Electronic Supplementary Information

Boron Tribromide as Reagent for

Anti-Markovnikov Addition of HBr to

Cyclopropanes

Matthew H. Gieuw,^a Shuming Chen,^b Zhihai Ke,^a K. N. Houk,^{*,b} Ying-Yeung Yeung^{*,a}

^aDepartment of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, HKSAR

^bDepartment of Chemistry and Biochemistry, University of California, Los Angeles, California 90095,

United States

E-mail: houk@chem.ucla.edu, yyyeung@cuhk.edu.hk; Tel: +852-3943-6377

Table of Contents	
S2	A: General Information
S3 – S14	B: Preparation of Substrates
S15 – S33	C: Procedures of Hydro- and Deuteriobromination
S34 – S35	D: Further Transformations of 2a
S36 - S37	E: Control Experiments
S38-S45	F: NMR Studies
S46 - S51	G: Computational Studies
S52	H: References
S53 – S151	¹ H and ¹³ C NMR Spectra

(A) General Information

All reactions requiring anhydrous conditions were conducted by standard procedures under nitrogen atmosphere. The solvents were dried over a solvent purification system from Innovative Technology. Melting points were determined on a STUART SMP40 melting point apparatus. Infrared spectra (IR) were recorded on KBr plate with Nicolet iS10 FTIR with peaks reported in cm⁻¹. Relative intensities were indicated as s (strong, 0-33% T); m (34-66% T); w (weak 67-100% T). ¹H NMR, ¹¹B NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a Bruker AMX500 (500 MHz) spectrometer or a Bruker AMX400 (400 MHz) spectrometer. Proton and carbon chemical shifts are reported in parts per million (ppm) values downfield from TMS (δ 0.00) and referenced to residual protons in NMR solvents (CDCl₃ at δ 7.26, CD₂Cl₂ at δ 5.32) or carbon signals in NMR solvent (CDCl₃ at δ 77.16). High resolution mass spectra were obtained on a ThermoFinnigan MAT 95XL spectrometer (ionization mode: ESI or EI) or Thermo QEF mass spectrometer (ionization mode: ESI or APCI/DIP). Analytical thin layer chromatography (TLC) was performed with Merck pre-coated TLC plates, silica gel 60F-254, layer thickness 0.25 mm. Flash chromatography separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel. Cyclopropylbenzene 1a (97%, Aldrich), cyclopropyl phenyl ketone 1h (TCI 4-methoxyphenyl ketone 1i (TCI chemical). cyclopropyl chemical). dimethyl-1,1-cyclopropanedicarboxylate 10 (TCI chemical), (bromomethyl)cyclopropane 1q (Accela), cyclopropylcarboxylic acid 1r (J&K chemical), boron tribromide (J&K chemical), D₂O (99% D) (Cambridge), t-BuOD (99% D) (Aldrich) were used as received.

(B) Preparation of Substrates

(a) Preparation of aryl substrates 1b-g

$$R \not + \overbrace{CH_2 CI_2, 0 \ \circ C \ to \ 22 \ \circ C, \ 24-48 \ h}^{CH_2 I_2 (4 \ equiv), Et_2 Zn (2 \ equiv)} R \not + \overbrace{CI_3 COOH \ (0.2 \ equiv), DME \ (1 \ equiv)}^{I}$$

Method A: general procedure for the preparation of cyclopropane substrates 1 by Simmons-Smith cyclopropanation.¹ Anhydrous CH₂Cl₂ (10 mL) was added to a flame-dried round bottom flask equipped with a dropping funnel and a magnetic stir bar. The solution was cooled to 0 °C and Et₂Zn in hexanes (1.0 M, 10 mL, 10 mmol, 2 equiv) was added via syringe over 30 minutes. A solution of CH₂I₂ (1.6 mL, 20 mmol, 4 equiv) in CH₂Cl₂ (5 mL) was then added dropwise over 30 minutes into the solution and the resultant mixture was allowed to stir for 45 minutes at 0 °C. Next, a stock solution of CCl₃COOH (492 mg, 3 mmol, 0.6 equiv) and dimethoxyethane (1.56 mL, 15 mmol, 3 equiv) in CH₂Cl₂ (15 mL) was prepared, and 5 mL of this stock solution was added to the reaction mixture dropwise over 30 minutes. The resultant mixture was allowed to stir for another 45 minutes at 0 °C. A solution of substituted styrene (5 mmol, 1 equiv) in CH₂Cl₂ (5 mL) was then added into the solution at 0 °C and the resultant mixture was allowed to stir for 24-48 hours at 22 °C. The reaction was quenched by water (10 mL) and aqueous HCl (5 M, 4 mL). The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (10 mL \times 3). The combined organic layer was washed with brine (5 mL), dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (diethyl ether in *n*-hexane) to provide 1. Note: 1b, 1c, 1p are volatile and was carefully dried with rotavap at ~10 mbar in a 25

°*C* water bath

$$R + \begin{bmatrix} Pd(OAc)_{2} (5 \text{ mol}\%), PCy_{3} (10 \text{ mol}\%) \\ \hline K_{3}PO_{4} (3.5 \text{ equiv}), 20 : 1 PhMe:H_{2}O \end{bmatrix} R + \begin{bmatrix} 1 \\ 10 \\ 10 \\ 10 \\ 11 \\ \end{bmatrix}$$

Method B: general procedure for the preparation of cyclopropane substrates 1 by Suzuki coupling.² To a 100 mL Schlenk tube, the substituted aromatic bromide (5 mmol, 1 equiv), K_3PO_4 (3.7 g, 17.5 mmol, 3.5 equiv), tricyclohexylphosphine (140 mg, 0.5 mmol, 0.1 equiv), cyclopropylboronic acid (558 mg, 6.5 mmol, 1.3 equiv), palladium(II) acetate (56 mg, 0.25 mmol, 0.05 equiv) and toluene:water (21 mL, 20:1 v/v) were added. The Schlenk tube was then placed in a pre-heated oil bath at 110 °C.

After 10 hours, the reaction mixture was cooled to room temperature, diluted with H₂O (50 mL) and extracted with ethyl acetate (50 mL \times 3). The combined organic layer was then dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (diethyl ether in *n*-hexane) to provide **1**.

Note: 1d, 1e, 1f are volatile and was carefully dried with rotavap at ~ 10 mbar in a 25 °C water bath

Synthesized by Method A

1b: Colourless oil (90% yield, 887 mg)

¹**H** NMR (CDCl₃, 400 MHz) : δ 7.37 (d, J = 6.7 Hz, 2H), 6.95 (d, J = 8.4 Hz, 2H), 1.89–1.83 (m, 1H), 1.01–0.96 (m, 2H), 0.69–0.65 (m, 2H)

¹³C NMR (CDCl₃, 100.6 MHz) : δ 143.1, 131.3, 127.5, 118.9, 15.1, 9.5

Data matches with literature reported values (D. Cheng, D. Huang, Y. Shi, Org. Biomol. Chem. 2013, 11, 5588.)

Synthesized by Method A

1c: Colourless oil (82% yield, 626 mg)

¹**H NMR (CDCl₃, 400 MHz)** : δ 7.23 (d, *J* = 8.5 Hz, 2H), 7.01 (d, *J* = 8.4 Hz, 2H), 1.92–1.85 (m, 1H), 1.01–0.97 (m, 2H), 0.70–0.66 (m, 2H)

¹³C NMR (CDCl₃, 100.6 MHz) : δ 142.6, 130.1, 128.4, 127.1, 15.0, 9.4

Data matches with literature reported values (Y.-Y. Zhou, C. Uyeda, *Angew. Chem.* 2016, **128**, 3223.)

Synthesized by Method **B** 1d: Colourless oil (92% yield, 856 mg) R_f = 0.77 (*n*-hexane : diethyl ether = 40 :1) IR (KBr): 3061 (w), 2360 (w), 1643 (w), 1076 (w) ¹H NMR (CDCl₃, 500 MHz) : δ 7.41–7.33 (m, 3H), 7.24 (d, *J* = 8.0 Hz, 1H), 1.96 (tt, J = 8.5, 5.0 Hz, 1H), 1.05–1.01 (m, 2H), 0.76–0.73 (m, 2H) ¹³C NMR (CDCl₃, 125.7 MHz) : δ 145.2, 130.7 (q, J = 31.8 Hz), 129.1, 128.8, 124.4 (q, J = 272.1 Hz), 122.6 (q, J = 3.8 Hz), 122.3 (q, J = 3.8 Hz), 15.5, 9.6 ¹⁹F NMR (CDCl₃, 470.6 MHz) : δ –62.6 (s)

HRMS (APCI/DIP) Calc'd for C₁₀H₉F₃ [M]⁺: 186.06509; found 186.06524

Synthesized by Method **B**

1e: Colourless oil (95% yield, 960 mg)

 $R_f = 0.63$ (*n*-hexane : diethyl ether = 40 :1)

IR (KBr): 3062 (w), 2360 (w), 1635 (m)

¹H NMR (CDCl₃, 500 MHz) : δ 7.26 (t, J = 7.5 Hz, 1H), 7.00 (dd, J = 8.0, 2.0 Hz, 2H), 6.91 (s, 1H), 1.91 (tt, J = 8.5, 5.0 Hz, 1H), 1.03–0.99 (m, 2H), 0.73–0.70 (m, 2H) ¹³C NMR (CDCl₃, 125.7 MHz) : δ 149.6, 146.8, 129.6, 124.2, 120.7 (q, J = 256.7 Hz), 118.4, 117.9, 15.4, 9.7

¹⁹F NMR (CDCl₃, 470.6 MHz) : δ –57.7 (s)

HRMS (APCI/DIP) Calc'd for C₁₀H₉F₃O [M+H]⁺: 203.06783; found 203.06776

Synthesized by Method **B**

1f: Colourless oil (78% yield, 625 mg)

 $R_f = 0.80$ (*n*-hexane : diethyl ether = 40 :1)

IR (KBr): 3062 (w), 1642 (m), 1077 (m), 749 (w)

¹**H NMR (CDCl₃, 500 MHz)** : δ 7.29 (dd, J = 8.0, 1.5 Hz, 1H), 7.22 (td, J = 7.5, 1.0 Hz, 1H), 7.14 (td, J = 7.5, 1.0 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 3.62 (septet, J = 7.0 Hz, 1H), 2.03 (tt, J = 8.5, 5.5 Hz, 1H), 1.31 (d, J = 6.5 Hz, 6H), 0.98–0.94 (m, 2H), 0.71–0.68 (m, 2H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 148.4, 139.9, 126.2, 126.1, 125.7, 124.8, 28.8, 23.7, 13.0, 7.2

HRMS (APCI/DIP) Calc'd for C₁₂H₁₆ [M+H]⁺: 161.13248; found 161.13253

Synthesized by Method **B 1g**: Light brown solid (86% yield, 939 mg) m.p.: 132–133 °C $R_f = 0.67$ (*n*-hexane : diethyl ether = 40 :1) **IR (KBr)**: 3060 (w), 1637 (m), 735 (w) ¹**H NMR (CDCl₃, 500 MHz)** : δ 8.77 (d, *J* = 9.0 Hz, 2H), 8.37 (s, 1H), 8.00 (d, *J* =

* **NMR (CDCB, 500 MHz)** : 0.8.77 (d, J = 9.0 Hz, 2H), 8.37 (s, 1H), 8.00 (d, J = 8.5 Hz, 2H), 7.54-7.45 (m, 4H), 2.52-2.47 (m, 1H), 1.49-1.45 (m, 2H), 0.85-0.82 (m, 2H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 134.9, 131.8, 131.6, 129.0, 126.5, 126.1, 125.1, 124.9, 10.6, 9.5

HRMS (APCI/DIP) Calc'd for C₁₇H₁₄ [M]⁺: 218.10900; found 218.10900

Ph Tp

Synthesized by Method A

1p: Colourless oil (74% yield, 489 mg)

¹**H NMR (CDCl₃, 400 MHz)** : δ 7.32–7.26 (m, 4H), 7.20–7.15 (m, 1H), 1.43 (s, 3H), 0.93–0.87 (m, 2H), 0.76–0.73 (m, 2H)

¹³C NMR (CDCl₃, 100.6 MHz) : δ 147.2, 128.3, 126.8, 125.6, 25.9, 19.9, 15.8

Data matches with literature reported values (D. Cheng, D. Huang, Y. Shi, Org. Biomol. Chem. 2013, 11, 5588.)

1s

Synthesized by Method A

1s: Light yellow oil (99% yield, 625 mg)

¹**H NMR (CDCl₃, 400 MHz)** : δ 7.33–7.26 (m, 1H), 7.18–7.09 (m, 3H), 3.21 (dd, *J* = 16.9, 6.7 Hz, 1H), 2.96 (d, *J* = 16.7 Hz, 1H), 2.41–2.36 (m, 1H), 1.90–1.84 (m, 1H), 1.08 (td, *J* = 8.0, 4.3 Hz, 1H), 0.06 (q, J = 3.9 Hz, 1H)

¹³C NMR (CDCl₃, 100.6 MHz) : δ 147.2, 142.0, 126.0, 125.56, 125.46, 123.5, 35.6, 24.0, 16.9, 16.1

Data matches with literature reported values (J. C. Lorenz, J. Long, Z. Yang, S. Xue, Y. Xie, Y. Shi, *J. Org. Chem.* 2004, **69**, 327-334.)

(b) Preparation of nitrile substrates 1j-m

This procedure follows the procedure of a previously reported literature.³ To a stirred suspension of NaH (60% in mineral oil, 2.4 g, 60 mmol, 3 equiv) in DMF (10 mL) at 0 °C was added a solution of benzyl cyanide (2.3 g, 20 mmol, 1 equiv) in DMF (10 mL) dropwise. The resultant mixture was stirred for 15 minutes at the same temperature. A solution of 1,2-dibromoethane (2.6 mL, 30 mmol, 1.5 equiv) in DMF (10 mL) was then added dropwise and the resultant mixture was stirred at the same temperature for an additional 18 hours. The reaction was quenched with H₂O (150 mL) and the aqueous layer was extracted with diethyl ether (3 × 100 mL). The combined organic layer was washed with brine (50 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/diethyl ether to yield **1j-m**.

1j: Light brown solid (89% yield, 3162 mg) m.p.: 53–54 °C $R_f = 0.17$ (*n*-hexane : diethyl ether = 8 :1) IR (KBr): 3061 (w), 2237 (w), 1638 (m), 803 (w), 507 (w) ¹H NMR (CDCl₃, 500 MHz) : δ 7.31 (d, *J* = 8.5 Hz, 2H), 7.22 (d, *J* = 8.5 Hz, 2H), 1.74–1.72 (m, 2H), 1.39–1.36 (m, 2H) ¹³C NMR (CDCl₃, 125.7 MHz) : δ 134.7, 133.7, 129.1, 127.3, 122.2, 18.3, 13.5 HRMS (APCI/DIP) Calc'd for C₁₀H₈ClN [M+H]⁺: 178.04180; found 178.04209

1k: Light yellow solid (89% yield, 3953 mg)
m.p.: 84–86 °C
R_f = 0.17 (*n*-hexane : diethyl ether = 8 :1)
IR (KBr): 3061 (w), 2361 (w), 2234 (w), 1641 (m), 1490 (w), 1073 (m)
¹H NMR (CDCl₃, 500 MHz) : δ 7.47 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.5 Hz, 2H),

1.75–1.72 (m, 2H), 1.39–1.37 (m, 2H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 135.3, 132.1, 127.6, 122.2, 121.7, 18.4, 13.6 HRMS (APCI/DIP) Calc'd for C₁₀H₈BrN [M+H]⁺: 221.99129; found 221.99130

11: yellow solid (83% yield, 3124 mg) m.p.: 153-155 °CR_f = 0.16 (*n*-hexane : diethyl ether = 2 :1) IR (KBr): 3060 (w), 2361 (w), 1637 (m), 1514 (w), 1347 (w) ¹H NMR (CDCl₃, 500 MHz) : δ 8.22 (d, *J* = 9.0 Hz, 2H), 7.43 (d, *J* = 8.5 Hz, 2H), 1.92–1.90 (m, 2H), 1.55–1.53 (m, 2H) ¹³C NMR (CDCl₃, 125.7 MHz) : δ 147.3, 143.7, 126.1, 124.3, 121.3, 20.1, 14.2 HRMS (APCI/DIP) Calc'd for C₁₀H₈N₂O₂ [M+H]⁺: 189.06584; found 189.06584

1m

1m: Light yellow solid (86% yield, 3324 mg)

m.p.: 42–44 °C

 $R_f = 0.20$ (*n*-hexane : diethyl ether = 8 :1)

IR (KBr): 3061 (w), 2361 (w), 2340 (w), 1639 (m), 1083 (w)

¹**H NMR (CDCl₃, 500 MHz)** : δ 7.84–7.82 (m, 4H), 7.54–7.48 (m, 2H), 7.32 (dd, *J* = 9.0, 2.0 Hz, 1H), 1.80–1.78 (m, 2H), 1.52–1.50 (m, 2H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 133.3, 133.2, 132.6, 129.0, 127.8, 127.7, 126.8, 126.4, 125.2, 123.1, 122.7, 18.2, 14.1

HRMS (APCI/DIP) Calc'd for C₁₄H₁₁N [M+H]⁺: 194.09643; found 194.09634

NC CN
$$\frac{K_2CO_3, \text{ TBAB, } (CH_2Br)_2}{\text{THF, DMF}}$$
 NC CN 1n

To a solution of THF (6 mL) and DMF (0.2 mL), K_2CO_3 (2.1 g, 15 mmol, 1 equiv), malononitrile (990 mg, 15 mmol, 1 equiv), 1,2-dibromoethane (1.3 mL, 15 mmol, 1 equiv) and tetrabutylammonium bromide (193 mg, 0.6 mmol, 0.04 equiv) were added and the resultant mixture was stirred for 3 days. The reaction mixture was then diluted with H₂O (20 mL) and ethyl acetate (20 mL). The aqueous solution was extracted with ethyl acetate (3 × 20 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with dichloromethane/*n*-hexane to yield **1n** as light yellow oil (21% yield, 290 mg).

R_f = 0.33 (dichloromethane/*n*-hexane = 2 : 1) **IR (KBr)**: 3059 (w), 1642 (m), 1079 (m) ¹**H NMR (CDCl₃, 400 MHz)** : δ 1.82 (s) ¹³**C NMR (CDCl₃, 100.6 MHz)** : δ 115.3, 18.7, -1.2 **HRMS (EI)** Calc'd for C₅H₄N₂ [M]⁺: 92.0369; found 92.03698

(c) Preparation of hydroxyl substrates 1t-y

This procedure follows the procedure of a previously reported literature.³

To a stirred suspension of NaH (60% in mineral oil, 2.4 g, 60 mmol, 3 equiv) in DMF (10 mL) at 0 °C was added a solution of benzyl cyanide (2.3 g, 20 mmol, 1 equiv) in DMF (10 mL) dropwise. The resultant mixture was stirred for 15 minutes at the same temperature. A solution of 1,2-dibromoethane (2.6 mL, 30 mmol, 1.5 equiv) in DMF (10 mL) was then added dropwise and the resulting mixture was stirred at the same temperature for an additional 18 hours. The reaction was quenched with H₂O (150 mL) and the aqueous layer was extracted with diethyl ether (3 × 100 mL). The combined organic layer was washed with brine (50 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/diethyl ether (5:1) to yield **S1** as colourless oil.

1-phenylcyclopropanecarbonitrile **S1** was refluxed in aqueous LiOH (4 M) for 18 hours. The reaction mixture was cooled and aqueous HCl (5 M) was added until the pH < 1. The aqueous layer was extracted with ethyl acetate (3×20 mL). The combined organic layer was washed with brine (30 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude product **S2** was used directly in the next step without further purification.

To a solution of 1-phenylcyclopropanecarboxylic acid **S2** in MeOH (20 mL) was added catalytic amount of H_2SO_4 (0.1 mL) and the resultant mixture was heated at reflux for 18 hours. Upon completion, saturated aqueous NaHCO₃ was added until pH = 8. The aqueous layer was extracted with ethyl acetate (3 × 20 mL). The combined organic layer was washed with brine (30 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product **S3** was used directly in the next step without further purification.

To a solution of mixture of S2 and S3 (~3 mmol combined) in diethyl ether (15 mL)

was added the corresponding Grignard reagent (MeMgBr or PhMgBr) (3 M in diethyl ether, 4 mL, 12 mmol, 4 equiv) at 0 °C. The mixture was allowed to stir overnight at the same temperature. The reaction was then quenched by saturated aqueous NH₄Cl solution (20 mL) and the aqueous layer was extracted by diethyl ether (3×20 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/diethyl ether to yield **1t** and **1u**.

1t: White solid m.p.: 50–51 °C $R_f = 0.33$ (*n*-hexane : diethyl ether = 2 :1) IR (KBr): 3427 (s), 2361 (w), 1640 (m), 1083 (m) ¹H NMR (CDCl₃, 500 MHz) : δ 7.40–7.39 (m, 2H), 7.29–7.26 (m, 2H), 7.23–7.20 (m, 1H), 1.20 (s, 6H), 1.03–1.01 (m, 2H), 0.71–0.69 (m, 2H) ¹³C NMR (CDCl₃, 125.7 MHz) : δ 144.1, 132.1, 127.8, 126.7, 71.5, 35.3, 27.9, 9.3 HRMS (ESI) Calc'd for C₁₂H₁₆O [M+Na]⁺: 199.10934; found 199.10941

1u: White solid

m.p.: 112–114 °C

 $R_f = 0.47$ (*n*-hexane : diethyl ether = 8 :1)

IR (KBr): 3452 (s), 1637 (m), 701 (w)

¹**H NMR (CDCl₃, 500 MHz)** : δ 7.61 (d, *J* = 7.5 Hz, 4H), 7.39 (d, *J* = 7.0 Hz, 2H), 7.30–7.26 (m, 4H), 7.23–7.20 (m, 2H), 7.16–7.10 (m, 3H), 2.46 (s, 1H), 0.98–0.89 (m, 4H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 144.5, 142.6, 132.8, 128.2, 127.9, 127.6, 127.2, 126.9, 80.8, 33.7, 10.0

HRMS (ESI) Calc'd for C₂₂H₂₀O [M+Na]⁺: 323.14064; found 323.14064

To a solution of the corresponding cyclopropyl methyl ketone (5 mmol) in diethyl ether (20 mL) was added MeMgBr (3 M in diethyl ether, 3.3 mL, 10 mmol, 2 equiv) at 0 °C. The resultant mixture was allowed to stir overnight at the same temperature. The reaction was then quenched by saturated aqueous NH₄Cl solution (20 mL) and the aqueous layer was extracted by diethyl ether (3×20 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, filtered, and *carefully dried with rotavap at ~10 mbar in a 25 °C water bath* due to the volatility of the product. The products **1v** and **1w** were then used directly in the next step without further purification.

1v: Colourless oil (83% yield, 416 mg) $R_f = 0.50$ (*n*-hexane : ethyl acetate = 3 :1) **IR (KBr)**: 3426 (s), 1642 (m), 1079 (m) ¹**H NMR (CDCl₃, 500 MHz)** : δ 1.18 (s, 6H), 0.95 (tt, *J* = 8.5, 5.5 Hz, 1H), 0.39–0.36 (m, 2H), 0.32–0.29 (m, 2H) ¹³**C NMR (CDCl₃, 125.7 MHz)** : δ 69.9, 28.6, 22.5, 1.1 **HRMS (APCI)** Calc'd for C₆H₁₂O [M+H]⁺: 101.09638; found 101.09609

1w: Colourless oil (84% yield, 480 mg)
R_f = 0.57 (*n*-hexane : ethyl acetate = 3 :1)
IR (KBr): 3444 (s), 2360 (w), 1638 (m)
¹H NMR (CDCl₃, 500 MHz) : δ 1.21 (s, 6H), 1.07 (s, 3H), 0.60 (br, 2H), 0.17 (br, 2H)
¹³C NMR (CDCl₃, 125.7 MHz) : δ 71.7, 27.2, 24.1, 21.6, 10.1

HRMS (ESI) Calc'd for C₁₂H₁₆O [M+Na+H₂O]⁺: 155.10425; found 155.10423

The synthesis of cyclopropyl ketone starting material follows a literature reported procedure.⁴

The cyclopropyl ketone (4.3 mmol, 1 equiv) was dissolved in diethyl ether (20 mL), and NaBH₄ (325 mg, 2 equiv) was added at 0 °C and stir at room temperature overnight. The reaction was then quenched by saturated aqueous NH₄Cl (20 mL), and the aqueous solution was extracted with ethyl acetate (3 × 20 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/ethyl acetate (3:1) to yield the diastereomers **1x** and **1x'** as colourless gel (combined 88% yield, 849 mg)

 $R_f = 0.50$ (*n*-hexane : ethyl acetate = 3 :1)

IR (KBr): 3396 (s), 1603 (w), 1495 (w), 698 (w)

¹**H NMR (CDCl₃, 500 MHz)** : δ 7.45 (d, J = 7.5 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.34–7.28 (m, 3H), 7.17 (t, J = 7.5 Hz, 1H), 7.10 (d, J = 7.5 Hz, 2H), 4.31 (d, J = 8.0 Hz, 1H), 2.12–2.08 (m, 1H), 1.57 (tt, J = 8.0, 5.0 Hz, 1H), 1.09 (dt, J = 9.0, 5.5 Hz, 1H), 1.00 (dt, J = 9.0, 5.5 Hz, 1H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 143.5, 142.4, 128.6, 128.5, 127.8, 126.2, 126.0, 125.8, 77.6, 30.8, 22.0, 13.7

HRMS (ESI) Calc'd for C₁₆H₁₆O [M+Na]⁺: 247.10934; found 247.10933

 $R_f = 0.40$ (*n*-hexane : ethyl acetate = 3 :1)

IR (KBr): 3398 (s), 1600 (w), 1490 (w), 705 (w)

¹**H NMR (CDCl₃, 500 MHz)** : δ 7.46–7.44 (m, 2H), 7.38–7.35 (m, 2H), 7.29 (tt, *J* = 7.5, 1.5 Hz, 1H), 7.25–7.22 (m, 2H), 7.15 (tt, *J* = 7.0, 1.5 Hz, 1H), 7.03–7.02 (m, 2H), 4.38 (d, *J* = 7.5 Hz, 1H), 2.07 (br, 1H), 2.03–1.99 (m, 1H), 1.58–1.53 (m, 1H), 1.20 (dt, *J* = 9.0, 5.5 Hz, 1H), 1.07 (dt, *J* = 8.5, 5.0, 1H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 143.6, 142.2, 128.6, 128.4, 127.8, 126.2, 126.1, 125.8, 76.9, 30.2, 21.1, 13.7

HRMS (ESI) Calc'd for C₁₆H₁₆O [M+Na]⁺: 247.10934; found 247.10932

The synthesis of cyclopropyl ketone starting material follows a literature reported procedure.⁴

The cyclopropyl ketone (2.1 mmol, 1 equiv) was dissolved in diethyl ether (10 mL), and MeMgBr (3 M in diethyl ether, 1.4 mL, 4.2 mmol, 2 equiv) was added at 0 °C. The resultant mixture was stirred at room temperature overnight. The reaction was then quenched by saturated aqueous NH₄Cl (20 mL), and the aqueous solution was extracted with ethyl acetate (3×20 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/ethyl acetate (1:1) to yield **1y** as a colourless thick oil. (92% yield, 341 mg)

R_f = 0.33 (*n*-hexane : diethyl ether = 1 :1) **IR (KBr)**: 3442 (s), 1642 (m), 1076 (m) ¹**H NMR (CDCl₃, 500 MHz)** : δ 7.27 (t, J = 7.5 Hz, 2H), 7.16 (t, J = 7.5 Hz, 1H), 7.11 (d, J = 7.5, 2H), 1.98–1.94 (m, 1H), 1.43 (br, 1H), 1.31–1.25 (m, 7H), 1.05 (dt, J= 9.0, 5.5 Hz, 1H), 0.89–0.85 (m, 1H) ¹³**C NMR (CDCl₃, 125.7 MHz)** : δ 143.3, 128.4, 126.1, 125.6, 69.6, 34.2, 29.2, 29.1,

19.3, 11.8

HRMS (ESI) Calc'd for C₁₂H₁₆O [M+Na]⁺: 199.10934; found 199.10953

(C) Procedures for Hydro- and Deuterio-bromination

Note and caution: While the reaction can be conducted in ambient condition, the reaction flask must be placed in the fume cupboard at all time before quenched by saturated NaHCO₃ solution. For better reproducibility of results, BBr₃ should be added at last, and the reaction flask had to be placed in a 0 °C ice bath when adding BBr₃. The BBr₃ solution (1 M in CH₂Cl₂) was added along the inner wall of the reaction flask in one portion either by a 1 mL or 5 mL autopipette regardless of the scale. The use of apparatus with stainless steel parts (e.g. syringe) is highly discouraged as BBr₃ can dissolve the stainless steel needle quickly, which will affect the reproducibility. It is critical to ensure the reaction mixture is being vigorously stirred.

Br 2a

To a solution of CH₂Cl₂ (3.75 mL) in a 25 mL round-bottom flask with a magnetic stirrer bar, **1a** (122 mg, 130 μ L, 1 mmol, 1 equiv) and *t*-BuOH (143 μ L, 1.5 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 1.25 mL, 1.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 1 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 20 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/diethyl ether (50:1) to yield **2a** as colourless oil (77% yield, 153 mg).

R_f = 0.57 (*n*-hexane : diethyl ether = 50 :1) **IR (KBr)**: 3062 (w), 3026 (m), 2938 (w), 1495 (w), 1435 (w), 1242 (w), 744 (s), 699 (s)

¹H NMR (CDCl₃, 500 MHz) : δ 7.33–7.30 (m, 2H), 7.24–7.21 (m, 3H), 3.41 (t, *J* = 7.0 Hz, 2H), 2.80 (t, *J* = 7.0 Hz, 2H), 2.19 (quint, *J* = 7.0 Hz)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 140.7, 128.7, 128.6, 126.3, 34.3, 34.1, 33.2 HRMS (EI) Calc'd for C₉H₁₁Br [M]⁺: 198.0039; found 198.0037

NMR data matches with authentic sample.

To a solution of CH₂Cl₂ (1.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1b** (39.4 mg, 0.2 mmol, 1 equiv) and *t*-BuOH (28.5 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 25 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/diethyl ether (40:1) to yield **2b** as light yellow oil (70% yield, 38.9 mg).

R_f = 0.70 (*n*-hexane : diethyl ether = 40 :1) **IR (KBr)**: 3451 (s), 2069 (w), 1637 (m) ¹**H NMR (CDCl₃, 500 MHz)** : δ 7.41 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 3.38 (t, J = 6.5 Hz, 2H), 2.74 (t, J = 7.5 Hz, 2H), 2.14 (quint, J = 7.0 Hz, 2H) ¹³**C NMR (CDCl₃, 125.7 MHz)** : δ 139.6, 131.7, 130.5, 120.1, 34.0, 33.5, 32.9 **HRMS (EI)** Calc'd for C₉H₁₀Br₂ [M]⁺: 277.9123; found 277.9119

To a solution of CH₂Cl₂ (1.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1c** (30.5 mg, 0.2 mmol, 1 equiv) and *t*-BuOH (28.5 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 17 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/diethyl ether (50:1) to yield **2c** as colourless oil (54% yield, 25.2 mg).

R_f = 0.53 (*n*-hexane : diethyl ether = 50 :1) **IR (KBr)**: 3061 (w), 2084 (w), 1644 (m), 1087 (m) ¹**H NMR (CDCl₃, 500 MHz)** : δ 7.27 (d, *J* = 8.5 Hz, 2H), 7.13 (d, *J* = 8.5 Hz, 2H), 3.38 (t, *J* = 6.5 Hz, 2H), 2.76 (t, *J* = 7.5 Hz, 2H), 2.14 (quint, *J* = 7.0 Hz, 2H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 139.1, 132.1, 130.0, 128.8, 34.1, 33.4, 32.9 HRMS (EI) Calc'd for C₉H₁₀BrCl [M]⁺: 233.9627; found 233.9627

To a solution of CH₂Cl₂ (1.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1d** (37.2 mg, 0.2 mmol, 1 equiv) and *t*-BuOH (28.5 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The mixture was allowed to stir for 44 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/diethyl ether (40:1) to yield **2d** as colourless oil (53% yield, 28.3 mg).

 $R_f = 0.60$ (*n*-hexane : diethyl ether = 40 :1)

IR (KBr): 3060 (w), 2076 (w), 1637 (m), 1328 (w)

¹**H NMR (CDCl₃, 500 MHz)** : δ 7.48–7.45 (m, 2H), 7.43–7.39 (m, 2H), 3.40 (t, *J* = 6.5 Hz, 2H), 2.85 (t, *J* = 7.5 Hz, 2H), 2.19 (quint, *J* = 7.0 Hz, 2H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 141.6, 132.1, 131.0 (q, J = 32.2 Hz), 129.1, 125.3 (q, J = 3.9 Hz), 124.3 (q, J = 272.4 Hz), (Two of the peaks are overlapped, only the peak at 127.5 and 121.0 ppm are observed), 123.3 (q, J = 3.6 Hz), 34.0, 33.9, 32.8 ¹⁹F NMR (CDCl₃, 470.6 MHz) : δ –62.6 (s)

HRMS (APCI/DIP) Calc'd for C₁₀H₁₀BrF₃ [M+H]⁺: 265.99125; found 265.99113

OCF₃ 2e

To a solution of CH₂Cl₂ (1.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1e** (40.4 mg, 0.2 mmol, 1 equiv) and *t*-BuOH (28.5 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 40 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/diethyl ether (40:1) to yield **2e** as colourless oil (69% yield, 39.1 mg). $R_f = 0.43$ (*n*-hexane : diethyl ether = 40 :1)

IR (KBr): 3062 (w), 2084 (w), 1643 (m), 1259 (m), 1161 (w), 1083 (w) ¹**H NMR (CDCl₃, 500 MHz)** : δ 7.32 (t, *J* = 7.5 Hz, 1H), 7.14 (d, *J* = 7.5 Hz, 1H), 7.08–7.06 (m, 2H), 3.39 (t, *J* = 6.5 Hz, 2H), 2.81 (t, *J* = 7.5 Hz, 2H), 2.17 (quint, *J* = 7.0 Hz, 2H) ¹³**C NMR (CDCl₃, 125.7 MHz)** : δ 149.6, 143.0, 129.9, 127.1, 121.2, 120.6 (q, *J* = 256.9 Hz), 118.8, 33.9, 33.8, 32.8

¹⁹F NMR (CDCl₃, 470.6 MHz) : δ –57.7 (s)

HRMS (EI) Calc'd for C₁₀H₁₀BrF₃O [M]⁺: 281.9862; found 281.98602

To a solution of CH₂Cl₂ (1.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1f** (32.1 mg, 0.2 mmol, 1 equiv) and *t*-BuOH (28.5 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 15 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **2f** as yellow oil (83% yield, 40.0 mg).

R_f = 0.70 (*n*-hexane : diethyl ether = 40 :1) **IR (KBr)**: 3060 (w), 2962 (s), 1634 (m), 1459 (m), 758 (m), 562 (w) ¹**H NMR (CDCl₃, 500 MHz)** : δ 7.31–7.30 (m, 1H), 7.25–7.21 (m, 1H), 7.17–7.12 (m, 2H), 3.47 (t, J = 6.5 Hz, 2H), 3.20 (septet, J = 7.0 Hz, 1H), 2.84 (t, J = 7.5 Hz, 2H), 2.15 (quint, J = 7.5 Hz, 2H), 1.27 (d, J = 7.0 Hz, 6H) ¹³**C NMR (CDCl₃, 125.7 MHz)** : δ 146.8, 137.4, 129.6, 126.8, 125.8, 125.6, 34.5, 33.6, 31.2, 28.7, 24.2 **HRMS (EI)** Calc'd for C₁₂H₁₇Br [M]⁺: 240.0508; found 240.0505

To a solution of CH_2Cl_2 (0.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, 1g (43.7 mg, 0.2 mmol, 1 equiv) and H_2O (5.4 μ L, 0.3 mmol, 1.5 equiv) were

added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 12 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **2g** as a brown solid (quantitative yield, 59.8 mg).

m.p.: 72–74 °C

 $R_f = 0.60$ (*n*-hexane : diethyl ether = 40 :1)

IR (KBr): 3060 (w), 2084 (w), 1643 (m), 1079 (m)

¹**H NMR (CDCl₃, 500 MHz)** : δ 8.38 (s, 1H), 8.31 (d, *J* = 9.0 Hz, 2H), 8.03 (d, *J* = 8.5 Hz, 2H), 7.57–7.54 (m, 2H), 7.51–7.48 (m, 2H), 3.80 (t, *J* = 8.0 Hz, 2H), 3.62 (t, *J* = 6.5 Hz, 2H), 2.42–2.36 (m, 2H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 133.1, 131.7, 129.8, 129.4, 126.3, 125.9, 125.0, 124.2, 34.2, 34.0, 26.5

HRMS (APCI/DIP) Calc'd for C₁₇H₁₅Br [M+H]⁺: 299.04299; found 299.04306

To a solution of CH₂Cl₂ (3.75 mL) in a 25 mL round-bottom flask with a magnetic stirrer bar, **1h** (146.1 mg, 1.0 mmol, 1 equiv) and *t*-BuOH (143 μ L, 1.5 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 1.25 mL, 1.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 18 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 20 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/diethyl ether (8:1) to yield **2h** as yellow oil (90% yield, 204 mg)

 $R_f = 0.37$ (*n*-hexane : diethyl ether = 8 :1)

IR (KBr): 3060 (w), 2084 (m), 1644 (m), 1225 (w), 1077 (m) ¹**H NMR (CDCl₃, 500 MHz)** : δ 7.99–7.97 (m, 2H), 7.57 (tt, *J* = 7.5, 1.5 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 3.55 (t, *J* = 6.5 Hz, 2H), 3.19 (t, *J* = 7.0 Hz, 2H), 2.31 (quint, *J* = 6.5 Hz, 2H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 199.0, 136.8, 133.4, 128.8, 128.1, 36.7, 33.8, 27.0 HRMS (APCI/DIP) Calc'd for C₁₀H₁₁BrO [M+H]⁺: 227.00660; found 227.00668

To a solution of CH₂Cl₂ (1.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1i** (35.2 mg, 0.2 mmol, 1 equiv) and *t*-BuOH (28.5 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The mixture was allowed to stir for 15 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/diethyl ether (8:1) to yield **2i** as yellow oil (81% yield, 41.7 mg).

 $R_f = 0.27$ (*n*-hexane : diethyl ether = 8 :1)

IR (KBr): 3060 (w), 2092 (w), 1643 (m), 1078 (w)

¹**H NMR (CDCl₃, 500 MHz)** : δ 7.97 (dt, *J* = 9.5, 2.5 Hz, 2H), 6.96–6.93 (m, 2H), 3.88 (s, 3H), 3.55 (t, *J* = 6.5 Hz, 2H), 3.13 (t, *J* = 7.0 Hz, 2H), 2.30 (quint, *J* = 6.5 Hz, 2H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 197.5, 163.7, 130.5, 130.0, 113.9, 55.6, 36.3, 33.9, 27.2

HRMS (APCI/DIP) Calc'd for C₁₁H₁₃BrO₂ [M+H]⁺: 257.01717; found 257.01712

To a solution of CH_2Cl_2 (0.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1j** (35.5 mg, 0.2 mmol, 1 equiv) and H₂O (5.4 µL, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 µL, 0.25 mmol, 1.25 equiv) was added into the mixture. The mixture was allowed to stir for 18 h at 22 °C and then quenched at 0 °C by saturated NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **2j** as yellow oil (quantitative yield, 51.9 mg).

 $R_f = 0.33$ (*n*-hexane : diethyl ether = 3 :1)

IR (KBr): 3060 (w), 2243 (w), 1643 (w), 1492 (m), 1249 (m), 1093 (m), 823 (m) ¹**H NMR (CDCl₃, 500 MHz)** : δ 7.38 (dt, J = 9.0, 2.5 Hz, 2H), 7.31 (dt, J = 9.0, 2.5 Hz, 2H), 4.12 (t, J = 7.5 Hz, 1H), 3.54 (ddd, J = 10.5, 8.0, 5.0 Hz, 1H), 3.35 (ddd, J =

10.5, 6.5, 5.0 Hz, 1H), 2.51–2.44 (m, 1H), 2.34–2.27 (m, 1H) ¹³C NMR (CDCl₃, 125.7 MHz) : δ 134.7, 132.8, 129.7, 128.9, 119.6, 38.2, 35.1, 29.2 HRMS (APCI/DIP) Calc'd for C₁₀H₉BrClN [M+H]⁺: 259.96573; found 259.96577

To a solution of CH₂Cl₂ (0.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1k** (44.4 mg, 0.2 mmol, 1 equiv) and H₂O (5.4 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The mixture was allowed to stir for 18 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **2k** as colourless oil (quantitative yield, 60.6 mg).

 $R_f = 0.33$ (*n*-hexane : diethyl ether = 3 :1)

IR (KBr): 3056 (w), 2243 (w), 1642 (m), 1488 (w), 1073 (m), 817 (w) ¹H NMR (CDCl₃, 500 MHz) : δ 7.54 (dt, J = 9.0, 2.5 Hz, 2H), 7.25 (dt, J = 9.0, 2.0 Hz, 2H), 4.11 (t, J = 7.5 Hz, 1H), 3.54 (ddd, J = 10.5, 7.5, 5.0 Hz, 1H), 3.35 (ddd, J = 10.5, 7.0, 5.0 Hz, 1H), 2.50–2.44 (m, 1H), 2.34–2.27 (m, 1H) ¹³C NMR (CDCl₃, 125.7 MHz) : δ 133.3, 132.6, 129.2, 122.8, 119.5, 38.1, 35.2, 29.2 HRMS (APCI/DIP) Calc'd for C₁₀H₉Br₂N [M+H]⁺: 303.91543; found 303.91536

To a solution of CH₂Cl₂ (0.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **11** (37.6 mg, 0.2 mmol, 1 equiv) and H₂O (5.4 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The mixture was allowed to stir for 44 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/ethyl acetate (3:1) to yield **2l** as light yellow thick oil (83% yield, 44.7 mg). $R_f = 0.37$ (*n*-hexane : ethyl acetate = 3 :1)

IR (KBr): 3059 (w), 1643 (w), 1519 (m), 1344 (m), 849 (w), 695 (w)

¹**H NMR (CDCl₃, 500 MHz)** : δ 8.28 (dt, *J* = 9.5, 2.5 Hz, 2H), 7.59 (dt, *J* = 9.0, 2.5 Hz, 2H), 4.3 (dd, *J* = 8.5, 7.0 Hz, 1H), 3.59 (ddd, *J* = 10.5, 8.5, 5.0 Hz, 1H), 3.42–3.38 (m, 1H), 2.57–2.50 (m, 1H), 2.39–2.32 (m, 1H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 148.1, 141.4, 128.7, 124.7, 118.7, 38.1, 35.6, 29.0 HRMS (APCI/DIP) Calc'd for C₁₀H₉BrN₂O₂ [M+H]⁺: 268.99202; found 268.99220

To a solution of CH₂Cl₂ (0.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1m** (38.7 mg, 0.2 mmol, 1 equiv) and H₂O (5.4 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The mixture was allowed to stir for 17 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **2m** as yellow oil (quantitative yield, 54.9 mg).

 $R_f = 0.33$ (*n*-hexane : diethyl ether = 3 :1)

IR (KBr): 3057 (w), 2241 (w), 1508 (w), 1432 (w), 818 (m), 749 (m), 478 (m) ¹**H NMR (CDCl₃, 500 MHz)** : δ 7.90–7.85 (m, 4H), 7.57–7.52 (m, 2H), 7.43 (dd, J =8.5, 1.5 Hz, 1H), 4.30 (t, J = 7.5 Hz, 1H), 3.57 (ddd, J = 10.5, 8.0, 5.5 Hz, 1H), 3.38 (ddd, J = 10.5, 6.5, 5.5 Hz, 1H), 2.60–2.53 (m, 1H), 2.47–2.40 (m, 1H) ¹³**C NMR (CDCl₃, 125.7 MHz)** : δ 133.3, 133.1, 131.5, 129.5, 128.0, 127.9, 127.0, 126.9, 126.8, 124.7, 120.0, 38.2, 35.8, 29.5

HRMS (APCI/DIP) Calc'd for C₁₄H₁₂BrN [M+H]⁺: 274.02259; found 274.02246

To a solution of CH₂Cl₂ (1.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1n** (18.4 mg, 0.2 mmol, 1 equiv) and *t*-BuOH (28.5 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture in one portion by autopipette. The mixture was allowed to stir for 65 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer

was extracted by CH_2Cl_2 (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residual solid was washed with *n*-hexane (3 × 5 mL) and dried under vacuum to yield **2n** as light yellow solid (65% yield, 22.5 mg).

m.p.: 83-85 °C

IR (KBr): 3060 (w), 1638 (w) ¹H NMR (CDCl₃, 500 MHz) : δ 4.16 (t, J = 7.5 Hz, 1H), 3.61 (t, J = 6.0 Hz, 2H), 2.57 (dt, J = 7.5, 6.0 Hz, 2H) ¹³C NMR (CDCl₃, 125.7 MHz) : δ 111.7, 33.5, 27.2, 21.7 HRMS (EI) Calc'd for C₅H₅BrN₂ [M]⁺: 171.9631; found 171.96311

To a solution of CH₂Cl₂ (8.75 mL) in a 25 mL round-bottom flask with a magnetic stirrer bar, **10** (158.2 mg, 1.0 mmol, 1 equiv) and *t*-BuOH (143 μ L, 1.5 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 1.25 mL, 1.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 18 h at 22 °C and then quenched at 0 °C by saturated NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 20 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **20** as light yellow oil (quantitative yield, 239.0 mg).

R_f = 0.53 (*n*-hexane : diethyl ether = 1 :1) **IR (KBr)**: 3058 (w), 1734 (m), 1646 (m), 1216 (w), 1086 (m) ¹**H NMR (CDCl₃, 500 MHz)** : δ 3.75 (s, 6H), 3.69 (t, J = 7.5 Hz, 1H), 3.44 (t, J = 6.5 Hz, 2H), 2.43 (q, J = 6.5 Hz, 2H) ¹³**C NMR (CDCl₃, 125.7 MHz)** : δ 169.1, 52.9, 49.9, 31.6, 30.4 **HRMS (ESI)** Calc'd for C₇H₁₁BrO₄ [M+Na]⁺: 260.97329; found 260.97329

To a solution of CH_2Cl_2 (1.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1p** (26.4 mg, 0.2 mmol, 1 equiv) and *t*-BuOH (28.5 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25

mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 1 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/diethyl ether (40:1) to yield **2p** as colourless oil (52% yield, 22.2 mg).

 $R_f = 0.70$ (*n*-hexane: diethyl ether = 40 :1)

IR (KBr): 3060 (w), 1641 (m), 1083 (m), 762 (w), 700 (w)

¹H NMR (CDCl₃, 500 MHz) : δ 7.33–7.31 (m, 2H), 7.24–7.21 (m, 3H), 3.35–3.31 (m, 1H), 3.23–3.18 (m, 1H), 2.97 (sextet, *J* = 7.0 Hz, 1H), 2.13 (q, *J* = 7.0 Hz, 2H), 1.3 (d, *J* = 7.0 Hz, 3H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 145.6, 128.7, 127.2, 126.5, 41.2, 38.4, 32.3, 21.9 HRMS (EI) Calc'd for C₁₀H₁₃Br [M]⁺: 212.0195; found 212.0191

Br Br

To a solution of CH₂Cl₂ (1.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1q** (27.0 mg, 0.2 mmol, 1 equiv) and H₂O (5.4 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 23 h at 22 °C. Due to the low boiling point of **2q**, CH₂Br₂ (10 μ L, 0.143 mmol) was added as internal standard, and 100 μ L of reaction mixture was extracted and added to 400 μ L of CD₂Cl₂ to perform the ¹H crude NMR analysis. By comparing with an authentic sample of **2q** in CD₂Cl₂, the yield of **2q** was determined to be 87%.

$$HO \xrightarrow{O} Br \rightarrow O$$

To a solution of CH₂Cl₂ (7.5 mL) in a 25 mL round-bottom flask with a magnetic stirrer bar, **1r** (172 mg, 2 mmol, 1 equiv) and H₂O (54 μ L, 3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 2.5 mL, 2.5 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 46 h at 22 °C. Product **2r** was formed as indicated by HMRS analysis on the crude mixture. The reaction was then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by ethyl acetate (3 × 20 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield γ -butylrolactone as a yellow oil (67% yield, 115 mg).

IR (KBr): 3057 (w), 1760 (s), 1641 (m), 1186 (s), 1037 (m) ¹H NMR (CDCl₃, 500 MHz) : δ 4.28 (t, J = 7.5 Hz, 2H), 2.42 (t, J = 8.5 Hz, 2H), 2.20 (quint, J = 7.5 Hz, 2H) ¹³C NMR (CDCl₃, 125.7 MHz) : δ 177.9, 68.6, 27.7, 22.1 HRMS (APCI/DIP) Calc'd for C₄H₆O₂ [M+H]⁺: 87.04406; found 87.04395

To a solution of CH₂Cl₂ (0.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1s** (26.0 mg, 0.2 mmol, 1 equiv) and H₂O (5.4 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 15 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **2s** as yellow oil (30% yield, 12.7 mg).

 $R_f = 0.50$ (*n*-hexane : diethyl ether = 20 :1)

¹**H NMR (CDCl₃, 500 MHz)** : δ 7.21–7.19 (m, 2H), 7.17–7.14 (m, 2H), 3.52 (d, *J* = 7.0 Hz, 2H), 3.15 (dd, *J* = 15.0, 7.5 Hz, 2H), 2.96–2.87 (m, 1H), 2.81 (dd, *J* = 16.0, 7.0 Hz, 2H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 142.2, 126.6, 124.8, 42.1, 38.5, 38.4 Data matches with literature reported values (Y. Bekkali, et al. *Bioorg. Med. Chem. Lett.* 2007, 17, 2465)

To a solution of CH_2Cl_2 (0.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1t** (35.5 mg, 0.2 mmol, 1 equiv) and H_2O (5.4 µL, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH_2Cl_2 , 250 µL, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 17 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH_2Cl_2 (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **2t** as colourless oil (81% yield, 51.7 mg). $R_f = 0.63$ (*n*-hexane : diethyl ether = 20 :1) **IR (KBr)**: 3059 (w), 2969 (w), 1641 (m), 1453 (w), 1102 (w), 702 (m) ¹H NMR (CDCl₃, 500 MHz) : δ 7.35–7.28 (m, 5H), 3.36–3.32 (m, 1H), 3.05–2.97 (m, 2H), 2.67–2.60 (m, 1H), 2.52–2.45 (m, 1H), 1.79 (s, 3H), 1.65 (s, 3H) ¹³C NMR (CDCl₃, 125.7 MHz) : δ 138.6, 129.7, 128.5, 127.7, 70.7, 57.2, 35.4, 34.7, 32.3, 32.2

*Difficulties with obtaining HRMS for this compound were addressed below.

To a solution of CH₂Cl₂ (0.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, 1u (60.1 mg, 0.2 mmol, 1 equiv) and H₂O (5.4 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 µL, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 17 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH_2Cl_2 (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield 2u as a light yellow solid (quantitative yield, 75.3) mg).

 $R_f = 0.60$ (*n*-hexane : diethyl ether = 40 :1)

m.p.: 96–98 °C

IR (**KBr**): 3059 (w), 2085 (w), 1644 (m), 1442 (w), 1076 (m), 698 (w) ¹H NMR (CDCl₃, 500 MHz) : δ 7.42–7.31 (m, 5H), 7.23–7.16 (m, 5H), 7.08–7.02 (m, 3H), 6.96–6.94 (m, 2H), 3.33 (t, *J* = 7.5 Hz, 2H), 3.09 (t, *J* = 7.5 Hz, 2H) ¹³C NMR (CDCl₃, 125.7 MHz) : δ 142.7, 142.4, 142.3, 140.6, 137.0, 130.5, 129.7, 129.4, 128.5, 128.3, 127.6, 127.2, 126.8, 126.3, 38.7, 31.3 **HRMS (APCI/DIP)** Calc'd for C₂₂H₁₉Br [M+H]⁺: 365.07249; found 365.07233

Br _____Br

To a solution of CH₂Cl₂ (0.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, 1v (20.0 mg, 0.2 mmol, 1 equiv) and H₂O (5.4 µL, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 µL, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 18 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The

organic layer was separated, and the aqueous layer was extracted by CH_2Cl_2 (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure carefully (~200 mbar, 25 °C water bath) to yield **2v** as light yellow oil (84% yield, 41.0 mg).

R_f = 0.60 (*n*-hexane : diethyl ether = 10 :1) **IR (KBr)**: 3059 (w), 2085 (w), 1637 (m) ¹**H NMR (CDCl₃, 500 MHz)** : δ 3.45 (t, J = 6.5 Hz, 2H), 2.15–2.09 (m, 2H), 1.94– 1.90 (m, 2H), 1.77 (s, 6H) ¹³**C NMR (CDCl₃, 125.7 MHz)** : δ 66.8, 46.0, 34.4, 33.6, 29.9 **Difficulties with obtaining HRMS for this compound were addressed below.*

To a solution of CH₂Cl₂ (0.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1w** (22.8 mg, 0.2 mmol, 1 equiv) and H₂O (5.4 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 18 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure carefully (~200 mbar, 25 °C water bath) to yield **2w** as light yellow oil (82% yield, 42.3 mg).

R_f = 0.63 (*n*-hexane : diethyl ether = 10 :1) **IR (KBr)**: 3057 (w), 2091 (w), 1640 (m), 1079 (m) ¹**H NMR (CDCl₃, 500 MHz)** : δ 3.60–3.56 (m, 1H), 3.42–3.36 (m, 1H), 2.33–2.28 (m, 1H), 1.79 (s, 3H), 1.75–1.72 (m, 5H), 1.05 (d, J = 6.0 Hz, 3H) ¹³**C NMR (CDCl₃, 125.7 MHz)** : δ 73.0, 44.9, 36.4, 32.9, 32.4, 32.3, 15.3 *Difficulties with obtaining HRMS for this compound were addressed below.

To a solution of CH_2Cl_2 (0.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, 1x or 1x' (44.9 mg, 0.2 mmol, 1 equiv) and H₂O (5.4 µL, 0.3 mmol, 1.5 equiv)

were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 15 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/diethyl ether (40:1) to yield **2x** as a mixture of diastereomers (1:0.8, 63% yield, 46.7 mg). Recrystallization from CHCl₃/hexane afforded the major diastereomer **2x** as a colourless crystal.

R_f = 0.33 (*n*-hexane : diethyl ether = 40 :1) m.p.: 120-121 °C **IR (KBr)**: 3059 (w), 2360 (w), 1636 (m), 759 (w) ¹H NMR (CDCl₃, 500 MHz) : δ 7.39–7.34 (m, 8H), 7.31–7.29 (m, 2H), 4.96 (t, J = 5.0 Hz, 2H), 2.45–2.38 (m, 2H), 2.32–2.26 (m, 2H) ¹³C NMR (CDCl₃, 125.7 MHz) : δ 141.7, 129.0, 128.7, 127.3, 54.4, 38.8 HRMS (EI) Calc'd for C₁₆H₁₆Br₂ [M]⁺: 367.9594; found 367.95902

To a solution of CH₂Cl₂ (0.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1y** (35.3 mg, 0.2 mmol, 1 equiv) and H₂O (5.4 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 15 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **2**y as yellow oil (83% yield, 53.0 mg).

 $R_f = 0.60$ (*n*-hexane : diethyl ether = 40 :1)

IR (KBr): 3059 (w), 2084 (w), 1643 (m), 1454 (w), 1102 (w)

¹**H NMR (CDCl₃, 500 MHz)** : δ 7.43 (d, J = 7.0 Hz, 2H), 7.37 (t, J = 8.0 Hz, 2H),

7.31 (t, *J* = 7.5 Hz, 1H), 4.96 (dd, *J* = 8.5, 6.5 Hz, 1H), 2.58–2.50 (m, 1H), 2.47–2.40 (m, 1H), 2.04 (ddd, *J* = 14.5, 11.5, 4.0 Hz, 1H), 1.79–1.73 (m, 7H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 141.9, 128.9, 128.6, 127.3, 66.5, 55.1, 45.9, 37.0, 34.7, 34.2

*Difficulties with obtaining HRMS for this compound were addressed below.

Issues with HRMS: Multiple attempts were made to obtain the HRMS of 2t, 2v, 2w, 2y by APCI/DIP, ESI and EI but none of the target molecules could be traced. We rationalized that the tertiary bromide could be easily eliminated (TLC also showed the partial elimination of 2t, 2v, 2w, 2y to their corresponding alkenes after left standing in CHCl₃). As a representative example, hydrobromination of 1t was repeated. After working up the reaction, DBU (36.5 mg, 0.24 mmol, 1.2 equiv) and THF (2 mL) were added and the resultant mixture was refluxed for 16 h. H₂O (5 mL) and CH₂Cl₂ (5 mL) were then added to the reaction mixture, and the organic layer was separated. Aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/diethyl ether (40:1) to yield 2t' as a colourless oil (64% yield over 2 steps, 30.6 mg).

 $R_f = 0.66$ (*n*-hexane : diethyl ether = 40 :1)

IR (KBr): 3057 (w), 2360 (m), (2340 (w), 1636 (w)

¹**H NMR (CDCl₃, 500 MHz)** : δ 7.32 (t, *J* = 7.5 Hz, 2H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 2H), 3.26 (t, *J* = 7.5 Hz, 2H), 2.93 (t, *J* = 7.5 Hz, 2H), 1.86 (s, 3H), 1.56 (s, 3H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 142.5, 132.1, 131.3, 129.1, 128.3, 126.5, 37.9, 31.5, 22.4, 20.5

HRMS (APCI/DIP) Calc'd for C₁₂H₁₅Br [M+H]⁺: 239.04299; found 239.04282

To a solution of CH₂Cl₂ (3.75 mL) in a 25 mL round-bottom flask with a magnetic stirrer bar, **1a** (118 mg, 1.0 mmol, 1 equiv) and *t*-BuOD (120 μ L, 1.25 mmol, 1.25 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 1.25 mL, 1.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 4 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 20 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/diethyl ether (50:1) to yield **2a-D** as colourless oil (75% yield, 94% D incorporation, 150.0 mg). The % D incorporation is

determined based on the integration of the residual peak relative to other peaks in ¹H NMR.

 $R_f = 0.57$ (*n*-hexane: diethyl ether = 50 :1)

IR (KBr): 3060 (w), 2096 (w), 1644 (m), 1494 (w), 1270 (w), 1214 (m), 1076 (m) ¹**H NMR (CDCl₃, 500 MHz)** : δ 7.33–7.30 (m, 2H), 7.24–7.21 (m, 3H), 3.41 (t, *J* = 6.5 Hz, 2H), 2.81–2.76 (m, 1H), 2.21–2.16 (m, 2H) ¹³**C NMR (CDCl₃, 125.7 MHz)** : δ 140.7, 128.7, 128.6, 126.3, 34.2, 33.7 (*J* = 19.6)

Hz), 33.2

HRMS (EI) Calc'd for C₉H₁₀DBr [M]⁺: 199.0101; found 199.0103

To a solution of CH₂Cl₂ (1.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1e** (40.4 mg, 0.2 mmol, 1 equiv) and D₂O (5.4 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 72 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/diethyl ether (40:1) to yield **2e-D** as colourless oil (65% yield, >99% D incorporation, 36.9 mg). The % D incorporation is determined based on the integration of the residual peak relative to other peaks in ¹H NMR. 6% of di-deuterated product on the benzylic carbon was detected.

 $R_f = 0.63$ (*n*-hexane : diethyl ether = 40 :1)

IR (KBr): 3059 (w), 2099 (w), 1641 (m), 1489 (w), 1257 (m), 1161 (w) ¹**H NMR (CDCl₃, 500 MHz)** : δ 7.32 (t, J = 7.5 Hz, 1H), 7.14 (d, J = 7.5 Hz, 1H), 7.08–7.06 (m, 2H), 3.39 (t, J = 6.5 Hz, 2H), 2.83–2.78 (m, 1H), 2.20–2.14 (m, 2H) ¹³**C NMR (CDCl₃, 125.7 MHz)** : δ 149.6, 143.0, 129.9, 127.1, 121.2, 120.6 (q, J = 241.2 Hz), 118.8, 33.8, 33.5 (t, J = 19.4 Hz), 32.8 ¹⁹**F NMR (CDCl₃, 470.6 MHz)** : δ –57.7 (s)

HRMS (APCI/DIP) Calc'd for C₁₀H₉DBrF₃O [M+H]⁺: 284.00027; found 284.00059

To a solution of CH₂Cl₂ (0.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1j** (35.5 mg, 0.2 mmol, 1 equiv) and D₂O (5.4 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 22 h at 22 °C, then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **2j-D** as yellow oil (quantitative yield, 97% D incorporation, 52.0 mg). The product is analytically pure as shown in ¹H and ¹³C NMR. The % D incorporation is determined based on the integration of the residual peak relative to other peaks in ¹H NMR.

 $R_f = 0.33$ (*n*-hexane : diethyl ether = 3 :1)

IR (KBr): 3060 (w), 1640 (m), 1492 (m), 1284 (w), 1093 (m), 1014 (w), 823 (w) ¹**H NMR (CDCl₃, 500 MHz)** : δ 7.38 (dt, *J* = 8.5, 2.0 Hz, 2H), 7.31 (dt, *J* = 8.5, 2.0 Hz, 2H), 3.54 (ddd, *J* = 10.5, 8.0, 5.0 Hz, 1H), 3.35 (ddd, *J* = 11.0, 7.0, 5.0 Hz, 1H), 2.49–2.44 (m, 1H), 2.33–2.27 (m, 1H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 134.8, 132.8, 129.7, 128.9, 119.6, 38.1, 34.8 (t, *J* = 20.1 Hz), 29.2

HRMS (APCI/DIP) Calc'd for C₁₀H₈DBrClN [M+H]⁺: 260.97201; found 260.97215

To a solution of CH₂Cl₂ (0.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1k** (44.4 mg, 0.2 mmol, 1 equiv) and D₂O (5.4 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 22 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **2k-D** as a colourless oil (quantitative yield, 97% D incorporation, 60.9 mg). The product is analytically pure as shown in ¹H and ¹³C NMR. The % D incorporation is determined based on the integration of the residual peak relative to other peaks in ¹H NMR. $R_f = 0.33$ (*n*-hexane : diethyl ether = 3 :1)

IR (KBr): 3343, 2943, 1453, 1049, 758, 700 cm⁻¹

¹**H NMR (CDCl₃, 500 MHz)** : δ 7.54 (dt, *J* = 8.5, 2.0 Hz, 2H), 7.25 (dt, *J* = 8.5, 2.0 Hz, 2H), 3.53 (ddd, *J* = 11.0, 8.0, 5.0 Hz, 1H), 3.34 (ddd, *J* = 11.0, 7.0, 5.0 Hz, 1H), 2.49–2.44 (m, 1H), 2.32–2.27 (m, 1H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 133.3, 132.6, 129.2, 122.8, 119.5, 38.0, 34.9 (t, *J* = 21.4 Hz), 29.2

HRMS (APCI/DIP) Calc'd for C₁₀H₈DBr₂N [M+H]⁺: 304.92171; found 304.92193

To a solution of CH₂Cl₂ (1.75 mL) in a 4 mL scintillation vial with a magnetic stirrer bar, **1m** (38.7 mg, 0.2 mmol, 1 equiv) and D₂O (5.4 μ L, 0.3 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 250 μ L, 0.25 mmol, 1.25 equiv) was added into the mixture. The resultant mixture was allowed to stir for 18 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **2m-D** as yellow oil (quantitative yield, 97% D incorporation, 55.0 mg). The product is analytically pure as shown in ¹H and ¹³C NMR. The % D incorporation is determined based on the integration of the residual peak relative to other peaks in ¹H NMR.

 $R_f = 0.33$ (*n*-hexane : diethyl ether = 3 :1)

IR (KBr): 3062 (w), 2241 (w), 1635 (m), 1280 (w), 817 (w), 749 (m), 478 (w) ¹**H NMR (CDCl₃, 500 MHz)** : δ 7.90–7.85 (m, 4H), 7.56–7.52 (m, 2H), 7.43 (dd, J = 8.5, 1.5 Hz, 1H), 4.30 (t, J = 7.5 Hz, 0.03H), 3.57 (ddd, J = 11.0, 7.5, 5.0 Hz, 1H), 3.38 (ddd, J = 11.0, 6.5, 5.0 Hz, 1H), 2.59–2.54 (m, 1H), 2.46–2.40 (m, 1H) ¹³**C NMR (CDCl₃, 125.7 MHz)** : δ 133.3, 133.1, 131.5, 129.5, 128.0, 127.9, 127.0, 126.87, 126.85, 124.6, 120.0, 38.1, 35.5 (J = 20.9 Hz), 29.5 **HRMS (APCI/DIP)** Calc'd for C₁₄H₁₁DBrN [M+H]⁺: 275.02887; found 275.02974

To a solution of CH₂Cl₂ (8.75 mL) in a 25 mL round-bottom flask with a magnetic

stirrer bar, **10** (158.2 mg, 1.0 mmol, 1 equiv) and D₂O (27.0 µL, 1.5 mmol, 1.5 equiv) were added. The solution was cooled to 0 °C and BBr₃ (1 M in CH₂Cl₂, 1.25 mL, 1.25 mmol, 1.25 equiv) was added into the mixture in one portion by autopipette. The mixture was allowed to stir for 15 h at 22 °C and then quenched at 0 °C by saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (3×20 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **20-***d* as light yellow oil (70% yield using CH₂Br₂ as internal standard, >97% D incorporation). All deuterium was exchanged to hydrogen upon treating the crude mixture with silica gel. The assignment of ¹H and ¹³C NMR peaks of **20-***D* was based on that of **10**. The % D incorporation was determined based on the integration of the residual peak relative to other peaks in crude ¹H NMR.

IR (**KBr**): 3060 (w), 1734 (m), 1647 (m), 1218 (w), 1079 (m), 816 (w)

¹**H NMR (CDCl₃, 500 MHz)** : δ 3.70 (s, 6H), 3.40 (t, *J* = 6.5 Hz, 2H), 2.37 (t, *J* = 6.5 Hz, 2H)

¹³C NMR (CDCl₃, 125.7 MHz) : δ 168.9, 52.8, 49.5 (t, *J* = 20.4), 31.4, 30.3 HRMS (ESI) Calc'd for C₇H₁₀DBrO₄ [M+Na]⁺: 261.97957; found 261.97957

(D) Further Transformations of 2a

To a solution of DMF (10 mL) and KOAc (197 mg, 2 mmol, 2 equiv) was added **1a** (199 mg, 1 mmol, 1 equiv) and the resultant mixture was heated at 80 °C for 12 h. The reaction was cooled to room temperature and diluted with H₂O (50 mL). The aqueous layer was extracted by diethyl ether (3×20 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **5a-OAc** which was used in the next step without further purification.

To a solution of **5a-OAc** in MeOH (8 mL) was added K₂CO₃ (346 mg, 2.5 mmol, 2.5 equiv) and the resultant mixture was allowed to stir for 12 h at 23 °C. The reaction was diluted with H₂O (30 mL) and the aqueous layer was extracted by ethyl acetate (3 \times 20 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography eluted with *n*-hexane/ethyl acetate (1:1) to yield **5a** as colourless oil (93%, 127 mg).

R_f = 0.57 (*n*-hexane : ethyl acetate = 1 :1) ¹H NMR (CDCl₃, 500 MHz) : δ 7.35–7.32 (m, 2H), 7.25–7.22 (m, 3H), 3.68 (t, J = 6.5 Hz, 2H), 2.75–2.72 (m, 3H), 1.95–1.90 (m, 2H) ¹³C NMR (CDCl₃, 125.7 MHz) : δ 141.9, 128.42, 128.38, 125.8, 62.0, 34.2, 32.1 Data matches with literature reported values (G. Chen, C. Fu, S. Ma, *Tetrahedron* 2006, 62, 4444)

$$\begin{array}{c|cccc} Ph & & & NaN_3 \\ \hline & & acetone/H_2O \\ \hline & & 2a \\ \end{array} \begin{array}{c} NaN_3 \\ \hline & acetone/H_2O \\ \hline & & Ph \\ \hline & & OAc \\ \hline & & OAc \\ \hline & & MeOH \\ \hline & & MH_2 \\ \hline & &$$

To a solution of acetone/H₂O (1:1, 10 mL) and **1a** (199 mg, 1 mmol, 1 equiv) was added NaN₃ (195 mg, 3 mmol, 3 equiv) and the resultant mixture was heated at 80 °C for 12 h. The reaction was cooled to room temperature and concentrated under reduced pressure to remove most of the acetone. The remaining aqueous layer was the extracted by diethyl ether (3×20 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **5b-N₃** which was used in the next step without further purification.

To a solution of **5b-N₃** in MeOH (10 mL) was added catalytic amount of Pd/C (~10 wt %). The flask was evacuated and backfilled with H₂ for three times. The resultant mixture was then allowed to stir for 12 h under H₂ (with a balloon) at 23 °C. The mixture was filtered through a thin plug of celite and the residue was washed with ethyl acetate (20 mL). The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography eluted with CHCl₃/methanol (9:1) and 1% NH₃ solution (28% w/w) to yield **5b** as a colourless oil (92%, 124 mg).

R_f = 0.30 (CHCl₃ : MeOH : NH₃ solution (28% w/w) = 90 : 9 : 1) ¹H NMR (CDCl₃, 500 MHz) : δ 7.29–7.26 (m, 2H), 7.19–7.16 (m, 3H), 2.72 (t, J = 7.0 Hz, 2H), 2.65 (t, J = 7.5 Hz, 2H), 1.77 (quint, J = 7.5 Hz, 2H), 1.65 (br, 2H) ¹³C NMR (CDCl₃, 125.7 MHz) : δ 142.1, 128.39, 128.37, 125.8, 41.7, 35.3, 33.3 Data matches with literature reported values (L. Benati, G. Bencivenni, R. Leardini, D. Nanni, M. Minozzi, P. Spagnolo, R. Scialpi, G. Zanardi, *Org. Lett.* 2006, **8**, 2499)

(E) Control Experiments

Scheme S1. Preliminary trials with different halogen sources as radical quenchers.

Scheme S2. Effect of reintroducing O₂ to the reaction

Scheme S3. Effect of the hydroxyl substituent on substrate 1y.

Note: The reaction of 1y was carried out with D_2O as the proton source. The hydrobromination product 2y was obtained in excellent yield but there was no deuterium incorporation in the product. When the deuterated 1y (i.e. 1y-OD) was used as the substrate in the absence or absence of D_2O , no 2y was detected and significant amount of 1y was recovered. These results indicate that the OH group in 1y is crucial for the hydrobromination. It is known that cyclopropanes have a bisected conformation with π -character σ -bonds.⁵ A possible explanation is that the phenyl ring (via π -conjugation)⁶⁻⁷ and the OH group (via neighboring group effect)⁸⁻⁹ might activate the C-C bond in cyclopropane synergistically. This might also explain the low reactivity of 1-phenyl-2-methylcyclopropane that has no hydroxyl substituent.

(F) NMR Studies

For all NMR experiments that were done under N_2 , NMR tubes were repeatedly dried under high vacuum and then refilled with N_2 . All reagents and solvent (except BBr₃) were added to an oven-dried Schlenk equipped with stirrer bar under N_2 , then degassed with three freeze-pump-thaw cycles under N_2 . The solution was cooled to 0 °C with an ice bath, and BBr₃ (1M in CH₂Cl₂) was then added with autopipette to the stirring solution. The reaction mixture was quickly transferred to the NMR tube with cannula or syringe.

Figure S1. Deuteriobromination of 1g

Note: the carbons in which protons were exchanged with deuteriums are marked with a red dot. The reaction was carried out with 1g (0.2 mmol), BBr₃ (0.25 mmol) and t-BuOD (0.3 mmol) in CD₂Cl₂ for 2 hours. The reaction was then quenched with saturated NaHCO₃ solution and ¹H NMR (500 MHz) was carried out on the crude mixture with CH₂Br₂ (0.1438 mmol) as internal standard.

Figure S2. 11 B NMR experiment of BBr₃ and 1a under N₂

Note: ¹¹B NMR experiments in CD_2Cl_2 under N_2 were conducted with [a] BBr₃(1.2 equiv), PhSiH₃ (1.2 equiv) and **1a** (1.0 equiv) for 20 min; [b] BBr₃(1.2 equiv) and **1a** (1.0 equiv) for 20 min.

Figure S3. ¹H NMR experiment of BBr₃, PhSiH₃ and 1a

Note: ¹H NMR (500 MHz) study on a mixture of $BBr_3(1.2 \text{ equiv})$, $PhSiH_3(1.2 \text{ equiv})$ and **1a** (1.0 equiv) in CD_2Cl_2 under N_2 at 23 °C for 20 min was conducted.

Figure S4. ¹H NMR experiment of BBr₃ and 1a

Note: ¹H NMR (500 MHz) study on a mixture of BBr₃ (1.2 equiv) and **1a** (1.0 equiv) in CD_2Cl_2 under N_2 at 23 °C for 20 min was conducted.

¹H NMR (500 MHz)

Figure S5. NMR experiments on the reactions among BBr₃, *i*-PrOH and 1a

Note: ¹¹B NMR experiments on a mixture of BBr₃ and i-PrOH in CD₂Cl₂ at 23 °C under air were conducted. Different species were added to the same sample, in the order from bottom to top for each set of spectra: [a] BBr₃ (1.25 equiv) + i-PrOH (1.5 equiv); [b] addition of **1a** (1.0 equiv); [c] addition of extra **1a** (1.0 equiv); [d] addition of extra **1a** (2.0 equiv); [e] addition of extra **1a** (4.0 equiv); [f] reference signal: pure BBr₃ (1M in CH₂Cl₂) for ¹¹B NMR. It was noted that the signal 25.0 ppm diminished gradually upon the addition of cyclopropane substrate **1a**.

¹¹B NMR (128 MHz)

Figure S6. ¹¹B NMR experiments to study the role of O₂

Note: ¹¹B NMR experiments on a mixture of BBr₃ and i-PrOH in CD₂Cl₂ at 23 °C in sealed NMR tubes were conducted under different conditions. [a] under air; [b] under N₂; [c] under air and in the absence of i-PrOH. The signal at 25.0 ppm was formed only when all the three components (BBr₃, i-PrOH and oxygen) were present in the reaction system. The signal at 18.9 ppm could be assigned to the complex formed between BBr₃ and i-PrOH.

Note: ¹H NMR (500 MHz) study on a mixture of allylbenzene (1 equiv), BBr₃ (1.25 equiv) and D_2O (1.5 equiv) in CD_2Cl_2 at 23 °C was conducted. Allylbenzene was added in one portion. Chemical shift of each proton is labelled accordingly.

Note: ¹H NMR (500 MHz) study on a mixture of allylbenzene (1 equiv), BBr_3 (1.25 equiv) and D_2O (1.5 equiv) in CD_2Cl_2 at 23 °C was conducted. Allylbenzene was added portion-wise with each potion c.a. 0.1 equiv over 40 minutes to mimic the slow generation of allylbenzene in the system. Chemical shift of each proton is labelled accordingly.

Figure S7. Control experiments with allylbenzene

(G) Computational Studies

DFT calculations were performed using Gaussian $16.^{10}$ Geometry optimizations and frequency calculations were performed at the ω B97X-D¹¹/6-31+G(d,p) level of theory. A pruned (99,590) grid (default in Gaussian 16) was used in geometry optimizations to minimize orientational variations in calculated free energy corrections.¹² Thermal contributions to free energies were calculated from vibrational frequencies using the quasi-rigid rotor-harmonic oscillator (RRHO) approach of Grimme.¹³ Optimized geometries were confirmed by frequency computations as minima (no imaginary frequency) or first-order saddle-point (one imaginary frequency) structures. Single-point energy calculations were performed at the ω B97X-D/6-311+G(d,p), SMD¹⁴ (CH₂Cl₂) level of theory. Conformational searches were carried out in Spartan '18¹⁵ using the MMFFs force field.

The computed free energy diagram of the proposed reaction pathway is shown in the manuscript (Figure S1). The reaction free energies (kcal/mol) of some key competing processes are shown below.

Cartesian Coordinates and Energies of Calculated Structures

BBr₃

В	0.00000000	0.00000000	0.00000000
Br	0.00000000	1.89381800	0.00000000
Br	1.64009500	-0.94690900	0.00000000
Br	-1.64009500	-0.94690900	0.00000000
O ₂			
0	0.00000000	0.00000000	0.60271200
0	0.00000000	0.00000000	-0.60271200
H ₂ O			
0	0.0000000	0.0000000	0.115(1(00
0	0.0000000	0.00000000	0.11561600
н	0.0000000	0.76650100	-0.46246200
Н	0.0000000	-0./0050100	-0.46246200
A			
В	-0.76385500	0.08848400	0.32024100
Br	-2.37494500	0.92232900	-0.44511800
Br	-0.34098500	-1.75152200	-0.21578900
0	0.25219400	1.06729200	0.32684100
0	1.41421100	0.54412800	0.96212800
Br	2.79122400	0.47522600	-0.25750400
Ο	-1.11666800	-0.11014200	1.96991400
Н	-1.42241400	0.72461100	2.35599100
Н	-1.79151000	-0.78842500	2.11611500
1a			
С	-0 56064000	-1 20179700	0 15394400
C	0.14355700	-0.00016000	0.27209900
C	-0.56029000	1.20165900	0.15382300
С	-1.93428300	1.20449900	-0.07597200
С	-2.62592800	0.00020800	-0.19128900
С	-1.93462600	-1.20427500	-0.07583400
Н	-0.02204800	-2.14180800	0.23962000
Н	-0.02144500	2.14152800	0.23944800
Н	-2.46474300	2.14757900	-0.16763600
Н	-3.69622600	0.00035400	-0.37320800
Н	-2.46535400	-2.14721300	-0.16740400
С	1.61476300	-0.00043400	0.55573500

С	2.56964100	-0.75385000	-0.33353000	
С	2.56976000	0.75411200	-0.33241100	
Н	1.86241000	-0.00126100	1.61582700	
Н	2.15319200	-1.25215000	-1.20376700	
Н	3.40441900	-1.27026600	0.12889200	
Н	3.40462600	1.26970500	0.13077000	
Н	2.15343600	1.25376100	-1.20193500	

Br ⊖l Br—B−O ⊢ H´⊕ H´

В	-0.00242600	0.29557700	0.28238300
Br	-1.66431000	-0.69758300	-0.04735100
Br	1.70357800	-0.61706500	-0.08846400
Ο	-0.08782500	1.41261100	-0.91986200
Ο	-0.15319800	2.62893000	-0.43555000
0	-0.01097100	1.09817900	1.45127100
Н	0.75942700	0.96340800	2.01047700
Н	-0.10572300	2.45363500	0.56427400

B

С	3.54806400	-1.48933800	-0.00000500
С	2.23815900	-1.03574800	-0.00000200
С	1.94820200	0.35468200	0.00003900
С	3.04946900	1.25264300	-0.00001800
С	4.35329500	0.78881900	-0.00001300
С	4.61430600	-0.58585300	-0.00000300
Н	3.74501700	-2.55709700	-0.00003200
Н	1.42522200	-1.75515200	-0.00001300
Н	2.85410800	2.32174400	-0.00003600
Н	5.17660000	1.49656700	-0.00003100
Н	5.63722400	-0.94795300	-0.00000500
С	0.62389700	0.85155600	0.00001400
Н	0.48653300	1.93129300	-0.00011400
С	-0.59626600	-0.01818300	0.00003700
Н	-0.60137600	-0.67958200	0.87787900
Н	-0.60139300	-0.67965400	-0.87772000
С	-1.85177700	0.83207500	0.00002100
Н	-1.90472400	1.46288700	0.88806200
Н	-1.90472700	1.46289000	-0.88801700
Br	-3.48218800	-0.22171000	-0.00001100

С

В	0.00003600	-0.02570800	0.23544100
Br	-0.00465700	1.90754000	-0.20724000
Br	-1.67017100	-0.96052200	-0.19393900
Br	1.67488700	-0.95255900	-0.19388200
0	0.00003600	-0.05527500	1.89391800
Н	0.78846200	0.38468200	2.24934100
Н	-0.79101100	0.38003400	2.24926300
2a			
С	3.45237600	-1.53702900	-0.00004800
С	2.16549600	-0.99635300	-0.00023300
С	1.97127800	0.38577700	-0.00002200
С	3.10133800	1.21282000	0.00016900
С	4.38460900	0.67905300	0.00027300
С	4.56563400	-0.70409200	0.00023500
Н	3.57937300	-2.61534000	-0.00019000
Н	1.31499900	-1.67036800	-0.00055900
Н	2.96913200	2.29246700	0.00015600
Н	5.24488500	1.34145600	0.00043100
Н	5.56582500	-1.12558100	0.00034200
С	0.60015400	1.03196900	-0.00038600
Н	0.52934300	1.68981500	-0.87669300
С	-0.59049700	0.07163500	-0.00048300
Н	-0.55814600	-0.57675600	0.88168400
Н	-0.55849400	-0.57641200	-0.88292500
С	-1.88374500	0.86095400	-0.00004600
Н	-1.97143100	1.48941800	0.88732300
Н	-1.97183500	1.48978400	-0.88712400
Br	-3.46493200	-0.27019100	0.00013900
Н	0.52911400	1.68978900	0.87591300
D			
В	-0.33557900	0.00317200	0.64705900
Br	1.07246500	1.39635200	-0.17616100
Br	-2.02860200	-0.00254800	-0.26976000
Br	1.07687300	-1.39515700	-0.17424300
0	-0.37719900	0.00296000	2.00192700
Н	0.46972500	0.00785400	2.45502200
HOBBr ₂			

	В	-0.01135000	0.62752800	0.00033600
--	---	-------------	------------	------------

Br	1.66114700	-0.31694100	-0.00001000
Br	-1.67502900	-0.29080200	-0.00002400
Ο	-0.03615100	1.96863300	0.00005600
Н	0.83185000	2.38427900	-0.00095600
Ε			
С	1.95071000	1.32683700	0.00000500
С	0.58640700	1.07911100	0.00000400
С	0.08434900	-0.25005800	-0.00000100
С	1.03637800	-1.30547000	0.00000100
С	2.39617900	-1.04721000	0.00000200
С	2.86628900	0.27091000	0.00000400
Н	2.30893200	2.35204200	0.00001000
Н	-0.10741000	1.91401100	0.00000600
Н	0.67945300	-2.33208300	0.00000300
Н	3.10087000	-1.87335900	0.00000300
Н	3.93278500	0.47154000	0.00000000
С	-1.30225800	-0.53676000	-0.00001200
Н	-1.60119400	-1.58369800	-0.00003500
С	-2.38482800	0.49632500	-0.00002600
Н	-2.27079100	1.15445000	-0.87486100
Н	-2.27075100	1.15451500	0.87475300
С	-3.78816700	-0.10981200	0.00002600
Н	-4.55494800	0.66987500	0.00001300
Н	-3.94366400	-0.73529300	-0.88503800
Н	-3.94362900	-0.73523200	0.88513700

Вr Br—B-O-O-Br В -0.83527200 Br -2.15683400 Br -1.18941200 O 0.43028800 O 1.41692600

DI	-2.13083400	-1.422/8300	0.00003400
Br	-1.18941200	1.79320400	0.00003400
0	0.43028800	-0.56411300	-0.00022800
0	1.41692600	0.48528400	-0.00021400
Br	3.04335000	-0.34339300	0.00006000

-0.06305700

-1.42278500

-0.00018500 0.00003400

Br I Br—B—O—O

В	0.00005200	0.46750000	0.00000000
Br	0.00005200	-0.45108500	-1.68284400
Br	0.00005200	-0.45108500	1.68284400
0	0.66759500	1.82752700	0.00000000

-0.66807900	1.82728200	0.00000000

Br Br Br Br H ⊕ H			
В	0.00767100	0.43992900	-0.57360800
Br	-1.69570600	-0.32452300	0.03067200
Br	1.69806800	-0.31541100	0.02493900
0	0.03736700	1.97700200	0.00045900
Н	-0.85836300	2.34721800	0.03274400
Н	0.43842500	2.03481800	0.88524500
Н	0.43842500	2.03481800	0.88524500

0

Table S1. Calculated energies (in Hartrees). ΔG values provided are corrected values after applying the quasi-rigid rotor-harmonic oscillator (RRHO) approach of Grimme.¹³

	ΔG [ωB97X-D/6-31+G(d,p)]	E [ωB97X-D/6-311+G(d,p), SMD(CH ₂ Cl ₂)// ωB97X-D/6-31+G(d,p)]	$G(E + \Delta G)$
BBr ₃	-0.02441	-7747.482615	-7747.507025
O ₂	-0.016044	-150.3188962	-150.334940
H ₂ O	0.004123	-76.44045641	-76.436333
Α	0.000775	-7974.24318	-7974.242405
1 a	0.131582	-348.9291567	-348.797575
Br ⊖l Br—B−O O H´⊕ H΄	0.003644	-5400.081053	-5400.077409
В	0.12743	-2923.102132	-2922.974702
С	-0.00245	-7823.941437	-7823.943887
2a	0.142247	-2923.753324	-2923.611077
D	-0.015861	-7823.290662	-7823.306523
HOBBr ₂	-0.009874	-5249.16193	-5249.171804
Ε	0.13831	-349.5234664	-349.385156
Br I Br—B—O—O	-0.00262	-5249.653175	-5249.655795
Br, , Br I H´⊕ H	-0.020965	-5323.608436	-5323.629401

(H) References

- 1. D. Cheng, D. Huang, Y. Shi, Org. Biomol. Chem. 2013, 11, 5588.
- 2. D. J. Wallace, C. Chen, Tetrahedron Lett. 2002, 43, 6987.
- 3. M. H. Gieuw, V. M-Y. Leung, Z. Ke, Y.-Y. Yeung, Adv. Synth. Cat. 2018, 360, 4306.
- 4. J. Xu, N. B. Samsuri, H. A. Duong, Chem. Commun. 2016, 52, 3372.
- 5. A. D. Walsh, Trans. Faraday Soc. 1970, 45, 179.
- 6. J. W. Lauher, J. A. Ibers, J. Am. Chem. Soc. 1975, 97, 561.
- 7. S. Rosenfeld, C. W. Tingle, J. Am. Chem. Soc. 1994, 116, 12049.
- 8. H. Zipse, Top. Curr. Chem. 2006, 236, 163.
- 9. J. Berges, N. Varmenot, A. Scemama, Z. Abedinzadeh, K. Bobrowski, J. Phys. Chem. A 2008, 112, 7015.

Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

- 11. J. D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
- 12. A. N. Bootsma, S. Wheeler, ChemRxiv. 2019, Preprint.
- 13. S. Grimme, Chem. Eur. J. 2012, 18, 9955.
- 14. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
- 15. Spartan '18, Wavefunction, Inc.

-15.48 -9.63

1g 500 MHz, ¹H NMR CDCl₃

Br 1k 500 MHz, ¹H NMR $CDCI_3$

`CN

7.15

77.41

_____18.15 _____14.11

7.26

1.82

NC^{CN} 1n 400 MHz, ¹H NMR

CDCl₃

indene-cp

1s 400 MHz, ¹H NMR CDCl₃

1s 100.6 MHz, ¹³C NMR CDCl₃

ppm

110 S7400

-2.46

1u 500 MHz, ¹H NMR CDCl₃

33.69

10.04

7.26

1w 500 MHz, ¹H NMR CDCl₃

1w 125.7 MHz, ¹³C NMR CDCl₃

1x 500 MHz, ¹H NMR CDCl₃

2d 500 MHz, ¹H NMR CDCl₃

0

ppm

200 180 160 140 120 100 80 60 40 20

-62.60

500 MHz, ¹H NMR CDCl₃

L 0 1	∞ $+$ ∞ $+$ ∞ $ \infty$ ∞ $ \infty$		
0 2 2	0 1 0 0 1 0 1 0	0 0 1	001
• • •		440	0 00 00
തെ ന	0 M M H M 0 M M		
444	N N N N N N N N N N	C L Q	n n n
\neg \neg \neg			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
\vee		\bigvee	\bigvee

F₃CO `Br **2e** 125.7 MHz, ¹³C NMR CDCl₃

-	5 M M M H H		
00	4 0 0 0 0	0 0 1	40001
•		410	0 J H U U
9	L 0000		
4	M N N N N	rr 9	4 M H W 4
\vdash	\neg \neg \neg \neg \neg		$\sim \sim $
		\bigvee	\mathbb{N}

`Br

`CN

S116 200 180 160 140 120 100 80 60 40 20 0 ppm

7.26

S118 200 180 160 140 120 100 80 60 40 20 0 ppm

-177.90

77.41 77.16 76.90 68.56 _____27.72 _____22.08

40

20

0

ppm

γ**-butyrolactone** 125.7 MHz, ¹³C NMR CDCl₃

200

180

160

\$122 140 120 100 80 60

2s 500 MHz, ¹H NMR CDCl₃

Br

indene-cp+BBr3-pdt

2s 125.7 MHz, ¹³C NMR

 $CDCI_3$

Br

-142.24

_____126.63 ____124.77

77.41 77.16

42.05

2v 125.7 MHz, ¹³C NMR CDCl₃

.26

 \sim

CDCI₃

500 MHz, ¹H NMR CDCl₃

2e-D 500 MHz, ¹H NMR CDCl₃

-168.94

