Extremely low-frequency phonon material and its temperature- and photo-induced switching effects

Takaya Yoshida,¹ Koji Nakabayashi,¹ Hiroko Tokoro,^{1,2} Marie Yoshikiyo,¹

Asuka Namai,¹ Kenta Imoto,¹ Kouji Chiba,³ and Shin-ichi Ohkoshi^{*,1}

 ¹ Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
 ² Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
 ³ Material Science Div., MOLSIS Inc., Tokyo Daia Bldg. 1-28-38 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan.

> *To whom correspondence should be addressed E-mail: ohkoshi@chem.s.u-tokyo.ac.jp

Fable	of Contents:	Page
1	Legend for Supporting Movies	S2
2	Experimental details	S3
3	Crystal structure analysis of $Co^{II} - W^V$ phase of RbCoW (Table S1)	S4
4	First-principles phonon mode calculation (Table S2-S4, Figure S1)	S5–S8
5	Temperature-induced switching effect on the low-frequency phonon mode (Figure S2)	S9
6	Crystal structure analysis of the Co ^{III} –W ^{IV} phase of RbCoW (Figure S3, Table S5)	S10,S11
7	Comparison of the crystal structure of RbCoW between the Co ^{II} –W ^V phase and Co ^{III} –W ^{IV} phase (Tables S6, S7)	S12
8	First-principles electronic structure calculation of the Co ^{III} –W ^{IV} phase (Figure S4)	S13
9	THz absorption spectrum of CsCoW (Figure S5)	S14

Section 1. Legend for Supporting Movies

Movie S1. "Low-frequency phonon millefeuille" based on metal–organic framework. Initial part of the movie shows monoatomic molecules shown with red balls moving freely in the gas phase or liquid phase (translational mode). Next, a monoatomic molecule is caught by a two-dimensional (2D) metal–organic soft framework (similar to pastry sheets), and the translational mode switches to a vibrational mode (optical phonon mode) with a low vibrational frequency. The layers pile up with the 2D layers softly sandwiching the low-frequency optical phonon due to heavy atoms. Here we call it "low-frequency phonon millefeuille".

Movie S2. Calculated phonon modes of RbCoW. The first part of the movie shows the list of low-frequency optical phonon modes. Then, the movie shows the atomic movements of the phonon modes corresponding to **peaks a** (0.883 THz), **b** (0.997 THz), **c** (1.136 THz), **d** (1.453 THz), **e** (1.682 THz), **f** (1.805 THz), **g** (1.923 THz), and **h** (2.102 THz) in the optical phonon spectrum. **Peaks a**, **b** and **c** are assigned to the phonon modes of Rb ion vibrations in the *ab* plane. Atomic movement of **peak d** is due to Rb ion oscillation along the crystallographic *c*-axis. In these phonon modes, the 3-cyanopyridine and cyanide ligands sway together with the Rb ions, supporting the Rb movements. **Peaks e** and **f** are attributed to the combination of transverse translational modes of W–CN–Co and 3-cyanopyridine ligand rotation, and **peaks g** and **h** originate from the transverse librational modes of W–CN–Co and 3-cyanopyridine ligand rotation. Red, blue, green, ocher, and grey balls represent Rb, Co, W, C, and N atoms, respectively.

Section 2. Experimental details

Synthesis. Polycrystalline sample of **RbCoW** was synthesised by reacting a 15 mL aqueous solution of cobalt (II) dichloride (2.3 mmol), 3-cyanopyridine (3.0 mmol), rubidium chloride (7.6 mmol) with a 15 mL solution of rubidium octacyanidetungstate hydrate (1.5 mmol) and rubidium chloride (0.45 mol dm⁻³). Stirring for 24 hours and subsequently standing under vacuum conditions at room temperature yielded a red-brown powder.

Measurements. The chemical formulas of the metal assemblies were estimated by micro-analytical methods for carbon, nitrogen, and hydrogen. The chemical composition of the metal ions (Rb, Co, W) were estimated by inductively coupled plasma mass spectroscopy using Agilent 7700x. Infrared absorption spectrum of **RbCoW** was obtained by JASCO FT/IR-4100 and Shimadzu FTIR-8200 spectrometers. The sample was prepared by standing under an Ar atmosphere, dispersing with nujol, and sandwiching between CaF₂ plates. UV-visible absorption spectra of **RbCoW** were obtained by Shimadzu 3600 Plus. The sample was prepared by standing under an Ar atmosphere, dispersing with nujol, and sandwiching between polypropylene plates. The temperature-dependent spectra of UV-vis absorption were obtained using Oxford MicrostatHe2. Additionally, 785 nm CW laser (48.5 mW) made by Applied Techno was used for photo-irradiation.

Empirical formula $C_{20}H_8CoN_{12}RbW$ Formula weight 744.63 Temperature/K 300(2) Crystal system triclinic Space group $P\overline{1}$ $a/Å$ 7.5298(4) $b/Å$ 13.7545(7) $c/Å$ 14.0687(6) $a/°$ 119.276(4) $\beta/°$ 101.020(6) $\gamma/°$ 89.974(6) $V/Å^3$ 1240.15(12) Z 2 $\rho_{calc}/g cm^{-3}$ 1.994 μ/mm^{-1} 7.286 $F(000)$ 700.0 Crystal size/mm ³ 0.204 × 0.042 × 0.0 Radiation MoKa ($\lambda = 0.7107$ 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ $-18 \le 1 \le 18$ Reflections collected 11945	V
Formula weight 744.63 Temperature/K 300(2) Crystal system triclinic Space group $P\overline{1}$ $a/Å$ 7.5298(4) $b/Å$ 13.7545(7) $c/Å$ 14.0687(6) $a/°$ 119.276(4) $\beta/°$ 101.020(6) $\gamma/°$ 89.974(6) $V/Å^3$ 1240.15(12) Z 2 $\rho_{calc}/g cm^{-3}$ 1.994 μ/mm^{-1} 7.286 $F(000)$ 700.0 Crystal size/mm³ 0.204 × 0.042 × 0.0 Radiation MoKa ($\lambda = 0.7107$ 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ Reflections collected 11945 1945	
Temperature/K $300(2)$ Crystal system triclinic Space group $P\overline{1}$ $a/Å$ $7.5298(4)$ $b/Å$ $13.7545(7)$ $c/Å$ $14.0687(6)$ $a/°$ $119.276(4)$ $\beta/°$ $101.020(6)$ $\gamma/°$ $89.974(6)$ $V/Å^3$ $1240.15(12)$ Z 2 $\rho_{calc}/g \text{ cm}^{-3}$ 1.994 μ/mm^{-1} 7.286 $F(000)$ 700.0 Crystal size/mm ³ $0.204 \times 0.042 \times 0.042$ Radiation $MoK\alpha$ ($\lambda = 0.7107$ 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ $-18 \le 1 \le 18$ Reflections collected 11945	
Crystal system triclinic Space group $P\overline{1}$ $a/Å$ 7.5298(4) $b/Å$ 13.7545(7) $c/Å$ 14.0687(6) $a/°$ 119.276(4) $\beta/°$ 101.020(6) $\gamma/°$ 89.974(6) $V/Å^3$ 1240.15(12) Z 2 $\rho_{calc}/g cm^{-3}$ 1.994 μ/mm^{-1} 7.286 $F(000)$ 700.0 Crystal size/mm ³ 0.204 × 0.042 × 0.0 Radiation MoK α ($\lambda = 0.7107$) 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ Reflections collected 11945 Independent reflections	
Space group $P\overline{1}$ a/A 7.5298(4) b/A 13.7545(7) c/A 14.0687(6) $a/^{\circ}$ 119.276(4) $\beta/^{\circ}$ 101.020(6) $\gamma/^{\circ}$ 89.974(6) V/A^3 1240.15(12) Z 2 $\rho_{calc}/g cm^{-3}$ 1.994 μ/mm^{-1} 7.286 $F(000)$ 700.0 Crystal size/mm ³ 0.204 × 0.042 × 0.0 Radiation MoKa ($\lambda = 0.7107$ 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ 1.945 Index ranges $-17 \le k \le 17$ $-18 \le 1 \le 18$ 1.945	
$a/Å$ 7.5298(4) $b/Å$ 13.7545(7) $c/Å$ 14.0687(6) $a/°$ 119.276(4) $\beta/°$ 101.020(6) $\gamma/°$ 89.974(6) $V/Å^3$ 1240.15(12) Z 2 $\rho_{calc}/g cm^{-3}$ 1.994 μ/mm^{-1} 7.286 $F(000)$ 700.0 Crystal size/mm ³ 0.204 × 0.042 × 0.0 Radiation MoK α ($\lambda = 0.7107$ 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ Reflections collected 11945 Independent reflections	
$b/Å$ 13.7545(7) $c/Å$ 14.0687(6) $a/^{\circ}$ 119.276(4) $\beta/^{\circ}$ 101.020(6) $\gamma/^{\circ}$ 89.974(6) $V/Å^3$ 1240.15(12) Z 2 $\rho_{calc}/g cm^{-3}$ 1.994 μ/mm^{-1} 7.286 $F(000)$ 700.0 Crystal size/mm ³ 0.204 × 0.042 × 0.0 Radiation MoKa ($\lambda = 0.7107$) 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ 11945 Index ranges $-17 \le k \le 17$ $-18 \le 1 \le 18$ 11945	
$c/Å$ 14.0687(6) $a/^{\circ}$ 119.276(4) $\beta/^{\circ}$ 101.020(6) $\gamma/^{\circ}$ 89.974(6) $V/Å^3$ 1240.15(12) Z 2 $\rho_{calc}/g cm^{-3}$ 1.994 μ/mm^{-1} 7.286 $F(000)$ 700.0 Crystal size/mm ³ 0.204 × 0.042 × 0.0 Radiation MoKa ($\lambda = 0.7107$) 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ 11945 Index ranges $-17 \le k \le 17$ $-18 \le 1 \le 18$ 11945	
$\alpha/^{\circ}$ 119.276(4) $\beta/^{\circ}$ 101.020(6) $\gamma/^{\circ}$ 89.974(6) $V/Å^3$ 1240.15(12) Z 2 $\rho_{calc}/g \text{ cm}^{-3}$ 1.994 μ/mm^{-1} 7.286 $F(000)$ 700.0 Crystal size/mm ³ 0.204 × 0.042 × 0.0 Radiation MoK α ($\lambda = 0.7107$) 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ 11945 Index ranges $-17 \le k \le 17$ $-18 \le 1 \le 18$ 11945	
$\beta/^{\circ}$ 101.020(6) $\gamma/^{\circ}$ 89.974(6) $V/Å^3$ 1240.15(12) Z 2 $\rho_{calc}/g cm^{-3}$ 1.994 μ/mm^{-1} 7.286 $F(000)$ 700.0 Crystal size/mm^3 0.204 × 0.042 × 0.0 Radiation MoKa ($\lambda = 0.7107$) 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ 11945 Independent reflections 5621 [R = 0.0911 R)	
$\gamma/^{\circ}$ 89.974(6) $V/Å^3$ 1240.15(12) Z 2 $\rho_{calc}/g cm^{-3}$ 1.994 μ/mm^{-1} 7.286 $F(000)$ 700.0 Crystal size/mm ³ 0.204 × 0.042 × 0.0 Radiation MoK α ($\lambda = 0.7107$) 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ 11945 Index ranges $-5621 [R_{-} = 0.0911 R_{-}]$	
$V/Å^3$ 1240.15(12) Z 2 $\rho_{calc}/g \text{ cm}^{-3}$ 1.994 μ/mm^{-1} 7.286 $F(000)$ 700.0 Crystal size/mm ³ 0.204 × 0.042 × 0.0 Radiation MoKa ($\lambda = 0.7107$) 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ 11945 Index ranges $5621 \ LR = 0.0911 \ R$	
Z 2 $\rho_{calc}/g \text{ cm}^{-3}$ 1.994 μ/mm^{-1} 7.286 $F(000)$ 700.0 Crystal size/mm ³ 0.204 × 0.042 × 0.0 Radiation MoKa ($\lambda = 0.7107$) 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ $-18 \le 1 \le 18$ Reflections collected 11945	
$\rho_{calc}/g \text{ cm}^{-3}$ 1.994 μ/mm^{-1} 7.286 $F(000)$ 700.0 Crystal size/mm ³ 0.204 × 0.042 × 0.0 Radiation MoKa ($\lambda = 0.7107$) 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ 11945 Independent reflections 5621 [R = 0.0911 R]	
μ/mm^{-1} 7.286 $F(000)$ 700.0Crystal size/mm³ $0.204 \times 0.042 \times 0.0$ RadiationMoKa ($\lambda = 0.7107$ 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ $-18 \le 1 \le 18$ Reflections collected 11945	
$F(000)$ 700.0Crystal size/mm³ $0.204 \times 0.042 \times 0.0$ RadiationMoKa ($\lambda = 0.7107$ 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ 11945 Indemendent reflections 5621 [$R = 0.0911$] R	
Crystal size/mm³ $0.204 \times 0.042 \times 0.042$ RadiationMoK α ($\lambda = 0.7107$ 2θ range for data collection/° 6.186 to 54.934 $-9 \le h \le 9$ $-17 \le k \le 17$ Index ranges $-17 \le k \le 17$ $-18 \le 1 \le 18$ 11945 Indemendent reflections 5621 [$R = 0.0911$] R	
RadiationMoK α ($\lambda = 0.7107$ 2θ range for data collection/°6.186 to 54.934 $-9 \le h \le 9$ $-9 \le h \le 9$ Index ranges $-17 \le k \le 17$ $-18 \le 1 \le 18$ -1945 Independent reflections5621 [R = 0.0911 R])24
$2\theta \text{ range for data collection}^{\circ} \qquad 6.186 \text{ to } 54.934$ $-9 \le h \le 9$ $-17 \le k \le 17$ $-18 \le 1 \le 18$ Reflections collected 11945 Independent reflections $5621 \ [R = 0.0911 \ R]$	'3)
$-9 \le h \le 9$ Index ranges $-17 \le k \le 17$ $-18 \le 1 \le 18$ Reflections collected 11945 Independent reflections $5621 \ [R = 0.0911 \ R$	
Index ranges $-17 \le k \le 17$ $-18 \le 1 \le 18$ Reflections collected11945Independent reflections5621 [R = 0.0911 R]	
$-18 \le 1 \le 18$ Reflections collected 11945 Independent reflections 5621 [R = 0.0911 R	
Reflections collected11945Independent reflections $5621 [R = 0.0911] R$	
Independent reflections $5621 [R - 0.0011]$	
$\frac{1}{10000000000000000000000000000000000$	= 0.13
Data/restraints/parameters 5621/23/256	
Goodness-of-fit on F^2 1.140	
Final <i>R</i> indexes $R_1 = 0.0829$	
$[I \ge 2\sigma(I)]$ w $R_2 = 0.1260$	
Final <i>R</i> indexes $R_1 = 0.1152$	
[all data] $wR_2 = 0.1352$	
Largest diff. peak/hole / e Å ⁻³ $2.10/-4.75$	

Section 3. Crystal structure analysis of Co^{II} -W^V phase of RbCoW

Table S1. Crystallographic data and structure refinement of the Co^{II}–W^V phase of RbCoW at

Section 4. First-principles phonon mode calculation

Frequency [THz]	Wavenum ber [cm ⁻¹]	Irreducible representat ion	Infrared intensity [×10 ⁻⁴]	Frequency [THz]	Wavenum ber [cm ⁻¹]	Irreducible representat ion	Infrared intensity [×10 ⁻⁴]	Frequency [THz]	Wavenum ber [cm ⁻¹]	Irreducible representat ion	Infrared intensity [×10 ⁻⁴]
0.883	29.4	A_u	3.4880	4.182	139.4	A_u	2.5720	9.844	328.1	Ag	0.0000
0.997	33.2	A_u	13.9400	4.236	141.2	Ag	0.0000	9.994	333.1	A_u	7.5450
1.136	37.9	A_u	17.6050	4.374	145.8	Ag	0.0000	10.449	348.3	A_u	125.1880
1.166	38.9	A_g	0.0000	4.521	150.7	A_u	56.5530	10.492	349.7	A_g	0.0000
1.286	42.9	A_g	0.0000	4.523	150.8	Ag	0.0000	10.661	355.4	A_u	35.5870
1.453	48.4	A_u	8.2990	4.601	153.4	A _u	44.8030	10.681	356.0	A_g	0.0000
1.490	49.7	Ag	0.0000	4.708	156.9	Ag	0.0000	10.716	357.2	Ag	0.0000
1.571	52.4	Ag	0.0000	4.755	158.5	Ag	0.0000	10.759	358.6	A_u	4.5580
1.603	53.4	A_g	0.0000	4.830	161.0	A _u	71.1950	10.762	358.7	A_g	0.0000
1.682	56.1	A_u	10.0230	5.000	166.7	A_u	75.3830	10.768	358.9	A_u	2.6290
1.745	58.2	A_g	0.0000	5.081	169.4	Ag	0.0000	10.793	359.8	A_u	0.5130
1.805	60.2	A_u	4.6260	5.107	170.2	Ag	0.0000	10.950	365.0	A_g	0.0000
1.912	63.7	A_g	0.0000	5.113	170.4	A_u	354.8910	10.975	365.8	A_u	18.5100
1.923	64.1	A_u	3.2580	5.278	175.9	A_u	70.9100	11.129	371.0	A_u	30.4830
1.998	66.6	A_g	0.0000	5.418	180.6	A_u	33.8680	11.153	371.8	A_g	0.0000
2.102	70.1	A_u	30.1720	5.576	185.9	A_u	8.4450	11.313	377.1	A_g	0.0000
2.172	72.4	A_{g}	0.0000	5.602	186.7	A_u	30.5130	11.430	381.0	A_u	0.6020
2.188	72.9	A_u	0.1350	5.693	189.8	A_g	0.0000	11.692	389.7	A_g	0.0000
2.244	74.8	A_g	0.0000	5.788	192.9	A_u	0.9050	11.734	391.1	A _u	8.6860
2.341	78.0	A_g	0.0000	5.832	194.4	Ag	0.0000	11.748	391.6	A_g	0.0000
2.408	80.3	A_g	0.0000	5.879	196.0	A_u	0.6440	11.769	392.3	A _u	48.5640
2.484	82.8	A_u	2.8260	5.985	199.5	A_g	0.0000	11.988	399.6	A_g	0.0000
2.546	84.9	A_g	0.0000	6.042	201.4	Ag	0.0000	12.017	400.6	A_u	48.7900
2.569	85.6	A_u	6.1700	6.203	206.8	A_u	3.4400	12.148	404.9	A_g	0.0000
2.607	86.9	A_g	0.0000	6.246	208.2	A_u	2.8060	12.230	407.7	A _u	96.5540
2.657	88.6	A_u	17.8610	6.296	209.9	A_u	3.4540	12.287	409.6	A_g	0.0000
2.893	96.4	A_g	0.0000	6.379	212.6	A_g	0.0000	12.315	410.5	A _u	10.4700
2.962	98.7	A_u	0.8400	6.533	217.8	A_g	0.0000	12.387	412.9	A_g	0.0000
3.042	101.4	A_g	0.0000	6.563	218.8	A_u	0.2040	12.391	413.0	A_u	3.2700
3.047	101.6	A_u	4.2980	6.613	220.4	Ag	0.0000	12.586	419.5	A_u	3.1320
3.173	105.8	A_g	0.0000	6.617	220.6	A _u	0.4300	12.593	419.8	Ag	0.0000
3.284	109.5	A_u	0.0010	6.733	224.4	Ag	0.0000	12.780	426.0	Ag	0.0000
3.354	111.8	Ag	0.0000	7.006	233.5	A _u	176.0970	12.788	426.3	A_u	20.2580
3.367	112.2	A_u	1.7940	7.236	241.2	Ag	0.0000	12.890	429.7	A_g	0.0000
3.466	115.5	A_u	5.1640	7.307	243.6	A_u	57.2250	12.964	432.1	A_u	31.6900
3.481	116.0	A_u	2.4870	7.502	250.1	A_u	29.7720	12.977	432.6	A_g	0.0000
3.508	116.9	A_g	0.0000	7.623	254.1	A _u	0.2270	13.156	438.5	A_u	0.9030
3.566	118.9	A _g	0.0000	9.368	312.3	Ag	0.0000	13.191	439.7	A_g	0.0000
3.751	125.0	A_{g}	0.0000	9.485	316.2	A_u	2.1460	13.303	443.4	A_u	53.7610
3.948	131.6	A_u	0.1650	9.684	322.8	A_g	0.0000	13.359	445.3	A_g	0.0000
4.014	133.8	A_{g}	0.0000	9.745	324.8	A_g	0.0000	13.463	448.8	A_u	1.6350
4.097	136.6	A	1.9980	9.832	327.7	A	0.3220	13.493	449.8	A_{α}	0.0000

 Table S2-1. Calculated optical phonon modes obtained by first-principles phonon mode calculations of RbCoW.

	Frequency [THz]	Wavenum ber [cm ⁻¹]	Irreducible representat ion	Infrared intensity [×10 ⁻⁴]	Frequency [THz]	Wavenum ber [cm ⁻¹]	Irreducible representat ion	Infrared intensity [×10 ⁻⁴]	Frequency [THz]	Wavenum ber [cm ⁻¹]	Irreducible representat ion	Infrared intensity [×10 ⁻⁴]
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	13.667	455.6	A _u	2.5030	28.479	949.3	Ag	0.0000	46.575	1552.5	A _u	21.9990
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	13.759	458.6	Ag	0.0000	28.528	950.9	A _u	3.2320	46.593	1553.1	Ag	0.0000
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	13.824	460.8	Ag	64.9270	29.536	984.5	Ag	0.0000	46.614	1553.8	A _u	3.3100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13.824	460.8	A _u	0.0010	29.564	985.5	A _u	0.4940	47.397	1579.9	A_{g}	0.0000
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	13.951	465.0	A_u	83.4780	30.051	1001.7	A _u	0.7200	47.400	1580.0	A _u	60.6630
14.113 470.4 A_a 11.5030 30.454 1015.1 A_a 0.0000 47.450 1581.7 A_a 0.0000 14.120 470.9 A_a 0.0000 30.486 1016.2 A_a 0.1820 65.791 2120.4 A_a 583.3660 14.201 473.4 A_a 0.0000 30.643 102.14 A_a 0.0000 64.093 2136.4 A_a 0.0000 14.239 478.3 A_a 0.2100 31.446 1047.2 A_a 0.0000 64.013 2136.4 A_a 0.0000 14.528 484.3 A_a 0.3140 31.471 1049.0 A_a 79.9600 64.516 2150.5 A_a 0.0000 16.520 550.7 A_a 0.0000 33.490 111.5 A_a 2.470 64.6499 2156.6 A_a 0.0000 16.517 557.6 A_a 0.0000 35.73 1119.2 A_a 0.0000 64.899 216.63 A_a 0.22790 16.6451 556.1 A_a	14.036	467.9	Ag	0.0000	30.123	1004.1	Ag	0.0000	47.419	1580.6	A _u	10.6150
14.126 470.9 A_x 0.0000 30.486 1016.2 A_x 0.1820 63.791 2126.4 A_x 583.2660 14.157 471.9 A_x 3.7790 30.641 1021.4 A_x 0.0000 63.875 2129.2 A_x 0.0000 14.201 473.4 A_x 0.0000 30.643 1021.4 A_x 0.0000 64.093 2136.4 A_x 0.0000 14.328 484.3 A_x 34.8430 31.432 1047.7 A_x 18.3140 64.153 2135.5 A_x 1671.552 16.520 550.7 A_x 0.0000 31.446 1048.2 A_x 0.9000 64.216 2150.5 A_x 1671.52 16.520 550.7 A_x 0.0000 33.391 1113.0 A_x 4.8130 64.655 2152.2 A_x 0.0000 16.631 555.0 A_x 0.4780 33.517 119.2 A_y 0.0000 64.389 216.03 A_x 122.790 16.728 57.6 A_x	14.113	470.4	A _u	11.5030	30.454	1015.1	Ag	0.0000	47.450	1581.7	A_{g}	0.0000
14.157 471.9 A_a 3.7790 30.641 1021.4 A_a 0.0000 63.875 2129.2 A_a 0.0000 14.201 473.4 A_a 0.02710 31.416 1047.2 A_a 0.0000 64.005 2135.5 A_a 8.52.680 14.349 478.3 A_a 0.2710 31.416 1047.7 A_a 18.3144 64.153 213.84 A_a 0.0000 14.768 492.3 A_a 0.0000 31.446 1048.2 A_a 0.0000 64.215 2140.5 A_a 167.152 16.520 55.07 A_a 2.03140 31.471 1049.0 A_a 79.9600 64.516 215.5 A_a 167.155 16.521 55.05 A_a 0.0000 33.414 1116.5 A_a 2.2470 64.739 215.80 A_a 0.0000 16.631 55.50 A_a 0.0000 35.731 119.2 A_a 0.0000 64.889 216.3 A_a 152.290 16.868 56.05 A_a	14.126	470.9	Ag	0.0000	30.486	1016.2	A _u	0.1820	63.791	2126.4	A _u	583.2660
14.201 473.4 A_a 0.0000 30.643 1021.4 A_a 0.0170 64.065 2135.5 A_a 85.2680 14.349 478.3 A_a 0.2710 31.416 1047.2 A_a 0.0000 64.093 2136.4 A_a 0.0000 14.528 484.3 A_a 34.8430 31.432 1047.7 A_a 18.3140 64.155 2136.4 A_a 0.0000 14.658 492.3 A_a 0.0000 33.390 1113.0 A_a 4.8130 64.655 2155.2 A_a 0.0000 16.651 550.7 A_a 0.0000 33.390 1113.0 A_a 4.8130 64.655 2155.2 A_a 0.0000 16.654 556.1 A_a 0.0000 35.731 119.2 A_a 0.0000 64.392 2165.8 A_a 0.0000 16.684 556.1 A_a 0.0000 35.731 119.1 A_a 0.4890 64.187 2165.8 A_a 0.0000 16.816 560.5 A_a 0.0000	14.157	471.9	A _u	3.7790	30.641	1021.4	A_{g}	0.0000	63.875	2129.2	A_{g}	0.0000
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	14.201	473.4	Ag	0.0000	30.643	1021.4	A _u	0.1070	64.065	2135.5	A _u	85.2680
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14.349	478.3	A_u	0.2710	31.416	1047.2	A_{g}	0.0000	64.093	2136.4	A_{g}	0.0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14.528	484.3	A_u	34.8430	31.432	1047.7	A _u	18.3140	64.153	2138.4	Ag	0.0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14.768	492.3	Ag	0.0000	31.446	1048.2	Ag	0.0000	64.215	2140.5	Au	35.2770
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.520	550.7	A _u	20.3140	31.471	1049.0	A	79.9600	64.516	2150.5	A	1671.552
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.524	550.8	A _o	0.0000	33.390	1113.0	A	4.8130	64.655	2155.2	A _g	0.0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.651	555.0	Ă	0.4780	33.411	1113.7	A	0.0000	64.699	2156.6	A	332.9170
16.717 557.2 A_u 20.0610 33.575 1119.2 A_u 0.0000 64.809 2160.3 A_u 152.2790 16.728 557.6 A_g 0.0000 35.731 1191.0 A_u 59.6980 64.887 2162.9 A_g 0.0000 16.816 560.5 A_g 0.0000 35.732 1191.1 A_g 0.0000 64.973 2165.8 A_u 92.6680 16.859 562.0 A_u 17.7180 35.753 1191.8 A_u 114290 65.150 2171.7 A_g 0.0000 19.281 642.7 A_u 6.3830 36.097 1203.2 A_u 2.5860 65.236 2174.4 A_g 0.0000 19.287 642.9 A_u 0.724030 36.161 1205.4 A_g 0.0000 68.061 2268.7 A_u 0.1530 20.552 685.1 A_u 0.724030 36.161 1205.4 A_g 0.0000 68.061 2268.7 A_u 0.1530 20.552 685.1 A_u <td>16.684</td> <td>556.1</td> <td>Å,</td> <td>0.0000</td> <td>33.494</td> <td>1116.5</td> <td>A_u</td> <td>2.2470</td> <td>64.739</td> <td>2158.0</td> <td>A_g</td> <td>0.0000</td>	16.684	556.1	Å,	0.0000	33.494	1116.5	A _u	2.2470	64.739	2158.0	A _g	0.0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.717	557.2	A	20.0610	33.575	1119.2	A _g	0.0000	64.809	2160.3	A	152.2790
16.816 560.5 A_g 0.0000 35.732 1191.1 A_g 0.0000 64.973 2165.8 A_u 92.6680 16.859 562.0 A_u 17.7180 35.753 1191.8 A_u 11.4290 65.150 2171.7 A_g 0.0000 19.264 642.1 A_g 0.0000 35.852 1195.1 A_g 0.0000 65.232 2174.4 A_u 7.5780 19.281 642.7 A_u 6.3830 36.097 1203.2 A_u 2.5860 65.236 2174.5 A_g 0.0000 19.287 642.9 A_u 0.24030 36.161 1205.4 A_g 0.0000 68.061 226.87 A_g 0.0000 20.552 685.1 A_u 0.24030 36.161 1205.4 A_g 0.0000 68.231 2274.4 A_g 0.0000 20.628 687.6 A_u 0.5103 1287.0 A_u 0.4450 92.494 308.16 A_g 0.0000 20.628 687.6 A_g 0.0000	16.728	557.6	A _a	0.0000	35.731	1191.0	A _u	59.6980	64.887	2162.9	A _a	0.0000
16.859642.0 A_u 17.718035.7531191.8 A_u 11.429065.1502171.7 A_g 0.000019.264642.1 A_g 0.000035.8521195.1 A_g 0.000065.2322174.4 A_u 7.578019.281642.7 A_u 6.383036.0971203.2 A_u 2.586065.2362174.5 A_g 0.000019.287642.9 A_g 0.000036.1031203.4 A_g 0.000068.0612268.7 A_g 0.000019.350645.0 A_u 72.403036.1611205.4 A_g 0.000068.0672268.9 A_u 5.474020.552685.1 A_g 0.000036.1851206.2 A_u 0.418068.2072273.6 A_u 0.153020.564685.5 A_u 351.087038.5851286.2 A_g 0.000068.2312274.4 A_g 0.000020.628687.6 A_g 0.000038.6101287.0 A_u 0.445092.4493081.6 A_u 6.268023.684789.5 A_g 0.000038.7161290.5 A_u 0.136092.5203084.0 A_u 4.116023.707790.2 A_u 1.689039.5311317.7 A_u 0.022092.5203084.0 A_u 4.116023.730791.0 A_u 1.689039.5411318.0 A_g 0.000092.7393091.3 A_g 0.0000 </td <td>16.816</td> <td>560.5</td> <td>A_</td> <td>0.0000</td> <td>35.732</td> <td>1191.1</td> <td>A.</td> <td>0.0000</td> <td>64.973</td> <td>2165.8</td> <td>A.</td> <td>92.6680</td>	16.816	560.5	A_	0.0000	35.732	1191.1	A.	0.0000	64.973	2165.8	A.	92.6680
19.264642.1 A_g 0.000035.8521195.1 A_g 0.00065.2322174.4 A_u 7.578019.281642.7 A_u 6.383036.0971203.2 A_u 2.586065.2362174.5 A_g 0.000019.287642.9 A_g 0.000036.1031203.4 A_g 0.000068.0612268.7 A_g 0.000019.350645.0 A_u 7.2403036.1611205.4 A_g 0.000068.0672268.9 A_u 5.474020.552685.1 A_g 0.000036.1851206.2 A_u 0.418068.2072273.6 A_u 0.153020.564685.5 A_u 35.1087038.5851286.2 A_g 0.000068.2312274.4 A_g 0.000020.628687.6 A_g 0.000038.6101287.0 A_u 0.445092.4493081.6 A_g 0.000020.722690.7 A_u 178.479038.6921289.7 A_g 0.000092.5083083.6 A_u 6.268023.684789.5 A_g 0.000038.7161290.5 A_u 0.136092.5203084.0 A_u 4.116023.723790.8 A_g 0.000039.5411318.0 A_g 0.000092.7913090.0 A_u 30.030024.002800.1 A_u 1.18947039.6261320.9 A_u 0.402092.8453094.7 A_g 0.0000	16.859	562.0	g Au	17.7180	35.753	1191.8	g Au	11.4290	65.150	2171.7	u Aa	0.0000
19.281642.7 A_u 6.383036.0971203.2 A_u 2.586065.2362174.5 A_g 0.000019.287642.9 A_g 0.000036.1031203.4 A_g 0.000068.0612268.7 A_g 0.000019.350645.0 A_u 72.403036.1611205.4 A_g 0.000068.2072273.6 A_u 0.153020.552685.1 A_g 0.000036.1851206.2 A_u 0.418068.2072274.4 A_g 0.000020.628687.6 A_g 0.000038.6101287.0 A_u 0.445092.4493081.6 A_g 0.000020.628687.6 A_g 0.000038.6101287.0 A_u 0.136092.5083083.6 A_u 6.268023.684789.5 A_g 0.000038.7161290.5 A_u 0.136092.5203084.0 A_u 4.116023.707790.2 A_u 1.689039.5311317.7 A_u 0.022092.5203084.0 A_u 4.116023.723790.8 A_g 0.000039.5411318.0 A_g 0.000092.7013090.0 A_u 33.030223.730791.0 A_u 2.817039.6101320.3 A_g 0.000092.8453094.8 A_u 5.174024.429814.3 A_g 0.000042.0771402.6 A_g 0.000092.8453094.8 A_u 5.1740	19.264	642.1	A.	0.0000	35.852	1195.1	A.	0.0000	65.232	2174.4	A.	7.5780
19.287642.9 A_g 0.000036.1031203.4 A_g 0.000068.0612268.7 A_g 0.000019.350645.0 A_u 72.403036.1611205.4 A_g 0.000068.0672268.9 A_u 5.474020.552685.1 A_g 0.000036.1851206.2 A_u 0.418068.2072273.6 A_u 0.153020.564685.5 A_u 351.087038.5851286.2 A_g 0.000068.2312274.4 A_g 0.000020.628687.6 A_g 0.000038.6101287.0 A_u 0.445092.4493081.6 A_g 0.000020.722690.7 A_u 178.479038.6921289.7 A_g 0.000092.5083083.6 A_u 6.268023.684789.5 A_g 0.000038.7161290.5 A_u 0.136092.5203084.0 A_g 0.000023.777790.2 A_u 1.689039.5311317.7 A_u 0.022092.5203084.0 A_u 4.116023.723790.8 A_g 0.000039.5411318.0 A_g 0.000092.7113090.0 A_u 33.03023.730791.0 A_u 2.817039.6261320.9 A_u 0.402092.8413094.7 A_g 0.000024.002800.1 A_u 118.947039.6261320.9 A_u 0.402092.8413094.7 A_g 0.0000	19.281	642.7	g A	6.3830	36.097	1203.2	g A	2.5860	65.236	2174.5	A	0.0000
19.350645.0 A_u 72.403036.1611205.4 A_g 0.000068.0672268.9 A_u 5.474020.552685.1 A_g 0.000036.1851206.2 A_u 0.418068.2072273.6 A_u 0.153020.564685.5 A_u 351.087038.5851286.2 A_g 0.000068.2312274.4 A_g 0.000020.628687.6 A_g 0.000038.6101287.0 A_u 0.445092.4493081.6 A_g 0.000020.722690.7 A_u 178.479038.6921289.7 A_g 0.000092.5083084.0 A_g 0.000023.707790.2 A_u 1.689039.5311317.7 A_u 0.022092.5203084.0 A_u 4.116023.723790.8 A_g 0.000039.5411318.0 A_g 0.000092.7393091.3 A_g 0.000024.002800.1 A_u 118.947039.6261320.9 A_u 0.402092.8413094.7 A_g 0.000024.075802.5 A_g 0.000042.0771402.6 A_g 0.000092.994309.8 A_u 5.174024.429814.3 A_g 0.000042.0951403.3 A_g 0.000092.997309.9 A_g 0.000024.028 A_u 133.373042.0981403.3 A_g 0.000092.997309.9 A_g 0.000024	19.287	642.9	A.	0.0000	36.103	1203.4	A.	0.0000	68.061	2268.7	A.	0.0000
20.552 685.1 A_g 0.0000 36.185 1206.2 A_u 0.4180 68.207 2273.6 A_u 0.1530 20.564 685.5 A_u 351.0870 38.585 1286.2 A_g 0.0000 68.231 2274.4 A_g 0.0000 20.628 687.6 A_g 0.0000 38.610 1287.0 A_u 0.4450 92.449 3081.6 A_g 0.0000 20.722 690.7 A_u 178.4790 38.692 1289.7 A_g 0.0000 92.508 3083.6 A_u 6.2680 23.684 789.5 A_g 0.0000 38.716 1290.5 A_u 0.1360 92.520 3084.0 A_u 4.1160 23.707 790.2 A_u 1.6890 39.531 1317.7 A_u 0.0220 92.520 3084.0 A_u 4.1160 23.723 790.8 A_g 0.0000 39.541 1318.0 A_g 0.0000 92.711 3090.0 A_u 33.0030 23.730 791.0 A_u 2.8170 39.626 1320.9 A_u 0.4020 92.841 3094.7 A_g 0.0000 24.002 800.1 A_u 118.9470 39.626 1320.9 A_u 0.4020 92.841 3094.7 A_g 0.0000 24.429 814.3 A_g 0.0000 42.077 1402.6 A_g 0.0000 92.941 3094.8 A_u 1.1500 24.429<	19.350	645.0	A.	72.4030	36.161	1205.4	A.	0.0000	68.067	2268.9	A.	5.4740
21.1121.113 R_g 1.1121.111 R_u 1.1111.111 R_u 1.111 R_u 1.1111.111 R_u 1.1111.111 R_u 1.1111.111 R_u 1.11111.11111.11111.11111.1111 </td <td>20.552</td> <td>685.1</td> <td>A</td> <td>0.0000</td> <td>36,185</td> <td>1206.2</td> <td>g A</td> <td>0.4180</td> <td>68.207</td> <td>2273.6</td> <td>A</td> <td>0.1530</td>	20.552	685.1	A	0.0000	36,185	1206.2	g A	0.4180	68.207	2273.6	A	0.1530
20.628687.6 A_g 0.000038.6101287.0 A_u 0.445092.4493081.6 A_g 0.000020.722690.7 A_u 178.479038.6921289.7 A_g 0.000092.5083083.6 A_u 6.268023.684789.5 A_g 0.000038.7161290.5 A_u 0.136092.5203084.0 A_g 0.000023.707790.2 A_u 1.689039.5311317.7 A_u 0.022092.5203084.0 A_u 4.116023.723790.8 A_g 0.000039.5411318.0 A_g 0.000092.7393091.3 A_g 0.000024.002800.1 A_u 2.817039.6601320.3 A_g 0.000092.8413094.7 A_g 0.000024.075802.5 A_g 0.000042.0771402.6 A_g 0.000092.8453094.8 A_u 5.174024.429814.3 A_g 0.000042.0771402.6 A_g 0.000092.9943099.8 A_u 1.150024.545818.2 A_u 133.373042.0951403.2 A_u 7.508092.9973099.9 A_g 0.000027.094903.1 A_g 0.000043.8111460.4 A_g 0.000093.0613102.0 A_u 9.513027.129904.3 A_g 0.000043.8131460.4 A_g 0.000093.2863109.5 A_u 1.9800 <td>20.564</td> <td>685.5</td> <td>g Au</td> <td>351.0870</td> <td>38.585</td> <td>1286.2</td> <td>u Aa</td> <td>0.0000</td> <td>68.231</td> <td>2274.4</td> <td>u Aa</td> <td>0.0000</td>	20.564	685.5	g Au	351.0870	38.585	1286.2	u Aa	0.0000	68.231	2274.4	u Aa	0.0000
20.722690.7 A_u 178.479038.6921289.7 A_g 0.000092.5083083.6 A_u 6.268023.684789.5 A_g 0.000038.7161290.5 A_u 0.136092.5203084.0 A_g 0.000023.707790.2 A_u 1.689039.5311317.7 A_u 0.022092.5203084.0 A_u 4.116023.723790.8 A_g 0.000039.5411318.0 A_g 0.000092.7013090.0 A_u 33.003023.730791.0 A_u 2.817039.6101320.3 A_g 0.000092.7393091.3 A_g 0.000024.002800.1 A_u 118.947039.6261320.9 A_u 0.402092.8413094.7 A_g 0.000024.075802.5 A_g 0.000042.0771402.6 A_g 0.000092.9943099.8 A_u 1.150024.429814.3 A_g 0.000042.0951403.2 A_u 7.508092.9943099.8 A_u 1.150024.545818.2 A_u 13.373042.0981403.3 A_g 0.000093.0553101.8 A_g 0.000027.084902.8 A_u 71.295042.1021403.4 A_u 3.513093.0553101.8 A_g 0.000027.129904.3 A_g 0.000043.8111460.4 A_g 0.000093.2863109.5 A_u 1.9800	20.628	687.6	A_	0.0000	38.610	1287.0	A.	0.4450	92.449	3081.6	A_	0.0000
21.1.20.1.1.1 A_u 1.1.1.1 A_g 0.1.1.1 A_g 0.1.1.10.1.	20.722	690.7	g A	178,4790	38.692	1289.7	A	0.0000	92.508	3083.6	g A	6.2680
1210111011111111111111111111111123.707790.2 A_u 1.689039.5311317.7 A_u 0.022092.5203084.0 A_u 4.116023.723790.8 A_g 0.000039.5411318.0 A_g 0.000092.7013090.0 A_u 33.003023.730791.0 A_u 2.817039.6101320.3 A_g 0.000092.7393091.3 A_g 0.000024.002800.1 A_u 118.947039.6261320.9 A_u 0.402092.8413094.7 A_g 0.000024.075802.5 A_g 0.000042.0771402.6 A_g 0.000092.9943094.8 A_u 5.174024.429814.3 A_g 0.000042.0951403.2 A_u 7.508092.9943099.8 A_u 1.150024.545818.2 A_u 133.373042.0981403.3 A_g 0.000092.9973099.9 A_g 0.000027.084902.8 A_u 71.295042.1021403.4 A_u 3.513093.0553101.8 A_g 0.000027.094903.1 A_g 0.000043.8111460.4 A_g 0.000093.2863109.5 A_u 1.980027.129904.3 A_g 0.000043.8131460.4 A_g 0.000093.2863109.5 A_u 1.980027.149	23.684	789.5	A.	0.0000	38.716	1290.5	A.	0.1360	92.520	3084.0	A.	0.0000
23.723790.8 A_g 0.000039.5411318.0 A_g 0.000092.7013090.0 A_u 33.003023.730791.0 A_u 2.817039.6101320.3 A_g 0.000092.7393091.3 A_g 0.000024.002800.1 A_u 118.947039.6261320.9 A_u 0.402092.8413094.7 A_g 0.000024.075802.5 A_g 0.000042.0771402.6 A_g 0.000092.9453094.8 A_u 5.174024.429814.3 A_g 0.000042.0771402.6 A_g 0.000092.9943099.8 A_u 1.150024.545818.2 A_u 133.373042.0951403.2 A_u 7.508092.9943099.9 A_g 0.000027.084902.8 A_u 71.295042.1021403.4 A_u 3.513093.0553101.8 A_g 0.000027.094903.1 A_g 0.000043.8111460.4 A_g 0.001093.2863109.5 A_u 1.980027.129904.3 A_g 0.000043.8131460.4 A_g 0.001093.2863109.6 A_g 0.000028.238941.3 A_u 3.223043.8741462.5 A_u 0.004093.3213110.7 A_g 0.0000	23.707	790.2	A	1.6890	39.531	1317.7	A	0.0220	92.520	3084.0	A	4.1160
12.1.1217.1.13 A_g 11.0.13 A_{eg} 11.0.14 A_{eg} 10.0.1411.0.1410.0.1410.0.1410.0.1423.730791.0 A_u 2.817039.6101320.3 A_g 0.000092.7393091.3 A_g 0.000024.002800.1 A_u 118.947039.6261320.9 A_u 0.402092.8413094.7 A_g 0.000024.075802.5 A_g 0.000042.0771402.6 A_g 0.000092.8453094.8 A_u 5.174024.429814.3 A_g 0.000042.0951403.2 A_u 7.508092.9943099.8 A_u 1.150024.545818.2 A_u 133.373042.0981403.3 A_g 0.000092.9973099.9 A_g 0.000027.084902.8 A_u 71.295042.1021403.4 A_u 3.513093.0553101.8 A_g 0.000027.094903.1 A_g 0.000043.8111460.4 A_g 0.001093.2863109.5 A_u 1.980027.129904.3 A_g 0.000043.8131460.4 A_u 0.001093.2863109.6 A_g 0.000028.238941.3 A_u 3.223043.8741462.5 A_u 0.004093.3213110.7 A_g 0.000028.238941.3 A_u 3.223043.8741462.5 A_u 0.004093.3213110.7 A_g <	23.723	790.8	A	0.0000	39.541	1318.0	A	0.0000	92.701	3090.0	A	33.0030
24.002800.1 A_u 118.947039.6261320.9 A_u 0.402092.8413094.7 A_g 0.000024.075802.5 A_g 0.000042.0771402.6 A_g 0.000092.8453094.8 A_u 5.174024.429814.3 A_g 0.000042.0951403.2 A_u 7.508092.9943099.8 A_u 1.150024.545818.2 A_u 133.373042.0981403.3 A_g 0.000092.9973099.9 A_g 0.000027.084902.8 A_u 71.295042.1021403.4 A_u 3.513093.0553101.8 A_g 0.000027.094903.1 A_g 0.000043.8111460.4 A_g 0.001093.2663109.5 A_u 9.513027.129904.3 A_g 0.000043.8131460.4 A_u 0.001093.2863109.5 A_u 1.980027.149905.0 A_u 23.117043.8691462.3 A_g 0.000093.2893109.6 A_g 0.000028.238941.3 A_u 3.223043.8741462.5 A_u 0.004093.3213110.7 A_g 0.0000	23.730	791.0	A.	2.8170	39.610	1320.3	A.	0.0000	92.739	3091.3	A.	0.0000
24.075802.5 A_g 0.000042.0771402.6 A_g 0.000092.8453094.8 A_u 5.174024.429814.3 A_g 0.000042.0951403.2 A_u 7.508092.9943099.8 A_u 1.150024.545818.2 A_u 133.373042.0981403.3 A_g 0.000092.9973099.9 A_g 0.000027.084902.8 A_u 71.295042.1021403.4 A_u 3.513093.0553101.8 A_g 0.000027.094903.1 A_g 0.000043.8111460.4 A_g 0.000093.0613102.0 A_u 9.513027.129904.3 A_g 0.000043.8131460.4 A_u 0.001093.2863109.5 A_u 1.980027.149905.0 A_u 23.117043.8691462.3 A_g 0.000093.2893109.6 A_g 0.000028.238941.3 A_u 3.223043.8741462.5 A_u 0.004093.3213110.7 A_g 0.0000	24.002	800.1	A	118.9470	39.626	1320.9	A	0.4020	92.841	3094.7	A	0.0000
24.429814.3 A_g 0.000042.0951403.2 A_u 7.508092.9943099.8 A_u 1.150024.545818.2 A_u 133.373042.0981403.3 A_g 0.000092.9973099.9 A_g 0.000027.084902.8 A_u 71.295042.1021403.4 A_u 3.513093.0553101.8 A_g 0.000027.094903.1 A_g 0.000043.8111460.4 A_g 0.000093.0613102.0 A_u 9.513027.129904.3 A_g 0.000043.8131460.4 A_u 0.001093.2863109.5 A_u 1.980027.149905.0 A_u 23.117043.8691462.3 A_g 0.000093.2893109.6 A_g 0.000028.238941.3 A_u 3.223043.8741462.5 A_u 0.004093.3213110.7 A_g 0.0000	24 075	802.5	A	0.0000	42 077	1402.6	A	0.0000	92.845	3094.8	A	5 1740
24.545 818.2 A_u 133.3730 42.098 1403.3 A_g 0.0000 92.997 3099.9 A_g 0.0000 27.084 902.8 A_u 71.2950 42.102 1403.4 A_u 3.5130 93.055 3101.8 A_g 0.0000 27.094 903.1 A_g 0.0000 43.811 1460.4 A_g 0.0000 93.061 3102.0 A_u 9.5130 27.129 904.3 A_g 0.0000 43.813 1460.4 A_u 0.0010 93.286 3109.5 A_u 1.9800 27.149 905.0 A_u 23.1170 43.869 1462.3 A_g 0.0000 93.289 3109.6 A_g 0.0000 28.238 941.3 A_u 3.2230 43.874 1462.5 A_u 0.0040 93.321 3110.7 A_g 0.0000	24 429	814 3	A	0.0000	42 095	1403.2	A	7 5080	92,994	3099.8	A	1 1 5 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24 545	818.2	A	133 3730	42 098	1403.3	A	0.0000	92 997	3099.9	A	0.0000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27.084	902.8	A	71 2950	42.000	1403.4	A	3 5130	93.055	3101.8	A	0.0000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27.004	903.1	Δ.	0.0000	43 811	1460.4	Δ.	0.0000	93.061	3102.0	Δ	9 5130
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.094	904.3	Δ Δ	0.0000	43.813	1460 4	Δ	0.0010	93.001	3100.5	Δ.	1 9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.127	904.5	Λ _g Δ	23 1170	43 860	1462.3	Λ _u Δ	0.0010	93.200	3109.5	Δ	0.0000
20.250 71.5 $R_{\rm u}$ 5.2250 T5.67T 1702.5 $R_{\rm u}$ 0.0040 75.521 5110.7 $R_{\rm g}$ 0.0000	27.172	941.3	Δ.	3 2230	43 874	1462.5	Δ.	0.0040	93.209	3110.7	Δ.	0.0000
28239 9413 A 0.0000 46.568 1552.3 A 0.0000 93.329 3111.0 A 7.7770	28.230	941.3	Δ	0.0000	46 568	1552.3	Δ	0.0000	93 320	3111.0	Δ	7 7770

Table S2-2. Calculated optical phonon modes obtained by first-principles phonon mode calculations of RbCoW.

Figure S1. (a) Total phonon-DOS of the **RbCoW** $Co^{II}-W^V$ phase (black line) and partial phonon-DOS of Rb (red line), Co (dark yellow line), W (green line), C (light blue line), N (blue line), and H (purple line). (b) Phonon dispersion of the **RbCoW** $Co^{II}-W^V$ phase.

Table S3. Cell parameters of **RbCoW** before and after structural optimization, and their differences (Δ). Initial cell parameters before structural optimization are determined by single crystal structural analysis. Optimized cell parameters are used for the phonon mode calculations.

	Single crystal structural analysis	Optimized structure	Δ (%)
<i>a</i> / Å	15.060	15.026	-0.23
<i>b</i> / Å	13.755	13.728	-0.20
<i>c</i> / Å	14.069	14.036	-0.24
lpha / °	119.28	119.25	-0.03
eta / °	101.02	100.97	-0.05
γ/°	89.97	90.00	0.03
V / Å ³	2480.3	2465.14	-0.61

 Table S4. Atomic positions of RbCoW after structural optimization.

Atom label	x	у	Z												
W	0.77481	0.82203	0.13874	N	0.22066	0.90475	0.67852	С	0.77374	0.16644	0.72228	С	0.15111	0.60754	0.33714
W	0.27481	0.82203	0.13874	Ν	0.53316	0.15481	0.15742	С	0.27374	0.16644	0.72228	С	0.84889	0.39246	0.66286
W	0.72519	0.17797	0.86126	Ν	0.03316	0.15481	0.15742	С	0.78007	0.0001	0.25702	С	0.34889	0.39246	0.66286
W	0.22519	0.17797	0.86126	Ν	0.96684	0.84519	0.84258	С	0.28007	0.0001	0.25702	С	0.62687	0.5509	0.21995
Rb	0.62245	0.06635	0.45143	Ν	0.46684	0.84519	0.84258	С	0.71993	0.9999	0.74298	С	0.12687	0.5509	0.21995
Rb	0.12245	0.06635	0.45143	Ν	0.80153	0.40764	0.40998	С	0.21993	0.9999	0.74298	С	0.87313	0.4491	0.78005
Rb	0.87755	0.93365	0.54857	Ν	0.30153	0.40764	0.40998	С	0.96433	0.20487	0.20596	С	0.37313	0.4491	0.78005
Rb	0.37755	0.93365	0.54857	Ν	0.69847	0.59236	0.59002	С	0.46433	0.20487	0.20596	С	0.74365	0.64868	0.39394
Co	0	0.5	0	Ν	0.19847	0.59236	0.59002	С	0.53567	0.79513	0.79404	С	0.24365	0.64868	0.39394
Co	0.5	0.5	0	Ν	0.53959	0.51809	0.16461	С	0.03567	0.79513	0.79404	С	0.75635	0.35132	0.60606
Co	0	0	0	Ν	0.03959	0.51809	0.16461	С	0.97872	0.30578	0.30673	С	0.25635	0.35132	0.60606
Co	0.5	0	0	Ν	0.96041	0.48191	0.83539	С	0.47872	0.30578	0.30673	Н	0.89574	0.16216	0.1618
Ν	0.60417	0.62165	0.04534	Ν	0.46041	0.48191	0.83539	С	0.52128	0.69422	0.69327	Н	0.39574	0.16216	0.1618
Ν	0.10417	0.62165	0.04534	Ν	0.81851	0.68573	0.4425	С	0.02128	0.69422	0.69327	Н	0.60426	0.83784	0.8382
Ν	0.89583	0.37835	0.95466	Ν	0.31851	0.68573	0.4425	С	0.56734	0.35684	0.3597	Н	0.10426	0.83784	0.8382
Ν	0.39583	0.37835	0.95466	Ν	0.68149	0.31427	0.5575	С	0.06734	0.35684	0.3597	Н	0.92046	0.34364	0.34158
Ν	0.60168	0.93117	0.05601	Ν	0.18149	0.31427	0.5575	С	0.93266	0.64316	0.6403	Н	0.42046	0.34364	0.34158
Ν	0.10168	0.93117	0.05601	С	0.66636	0.68975	0.07917	С	0.43266	0.64316	0.6403	Н	0.57954	0.65636	0.65842
Ν	0.89832	0.06883	0.94399	С	0.16636	0.68975	0.07917	С	0.63888	0.30549	0.30816	Н	0.07954	0.65636	0.65842
Ν	0.39832	0.06883	0.94399	С	0.83364	0.31025	0.92083	С	0.13888	0.30549	0.30816	Н	0.58303	0.43545	0.43954
Ν	0.90872	0.61634	0.05768	С	0.33364	0.31025	0.92083	С	0.86112	0.69451	0.69184	Н	0.08303	0.43545	0.43954
Ν	0.40872	0.61634	0.05768	С	0.66098	0.89122	0.08701	С	0.36112	0.69451	0.69184	Н	0.91697	0.56455	0.56046
Ν	0.59128	0.38366	0.94232	С	0.16098	0.89122	0.08701	С	0.61903	0.20371	0.20647	Н	0.41697	0.56455	0.56046
Ν	0.09128	0.38366	0.94232	С	0.83902	0.10878	0.91299	С	0.11903	0.20371	0.20647	Н	0.67289	0.16123	0.16432
Ν	0.91108	0.94325	0.05887	С	0.33902	0.10878	0.91299	С	0.88097	0.79629	0.79353	Н	0.17289	0.16123	0.16432
Ν	0.41108	0.94325	0.05887	С	0.85906	0.68566	0.08983	С	0.38097	0.79629	0.79353	Н	0.82711	0.83877	0.83568
Ν	0.58892	0.05675	0.94113	С	0.35906	0.68566	0.08983	С	0.72971	0.35847	0.36112	Н	0.32711	0.83877	0.83568
Ν	0.08892	0.05675	0.94113	С	0.64094	0.31434	0.91017	С	0.22971	0.35847	0.36112	Н	0.9046	0.50052	0.17354
Ν	0.72952	0.67669	0.85972	С	0.14094	0.31434	0.91017	С	0.77029	0.64153	0.63888	Н	0.4046	0.50052	0.17354
Ν	0.22952	0.67669	0.85972	С	0.86372	0.89968	0.08744	С	0.27029	0.64153	0.63888	Н	0.5954	0.49948	0.82646
Ν	0.77048	0.32331	0.14028	С	0.36372	0.89968	0.08744	С	0.97428	0.53236	0.22279	Н	0.0954	0.49948	0.82646
Ν	0.27048	0.32331	0.14028	С	0.63628	0.10032	0.91256	С	0.47428	0.53236	0.22279	Н	0.93766	0.59867	0.38235
Ν	0.95812	0.89536	0.34534	С	0.13628	0.10032	0.91256	С	0.52572	0.46764	0.77721	Н	0.43766	0.59867	0.38235
Ν	0.45812	0.89536	0.34534	С	0.74578	0.72962	0.95755	С	0.02572	0.46764	0.77721	Н	0.56234	0.40133	0.61765
Ν	0.54188	0.10464	0.65466	С	0.24578	0.72962	0.95755	С	0.9933	0.58665	0.33919	Н	0.06234	0.40133	0.61765
Ν	0.04188	0.10464	0.65466	С	0.75422	0.27038	0.04245	С	0.4933	0.58665	0.33919	Н	0.60057	0.67687	0.48936
Ν	0.70362	0.84949	0.35927	С	0.25422	0.27038	0.04245	С	0.5067	0.41335	0.66081	Н	0.10057	0.67687	0.48936
Ν	0.20362	0.84949	0.35927	С	0.89538	0.86757	0.27034	С	0.0067	0.41335	0.66081	Н	0.89943	0.32313	0.51064
Ν	0.79638	0.15051	0.64073	С	0.39538	0.86757	0.27034	С	0.58257	0.62891	0.39815	Н	0.39943	0.32313	0.51064
Ν	0.29638	0.15051	0.64073	С	0.60462	0.13243	0.72966	С	0.08257	0.62891	0.39815	Н	0.67828	0.53426	0.1699
Ν	0.77934	0.09525	0.32148	С	0.10462	0.13243	0.72966	С	0.91743	0.37109	0.60185	Н	0.17828	0.53426	0.1699
Ν	0.27934	0.09525	0.32148	С	0.72626	0.83356	0.27772	С	0.41743	0.37109	0.60185	Н	0.82172	0.46574	0.8301
N	0.72066	0.90475	0.67852	С	0.22626	0.83356	0.27772	С	0.65111	0.60754	0.33714	Н	0.32172	0.46574	0.8301

Section 5. Temperature-induced switching effect on the low-frequency phonon mode

а

Figure S2. (a) Peak analyses of the temperature-dependent THz absorption spectra. THz absorption spectra at (b) 302 K and (c) 152 K. Red lines, blue lines, and black lines indicate the peak components from the $Co^{II}-W^V$ phase, those from the $Co^{III}-W^{IV}$ phase, and the total calculated spectra of the $Co^{II}-W^V$ and $Co^{III}-W^{IV}$ phases, respectively. Grey dots show the experimental data. Faint dashed grey lines represent the fitted curve of the higher frequency phonon modes.

Section 6. Crystal structure analysis of the Co^{III}–W^{IV} phase of RbCoW

Figure S3. Crystal structure of the Co^{III}–W^{IV} phase of **RbCoW** at 130 K. (a) Coordination environment around the metal ions shown by 30 % probability thermal ellipsoids. (b) Crystal structure viewed along the *c*-axis, (c) *b*-axis, and (d) *a*-axis. Red, blue, pale green, grey, and black balls represent Rb, Co, W, C, and N atoms, respectively. Hydrogen atoms are omitted for clarity.

Compound	RbCoW (Co ^{III} –W ^{IV} phase)			
Empirical formula	$C_{20}H_8CoN_{12}RbW$			
Formula weight	744.63			
Temperature/K	130(2)			
Crystal system	triclinic			
Space group	$P\overline{1}$			
a/Å	7.2253(14)			
$b/{ m \AA}$	13.340(3)			
$c/{ m \AA}$	13.839(3)			
$lpha/^{\circ}$	118.671(8)			
$eta /^{\circ}$	100.497(7)			
$\gamma^{/\circ}$	90.100(6)			
$V/Å^3$	1144.6(4)			
Ζ	2			
$ ho_{ m calc}/ m g~cm^{-3}$	2.161			
μ/mm^{-1}	7.895			
F(000)	700.0			
Crystal size/mm ³	$0.204\times0.042\times0.024$			
Radiation	MoKa ($\lambda = 0.71075$)			
2θ range for data collection/°	5.978 to 54.952			
Index ranges Reflections collected	$-9 \le h \le 9$ $-17 \le k \le 17$ $-15 \le l \le 17$ 10853			
Independent reflections	$5234 [R_{\odot} = 0.1070, R_{\odot} = 0.1500]$			
I	sigma second			
Data/restraints/parameters	5234/23/256			
Goodness-of-fit on F^2	1.172			
Final R indexes	$R_1 = 0.1105$			
[<i>I</i> >=2σ (<i>I</i>)]	$wR_2 = 0.1690$			
Final <i>R</i> indexes	$R_1 = 0.1424$			
[all data]	$wR_2 = 0.1797$			
Largest diff. peak/hole / e Å^-3 $$	3.35/-5.70			

Table S5. Crystallographic data and structure refinement of the Co^{III}_W^{IV} phase of **RbCoW** at 130 K.

Section 7. Comparison of the crystal structure of RbCoW between the Co^{II}– W^V phase and Co^{III}–W^{IV} phase

	Co ^{II} –W ^V phase	Co ^{III} –W ^{IV} phase
Temperature	300	130
W1-C1	2.139(13)	2.145(19)
W1–C2	2.129(14)	2.136(19)
W1–C3	2.135(13)	2.150(14)
W1–C4	2.144(13)	2.138(18)
W1–C5	2.173(19)	2.16(3)
W1–C6	2.153(14)	2.19(3)
W1–C7	2.146(16)	2.181(19)
W1–C8	2.155(18)	2.17(3)
Ave. W–C	2.15(13)	2.16(19)
Co1–N2	2.080(11)	1.878(14)
Co1–N3	2.092(12)	1.882(14)
Co1–N9	2.164(18)	2.00(5)
Co2–N1	2.084(11)	1.876(13)
Co2–N4	2.099(12)	1.902(14)
Co2–N11	2.14(3)	1.88(4)
Ave. Co–N	2.11(2)	1.90(3)
\angle Co1 – N9 – C11(3-CNpy)	178.1(5)	174.8(5)
$\angle \text{Co2} - \text{N11} - \text{C17}(3\text{-}\text{CNpy})$	156.2(4)	163.2(5)

Table S6. Comparison of the bond lengths (W–C and Co–N) and bond angles (\angle Co–N–C (3-CNpy)) of **RbCoW** between the Co^{II}–W^V phase (300 K) and Co^{III}–W^{IV} phase (130 K).

Table S7. List of atomic distances between the Rb ion and the surrounding atoms.

	Co ^{II} –W ^V phase	Co ^{III} –W ^{IV} phase
Rb–N5	3.146(19)	3.04(3)
Rb–C5	3.68(2)	3.55(4)
Rb–N7	3.14(2)	3.07(3)
Rb–C7	3.697(19)	3.58(3)
Rb–N12	2.989(18)	3.03(3)
Rb–C20	3.551(15)	3.55(3)
Rb–N5'	3.64(2)	3.62(3)
Rb–C5'	4.301(17)	4.34(3)
Rb–N6'	3.235(18)	3.20(3)
Rb–C6'	3.63(3)	3.60(4)
Rb–N7'	3.05(2)	2.947(18)
Rb–C7'	3.502(13)	3.468(18)

Section 8. First-principles electronic structure calculation of the Co^{III}–W^{IV} phase

Figure S4. (a) Total DOS of the Co^{III}–W^{IV} phase (black line) and partial phonon DOS of Rb (red line), Co (dark yellow line), W (green line), C (light blue line), N (blue line), and H (purple line). (b) Band structure of the Co^{III}–W^{IV} phase of **RbCoW**.

Section 9. THz absorption spectrum of CsCoW

Figure S5. THz absorption spectrum of $Cs[Co^{II}(3\text{-cyanopyridine})_2][W^V(CN)_8]$ (CsCoW) with peaks at 0.57 (peak a'), 0.69 (peak b'), 0.86 (peak c'), 1.08 (peak d'), 1.21 (peak e'), 1.34 (peak f'), 1.57 (peak g'), and 1.79 THz (peak h'). Grey dots show the experimental data measured at room temperature, black line shows the fitted spectrum, and coloured lines indicate the components of each peak. Faint dashed grey lines represent the fitted curves of the higher frequency phonon modes.