(Supporting Information)

GaN Nanowire as a Reusable Photoredox Catalyst for Radical Coupling of Carbonyl under Blacklight-Irradiation

Mingxin Liu,^{1,2,‡} Lida Tan,^{1,‡} Roksana T. Rashid,³ Yunen Cen,¹ Shaobo Cheng,⁴ Gianluigi Botton,⁴ Zetian Mi,^{2,3,*} and Chao-Jun Li^{1,*}

¹Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Ouest, Montreal, Quebec, H3A 0B8, Canada.

²Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave, Ann Arbor, MI, 48109, USA.

³Department of Electrical and Computer Engineering, McGill University, 3480 University, Montreal, Quebec, H3A 0E9, Canada.

⁴Department of Material Science and Engineering, Canadian Centre for Electron Microscopy, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada.

‡These authors contributed equally.

Materials and Methods

1. Growth of GaN Nanowires.

The nanowires are grown on a Si (111) wafer using radio frequency plasma-assisted molecular beam epitaxy (MBE) in nitrogen rich conditions. The Si substrates were cleaned in clean room in sequence by absolute methanol, acetone, and hydrofluoric acid prior of loading into the MBE system. Growth conditions: temperature ~750 °C, nitrogen flow rate 1 sccm, forward plasma power ~400 W. The typical growth time for each catalyst is three hours, giving the equivalence of 2 mg GaN NW on a 2-inches wafer. The as-synthesized nanowires can be doped with tetravalent (Si⁴⁺) or divalent (Mg²⁺) ions for making n- and p- type semiconductors, respectively. The doping density is controlled by tuning the effusion cell temperatures of Si and Mg. For n-type doping, the Si effusion cell temperature is 1100 °C. For p-type doping, the Mg effusion cell temperature is 265 °C. The electron and hole concentrations for the Si-doped n-type and Mg-doped p-type GaN NWs were estimated to be on the order of $n = 5 \times 10^{18}$ cm⁻³ and $p = 1 \times 10^{18}$ cm⁻³, respectively. Other growth parameters were kept constant.

2. Photo-driven pinacol coupling reaction.

A slice (3.5 cm²) of GaN NW (equivalent to 0.35 mg GaN) grown on Si(111) wafer was placed at the bottom of a glass flange equipped with a venting hose and a quartz window. The flange was then evacuated by oil pump for 30 min before the injection of ketone reactant (0.2 mmol) dissolved in 2 mL methanol. The flange was kept under a UV box equipped with HITACHI FL8BL-B black light bulb under room temperature for 12 h. After reaction, the crude reaction mixture can be characterized either by taking a drop of the methanol solution into NMR solvent for NMR study (solvent suppression mode can be applied to eliminate the huge methanol signal) or directly stripped of methanol to give the desired product, which can be further purified by flash chromatography to obtain a higher purity grade.

3. Identification of product.

¹H-NMR (CDCl₃, ppm): rac-, 7.27 (m, 6H), 7.24 (m, 4H), 1.54 (s, 6H); meso-, 7.27 (m, 6H),

7.24 (m, 4H), 1.62 (s, 6H)

¹³C-NMR (CDCl₃, ppm): rac-, 143.4, 127.4, 127.3, 126.9, 78.6, 25.0; meso-, 143.8, 127.4, 127.3,

126.9, 78.9, 25.1

 $2b^{31}$ \xrightarrow{HO} OH (iso. yield > 99%, calc. based on ketone)

¹H-NMR (CDCl₃, ppm): 2.17 (br, 2H), 1.24 (s, 12H)

¹³C-NMR (CDCl₃, ppm): 75.1, 24.9

¹³C-NMR (CDCl₃, ppm): rac-, 140.3, 128.3, 127.1, 126.6, 81.9, 27.7, 7.5, 7.5; meso-, 141.3,

128.3, 127.1, 126.8, 81.9, 28.1, 7.5, 7.5

¹H-NMR (CDCl₃, ppm): rac-, 7.45 (m, 2H), 7.26-7.10 (m, 4H), 6.95 (m, 2H), 3.09 (br, 2H), 1.64(s, 6H); meso-, 7.45 (m, 2H), 7.26-7.10 (m, 4H), 6.95 (m, 2H), 3.18 (br, 2H), 1.76 (s, 6H) ¹³C-NMR (CDCl₃, ppm): rac-, 160.9 ($^{1}J_{C-F} = 201$ Hz), 130.2, 129.3, 123.6, 123.2, 116.0 ($^{2}J_{C-F} = 45$ Hz), 79.6, 24.0; meso-, 160.9 ($^{1}J_{C-F} = 201$ Hz), 130.2, 129.3, 123.6, 123.2, 116.0 ($^{2}J_{C-F} = 45$ Hz), 79.7, 24.5

2e³⁴

F(iso. yield 98%, calc. based on ketone; rac- : meso- = 1:1)

¹H-NMR (CDCl₃, ppm): rac-, 7.20 (m, 2H), 7.14 (m, 2H), 6.94 (m, 4H), 1.52 (s, 6H); meso-,

7.20 (m, 2H), 7.14 (m, 2H), 6.94 (m, 4H), 1.60 (s, 6H)

¹³C-NMR (CDCl₃, ppm): rac-, 162.0 (¹J_{C-F} = 245 Hz), 139.1, 128.8 (²J_{C-F} = 38 Hz), 114.0, 78.3, 24.9; meso-, 162.0 (¹J_{C-F} = 245 Hz), 139.5, 128.8 (²J_{C-F} = 38 Hz), 114.0, 78.6, 25.2

Cl(iso. yield 93%, calc. based on ketone; rac- : meso- = 1:1.1)

¹H-NMR (CDCl₃, ppm): rac-, 7.23-7.08 (m, 8H), 1.47 (s, 6H); meso-, 7.23-7.08 (m, 8H), 1.55 (s, 6H)

¹³C-NMR (CDCl₃, ppm): rac-, 141.7, 133.0, 128.8, 127.3, 78.2, 24.8; meso-, 141.7, 133.0, 128.8, 127.3, 78.2, 25.1

 CF_3 (iso. yield 99%, calc. based on ketone; rac- : meso- = 1.2:1)

¹H-NMR (CDCl₃, ppm): rac-, 7.50 (m, 6H), 7.29 (m, 2H), 1.53 (s, 6H); meso-, 7.50 (m, 6H), 7.29 (m, 2H), 1.57 (s, 6H)

¹³C-NMR (CDCl₃, ppm): rac-, 147.7, 147.1, 127.5, 127.4, 125.8 (¹J_{C-F} = 240 Hz), 78.2, 24.8; meso-, 147.7, 147.1, 127.5, 127.4, 125.8 (¹J_{C-F} = 240 Hz), 78.6, 25.2

CN(iso. yield 94%, calc. based on ketone; rac- : meso- = 1:1.3)

¹H-NMR (acetone-d6, ppm): rac-, 7.68 (m, 4H), 7.41 (m, 4H), 4.59 (br, 2H), 1.48 (s, 6H); meso-, 7.75 (m, 4H), 7.49 (m, 4H), 4.77 (br, 2H), 1.75 (s, 6H)

¹³C-NMR (DMSO-d6, ppm): rac-, 152.5, 131.0, 128.4, 119.6, 108.9, 77.4, 24.7; meso-, 152.5, 130.9, 129.1, 119.6, 109.3, 77.4, 24.7

¹H-NMR (CDCl₃, ppm): rac-, 7.48 (m, 2H), 7.33 (m, 8H), 3.51 (br, 2H), meso-, 7.48 (m, 2H),

7.33 (m, 8H), 3.58 (br, 2H)

¹³C-NMR (CDCl₃, ppm): rac-, 133.5, 129.0, 127.8, 127.1 (${}^{1}J_{C-F} = 201 \text{ Hz}$), 126.9, 80.2; meso-, 133.6, 129.0, 127.8, 127.1 (${}^{1}J_{C-F} = 201 \text{ Hz}$), 126.9, 80.4

¹H-NMR (CDCl₃, ppm): 7.28 (m, 8H), 7.18 (m, 12H), 3.02 (br, 2H)

¹³C-NMR (CDCl₃, ppm): 144.1, 128.6, 127.3, 126.9, 83.0

¹H-NMR (CDCl₃, ppm): 7.15 (m, 8H), 6.97 (m, 8H), 2.28 (s, 12H)

¹³C-NMR (CDCl₃, ppm): 141.5, 136.3, 128.5, 127.9, 82.8, 21.0

F(iso. yield 96%, calc. based on ketone)

¹H-NMR (CDCl₃, ppm): 7.25 (m, 8H), 6.90 (m, 8H), 2.88 (br, 2H)

 13 C-NMR (CDCl₃, ppm): 161.8 (1 J_{C-F} = 250 Hz), 139.7, 130.3, 114.3 (2 J_{C-F} = 21 Hz), 82.6

Cl(iso. yield 97%, calc. based on ketone)

¹H-NMR (CDCl₃, ppm): 7.19 (m, 16H), 2.84 (br, 2H)

¹³C-NMR (CDCl₃, ppm): 142.0, 133.5, 129.8, 127.7, 82.5

OPh (iso. yield > 99%, calc. based on ketone; rac- : meso- = 1.1:1)

¹H-NMR (CDCl₃, ppm): rac-, 7.36-6.92 (m, 18H), 1.55 (s, 6H); meso-, 7.36-6.92 (m, 18H), 1.64 (s, 6H)

¹³C-NMR (CDCl₃, ppm): rac-, 157.1, 156.3, 138.3, 129.7, 128.4, 123.3, 118.9, 117.4, 78.7, 25.0;
meso-, 157.1, 156.3, 138.3, 129.7, 128.8, 123.3, 118.9, 117.4, 78.7, 25.0

HR-MS: ESI [C₂₈H₂₅O₄Na]⁺ calc.: 448.1651, found: 448.1610

OMe(iso. yield > 99%, calc. based on ketone; rac- : meso- = 1.3:1)

¹H-NMR (CDCl₃, ppm): rac-, 7.09 (m, 4H), 6.79 (m, 4H), 3.79 (s, 6H), 1.46 (s, 6H); meso-, 7.09 (m, 4H), 6.79 (m, 4H), 3.81 (s, 6H), 1.55 (s, 6H)

¹³C-NMR (CDCl₃, ppm): rac-, 158.5, 135.6, 128.5, 112.4, 78.7, 55.1, 25.0; meso-, 158.5, 135.6, 128.5, 112.4, 78.7, 55.1, 25.0

OMe(iso. yield > 99%, calc. based on ketone; rac- : meso- = 1:1)

¹H-NMR (CDCl₃, ppm): rac-, 7.35 (t, 1H), 7.04 (t, 1H), 6.67 (m, 1H), 6.56 (m, 2H), 6.44 (m,

1H), 3.79 (s, 6H), 2.99 (br, 2H), 1.62 (s, 6H); meso-, 7.35 (t, 1H), 7.04 (t, 1H), 6.67 (m, 1H),

6.56 (m, 2H), 6.44 (m, 1H), 3.82 (s, 6H), 3.09 (br, 2H), 1.74 (s, 6H)

¹³C-NMR (CDCl₃, ppm): rac-, 161.0 (¹J_{C-F} = 245 Hz), 160.0, 130.5, 122.0, 109.2, 101.8 (²J_{C-F} = 57 Hz), 79.4, 55.5, 24.1; meso-, 161.1 (¹J_{C-F} = 245 Hz), 160.1, 130.6, 122.2, 109.3, 101.8 (²J_{C-F} = 57 Hz), 79.4, 55.5, 24.5

HR-MS: ESI [C₁₈H₁₉O₄F₂Na]⁺ calc.: 360.1149, found: 360.1111

¹³C-NMR (CDCl₃, ppm, rac- and meso-): 139.8, 128.3, 128.1, 127.1, 78.1

(iso. yield 75%, calc. based on aldehyde; rac- : meso- = 1:1.3)

¹H-NMR (CDCl₃, ppm): rac-, 7.17-7.03 (m, 8H), 4.66 (s, 2H) 2.29 (s, 6H); meso-, 7.17-7.03 (m, 8H), 4.73 (s, 2H), 2.33 (s, 6H)

¹³C-NMR (CDCl₃, ppm): rac-, 137.8, 136.9, 128.9, 127.0, 78.0, 21.1; meso-, 137.8, 136.9, 128.9, 127.0, 78.7, 21.1

Cl(iso. yield 69%, calc. based on aldehyde; rac- : meso- = 1.2:1)

¹H-NMR (CDCl₃, ppm): rac-, 7.25-7.01 (m, 8H), 4.59 (s, 2H) 2.61 (br, 2H); meso-, 7.25-7.01 (m, 8H), 4.81 (s, 2H) 2.61 (br, 2H)

¹³C-NMR (CDCl₃, ppm, rac- and meso-): 137.9, 133.8, 128.4, 128.3, 78.5

OMe (iso. yield 61%, calc. based on aldehyde; rac- : meso- = 1:1)

¹H-NMR (CDCl₃, ppm, rac- and meso-): 7.20 (d, 4H), 6.84 (d, 4H), 4.72 (s, 2H), 3.79 (s, 6H), 2.14 (br, 2H)

¹³C-NMR (DMSO-d6, ppm, rac- and meso-): 158.4, 134.8, 128.8, 113.4, 76.8, 55.3

¹³C-NMR (CDCl₃, ppm): rac-, 158.2, 133.2, 133.1, 128.1, 117.7, 114.3, 78.8, 68.8; meso-, 158.2, 133.2, 133.1, 128.1, 117.7, 114.5, 77.8, 68.8

¹H-NMR (CDCl₃, ppm): 7.38-7.23 (m, 5H), 3.65-3.53 (m, 2H), 3.35 (br, 1H), 2.91 (br, 1H), 1.45 (s, 3H)

¹³C-NMR (CDCl₃, ppm): 145.1, 128.3, 127.5, 125.1, 74.9, 70.8, 25.9

¹H-NMR (CDCl₃, ppm): 7.42-7.24 (m, 10H), 4.16 (d, 2H), 3.22 (br, 1H), 1.94 (br, 1H)

¹³C-NMR (CDCl₃, ppm): 143.8, 128.4, 127.4, 126.4, 78.5, 69.4

¹H-NMR (CDCl₃, ppm): 7.26 (d, 2H), 6.87 (d, 2H), 4.75 (m, 1H), 3.78 (s, 3H), 3.62 (m, 2H), 2.80 (br, 1H), 2.42 (br, 1H)

¹³C-NMR (CDCl₃, ppm): 159.4, 132.6, 127.3, 113.9, 74.3, 68.0, 55.3

¹H-NMR (CDCl₃, ppm): 6.90-6.83 (m, 3H), 4.75 (m, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.67 (m,

2H), 2.64 (br, 1H), 2.20 (br, 1H)

¹³C-NMR (CDCl₃, ppm): 148.8, 148.7, 133.11, 118.3, 111.1, 109.1, 74.4, 68.1, 55.9

(iso. yield 82%)

¹H-NMR (CDCl₃, ppm): 7.60 (d, 2H), 7.50 (d, 2H), 4.86 (m, 1H), 3.79-3.63 (m, 2H), 2.81 (br, 1H), 2.20 (br, 1H)

¹³C-NMR (CDCl₃, ppm): 144.4, 129.9 (${}^{2}J_{C-F} = 130 \text{ Hz}$), 126.4, 125.4, 124.1 (${}^{1}J_{C-F} = 272 \text{ Hz}$)

74.0, 67.9

¹H-NMR (CDCl₃, ppm): 7.38 (d, 2H), 7.28 (d, 2H), 4.80 (m, 1H), 3.69 (m, 2H), 2.58 (br, 1H), 2.21 (br, 1H), 1.30 (s, 9H) ¹³C-NMR (CDCl₃, ppm): 151.0, 137.5, 125.8, 125.5, 74.5, 68.0, 34.5, 31.3

(iso. yield 89%)

¹H-NMR (CDCl₃, ppm): 7.30 (m, 2H), 6.92 (m, 3H), 4.01 (m, 2H), 3.80 (m, 1H), 3.68-3.50 (m, 2H), 3.05 (br, 1H), 2.76 (br, 1H), 1.99-1.88 (m, 2H), 1.62 (m, 2H)

¹³C-NMR (CDCl₃, ppm): 158.8, 129.5, 120.8, 114.5, 72.0, 67.7, 66.8, 29.9, 25.5

¹H-NMR (CDCl₃, ppm): 7.18 (d, 1H), 6.71 (dd, J = 8.5, 2.1 Hz, 1H), 6.62 (s, 1H), 3.79 (d, 1H), 3.76 (s, 3H), 3.61 (d, 1H), 2.84 (dd, J = 22.0, 11.3 Hz, 2H), 2.35-2.20 (m, 2H), 2.20 (s, 1H), 2.01-1.76 (m, 6H), 1.75-1.63 (m, 2H), 1.57-1.39 (m, 3H), 1.31 (dt, J = 17.5, 8.2 Hz, 1H), 0.78 (s, 3H)

¹³C-NMR (CDCl₃, ppm): 157.4, 138.0, 132.7, 126.3, 113.8, 111.5, 83.9, 66.9, 55.2, 49.6, 46.6,
43.6, 38.8, 34.6, 31.7, 29.9, 27.8, 26.2, 23.6, 15.1

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ 5/8/2019 9:25:22 AM

Acquisi	tion Time (s	sec) 1.0	923		Comment		Li 1d C1	3 CDCI3 E	:\\ mingx	in 1				Date		28 Mai	2019 0	1:28:32	
Date St	tamp	28	Mar 2019	01:28:3	2														
File Na	me	C:	Users\Adm	nin\One	Drive - McGi	II University	PostdocMc	Gill\Resear	rch\pp10	Pure NMR	Imxpp10-se	cope-Ac	Ph\2\fid	Frequency	(MHz)	125.81			
Nucleus	s	13	С		Number of	Transients	1024		Origin		A۱	/III500HI	D	Original Poi	ints Count	32768			
Owner		m	gillnmr		Points Cour	nt	32768		Pulse	Sequence	zg	pg30		Receiver Ga	ain	192.72			
SW(cyc	dical) (Hz)	30	00.00		Solvent		CHLORC	FORM-d	Spectr	um Offset (Hz) 12	578.923	8	Spectrum T	ype	STAN	DARD		
Sweep	Width (Hz)	29	999.08		Temperatur	re (degree C) 25.000												
1.0 99 0.9 Normalized International Control of Control	Imxpp10-sc	cope-AcPh	.002 (989 tic	calSca	lleFactor =	08 CPL	7127.38	126.94 1.21.25			78.87				<u>/25.13</u> 24.97				
ſ	220 2	10 200	190	180	170 160	150	140 130	120	110 Chemica	100 90 al Shift (ppn	80 n)	70	60 5	0 40	30 20	0 10	0	-10	-20
No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	1			
1	24.97	3141.2	0.3187	4	78.87	9923.4	0.3770	7 .	127.06	15986.1	0.2923	10	127.38	16026.3	0.8170				
2	25.13	3162.3	0.2109	5	126.91	15966.8	0.5099	8 '	127.16	15998.9	0.2498	11	143.43	18046.0	0.2871	1			
3	78.61	9890.5	0.3054	6	126.94	15970.5	0.8190	9 .	127.29	16015.4	1.0000	12	143.80	18091.8	0.2076	1			

Figure S1. ¹H-(upper), and ¹³C-(lower)-NMR of compound 2a

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

								5/6/2019 9:25:44 AM
Acquisiti	on Time (sec)	1.0923	Comment	Li 1d_C13 CDCl3 E	:\\ mingxin 4		Date	16 Apr 2019 23:01:20
Date Sta	mp	16 Apr 2019 23:01:	20					
File Nam	10	C:\Users\Admin\On	eDrive - McGill University\P	ostdocMcGill\Resear	ch\pp10\Pure NMR\Imxpp	10-scope-pinacol 2\2\fic	Frequency (MHz)	125.81
Nucleus		13C	Number of Transients	3400	Origin	AVIII500HD	Original Points Count	32768
Owner		mcgillnmr	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	192.72
SW(cycli	ical) (Hz)	30000.00	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12578.9238	Spectrum Type	STANDARD
Sweep V	Vidth (Hz)	29999.08	Temperature (degree C)	25.000				
I 1.0 0.9 0.8 0.7 0.0 0.0 0.2 0.0 0.2 0.1 0.1 0 0.1 0 0.1	220 210	200 190 180	aleFactor = 1 170 160 150 1	40 130 120	110 100 90 8 Chemical Shift (ppm)	93 92 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	88 75 0 40 30 20) 10 0 -10 -20
No.	(nom) (Hz) Height						
1	24.85 3126	6 1.0000						
2	75.06 9443	7 0.4463						

Figure S2. ¹H-(upper), and ¹³C-(lower)-NMR of compound **2b**

1.0000

2171.9

7.25

Figure S3. ¹H-(upper), and ¹³C-(lower)-NMR of compound **2c**

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S4. ¹H-(upper), and ¹³C-(lower)-NMR of compound 2d

Figure S5. ¹H-(upper), and ¹³C-(lower)-NMR of compound 2e

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S6. ¹H-(upper), and ¹³C-(lower)-NMR of compound 2f

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ 5/8/2019 9:28:01 AM

Figure S7. ¹H-(upper), and ¹³C-(lower)-NMR of compound 2g

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S8. ¹H-(upper), and ¹³C-(lower)-NMR of compound **2h**

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ 7/29/2019 10:01:14 AM

Figure S9. ¹H-(upper), and ¹³C-(lower)-NMR of compound 2i

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S10. ¹H-(upper), and ¹³C-(lower)-NMR of compound 2j

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S11. ¹H-(upper), and ¹³C-(lower)-NMR of compound 2k

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ 5/8/2019 9:30:07 AM

Acquis	ition Time	(sec) 1	0923		Comn	nent		Li 1	d C13	CDCI3	E:\\	minax	in 9					Dat	e			28 Mar	2019.04	1.23.28	
Date S	Date Stamp 28 Mar 2019 04:23			04:23:2	28											1 2 44	•			Loman	10100	I LOILO			
File Na	me	0	:\Users\Ad	min\One	Drive -	McGill	Universitv\	Postdo	ocMcG	ill\Resea	arch	\nn10\	Pure N	/IR\lmx	0010	-scope-4FF	3nPh\2\fi	Fre	auencv	(MHz)		125.80			
Nucleu	IS	1	3C		Numb	er of Tr	ansients	102	4			Oriain				AVIII500H	D	Orio	ninal Po	oints Co	unt	32768			
Owner		m	caillnmr		Points	Points Count 33		327	2768		Pulse Sequence			zgpg30		Receiver Gain			192.72						
SW(cv	clical) (Hz)	3	0000.00		Solve	nt		CH	LOROF	FORM-d		Spectr	um Offs	et (Hz)		12578.924	8	Spe	ctrum	Type		STAND	٩RD		
Sweep	Width (Hz) 2	9999.08		Temp	erature	(degree C	25.	000																
1.0 - 0.9 - 0.8 - 0.7 - Åtisueuti Variation Va	Imxpp10	scope-4FB	nPh.00%ft	iêalSca	lleFac		1		———————————————————————————————————————		114.24 114.40														
	220	210 20	0 190	180	170	160	150	140	130	120	1 Cł	10 nemica	100 al Shift (90 opm)	80	70	60	50	40	30	20	10	0	-10	-20
No.	(ppm)	(Hz)	Height																						
1	82.58	10388.5	0.0561	_																					
2	114.24	14371.1	0.4347	_																					
3	114.40	14392.1	0.5676	_																					
4	130.32	16394.4	0.5076																						
5	139.66	17569.0	0.0651	_																					
6	160.83	20232.3	0.1396																						
7	162.79	20479.5	0.1236																						

Figure S12. ¹H-(upper), and ¹³C-(lower)-NMR of compound **2**I

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S13. ¹H-(upper), and ¹³C-(lower)-NMR of compound **2m**

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

												5/8/2019 9:	30:54 AM
Acquisition Time (sec) 1.0	923	Comment		Li 1d (C13 CDCI3	E:\\ mingxin 8			Date	28 Ma	r 2019 03:13:04	1
Date Stamp	28	Mar 2019 03:13:0	04										
File Name	C:\	Users\Admin\One	Drive - McGi	II University	PostdocN	lcGill\Rese	arch\pp10\Pure NMR	h\pp10\Pure NMR\Imxpp10-scope-PhO		fid			
Frequency (MHz)	125	5.81	Nucleus		13C		Number of Trans	Number of Transients		Origin	AVIII5	AVIII500HD	
Original Points Co	ount 327	768	Owner		mcgillr	ımr	Points Count		32768	Pulse Sequence	zgpg3	0	
Receiver Gain	192	2.72	SW(cyclical) (Hz)		30000	00	Solvent		CHLOROFORM-d	Spectrum Offset (12578	.9238	
Spectrum Type	ST	ANDARD	Sweep Wid	lth (Hz)	29999	.08	Temperature (de	gree C)	24.999				
Spectrum Type 1.0 Imxxp10-s 0.9 0.9 0.8 0.7 Also 0.6 0.9 0.8 0.7 0.9 0.6 0.7 0.6 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.3 0.3	ST. cope-PhOA	andard c ^{ph} viiteisc	Sweep Wid	e	29999	128.41 128.79 20 20 20 20 20 20 20 20 20 20 20 20 20	Temporature (de	gree C)	24.999		2		
0.2				156.30			ette skriften en e	78 73	2				
220 2	210 200	190 180	170 160) 150	140 13	30 120	110 100 90	0 80	70 60	50 40 30	20 10	0 -10	-20
							Chemical Shift (pp	m)					
No. (ppm)	(Hz)	Height											
1 25.03	3149.5	0.1419											
2 78.73	9905.1	0.0991											
3 117.36	14765.7	0.3276											
4 118.90	14958.8	0.5219											
6 129.44	10012.7	0.1788											
7 128.41	16204.0	0.2011											
/ 128.79	16204.0	0.3442											
0 129.73	17401 5	0.4353											
9 138.31	1/401.5	0.1210											
10 150.30	10765.4	0.0727											
11 157.10	19705.4	0.1297											

Figure S14. ¹H-(upper), and ¹³C-(lower)-NMR of compound **2n**

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S15. ¹H-(upper), and ¹³C-(lower)-NMR of compound **20**

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

																	5/8/	2019 9:3	31:32 AI
Acquisit	ion Time ((sec) 1.0)923		Comment		Li 1d_0	C13 CDCI	3 E:\\ ming	gxin 8				Date		13 Ap	r 2019 1	4:42:08	
Date Sta	amp	13	Apr 2019	14:42:08	8														
File Nar	ne	C:	Users\Adm	nin\One	Drive - McGi	II University	/\PostdocM	lcGill\Res	earch\pp1	0\Pure NMR	Nmxpp10)-scope-FC	MeAcP 2	2\2\fid					
Frequer	ncy (MHz)	12	5.81		Nucleus		13C		Num	ber of Tran	sients	3400		Origin		AVII15	00HD		
Original	Points Co	ount 32	768		Owner		mcgilln	ımr	Poin	ts Count		32768		Pulse Seq	uence	zgpg3	0		
Receive	r Gain	19	2.72		SW(cyclica	l) (Hz)	30000.	30000.00		ent		CHLORO	FORM-d	Spectrum	Offset (Hz)	12578	.9238		
Spectru	т Туре	ST	ANDARD		Sweep Wid	th (Hz)	29999.	08	Tem	perature (de	egree C)	25.000							
1.0	mxpp10-s	210 200	eAc R & P	2419ca	170 16C	- 1	2000 140 13	00 130.47 05 172.17 172.08		20 20 20 20 20 20 20 20 20 20 20 20 20 2	08 08	70	60 55.48	50 40	20 20 30 20 30 20	10	0	-10	-20
									Chemi	cal Shift (pp	m)								
No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Heigh	nt No.	(ppm) (Hz)	Height				
1	24.08	3029.5	0.0557	5	101.50	12769.8	0.1255	9	122.17	15370.8	0.041	0 13	160.1	5 20149.0	0.0571				
	21.00									-						1			
2	24.47	3079.0	0.0558	6	102.01	12834.8	0.1352	10	130.47	16414.5	0.112	1 14	161.9	1 20370.5	0.0447				
2 3	24.47 55.48	3079.0 6980.0	0.0558	6	102.01 109.33	12834.8 13754.9	0.1352	10	130.47 130.62	16414.5 16433.8	0.112	1 14 1	161.9	1 20370.5	0.0447				

Figure S16. ¹H-(upper), and ¹³C-(lower)-NMR of compound **2p**

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

							2019/10/9 20:03:	
Acquisition Time (sec)	1.0923	Comment	Li 1d C13 CDCI3 E:\	\ mingxin 1		Date	15 Apr 2019 23:52:32	
Date Stamp	15 Apr 2019 23:52:3	2						
File Name	C:\Users\Admin\One	Drive - McGill Universit	-scope-hydrobenzoin	pin 2\2\fid				
Frequency (MHz)	125.81	Nucleus	13C	Number of Transients	3400	Origin	AVIII500HD	
Original Points Count	32768	Owner	mcgillnmr	Points Count	32768	Pulse Sequence	zgpg30	
Receiver Gain	192.72	SW(cyclical) (Hz)	30000.00	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12578.9238	
Spectrum Type	STANDARD	Sweep Width (Hz)	29999.08	Temperature (degree C)	24.998			
I .0 0.9 0.8 0.7 0.8 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.7 0.5 0.5 0.5 0.7 0.2 0.1 0.7 0.2 0.2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	hydroben ჯაც ჩტმცხ ე 200 190 180	∦eFactor = 1		2 8 10 10 90 80	70 60 5	0 40 30 20	10 0 -10 -20	
			C	hemical Shift (ppm)				
No. (ppm) (H	z) Height							
1 78.12 982	9.1 0.1146							
2 127.09 1598	9.7 0.9048							
3 128.13 1612	0.6 0.4205							
4 128.26 1613	6.2 1.0000							
5 139 77 1758	4.6 0.0625							

Figure S17. ¹H-(upper), and ¹³C-(lower)-NMR of compound **2q**

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S18. ¹H-(upper), and ¹³C-(lower)-NMR of compound **2r**

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S19. ¹H-(upper), and ¹³C-(lower)-NMR of compound 2s

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Acquisition Time (sec) Imxpp10-oct2019-OMeAI-PCR-500 Oct 9 2019 1.0486 Comment Date C:\Users\Admin\Desktop\Imxpp10-oct2019-OMeAI-PCR-500_CARBON_01.fid\fid Date Stamp Oct 9 2019 File Name Frequency (MHz) 125.71 Nucleus Number of Transients 3500 Original Points Count 32768 13C Points Count 32768 Pulse Sequence s2pul **Receiver Gain** 30.00 Solvent DMSO-d6 Spectrum Offset (Hz) 13826.9600 Spectrum Type STANDARD Sweep Width (Hz) Temperature (degree C) 25.000 31250.0 Imxpp10-oct2019-OMeA₩PerRcanscatePatton = 1 0.13 0.12 13 38 128.83 0.11 0.10 55.34 0.09 158.42 0.08 76.82 0.07 hariler 134.75 0.06 0.05 0.04 0.03 0.02 0.01 -20 220 200 120 100 Chemical Shift (ppm) 40 20 6 180 160 140 80 60 No. (ppm) (Hz) Height
 55.34
 6957.0

 76.82
 9656.9

 113.38
 14253.7
 1 2 6957.00.08369656.90.0654 3 0.0982 128.83 16195.5 0.0964
 5
 134.75
 16940.3
 0.0473

 6
 158.42
 19914.9
 0.0662

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ 2019/10/9 19:48:22

Figure S20. ¹H-(upper), and ¹³C-(lower)-NMR of compound 2t

Figure S21. ¹H-(upper), and ¹³C-(lower)-NMR of compound **2u**

10 158.17 11918.3 0.0516

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S22. ¹H-(upper), and ¹³C-(lower)-NMR of compound 5a

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S23. ¹H-(upper), and ¹³C-(lower)-NMR of compound **5b**

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S24. ¹H-(upper), and ¹³C-(lower)-NMR of compound 5c

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ 2019/10/4 10:53:15

Figure S25. ¹H-(upper), and ¹³C-(lower)-NMR of compound 5d

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S26. ¹H-(upper), and ¹³C-(lower)-NMR of compound 5e

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S27. ¹H-(upper), and ¹³C-(lower)-NMR of compound **5**f

Chemical Shift (ppm)

Ó -10 -20

Figure S28. ¹H-(upper), and ¹³C-(lower)-NMR of compound 5g

71.96

25.52 29.89

No. (ppm)

210 200

66.79 8403.7 0.2177

67.73 8520.8 0.3890

 120.80
 15197.8
 0.4356

 129.49
 16291.8
 0.5354

 158.78
 19976.8
 0.0581

(Hz) Height

3210.8 0.1684 3761.0 0.4193

9053.7 0.3430 114.49 14404.9 1.0000

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ 2019/10/4 11:32:55

Figure S29. ¹H-(upper), and ¹³C-(lower)-NMR of compound **5h**

Figure S30. HR-ESI spectrum of the reaction mixture of Table 4, entry 3.

Figure S31. Photo-induced reaction setup.

Figure S32. EPR signal of p-GaN in dark.

Figure S33. UV-Vis absorption spectrum for GaN NW catalysts. The glitches at 350 nm on the spectra were system error caused by the spectrometer's lamp switching.

Figure S34. SEM (left) and TEM (right) of the GaN NW after 13 consecutive catalyses.

Table S1. Band edge energy	of various	photosensitizing	semiconductors	and their PCR	reactivity
Tuele STI Buna euge energy	01 (411040)	photosenshizing	Senneenaaetens		1000011109

semiconductor ^a	band gap / eV	reference	PCR yield of 2a (same conditions as Table 1) / %
GaN (commercial powder)	3.4	(13)	21
TiO ₂	3.05	(40)	44
CdS	2.42	(41)	89
C_3N_4	2.7	(42)	62
ZnO	3.3	(43)	not detected

^aAll reagents used were commercially available. Catalysts were introduced as 1 mg powder into 0.5 mmol MeOH.

Reference (cont. from main text)

- 31. J. M. Kremsner, C. O. Kappe, C. O. Eur. J. Org. Chem. 2005, 3672-3679.
- 32. W. A. Mosher, N. D. Heindel. J. Org. Chem. 1963, 28, 2154-2155.
- 33. A. G. Griesback, M. Reckenthäler, *Beilstein J. Org. Chem.* 2014, **10**, 1143-1150.
- 34. K. Mashima, T. Oshiki, K. Tani, J. Org. Chem. 1998, 20, 7114-7116.
- 35. C. Wang, Y. Pan, A. Wu, *Tetrahedron* 2007, **63**, 429-434.

36. U. C. Yoon, M. J. Kim, J. J. Moon, S. W. Oh, H. J. Kim, P. S. Mariano, *Bull. Korean Chem. Soc.* 2012, **23**, 1218-1228.

37. C. P. Andrieux, J. M. Saveant, Bull. Soc. Chim. Fr. 1973, 6, 2090-2092.

38. H. Guo, Y. Zhang, J. Chem. Res. 2000, 284-286.

39. Z.-Z. Zhou, M. Liu, L. Lv, C.-J. Li, Angew. Chem. Int. Ed. 2018, 57, 2616-2620.

40. J. Nowotny, in *Oxide semiconductors for solar energy conversion: titanium dioxide*. CRC Press. 2011, p.156.

41. D. Lincot, G. Hodes, in *Chemical solution deposition of semiconducting and non-metallic films: proceedings of the international symposium.* The Electrochemical Society. 2006, p.195.

42. N. Mansor, T. S. Miller, I. Dedigama, A. B. Jorge, J. Jia, V. Brázdová, C. Mattevi, C.
Gibbs, D. Hodgson, *Electrochimica Acta*. 2016, 222, 44–57.

43. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J.
Cho, H. Morkoç, *J. Appl. Phys.* 2005, **98**, 041301.