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Glossary of terms 

Symbol Meaning 
Standard 

Units 
𝐶𝑖 concentration of species 𝑖 mol cm−3 

𝐶cat
0  total concentration of catalyst or MOF loading mol cm−3 

𝐶ox
0  solution concentration of oxidant mol cm−3 

𝐷e charge transport diffusion coefficient cm2 s−1 

𝐷ox intra-MOF diffusion coefficient of freely diffusing oxidant cm2 s−1 

𝑘cat observed first order catalytic rate constant s−1 

𝑘d second order rate constant for dimerization in I2M mechanism cm3 mol−1 s−1 

𝑘ox second order rate constant between catalyst and oxidant cm3 mol−1 s−1 

𝑘ox
s  second order heterogeneous rate constant between catalyst and 

oxidant at MOF particle-solution interface 

cm4 mol−1 s−1 

𝑘1 pseudo-first order rate constant for water nucleophilic attack step  s−1 

𝑘2 first order rate constant for O2 release step s−1 

𝐾𝑖 kinetic term for coupled chemical reactions of species 𝑖 mol cm−3 s−1 

𝑁 total number of MOF particles n.a. 

𝑅 MOF particle radius cm 

𝑟 radial distance from center of MOF particle cm 

𝑆 surface area cm2 

𝑇𝑂𝐹app apparent turnover frequency s−1 

𝑇𝑂𝐹true true turnover frequency  s−1 

𝑡 time s 

𝛿rxn reaction-diffusion layer thickness cm 

𝑣 overall observed rate of product (O2) formation mol s−1 

𝐾𝑖̃ dimensionless kinetic term for coupled chemical reactions of 

species 𝑖 

n.a. 

𝛿 dimensionless reaction-diffusion layer thickness = 𝛿rxn 𝑅⁄  n.a. 

𝜃 dimensionless concentration of oxidant within MOF particle n.a. 

𝑣̃ dimensionless observed rate of product formation n.a. 

𝑖̃ dimensionless concentration of species 𝑖 n.a. 

𝑦 dimensionless radial distance from center of MOF particle n.a. 
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Dimensionless Control Parameters 

Symbol Mechanism/Definition Statement 

𝜆 

WNA I2M 
catalytic reaction rate

physical diffusion rate of oxidant
 

𝑅2
4𝑘cat
𝐷ox

𝐶cat
0

𝐶ox
0  𝑅2

4𝑘2
𝐷ox

𝐶cat
0

𝐶ox
0  

𝜇 

WNA I2M 
catalytic reaction rate

oxidation reaction rate
 𝑘cat

𝑘ox𝐶ox
0  

𝑘2

𝑘ox3𝐶ox
0  

√
𝜆

𝜇
 

WNA I2M oxidation reaction rate

physical diffusion rate of oxidant
 

or 

particle radius

reaction-diffusion layer thickness for oxidant
 

𝑅√
4𝑘ox𝐶cat

0

𝐷ox
  𝑅√

2𝑘ox3𝐶cat
0

𝐷ox
  

𝜅 

I2M 

4𝑘d𝐶cat
0

𝑘2
 

dimerization reaction rate

O2 realease rate
 

𝜆e 

WNA 

𝑅√
𝑘cat
𝐷e

 

catalytic reaction rate

formal charge transport diffusion rate
 

or 

particle radius

reaction-diffusion layer thickness for charge transport
 

𝛾 

WNA 

𝑅
𝑘ox
s 𝐶ox

0

𝐷e
 

interfacial oxidation reaction rate

formal charge transport diffusion rate
 

𝜙 

Thiele modulusS1 

𝑅√
𝑘

𝐷
  

reaction rate

diffusion rate
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Figure S1. Plot of dimensionless reaction rate 𝑣̃ = 𝑣 (𝑁𝜋𝑅𝐷ox𝐶ox

0 )⁄  as a function of 𝜇 =

𝑘cat (𝑘ox𝐶ox
0 )⁄  when bulk reactivity is observed (𝜆 = 10−1), showing the transition from oxidant 

limited kinetics (zone I, large 𝜇) to catalyst limited kinetics (zone III, small 𝜇). The open circles 

are results from finite difference simulations and the solid black line is a plot of eq 6 from the 

main text (recalled below). This confirms the expression in eq 6 is valid for any value of 𝜇 as 

long as bulk reactivity holds (𝜆 ≪ 1). Vertical dotted line shows the transition between zones. 

 𝑣̃ =
𝜆

3(𝜇 + 1)
−

𝜇𝜆2

45(𝜇 + 1)3
 eq 6 (main text) 
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Figure S2. Plot of dimensionless reaction rate 𝑣̃ = 𝑣 (𝑁𝜋𝑅𝐷ox𝐶ox

0 )⁄  as a function of 𝜇 =

𝑘cat (𝑘ox𝐶ox
0 )⁄  when surface reactivity is observed (𝜆 = 104), showing the transition from 

oxidant limited kinetics (zone II, large 𝜇) to catalyst limited kinetics (zone IV, small 𝜇). The 

open circles are results from finite difference simulations and the solid black line is a plot of 

eq 7 from the main text (also see below). As 𝜇 → ∞, bulk reactivity with oxidant limited 

kinetics is recovered (zone I), and eq 7 is no longer valid. For 𝜇 > 10, eq S.12 (dashed line) 

approximates the dimensionless rate under these conditions (zone I and II). Note the excellent 

agreement between these two expressions and the simulated results (open circles). Vertical 

dotted lines show transitions between zones. 

(–) 𝑣̃ = √2𝜆 (1 − 𝜇 ln (
𝜇 + 1

𝜇
)) eq 7 (main text) 

(--) 𝑣̃ = √𝜆 𝜇⁄ coth (√𝜆 𝜇⁄ ) − 1 eq S.12 
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A. Freely Diffusing Oxidant within MOF pores 

Here we consider the reaction-diffusion problem of a freely diffusing sacrificial oxidant [ox] 

(with concentration 𝐶ox) coupled to chemical oxidation and OER catalysis by a molecular water 

oxidation catalyst immobilized in a MOF particle approximated as spherical with radius = 𝑅. 

For simplicity, it is assumed that the diffusivity of [ox] inside the MOF particle is constant and 

is invariant to changes in concentration (of either [ox] itself or catalytic intermediates). The 

partition coefficients are unity for permeation of both oxidant and water into the particle from 

solution. Further, electron hopping between the catalyst units is not considered presently and 

oxidation of the catalytic intermediates occurs only via chemical oxidation by [ox] with a 

second order rate constant, 𝑘ox. A first order rate constant for O2 release from the complex 

can be defined as 𝑘2. Fast coordination of a water molecule then usually closes the catalytic 

cycle. The molecular catalyst is assumed to be homogenously distributed inside the particle. 

The general form of the equations describing the time and space dependent behavior of the 

concentration of each species 𝑖 is given by Fick’s second law of diffusion with radial symmetry 

plus a kinetic term 𝐾𝑖, which is some function of the concentration of oxidant and/or catalytic 

intermediates, resulting from the coupled chemical reactions. 

𝜕𝐶𝑖
𝜕𝑡
= 𝐷𝑖 (

𝜕2𝐶𝑖
𝜕𝑟2

+
2

𝑟

𝜕𝐶𝑖
𝜕𝑟
) + 𝐾𝑖 

For the immobile catalyst species, which are not free to diffuse within the particle, this can be 

further simplified to 
𝜕𝐶𝑖
𝜕𝑡
= 𝐾𝑖  

However, it should be noted that the catalytic intermediate concentrations are still a function 

of the radial variable, 𝑟, because the term 𝐾𝑖 is coupled to the concentration of diffusing 

oxidant. The coupled chemical reactions are expected to be fast compared to the timescale of 

the experiment, meaning there is no accumulation of oxidant within the particle. We also 

assume that product diffusion (O2) in the MOF pores is significantly faster than the other 

diffusional processes in operation during catalysis, i.e., intra-MOF oxidant diffusion. When 

these conditions are satisfied a steady-state situation will persist. As such the overall rate of 

product (O2) formation (𝑣) in mol s−1 is given by the total molar flow of oxidant entering the 

particle (where 𝑆 is the particle surface area, 𝐷ox is the intra-particle diffusion coefficient of 

the oxidant, and 𝑁 is the total number of particles): 

𝑣 = 𝑁𝑆𝐷ox
1

4

𝜕𝐶ox
𝜕𝑟
|
𝑅
= 𝑁𝜋𝑅2𝐷ox

𝜕𝐶ox
𝜕𝑟
|
𝑅

 

The molecular water oxidation catalysts can operate by either of two possible mechanisms 

inside the MOF matrix, depending on the average neighbor-to-neighbor distance. If the metal 

centers are relatively close to each other in the pores, it is possible that the bimolecular I2M 

mechanism operates, while if the distance between the metal centers is too large for them to 

interact in a bimolecular reaction, a WNA mechanism will follow. The formal kinetic models 

for both mechanisms are shown in the following sections. 
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A.1 Formal Reaction-Diffusion Kinetic Model for WNA Mechanism 

A + ox
𝑘ox1
→  B + red 

B + ox
𝑘ox2
→  C + red 

C + ox
𝑘ox3
→  D + red 

D + H2O
𝑘1
→E 

E + ox
𝑘ox4
→  F + red 

F + H2O
𝑘2
→ A + O2 

Given that water is the solvent as well as the substrate, the concentration of H2O is taken as 

constant throughout the particle, which gives the pseudo-first order rate constant 𝑘1. The 

reaction-diffusion equations become 

𝜕𝐶ox

𝜕𝑡
= 𝐷ox (

𝜕2𝐶ox

𝜕𝑟2
+
2

𝑟

𝜕𝐶ox

𝜕𝑟
) − 𝑘ox1𝐶ox𝐶A − 𝑘ox2𝐶ox𝐶B − 𝑘ox3𝐶ox𝐶C − 𝑘ox4𝐶ox𝐶E  

𝜕𝐶A

𝜕𝑡
= −𝑘ox1𝐶ox𝐶A + 𝑘2𝐶F  

𝜕𝐶B

𝜕𝑡
= 𝑘ox1𝐶ox𝐶A − 𝑘ox2𝐶ox𝐶B  

𝜕𝐶C

𝜕𝑡
= 𝑘ox2𝐶ox𝐶B − 𝑘ox3𝐶ox𝐶C  

𝜕𝐶D

𝜕𝑡
= 𝑘ox3𝐶ox𝐶C − 𝑘1𝐶D   

𝜕𝐶E

𝜕𝑡
= 𝑘1𝐶D − 𝑘ox4𝐶ox𝐶E  

𝜕𝐶F

𝜕𝑡
= 𝑘ox4𝐶ox𝐶E − 𝑘2𝐶F  

With the initial and boundary conditions as follows 

𝑡 = 0, ∀𝑟:  𝐶ox = 𝐶ox
0 , 𝐶B = 0, 𝐶C = 0, 𝐶D = 0, 𝐶E = 0, 𝐶F = 0, 𝐶A = 𝐶cat

0  

𝑡 > 0, 𝑟 = 0: 
𝜕𝐶ox

𝜕𝑟
= 0 

𝑡 > 0, 𝑟 = 𝑅:  𝐶ox = 𝐶ox
0 , 

𝜕𝐶A

𝜕𝑟
= 0,

𝜕𝐶B

𝜕𝑟
= 0,

𝜕𝐶C

𝜕𝑟
= 0,

𝜕𝐶D

𝜕𝑟
= 0,

𝜕𝐶E

𝜕𝑟
= 0,

𝜕𝐶F

𝜕𝑟
= 0 

At the particle-solution interface (𝑟 = 𝑅), forced convection from stirring maintains a constant 

concentration of [ox], 𝐶ox(𝑡, 𝑅) = 𝐶ox
0 . Mass balance on the catalytic intermediates ∀ 𝑡 and 

∀ 𝑟 gives  

 𝐶A + 𝐶B + 𝐶C + 𝐶D + 𝐶E + 𝐶F = 𝐶cat
0  (S.1) 

Application of steady-state yields 
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𝐷ox (
𝜕2𝐶ox

𝜕𝑟2
+
2

𝑟

𝜕𝐶ox

𝜕𝑟
) = 𝑘ox1𝐶ox𝐶A + 𝑘ox2𝐶ox𝐶B + 𝑘ox3𝐶ox𝐶C + 𝑘ox4𝐶ox𝐶E  (S.2) 

𝑘ox1𝐶ox𝐶A = 𝑘2𝐶F  

𝑘ox2𝐶ox𝐶B = 𝑘ox1𝐶ox𝐶A  

𝑘ox3𝐶ox𝐶C = 𝑘ox2𝐶ox𝐶B  

𝑘1𝐶D   = 𝑘ox3𝐶ox𝐶C  

𝑘ox4𝐶ox𝐶E = 𝑘1𝐶D  

k2CF = 𝑘ox4𝐶ox𝐶E  

Solving this system of equations for 𝐾ox = 𝑘ox1𝐶ox𝐶A + 𝑘ox2𝐶ox𝐶B + 𝑘ox3𝐶ox𝐶C + 𝑘ox4𝐶ox𝐶E 

using eq S.1 gives 

 𝐾ox =
4𝐶ox𝐶cat

0

𝐶ox
𝑘2
+
𝐶ox
𝑘1
+

1
𝑘ox1

+
1
𝑘ox2

+
1
𝑘ox3

+
1
𝑘ox4

 (S.3) 

It is likely that one of the oxidation reactions is much slower than the rest, and we can write 

 
1

𝑘ox
=

1

𝑘ox1
+

1

𝑘ox2
+

1

𝑘ox3
+

1

𝑘ox4
 (S.4) 

Substitution into eq S.2 yields 

 𝐷ox (
𝜕2𝐶ox
𝜕𝑟2

+
2

𝑟

𝜕𝐶ox
𝜕𝑟
) =

4𝑘ox𝐶ox𝐶cat
0

𝑘ox𝐶ox
𝑘2

+
𝑘ox𝐶ox
𝑘1

+ 1
 (S.5) 

Dimensional analysis by defining 𝜃 =
𝐶ox

𝐶ox
0 , 𝑖̃ =

𝐶𝑖

𝐶cat
0 , 𝑦 =

𝑟

𝑅
, results in two dimensionless control 

parameters: 

𝜇 =
𝑘cat

𝑘ox𝐶ox
0                                         𝜆 = 𝑅2 

4𝑘cat

𝐷ox

𝐶cat
0

𝐶ox
0  

where, 

 𝑘cat =
𝑘1𝑘2
𝑘1 + 𝑘2

 (S.6) 

After rearrangement, 

𝜕2𝜃

𝜕𝑦2
+
2

𝑦

𝜕𝜃

𝜕𝑦
=

𝑅2

𝐷ox

4𝑘ox𝜃𝐶cat
0

𝑘ox𝐶ox
0 𝜃(

1

𝑘2
+
1

𝑘1
)+1

  

𝜕2𝜃

𝜕𝑦2
+
2

𝑦

𝜕𝜃

𝜕𝑦
=

𝑅2

𝐷ox

4𝑘ox𝜃𝐶cat
0 1

𝑘ox𝐶ox
0 (

1

𝑘2
+
1

𝑘1
)
−1

[𝑘ox𝐶ox
0 𝜃(

1

𝑘2
+
1

𝑘1
)+1]

1

𝑘ox𝐶ox
0 (

1

𝑘2
+
1

𝑘1
)
−1  
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𝜕2𝜃

𝜕𝑦2
+
2

𝑦

𝜕𝜃

𝜕𝑦
=

𝑅2

𝐷ox

4𝜃
𝐶cat
0

𝐶ox
0 (

1

𝑘2
+
1

𝑘1
)
−1

[𝜃+
1

𝑘ox𝐶ox
0 (

1

𝑘2
+
1

𝑘1
)
−1
]
  

𝜕2𝜃

𝜕𝑦2
+
2

𝑦

𝜕𝜃

𝜕𝑦
=
𝐶cat
0

𝐶ox
0

𝑅2

𝐷ox

4𝑘1𝑘2

(𝑘1+𝑘2)

𝜃

[𝜃+
𝑘1𝑘2

𝑘ox𝐶ox
0 (𝑘1+𝑘2)

]
  

the equation to be solved becomes 

 
𝜕2𝜃

𝜕𝑦2
+
2

𝑦

𝜕𝜃

𝜕𝑦
= 𝜆

𝜃

𝜇 + 𝜃
 (S.7) 

with the dimensionless reaction rate given by 

 𝑣̃ =
𝑣

𝑁𝜋𝑅𝐷ox𝐶ox
0 =

𝜕𝜃

𝜕𝑦
|
1

 (S.8) 

We can now define 𝐾𝜃̃ (dimensionless version of 𝐾ox) given below as 

 𝐾𝜃̃ = 𝜆
𝜃

𝜇 + 𝜃
 (S.9) 

which essentially reflects Michaelis-Menten type kinetics for the overall reaction as described 

in the main text. Reference modelsS2,S3 with approximate analytical solutions to related 

problems can be found in references S2 and S3. 

Subcase WNA-1A: Oxidant limited kinetics (𝝁 ≫ 𝟏) 

Since 𝜃 can only take values between zero and one, if 𝜇 ≫ 1 then eq S.7 further reduces to 

 
𝜕2𝜃

𝜕𝑦2
+
2

𝑦

𝜕𝜃

𝜕𝑦
=
𝜆

𝜇
𝜃 (S.10) 

The oxidation step(s) become globally rate-limiting (i.e., 𝐶ox
0  is small). The coefficient of 𝜃 takes 

the form of the classical Thiele modulus:   

𝜙2 =
𝜆

𝜇
= 𝑅2

4𝑘ox𝐶cat
0

𝐷ox
 

Integration of (S.10) taking into account the appropriate boundary conditionsS4 yields the 

dimensionless concentration profile:  

 𝜃 =
1

𝑦

sinh(√𝜆 𝜇⁄ 𝑦)

sinh(√𝜆 𝜇⁄ )
 (S.11) 

The dimensionless reaction rate using eq S.8 is given by  

 𝑣̃ =
√𝜆 𝜇⁄ cosh(√𝜆 𝜇⁄ ) − sinh(√𝜆 𝜇⁄ )

sinh(√𝜆 𝜇⁄ )
 (S.12) 
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= √𝜆 𝜇⁄ coth (√𝜆 𝜇⁄ ) − 1 

Two limiting situations can be reached depending on the dimensionless parameter √𝜆 𝜇⁄ . 

Zone I: Bulk reactivity (oxidant limited kinetics), √𝜆 𝜇⁄ ≪ 1 

Diffusion is fast compared to the rate of reaction, and the oxidant concentration is 𝜃 ~ 1 

throughout the particle. 

 
𝑣̃ =

𝜆

3𝜇
 

(zone I) 

(S.13) 

Zone II: Surface reactivity (oxidant limited kinetics), √𝜆 𝜇⁄ ≫ 1 

The rate of reaction is fast compared to diffusion. Depletion of the oxidant occurs in a reaction 

layer near the particle-solution interface. 

 
𝑣̃ =  √𝜆 𝜇⁄  

(zone II) 
(S.14) 

Internal Effectiveness factor 𝜼 for oxidant limited kinetics 

Since this limiting behavior matches the Thiele modelS1 for many reaction-diffusion systems in 

porous particles, an expression for the effectiveness factor 𝜂 can be obtained.S4 Defined as 

the observed reaction rate divided by the maximum reaction rate if the entire volume of the 

particle were exposed to the surface conditions of the oxidant (𝐶ox
0 ), i.e., when any diffusional 

gradients are absent and 𝜃 ~ 1. For this we can use eq S.12 for the observed rate and eq S.13 

for the maximum bulk reactivity rate. 

𝜂 =
√𝜆 𝜇⁄ coth(√𝜆 𝜇⁄ ) − 1

𝜆
3𝜇

 

 𝜂 = 3
𝜇

𝜆
[√𝜆 𝜇⁄ coth (√𝜆 𝜇⁄ ) − 1] (S.15) 

A plot of 𝜂 vs. √𝜆 𝜇⁄  using eq S.15, results in the curve shown in Figure 5 of the main text. 

Subcase WNA-1B: Bulk reactivity approximation (negligible consumption of oxidant, 𝝀 ≪ 𝟏) 

A derivation to a similar problemS5 provided a reference for the calculation of the flux (𝜕𝜃 𝜕𝑦⁄ ) 

in this limit. 

In this limit the overall reaction is much slower compared to diffusion. This means 𝜆 ≪ 1, and 

the oxidant concentration is approximately constant in the particle (𝜃 ~ 1). For the moment, 

𝜇 can take any value (large or small). Since 𝜆 is very small we can consider it a regular 

perturbation and write an asymptotic expansion given by 𝜃 = 𝜃0 + 𝜆𝜃1 + 𝜆
2𝜃2 +⋯.S6 Then, 

rewriting eq S.7 as  



S11 
 

 ∇2𝜃 =  𝜆
𝜃

𝜇 + 𝜃
 (S.16) 

𝑂(1) terms: 

∇2𝜃0 = 0, 𝜃0(1) = 1  

 𝜃0 = 1  

Substituting 𝜃 = 1 + 𝜆𝜃1 + 𝜆
2𝜃2 +⋯ into eq S.16 gives 

∇2𝜆𝜃1 + ∇
2𝜆2𝜃2 +⋯ = 𝜆

1 + 𝜆𝜃1 + 𝜆
2𝜃2 +⋯

𝜇 + 1 + 𝜆𝜃1 + 𝜆2𝜃2 +⋯
 

using 
1

1+𝑧
= 1 − 𝑧 (for 𝑧 ≪ 1) 

 

∇2𝜆𝜃1 + ∇
2𝜆2𝜃2

+⋯ 

 

= (
𝜆

𝜇+1
)(

1+𝜆𝜃1+𝜆
2𝜃2+⋯

1+
𝜆𝜃1
𝜇+1

+
𝜆2𝜃2
𝜇+1

+⋯
)  

 

 = (
𝜆

𝜇+1
) (1 −

𝜆𝜃1

𝜇+1
+⋯) (1 + 𝜆𝜃1 +⋯)  

 

 =
𝜆

𝜇+1
+

𝜇𝜆2

(𝜇+1)2
𝜃1 +⋯   

𝑂(𝜆) terms: 

1

𝑦2
𝜕

𝜕𝑦
(𝑦2

𝜕𝜃1

𝜕𝑦
) =

1

𝜇+1
  

𝜕

𝜕𝑦
(𝑦2

𝜕𝜃1

𝜕𝑦
) =

𝑦2

𝜇+1
  

∫𝜕 (𝑦2
𝜕𝜃1

𝜕𝑦
) = ∫

𝑦2

𝜇+1
𝜕𝑦  

𝑦2
𝜕𝜃1

𝜕𝑦
=
1

3

𝑦3

𝜇+1
+ 𝐶1; 

𝜕𝜃

𝜕𝑦
|
0
= 0; 𝐶1 = 0; 

𝜕𝜃1

𝜕𝑦
=
1

3

𝑦

𝜇+1
 

∫𝜕𝜃1 = ∫
1

3

𝑦

𝜇+1
 𝜕𝑦   

𝜃1 =
𝑦2

6(𝜇+1)
+ 𝐶2; 𝜃1(1) = 0; 𝐶2 = −

1

6(𝜇+1)
; 𝜃1 =

𝑦2−1

6(𝜇+1)
 

𝑂(𝜆2) terms: 

1

𝑦2
𝜕

𝜕𝑦
(𝑦2

𝜕𝜃2

𝜕𝑦
) =

𝜇

(𝜇+1)2
𝜃1  

𝜕

𝜕𝑦
(𝑦2

𝜕𝜃2

𝜕𝑦
) =

𝜇𝑦2(𝑦2−1)

6(𝜇+1)3
  

∫𝜕 (𝑦2
𝜕𝜃2

𝜕𝑦
) = ∫

𝜇𝑦2(𝑦2−1)

6(𝜇+1)3
𝜕𝑦  
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𝑦2
𝜕𝜃2

𝜕𝑦
= (

𝜇

6(𝜇+1)3
) (

𝑦5

5
−
𝑦3

3
+ 𝐶3);  

𝜕𝜃

𝜕𝑦
|
0
= 0; 𝐶3 = 0 

𝜕𝜃2

𝜕𝑦
= (

𝜇

6(𝜇+1)3
) (

𝑦3

5
−
𝑦

3
)  

∫𝜕𝜃2 = ∫(
𝜇

6(𝜇+1)3
) (

𝑦3

5
−
𝑦

3
) 𝜕𝑦  

𝜃2 =
𝜇(3𝑦4−10𝑦2+𝐶4)

360(𝜇+1)3
 ; 𝜃2(1) = 0; 𝐶4 = 7; 𝜃2 =

𝜇(3𝑦4−10𝑦2+7)

360(𝜇+1)3
   

Therefore the dimensionless concentration profile with error = 𝑂(𝜆3) is  

 𝜃 = 1 + 𝜆
𝑦2 − 1

6(𝜇 + 1)
+ 𝜆2

𝜇(3𝑦4 − 10𝑦2 + 7)

360(𝜇 + 1)3
 (S.17) 

with the dimensionless reaction rate using eq S.8 given by 

 𝑣̃ =
𝜆

3(𝜇 + 1)
−

𝜇𝜆2

45(𝜇 + 1)3
 (S.18) 

The kinetic behavior of the system now depends on one dimensionless parameters (𝜇), where  

two further limits can be defined. 

Zone III: Bulk reactivity (catalyst limited kinetics), 𝜇 ≪ 1  

The oxidation reaction rate is much faster than the catalyst kinetics, as well as there being no 

diffusional limitations inside the particle. The overall reaction rate is determined by the 

catalytic reaction steps: 

 
𝑣̃ =

𝜆

3
 

(zone III) 

(S.19) 

Zone I: Bulk reactivity (oxidant limited kinetics), 𝜇 ≫ 1:  

The oxidation reaction is now globally rate-limiting and zone I behavior is recovered, 

considering only, when √𝜆 𝜇⁄  is very small (𝜆 ≪ 1 and 𝜇 ≫ 1). Eq S.17 simplifies to 

 
𝑣̃ =

𝜆

3𝜇
 

(zone I) 

(S.20) 

Subcase WNA-1C: Surface reactivity approximation (depletion of oxidant, 𝝀 ≫ 𝟏) 

A derivation to a similar problemS5 provided a reference for the calculation of the flux (𝜕𝜃 𝜕𝑦⁄ ) 

in this limit. 

In the opposite case as the one above, when the catalytic reaction is fast compared to diffusion 

(𝜆 ≫ 1), then the oxidant is depleted forming a boundary layer near the particle-solution 

interface.  
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If 𝜇 ~ 1, then depending on the magnitude of 𝜃, the overall reaction could switch from zeroth 

order kinetics with respect to oxidant near the particle surface (where 𝜃 → 1) to first order 

kinetics near the interior of the particle (where 𝜃 → 0). In this case, we will need to consider 

the size of the boundary layer that forms near the particle-solution interface.  

Defining a new parameter 𝜀 = 𝜆−1, which approaches zero when 𝜆 ≫ 1, we can then 

determine the dimensionless reaction-diffusion layer or boundary layer thickness, (where 𝛿rxn 

from the main text is expressed as 𝛿 = 𝛿rxn 𝑅⁄ ). Eq S16 becomes 

𝜀∇2𝜃 =  
𝜃

𝜇 + 𝜃
 

The balance of dominant terms is 

𝜀
𝜃

(𝛿)2
~

𝜃

𝜇 + 𝜃
 

For constant 𝜃 and 𝜇, the right hand side is 𝑂(1), and consequently, 

𝜀

(𝛿)2
 ~ 1 

The boundary layer thickness is therefore, 

𝛿 ~ √𝜀 

Then it is possible to rescale the radial coordinate to 𝛿.S7 

 𝑧 =
1 − 𝑦

𝛿
=
1 − 𝑦

√𝜀
 (S.21) 

𝑦 = 1 − 𝑧√𝜀, 𝑑𝑦 = −𝑑𝑧√𝜀, and the value of 𝜃(𝑦) inside the boundary layer is defined as 

𝑌(𝑧) ~ 𝜃(𝑦). Substituting into (S.8) we have: 

 
𝜕2𝑌

𝜕𝑧2
−

2√𝜀

1 − 𝑧√𝜀

𝜕𝑌

𝜕𝑧
=

𝑌

𝜇 + 𝑌
 (S.22) 

with the boundary conditions: 𝑧 = 0: 𝑌 = 1; and 𝑧 ≥ 𝛿: 𝑌 → 0 

Where now the solution for the inner region can be sought in the form of a regular asymptotic 

expansionS6 given by,  

𝑌 = 𝑌0 + √𝜀𝑌1 + 𝜀𝑌2 +… 

Substituting the expansion into eq S.22, and only looking at leading order 𝑂(1) terms results 

in 

 
𝜕2𝑌0
𝜕𝑧2

=
𝑌0

𝜇 + 𝑌0
 (S.23) 

𝜕𝑌0

𝜕𝑧
(
𝜕2𝑌0

𝜕𝑧2
) =

𝜕𝑌0

𝜕𝑧
(
𝑌0

𝜇+𝑌0
)  

∫
𝜕

𝜕𝑧
[
1

2
(
𝜕𝑌0

𝜕𝑧
)
2

] = ∫ (
𝑌0

𝜇+𝑌0
) 𝜕𝑌0 =∫(1 −

𝜇

𝜇+𝑌0
) 𝜕𝑌0  
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1

2
(
𝜕𝑌0

𝜕𝑧
)
2

= 𝑌0 + 𝐶1 − 𝜇[ln(𝜇 + 𝑌0) + 𝐶2]; 
𝜕𝑌0

𝜕𝑧
→ 0 as 𝑌0 → 0, so 𝐶1 = 0, and 𝐶2 = − ln𝜇     

𝜕𝑌0

𝜕𝑧
= −√2(𝑌0 − 𝜇 ln (

𝜇+𝑌0

𝜇
))  

Coming back to the original coordinates using eq S.21, 

√𝜀
𝜕𝜃

𝑑𝑦
~√2(𝜃 − 𝜇 ln (

𝜇+𝜃

𝜇
))  

           = √2𝜆 (𝜃 − 𝜇 ln (
𝜇+𝜃

𝜇
)) 

𝜃(1) = 1, therefore 

𝜕𝜃

𝜕𝑦
|
1

= √2𝜆 (1 − 𝜇 ln (
𝜇 + 1

𝜇
)) + 𝑂(√𝜀) 

Since the observed reaction rate (eq S.8) is proportional to the flux of oxidant entering the 

particle at the particle-solution interface (𝑦 = 1), with error = 𝑂(√𝜀), 

 
𝑣̃ =  √2𝜆 (1 − 𝜇 ln (

𝜇 + 1

𝜇
)) 

(zone II and IV) 

(S.24) 

Eq S.24 is valid when 𝜆 ≫ 1. Two limits can be further defined. 

Zone IV: Surface reactivity (catalyst limited kinetics) 

Under catalyst limited kinetics, when 𝜇 ≪ 1, the expression in S.24 simplifies to 

 
𝑣̃ =  √2𝜆 

(zone IV) 
(S.25) 

Zone II: Surface reactivity (oxidant limited kinetics) 

Under oxidant limited kinetics, when 𝜇 ≫ 1 zone II is recovered, and the expression in S.24 

simplifies to 

 
𝑣̃ =  √𝜆 𝜇⁄  

(zone II) 
(S.26) 

It should be noted that if 𝜇 is large enough so that √𝜆 𝜇⁄ ≪ 1, the system enters zone I (see 

Figure S2. 
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Reaction-diffusion layer (boundary layer) analysis (𝜹 = 𝜹𝐫𝐱𝐧 𝑹⁄ ) 

Zone II 

With 𝜇 ≫ 1, eq S7 can be written as 

∇2𝜃 =
𝜆

𝜇
𝜃 

When 𝜆 𝜇⁄  is very large, a boundary layer is formed, and the balance of dominant terms is 

given by,  

𝜃

(𝛿)2
~
𝜆

𝜇
𝜃 

𝛿 = √𝜇 𝜆⁄  

therefore, 

 𝛿rxn = √
𝐷ox

4𝑘ox𝐶cat
0  (S.27) 

One way to approximate a solution for the inner region (the concentration profile inside the 

boundary layer), as in the previous section, is to rescale the radial coordinate to the predicted 

value for 𝛿,S7  

𝑧 =
1 − 𝑦

𝛿
=
1 − 𝑦

√𝜇 𝜆⁄  
 

Looking at the value of 𝜃(𝑦) inside the boundary layer (i.e., the inner region) given by 

𝑌(𝑧) ~ 𝜃(𝑦), 

𝜕2𝑌

𝜕𝑧2
−

2√𝜇 𝜆⁄

1 − 𝑧√𝜇 𝜆⁄

𝜕𝑌

𝜕𝑧
= 𝑌 

Now the solution for the inner region can be sought in the form of a regular asymptotic 

expansionS6 given by, 𝑌 = 𝑌0 + √𝜀𝑌1 + 𝜀𝑌2 +…, with now 𝜀 = 𝜇 𝜆⁄ . 

Substituting the expansion into the differential equation and focusing on the leading order 

terms gives, 

𝜕2𝑌0

𝜕𝑧2
= 𝑌0,     𝑌0(0) = 1 

which results in the inner solution, 

𝑌0(𝑧) = 𝑒
−𝑧 

Transforming back into the original coordinates gives, 

 𝜃(𝑦) ~ 𝑒
−(1−𝑦)
𝛿 = 𝑒

−(1−𝑦)

√𝜇 𝜆⁄  
(S.28) 
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with error = 𝑂(√𝜀). The dimensionless reaction-diffusion layer for zone II is displayed in 

Figure S3 with the numerically generated concentration profile.  

 
Figure S3. Simulated concentration profile of oxidant shown by solid black line (𝜃 =

𝐶ox(𝑟) 𝐶ox
0⁄  and 𝑦 = 𝑟 𝑅⁄ ) within the MOF particle under conditions leading to zone II (input 

parameters: 𝜆 = 104, 𝜇 = 10, √𝜇 𝜆⁄ = 0.032). The predicted concentration profile in the 

boundary layer given by 𝜃 = 𝑒
−(1−𝑦)

√𝜇 𝜆⁄  assuming 𝛿 = √𝜇 𝜆⁄ = 0.032 is displayed for comparison 

(blue dots) and agrees well with the simulated results. 

Zone IV 

From above, we saw that the boundary layer thickness in zone IV can be approximated as  

𝛿 ~ √𝜀 = √1 𝜆⁄  

and therefore, 

 𝛿rxn ~ √
𝐷ox𝐶ox

0

4𝑘cat𝐶cat
0  (S.29) 

This can be checked by boundary layer analysis, which will yield the inner solution for the 

concentration profile of oxidant considering 𝜆 ≫ 1 and 𝜇 ≪ 1 (valid for zone IV). Returning to 

eq S.23 with the same expansion (𝑌 = 𝑌0 + √𝜀𝑌1 + 𝜀𝑌2 +…), if 𝜇 ≪ 1 and 𝑌0 ≫ 𝜇, which is 

valid in the boundary layer for zone IV, this can be rewritten as 

𝜕2𝑌0
𝜕𝑧2

= 1 
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𝑌0(0) = 1, and from eq S.25, 
𝜕𝑌0

𝜕𝑧
|
0
= −√2. Integration with these boundary conditions results 

in 

 𝑌0 =
𝑧2

2
− √2𝑧 + 1 

(S.30) 

𝑂(√𝜀) terms: 

√𝜀
𝜕2𝑌1
𝜕𝑧2

+
𝜕2𝑌0
𝜕𝑧2

−
2√𝜀

1 − 𝑧√𝜀

𝜕𝑌0
𝜕𝑧
=

𝑌0 + √𝜀𝑌1

𝜇 + 𝑌0 + √𝜀𝑌1
 

Expanding the 
𝜕𝑌0

𝜕𝑧
 term gives, 

√𝜀
𝜕2𝑌1
𝜕𝑧2

+
𝜕2𝑌0
𝜕𝑧2

− 2√𝜀(1 + 𝑧√𝜀)
𝜕𝑌0
𝜕𝑧
=

𝑌0 + √𝜀𝑌1

𝜇 + 𝑌0 + √𝜀𝑌1
 

Keeping only the 𝑂(√𝜀) terms results in  

√𝜀
𝜕2𝑌1
𝜕𝑧2

+
𝜕2𝑌0
𝜕𝑧2

− 2√𝜀
𝜕𝑌0
𝜕𝑧
=

𝑌0 + √𝜀𝑌1

𝜇 + 𝑌0 + √𝜀𝑌1
 

In the boundary layer 𝑌0 + √𝜀𝑌1 ≫ 𝜇, making the right hand side ≈ 1. Substituting the 

previous result for 𝑌0 finally yields, 

𝜕2𝑌1
𝜕𝑧2

= 2𝑧 − √2 

Integrating with the boundary conditions, 
𝜕𝑌1

𝜕𝑧
|
0
= 0 and 𝑌1(0) = 0, the result is 

 𝑌1 =
𝑧3

3
−
√2

2
𝑧2 (S.31) 

Substituting eqs S.29 and S.30 back into the expansion gives, 

𝑌 = √𝜀
𝑧3

3
+ (
1

2
−
√2

2
) 𝑧2 − √2𝑧 + 1 + 𝑂(𝜀) 

In the original coordinate, the inner solution with error = 𝑂(𝜀) for 𝜃(𝑦) in the boundary layer 

is (valid for (1 − 𝛿) < 𝑦 < 1): 

 𝜃 = 𝜆
(1 − 𝑦)3

3
+ (
𝜆

2
−
√2𝜆

2
) (1 − 𝑦)2 − √2𝜆(1 − 𝑦) + 1 (S.32) 

The dimensionless reaction-diffusion layer for zone IV is displayed in Figure S4 with the 

numerically generated concentration profile. Eq S.32 is only valid where 𝜃 ≫ 𝜇, and thus 

becomes inaccurate near the edge of the boundary layer and into the center of the particle 

when 𝜃 → 0 and 𝜃 ≪ 𝜇. As can be seen from the simulated results in Figure S4, 𝜃 rapidly 

approaches zero outside the boundary layer and as 𝑦 → 0. This condition is not met with eq 

S.32, which clearly is not equal to zero as 𝑦 → 0 (i.e., eq S.32 is not uniformly valid). A 

complimentary outer solution describing the particle center is required to fully describe the 
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concentration profile in zone IV, and thus 𝛿rxn for zone IV is only an estimate as indicated in 

Table 3 of the main text.  

 
Figure S4. Simulated concentration profile of oxidant shown by solid black line (𝜃 =

𝐶ox(𝑟) 𝐶ox
0⁄  and 𝑦 = 𝑟 𝑅⁄ ) within the MOF particle under conditions leading to zone IV (input 

parameters: 𝜆 = 104, 𝜇 = 10−3, 1 √𝜆⁄ = 0.01. The predicted concentration profile in the 

boundary layer given by eq S.32 with 𝛿 = 1 √𝜆⁄ = 0.01 is displayed for comparison (blue dots; 

only shown for (1 − 𝛿) < 𝑦 < 1). The deviation of eq S.32 from the simulated results can be 

seen near the edge of the boundary layer where 𝜃 approaches zero.  
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A.2 Formal Reaction-Diffusion Kinetic Model for I2M Mechanism 

A + ox
𝑘ox1 (fast)
→       B + red 

B + ox
𝑘ox2
→  C + red 

C + ox
𝑘ox3
→  D + red 

2D
𝑘d
→ E 

E + 2H2O
𝑘2
→ 2B + O2 

Given that water is the solvent as well as the substrate, the concentration of H2O is taken as 

constant throughout the particle. The reaction-diffusion equations become 

𝜕𝐶ox

𝜕𝑡
= 𝐷ox (

𝜕2𝐶ox

𝜕𝑟2
+
2

𝑟

𝜕𝐶ox

𝜕𝑟
) − 𝑘ox1𝐶ox𝐶A − 𝑘ox2𝐶ox𝐶B − 𝑘ox3𝐶ox𝐶C  

𝜕𝐶A

𝜕𝑡
= −𝑘ox3𝐶ox𝐶A  

𝜕𝐶B

𝜕𝑡
= 𝑘ox1𝐶ox𝐶A − 𝑘ox2𝐶ox𝐶B + 2𝑘2𝐶E  

𝜕𝐶C

𝜕𝑡
= 𝑘ox2𝐶ox𝐶B − 𝑘ox3𝐶ox𝐶C  

𝜕𝐶D

𝜕𝑡
= 𝑘ox3𝐶ox𝐶C − 2𝑘d𝐶D

2   

𝜕𝐶E

𝜕𝑡
= 𝑘d𝐶D

2 − 𝑘2𝐶E  

With the initial and boundary conditions as follows 

𝑡 = 0, ∀ 𝑟: 𝐶ox = 𝐶ox
0 , 𝐶B = 0, 𝐶C = 0, 𝐶D = 0, 𝐶E = 0, 𝐶A = 𝐶cat

0  

𝑡 > 0, 𝑟 = 0: 
𝜕𝐶ox

𝜕𝑟
= 0 

𝑡 > 0, 𝑟 = 𝑅:  𝐶ox = 𝐶ox
0 , 

𝜕𝐶A

𝜕𝑟
= 0,

𝜕𝐶B

𝜕𝑟
= 0,

𝜕𝐶C

𝜕𝑟
= 0,

𝜕𝐶D

𝜕𝑟
= 0,

𝜕𝐶E

𝜕𝑟
= 0 

At the particle-solution interface (𝑟 = 𝑅), forced convection from stirring maintains a constant 

concentration of [ox], 𝐶ox(𝑡, 𝑅) = 𝐶ox
0 . Mass balance on the catalytic intermediates gives ∀ 𝑡 

and ∀ 𝑟, 

 𝐶A + 𝐶B + 𝐶C + 𝐶D + 𝐶E = 𝐶cat
0  (S.33) 

Application of steady-state (with 𝐶A → 0) yields 

 𝐷ox (
𝜕2𝐶ox
𝜕𝑟2

+
2

𝑟

𝜕𝐶ox
𝜕𝑟
) = 𝑘ox1𝐶ox𝐶B + 𝑘ox3𝐶ox𝐶C (S.34) 

2𝑘2𝐶E = 𝑘ox2𝐶ox𝐶B  

𝑘ox2𝐶ox𝐶B = 𝑘ox3𝐶ox𝐶C  



S20 
 

𝑘ox3𝐶ox𝐶C = 2𝑘d𝐶D
2   

𝑘d𝐶D
2 = 𝑘2𝐶E   

𝐶B =
2𝑘d𝐶D

2

𝑘ox2𝐶ox
  

𝐶C =
2𝑘d𝐶D

2

𝑘ox3𝐶ox
   

𝐶E =
𝑘d𝐶D

2

𝑘2
     

Substitution into eq S.33 gives 

2𝑘d𝐶D
2

𝑘ox2𝐶ox
+
2𝑘d𝐶D

2

𝑘ox3𝐶ox
+
𝑘d𝐶D

2

𝑘2
 + 𝐶D − 𝐶cat

0 = 0  

 (
2𝑘d

𝑘ox2𝐶ox
+

2𝑘d

𝑘ox3𝐶ox
+
𝑘d

𝑘2
) 𝐶D

2 + 𝐶D − 𝐶cat
0 = 0 

 𝑘d

𝑘2
[

2𝑘2
𝑘ox3

(
𝑘ox3
𝑘ox2

+1)+𝐶ox

𝐶ox
] 𝐶D

2 + 𝐶D − 𝐶cat
0 = 0  (S.35) 

Substitution into (S.34), we can write 

 𝐷ox (
𝜕2𝐶ox
𝜕𝑟2

+
2

𝑟

𝜕𝐶ox
𝜕𝑟
) = 4𝑘d𝐶D

2 (S.36) 

Dimensional analysis by defining 𝜃 =
𝐶Ce

𝐶ox
0 , 𝑖̃ =

𝐶𝑖

𝐶cat
0 , 𝑦 =

𝑟

𝑅
, results in four dimensionless control 

parameters: 

𝜅 =
4𝑘d𝐶cat

0

𝑘2
,  𝜇 =

2𝑘2

𝑘ox3𝐶ox
0 ,  𝜆 = 𝑅

2 4𝑘2

𝐷ox

𝐶cat
0

𝐶𝑜𝑥
0 ,  𝜌 =

𝑘ox3

𝑘ox2
 

Eq S.30 can be rewritten as 

 
𝜕2𝜃

𝜕𝑦2
+
2

𝑦

𝜕𝜃

𝜕𝑦
=
𝜅𝜆

4
𝐷̃2 (S.37) 

Additionally, (S.35) becomes 

𝑘d𝐶cat
0

𝑘2
[

2𝑘2
𝑘ox3𝐶ox

0 (
𝑘ox3
𝑘ox2

+ 1) + 𝜃

𝜃
] 𝐷̃2 + 𝐷̃ − 1 = [

𝜅

4
(
𝜇(𝜌 + 1) + 𝜃

𝜃
)] 𝐷̃2 + 𝐷̃ − 1 = 0 

Solving for 𝐷̃2 and substitution into eq S.37 finally yields, 

 𝜕2𝜃

𝜕𝑦2
+
2

𝑦

𝜕𝜃

𝜕𝑦
=
𝜆

𝜅

(√1 + 𝜅 (
𝜇(𝜌 + 1) + 𝜃

𝜃 ) − 1)

2

(
𝜇(𝜌 + 1) + 𝜃

𝜃 )
2  (S.38) 

with the dimensionless reaction rate given by 
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 𝑣̃ =
𝑣

𝑁𝜋𝑅𝐷ox𝐶ox
0 =

𝜕𝜃

𝜕𝑦
|
1

 (S.39) 

The equation to be solved (eq S.38) is non-linear, making a closed-form solution difficult to 

obtain; however, we can use asymptotic analysis to look at the behavior in limiting situations 

by taking maximum or minimum values of the dimensionless control parameters. Firstly, it can 

be expected that 𝑘ox2 ≫ 𝑘ox3 so that 𝜌 → 0. This simplification gives, 

 𝜕2𝜃

𝜕𝑦2
+
2

𝑦

𝜕𝜃

𝜕𝑦
=
𝜆

𝜅

(√1 + 𝜅 (
𝜇 + 𝜃
𝜃 ) − 1)

2

(
𝜇 + 𝜃
𝜃 )

2  (S.40) 

which is now a function of only three dimensionless parameters. 

𝜅 =
4𝑘d𝐶cat

0

𝑘2
          𝜇 =

2𝑘2

𝑘ox3𝐶ox
0           𝜆 = 𝑅2

4𝑘2

𝐷ox

𝐶cat
0

𝐶ox
0  

I2M-1: fast dimerization (𝜿 → ∞ and 𝝁𝜿 → ∞) 

This behavior would correspond to when the dimerization step is unconditionally fast, and 

either the oxidation step(s) or the oxygen release step is rate-limiting. Then eq S.34 simplifies 

to 

 
𝜕2𝜃

𝜕𝑦2
+
2

𝑦

𝜕𝜃

𝜕𝑦
= 𝜆

𝜃

𝜇 + 𝜃
 (S.41) 

We can now define 𝐾𝜃̃ given below 

 𝐾𝜃̃ = 𝜆
𝜃

𝜇 + 𝜃
 (S.42) 

which essentially reflects Michaelis-Menten type kinetics for the overall reaction as described 

above for the WNA mechanism. The resulting expressions for the dimensionless reaction rate 

are independent of 𝜅, and therefore, are the same as in the WNA mechanism for each limiting 

kinetic behavior; however, the definitions of the dimensionless control parameters 𝜆 and 𝜇, 

as expressed above for I2M, now differ from that for WNA. 

Subcase I2M-1A: oxidant limited kinetics (𝝁 ≫ 𝟏) 

If 𝜇 ≫ 1 then eq S.41 further reduces to 

 
𝜕2𝜃

𝜕𝑦2
+
2

𝑦

𝜕𝜃

𝜕𝑦
=
𝜆

𝜇
𝜃 (S.43) 

Here the oxidation step(s) become globally rate-limiting. The coefficient of 𝜃 takes the form 

of the classical Thiele modulus:   

𝜙2 =
𝜆

𝜇
= 𝑅2

2𝑘ox3𝐶cat
0

𝐷ox
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The solution is the same as in WNA-1A. Integration of (S.43) taking into account the 

appropriate boundary conditions yields the dimensionless reaction rate 

 𝑣̃ = √𝜆 𝜇⁄ coth (√𝜆 𝜇⁄ ) − 1 (S.44) 

Two limiting situations can be reached depending on the dimensionless parameter √𝜆 𝜇⁄ . 

Bulk reactivity (oxidant limited kinetics), √𝜆 𝜇⁄ ≪ 1:  

 𝑣̃ =
𝜆

3𝜇
 (S.45) 

Surface reactivity (oxidant limited kinetics), √𝜆 𝜇⁄ ≫ 1: 

 𝑣̃ =  √𝜆 𝜇⁄  (S.46) 

Subcase I2M-1B: Bulk reactivity approximation (negligible consumption of oxidant, 𝝀 ≪ 𝟏) 

The solution is the same as in WNA-1B, with the dimensionless reaction rate given by 

 𝑣̃ =
𝜆

3(𝜇 + 1)
−

𝜇𝜆2

45(𝜇 + 1)3
 (S.47) 

The kinetic behavior of the system now depends on one dimensionless parameters (𝜇), where  

two further limits can be defined. 

Bulk reactivity (O2 release limited kinetics), 𝜇 ≪ 1:  

 𝑣̃ =
𝜆

3
 (S.48) 

Bulk reactivity (oxidant limited kinetics), 𝜇 ≫ 1:  

 𝑣̃ =
𝜆

3𝜇
 (S.49) 

Subcase I2M-1C: Surface reactivity approximation (depletion of oxidant, 𝝀 ≫ 𝟏) 

In the opposite case as the one above, when the catalytic reaction is fast compared to diffusion 

(𝜆 ≫ 1), then the oxidant is depleted forming a boundary layer near the particle-solution 

interface. There are now two situations to consider. 

If 𝜇 ~ 1, then depending on the magnitude of 𝜃, the overall reaction could switch from zeroth 

order kinetics with respect to oxidant near the particle surface (where 𝜃 → 1) to first order 

kinetics near the interior of the particle (where 𝜃 → 0). In this case, we will need to consider 

the size of the boundary layer that forms near the particle-solution interface.  

The solution is the same as the WNA-1C subcase (eq S.24). The dimensionless reaction rate is 

given by 
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 𝑣̃ =  √2𝜆 (1 − 𝜇 ln (
𝜇 + 1

𝜇
)) (S.50) 

Surface reactivity (oxidant limited kinetics), 𝜇 ≫ 1:  

If 𝜇 ≫ 1 subcase I2M-1A is recovered and the reaction is limited solely by the oxidation 

reaction. 

 𝑣̃ =  √𝜆 𝜇⁄  (S.51) 

Surface reactivity (O2 release limited kinetics), 𝜇 ≪ 1: 

When 𝜇 ≪ 1, the O2 release step is rate-determining, and the expression in S.50 simplifies to 

 𝑣̃ =  √2𝜆 (S.52) 

I2M-2: fast O2 release (𝜿 → 𝟎) 

When 𝜅 is much smaller than unity, this implies the oxygen release step is faster than the 

dimerization step. Then, depending on the magnitude of 𝜆 and 𝜇 several subcases are 

described below. 

Subcase I2M-2A: oxidant limited kinetics (𝝁𝜿 ≫ 𝟏) 

If though, 𝜇𝜅 ≫ 1, the overall reaction displays oxidant limited kinetics (implies 𝜇 → ∞) and 

the I2M-1A subcase is recovered (see eq S.44). 

 𝑣̃ = √𝜆 𝜇⁄ coth (√𝜆 𝜇⁄ ) − 1 (S.53) 

Subcase I2M-2B: Bulk reactivity approximation (negligible consumption of oxidant) 

However, if 𝜇𝜅 ≪ 1, then the dimerization reaction becomes the globally rate-determining 

chemical step, and the oxidation reaction steps are fast. In addition if the oxidant 

concentration is assumed to be nearly constant within the particle (𝜃 ~ 1), eq S.40 reduces to  

 
𝜕2𝜃

𝜕𝑦2
+
2

𝑦

𝜕𝜃

𝜕𝑦
=
𝜆𝜅

4
 (S.54) 

Bulk reactivity (dimerization limited kinetics ), 𝜇 ≪ 𝜃 with 𝜃 ~ 1 

Integration of (S.54), taking into account the boundary conditions gives 

 𝜃 =
𝜆𝜅

24
(𝑦2 − 1) + 1 (S.55) 

 

𝑣̃ =  
𝜆𝜅

12
 

𝑣 =
4

3
𝑁𝜋𝑅3𝑘d(𝐶cat

0 )2 

(S.56) 
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This result shows that the observed rate (𝑣) in eq S.56 is second order in 𝐶cat
0 , as expected if 

the dimerization step is globally rate-determining with bulk reactivity (due to fast diffusion 

and/or small particles). Other diagnostics for this limiting behavior include: proportionality of 

the observed rate to 𝑅3, and zero order kinetics with respect to 𝐶ox
0 . 

Subcase I2M-1C: Surface reactivity approximation (depletion of oxidant) 

Here again we encounter a situation where the kinetics may be zero order with respect to the 

oxidant near the particle-solution interface; however, progressing outside the boundary layer 

into the interior of the particle, depletion of the oxidant causes the kinetics to switch to first 

order in oxidant. Taking 𝜅 → 0 and 𝜇𝜅 ≪ 1 means the dimerization step will be globally rate-

determining in the boundary layer where zeroth order kinetics in oxidant are observed. The 

second order character of the dimerization step quickly makes obtaining an approximate 

analytical solution intractable, even after applying asymptotic analysis as was done for the 

WNA mechanism. Although, it is clear that the overall observed rate will be some function of 

both 𝜅 and 𝜆.  
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B. Oxidant size excluded from MOF pores: diffusional charge 

transport mechanism 

In this situation the oxidant cannot diffuse through the particle, and rather a charge hopping 

mechanism carries holes into the interior of the framework. This charge hopping mechanism 

consist of a series of bimolecular self-exchange electron transfer reactions between the 

molecular catalysts within the framework, which is formally the diffusion of fixed redox 

centers.S8,S9 Therefore, the catalytic species is responsible for performing both charge 

propagation and catalysis. A heterogeneous reaction at the particle-solution interface 

between the oxidant and the molecular catalyst initiates charge transport within the particle. 

Diffusional charge transport can be described by an apparent diffusion coefficient 𝐷e, which 

is taken as constant and is invariant to changes in redox state of the framework. The particle 

is approximated as spherical and the catalyst is homogeneously dispersed within the particle. 

A simplified mechanism for OER is examined (see main text and Figure 6 for detailed 

description), only considering WNA, where O-O bond formation is rate-limiting (𝑘cat = 4𝑘1). 

Water is the solvent and substrate, and its concentration is assumed constant as above. 

Additionally we assume O2 diffusion inside the MOF is comparatively faster than diffusional 

charge transport and will not be limiting. The generalized reaction scheme is given below.  

                                                                A|r=R + ox|r=R
𝑘ox
s

→ B|r=R + red|r=R 

                                                    (𝐷e)      B + A⇌ A + B  

                                                                 B + H2O
𝑘cat
→  A + O2 

The governing equations and boundary conditions are 

𝑟 = 0 

 
𝜕𝐶B

𝜕𝑟
|
𝑟=0

= 0           
𝜕𝐶A

𝜕𝑟
|
𝑟=0

= 0 

0 < 𝑟 < 𝑅 

 

𝜕𝐶B
𝜕𝑡

= 𝐷e (
𝜕2𝐶B
𝜕𝑟2

+
2

𝑟

𝜕𝐶B
𝜕𝑟
) − 𝑘cat𝐶B 

𝜕𝐶A
𝜕𝑡

= 𝐷e (
𝜕2𝐶A
𝜕𝑟2

+
2

𝑟

𝜕𝐶A
𝜕𝑟
) + 𝑘cat𝐶B 

(S.57) 

𝐶A + 𝐶B = 𝐶cat
0   

𝐶ox = 0      

𝑟 = 𝑅 

 
𝜕𝐶B
𝜕𝑡
|
𝑟=𝑅

= −𝐷e
𝜕𝐶B
𝜕𝑟
|
𝑟=𝑅

+ 𝑘ox
s 𝐶ox

0 𝐶A
𝑟=𝑅 (S.58) 

𝑟 > 𝑅 

𝐶ox = 𝐶ox
0 ,   𝐶A = 0, 𝐶B = 0  
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When the coupled chemical reactions are fast compared to the timescale of the experiment, 

a steady-state situation will arise. Application of steady state to eq S.57 and eq S.58, focusing 

our attention on intermediate B, yields 

 
𝐷e (

𝜕2𝐶B
𝜕𝑟2

+
2

𝑟

𝜕𝐶B
𝜕𝑟
) = 𝑘cat𝐶B (S.59) 

 𝐷e
𝜕𝐶B
𝜕𝑟
|
𝑟=𝑅

= 𝑘ox
s 𝐶ox

0 𝐶A
𝑟=𝑅 (S.60) 

With the overall observed rate now defined as the total flux of oxidized catalyst at the particle 

surface, 

 𝑣 = 𝑁𝑆𝐷e
𝜕𝐶B
𝜕𝑟
|
𝑟=𝑅

= 4𝑁𝜋𝑅2𝐷e
𝜕𝐶B
𝜕𝑟
|
𝑟=𝑅

 (S.61) 

Dimensional analysis by defining 𝑖̃ =
𝐶𝑖

𝐶cat
0 , 𝑦 =

𝑟

𝑅
, results in two dimensionless control 

parameters: 

𝜆𝑒 = 𝑅√
𝑘cat

𝐷e
                                        𝛾 = 𝑅 

𝑘ox
s 𝐶ox

0

𝐷e
 

The equations to solve become: 

 

𝜕2𝐵̃

𝜕𝑦2
+
2

𝑦

𝜕𝐵̃

𝜕𝑦
= 𝜆e

2𝐵̃ (S.62) 

 
𝜕𝐵̃

𝜕𝑦
|
1

= γ𝐴̃𝑦=1 (S.63) 

with the dimensionless rate, 

 𝑣̃ =
𝜕𝐵̃

𝜕𝑦
|
1

=
𝑣

4𝑁𝜋𝑅𝐷e𝐶cat
0  (S.64) 

Eq S.62 is readily solved resulting in the concentration profile and flux for 𝐵̃: 

 
𝜕𝐵̃

𝜕𝑦
|
1

= 𝐵̃𝑦=1(𝜆𝑒 coth 𝜆𝑒 − 1) (S.65) 

𝐵̃(𝑦) =
𝐵̃𝑦=1

𝑦

sinh(𝜆𝑒𝑦)

sinh(𝜆𝑒)
  

Eq S.63 can be rewritten: 

𝑣̃ =
𝜕𝐵̃

𝜕𝑦
|
1
= γ(1 − 𝐵̃𝑦=1)  

𝐵̃𝑦=1 = 1 −
𝑣̃

𝛾
  

Plugging this result into eq S.65 and solving for 𝑣̃ yields the dimensionless expression for the 

rate. 
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𝑣̃ =
𝜆𝑒 coth 𝜆𝑒 − 1

1 +
𝜆𝑒 coth 𝜆𝑒 − 1

𝛾

 

1

𝑣̃
=
1

𝛾
+

1

𝜆𝑒 coth 𝜆𝑒 − 1
 

(S.66) 

Four limiting situations are straightforwardly obtained for large or small values of 𝜆𝑒 and 𝛾.  

These are displayed in the zone diagram in Figure 10 of the main text.  

Bulk reactivity 𝜆𝑒 → 0: 

Now the system depends on the single parameter 
𝜆𝑒
2

𝛾
, giving 

𝜆𝑒
2

𝛾
→ ∞  

 
𝑣̃ = 𝛾  
zone V(a) 

(S.67) 

𝜆𝑒
2

𝛾
→ 0  

 𝑣̃ =
𝜆𝑒
2

3
 

zone VI 

(S.68) 

 

Surface reactivity 𝜆𝑒 → ∞: 

Now the system depends on the single parameter 
𝜆𝑒

𝛾
, giving 

𝜆𝑒

𝛾
→ ∞  

 
𝑣̃ = 𝛾 

zone V(b) 
(S.69) 

𝜆𝑒

𝛾
→ 0  

 
𝑣̃ = 𝜆𝑒 
zone VII 

(S.70) 

 

Reaction-diffusion layer (boundary layer) thickness 𝜹 = 𝜹𝐫𝐱𝐧 𝑹⁄  

Consider in the situation in zone VII, where 𝜆𝑒 → ∞ and 
𝜆𝑒

𝛾
→ 0, Eq S.62 can be written as 

∇2𝐵̃ = 𝜆e
2𝐵̃ 

The balance of dominant terms gives 

𝐵̃

(𝛿)2
~𝜆e

2𝐵̃ 
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𝛿 =
1

𝜆e
 

 𝛿rxn = √
𝐷e
𝑘cat

 (S.71) 

The boundary layer analysis for zone VII is identical to the situation in zone II, however; now 

with 𝛿 = 𝜆e
−1: 

 𝐵̃(𝑦) ~ 𝑒
−(1−𝑦)
𝛿 = 𝑒−𝜆e(1−𝑦) (S.72) 

valid for 𝜆e ≫ 1 and 
𝜆𝑒

𝛾
≪ 1. 
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C. MOF Structural Parameters  

𝑚cat = average number of catalyst sites per pore 

𝑛cat = total moles of catalyst used in catalytic assay (mol) 

𝑉pore = average pore volume (cm3) 

𝑉cat = 𝑉pore 𝑚cat⁄  = average volume of pore per catalyst (cm3) 

𝑁𝐴 = 6.02x1023 (mol−1) 

𝑉MOF = MOF particle volume (= 4/3𝜋𝑅3) (cm3) 

𝑁 = total number of MOF particles used in the catalytic assay 

Calculation of 𝑣 requires 𝑁 and 𝐶cat
0 , which are given by 

 𝑁 = 
𝑛cat𝑁𝐴𝑉cat

𝑉MOF
     𝐶cat

0 =
𝑛cat

𝑉MOF𝑁
= (𝑁𝐴𝑉cat)

−1    

 

D. Computational Details for Numerical Simulations 

Finite difference method (FDM) was employed to numerically generate solutions 

(concentration profiles and fluxes) to the reaction-diffusion equation (eq S.7) due to the non-

linear kinetics of the coupled chemical reactions. Second order central differencing schemes 

for the first and second spatial derivatives were used on an uniform grid with a step size (∆𝑦) 

of 0.001.S10 The flux of oxidant at the particle surface (𝑦 = 1) was computed using an 

asymmetric three-point discretization,S10 also second order (error = 𝑂(∆𝑦2)). A method of 

successive substitutionS11 (or “relaxation method”S12) was used to approximate the unknown 

non-linear term (𝐾𝜃̃) by assuming it is equal to an initial guess. The concentration at each grid 

point is calculated, which is then substituted into the linear system to approximate the non-

linear term in a successive iteration. This process is repeated until the solution converges to 

an acceptable tolerance (the average absolute difference for each grid point between 

successive iterations was ≤ 10−5).  
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