CDCl_{3}

1										
-57	-58	-59	-60	-61	-62	-63	-64	-65	-66	ppm

1e
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

1e
125.7 MHz, ${ }^{13} \mathrm{C}$ NMR
CDCl_{3}

S57											
200	180	60	10	20	100	80	60	40	20	0	
200	180	160	140	120	100	80	60	40	20	0	ppm

$470.6 \mathrm{MHz},{ }^{19} \mathrm{~F}$ NMR

CDCl_{3}

\qquad
$\begin{array}{lllllllll} & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80\end{array}$

1g
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

1g
$125.7 \mathrm{MHz},{ }^{13} \mathrm{C} \mathrm{NMR}$
CDCl_{3}

$$
2
$$

200	180	160	140	120	100	80	60	40	20	0	ppm

$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

125.7 MHz, ${ }^{13} \mathrm{C}$ NMR

1m
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

008
on On

1 m
125.7 MHz, ${ }^{13} \mathrm{C}$ NMR
CDCl_{3}

$$
\underbrace{}_{40}
$$

$\underbrace{}$

1n
$100.6 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR
CDCl_{3}

 nent

1s
$400 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

1s
100.6 MHz, ${ }^{13} \mathrm{C} \mathrm{NMR}$ CDCl_{3}

$1 t$
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

125.7 MHz, ${ }^{13} \mathrm{C}$ NMR
CDCl_{3}

$$
\underset{\mathrm{Ph}}{\mathrm{PPh}_{\mathrm{Ph}}^{\mathrm{O}}}
$$

14
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR

1 u
125.7 MHz, ${ }^{13} \mathrm{C}$ NMR
CDCl_{3}

1v
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

$\overbrace{}^{\circ}$

1w
125.7 MHz, ${ }^{13} \mathrm{C}$ NMR CDCl_{3}

Non
$\mathrm{Ph} \perp$ - Oh
1x
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

1y
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

2a
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

 125.7 MHz, ${ }^{13} \mathrm{C}$ NMR CDCl_{3}

2d
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

-20	-30	-40	-50	-60	-70	-80	-90	ppm

2e
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

2 e
125.7 MHz, ${ }^{13} \mathrm{C}$ NMR CDCl_{3}

470.6 MHz, ${ }^{19} \mathrm{~F} \mathrm{NMR}$ CDCl_{3}

[^1]
$2 f$
$500 \mathrm{MHz}{ }^{1}{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

$2 f$
125.7 MHz, ${ }^{13} \mathrm{C}$ NMR
CDCl_{3}

S100

2g
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

2g

2h
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

2h
$125.7 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR
CDCl_{3}

 $500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

(

$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

2m
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

$$
\begin{aligned}
& \widehat{N C}_{\mathrm{CN}}^{\mathrm{Br}} \\
& \text { 2n } \\
& \text { 125.7 MHz, }{ }^{13} \mathrm{C} \text { NMR } \\
& \mathrm{CDCl}_{3}
\end{aligned}
$$

$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

CDCl_{3}

2p
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

γ-butyrolactone 125.7 MHz, ${ }^{13} \mathrm{C}$ NMR CDCl_{3}

2s
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

$$
125.7{\mathrm{MHz},{ }^{13} \mathrm{C} \mathrm{NMR}}_{\mathrm{CDCl}_{3}}^{12 \mathrm{Sr}}
$$

2t
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

2t
125.7 MHz, ${ }^{13} \mathrm{C}$ NMR

2t'
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

2u
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

2u
125.7 MHz, ${ }^{13} \mathrm{C}$ NMR
CDCl_{3}

mmmNNNNNNNNNNNनウーウウ－

$$
125.7{\mathrm{MHz},{ }^{13} \mathrm{CDCl} \mathrm{CMR}_{3}}_{\mathrm{Br}}^{2 \mathrm{Nr}}
$$

2w
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

2w
125.7 MHz, ${ }^{13} \mathrm{C}$ NMR

2x
sommanman CDCl_{3}

2y
somanman CDCl_{3}

2y
125.7 MHz, ${ }^{13} \mathrm{C}$ NMR
CDCl_{3}

2a-D
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR

$$
\mathrm{CDCl}_{3}
$$

2a-D
125.7 MHz, ${ }^{13} \mathrm{C}$ NMR

$$
\mathrm{CDCl}_{3}
$$

2e-D
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR
CDCl_{3}

 125.7 MHz, ${ }^{13} \mathrm{C}$ NMR

 470.6 MHz, ${ }^{19} \mathrm{~F}$ NMR CDCl_{3}

S143									
1	1	1	1	1	,	,	1	,	1
-48	-50	-52	-54	-56	-58	-60	-62	-64	-66

 $500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

10	9			6	5	4	3	2	1	0	ppm
					S146	obic					

2k-D
125.7 MHz, ${ }^{13} \mathrm{C}$ NMR

2m-D
$500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR CDCl_{3}

10	9	8	7	6	5	4	3	2	1	0	ppm
					S148						

 125.7 MHz, ${ }^{13} \mathrm{C}$ NMR
CDCl_{3} crude mixture

[^0]: ${ }^{\text {a }}$ Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, HKSAR
 ${ }^{\mathrm{b}}$ Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States

 E-mail: houk@chem.ucla.edu, yyyeung @cuhk.edu.hk; Tel: +852-3943-6377

[^1]:
 $-25 \quad-30$

