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Supporting Information for
New Soft-matter Material with Old Chemistry: Passerini
Multicomponent Polymerization-induced Assembly of An AIE-

active Double-helical Polymer with Rapid Visible-light
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Figure S1. GPC curves and mass spectra of (a, ¢c) commercialized HOOC-PEG-COOH
and (b, d) as-synthesized NC-PEG-CN. (e) *H-NMR and (f) **C-NMR spectra of as-
synthesized NC-PEG-CN.
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Figure S2. Synthesis of WADP via the PMPIA strategy in DMF or THF, and the dried

sample under white and UV light irradiation.
1



Note: The molar concentration listed in each case is the total concentration of HOOC-

PEG-COOH, PyCHO and CN-PEG-NC. The molar ratio iS NHooc-PEG-COOH : NPyCHO :

NCN-PEG-NC.

Figure S3. The chiral structures of pyridine units in the as-prepared WADP polymers.

Figure S4. Circular dichroism characterization of WADP with different concentrations

in DMSO.

Table 1 Synthesis conditions listed of WADP

polymer | solvent :‘;‘t’i'sr conc. (M) | time (d) | Mn (x10%)| PDI
P1 THFE | 1:2:1 1.6 2.5 1.5 2.3
P2 THF | 1:2:1 0.8 4 1.3 2.5
P3 THF | 1:2:1 0.8 2.5 1.7 2.0
P4 DMF | 1:2:1 0.8 4 1.2 2.1
P5 THF | 1:3:1 0.8 2.5 0.9 1.7
P6 THF | 1:221] 1.6 3 1.8 2.0
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Figure S5. *H-NMR spectra of WADP in DMSO-d6, DMSO-d6/D20, D20, and

DMSO-d6/Zn?".

a optical detector
laser

(0]

=

AFMtip o
ya N\
solvéents

™ samples
Displacement

Figure S6. (a) The schematic illustration of single-molecule force spectroscopy for in

situ studying the conformational transitions in helical polymers. (b) The corresponding

conformations of polymers during the characterization process
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Figure S7. Single-molecule force spectroscopy characterization of PEG and WADP in

water.
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Figure S8. Schematic illustration of supramolecular interactions in the helical WADP.
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Figure S9. (a) Synthesis of control polymer by using benzaldehyde, a similar molecule
to PyCHO as the monomer. (b) Circularly polarized luminescence and (c) single-
molecule force spectroscopy characterizations of the control polymer in DMSO and

water, respectively.
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Figure S10. UV-vis spectra of WADP in DMSO (0.125 g L) with different contents

of trifluoroacetic acid (TFA).
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Figure S11. (a) The fluorescence and (b) UV spectra of WADP in THF with different

weight ratios of water.
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Figure S12. Fluorescence spectra of WADP in pure and Zn?* (or Mg?*)-containing THF.
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Figure S13. The photodegradation mechanism of small molecules and polymers with

the catalysis of tris(bipyridine) ruthenium(ll) chloride (Ru(Il)) and ascorbic acid under

blue light irradiation.
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Figure S14. Fluorescence spectra of degradation products in THF with different

reaction times.
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Figure S15. Synthesis of four small model molecules, including the amide, ethylated

amide, picolyl ester, and ethylated ester.
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Figure S16. *H-NMR spectra of small model molecules including (a) amide, (b)

ethylated amide, (c) picolyl ester, and (d) ethylated picolyl ester in DMSO-d6.
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Figure S17. Degradation of small model molecules.
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Figure S18. Cyclic voltammetry characterization of the model molecules of the amide
and ethylated amide. The cyclic voltammetry was performed at room temperature by
using a CHI-660E electrochemical workstation. A carbon electrode was applied as the
working electrode. A Pt wire constituted the counter electrode, and an Ag/AgCl
electrode served as the reference electrode. The supporting electrolyte was 0.1 M
lithium perchlorate in dry acetonitrile. The solution was deoxygenated by bubbling
argon gas through the solution for 15 min. The potential was swept from -1.5to 1.5V

with the sweep rate of 100 mV/s to record the current-voltage curves.
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Figure S19. Calculating the degradation efficiency of the model amide with different

irradiation time.
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Figure S20. Calculating the degradation efficiency of the ethylated amide with different

irradiation time.
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Figure S21. *H-NMR spectra of the (a) picolyl ester and (b) ethylated ester before and

1

after 60 min of visible-light irradiation. The degradation efficiency of ethylated ester in
(b) is calculated from the area ratio of peaks between 8.6 and 8.8 ppm, or 7.8 and 8.0

ppm.
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