Supplementary Information

Site-selective aromatic C–H λ^3 -iodanation with cyclic iodine(III)

electrophile in solution and solid phases

Wei Ding,^a Chen Wang,^{a,b} Jie Ren Tan,^a Chang Chin Ho,^a Felix León,^a Felipe García*^a and

Naohiko Yoshikai*a

^aDivision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

^bZhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China

Contents

1. Materials and Methods	S2
2. Aromatic C–H λ^3 -Iodanation with Benziodoxole Triflate	S4
3. Mechanochemical Synthesis	S20
4. Product Transformations	S21
5. DFT Calculation	S29
6. References	S49
7. NMR Spectra	S50

1. Materials and Methods

General. All reactions dealing with air- or moisture-sensitive compounds were performed by standard Schlenk techniques in oven-dried reaction vessels under nitrogen atmosphere or in an argon-filled glove box. Analytical thin-layer chromatography (TLC) was performed on Merck 60 F254 silica gel plates. Flash chromatography was performed as described by Still et al., using 40–63 µm silica gel (Si 60, Merck). ¹H, ¹³C and ¹⁹F nuclear magnetic resonance (NMR) spectra were recorded on Bruker AV-300 (300 MHz) or Bruker AV-400/BBFO-400 (400 MHz) NMR spectrometers. ¹H and ¹³C NMR spectra are reported in parts per million (ppm) downfield from an internal standard, tetramethylsilane (0 ppm) and CDCl₃ (77.0 ppm) or DMSO (39.0 ppm), respectively. High-resolution mass spectra (HRMS) were obtained with a Q-Tof Premier LC HR mass spectrometer. Melting points were placed onto Retsch Mixer Mill MM400 machine and subjected to 30 Hz milling.

Materials. Unless otherwise noted, commercial reagents were purchased from Aldrich, Alfa Aesar, or other commercial suppliers and were used as received. Toluene, THF, and Et₂O were distilled over Na/benzophenone, and stored under N₂. MeCN and CH₂Cl₂ were distilled over CaH₂, and stored under N₂. 3,3-Bis(trifluoromethyl)-1 λ^3 -benzo[*d*][1,2]iodaoxol-1(3*H*)-yl trifluoromethanesulfonate (benziodoxole triflate, BXT; 1) was synthesized according to the literature procedure.¹ Mostly arenes were commercially available compounds. **2aa** was synthesized according to the literature procedure, and the spectral data showed good agreement with the literature data.²

2. Aromatic C–H λ^3 -Iodanation with Benziodoxole Triflate

General Procedure: In an argon-filled glove box, a 4 mL vial equipped with a magnetic stir bar was charged sequentially with aromatic compound **2** (0.30 mmol) and MeCN (0.5 mL), followed by the addition of BXT (**1**, 103.6 mg, 0.20 mmol). The vial was closed and taken out of the glove box. The mixture was stirred at room temperature for 24 h. Saturated aq. Na₂CO₃ (4 mL) was added, and then the mixture was extracted with EtOAc (5 mL x 3). The combined organic layer was washed with H₂O (5 mL) and brine (5 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired product.

Note: While all the λ^3 -iodanation products reported below were synthesized according to the above procedure using a glove box, the reaction proved not to require particular care to exclude air and moisture. Thus, the model reaction was performed by charging a vial with **2a**, MeCN, and **1** in an open air, closing the vial, and stirring the mixture at room temperature for 24 h to afford the desired product **3a** in 95% yield as determined by ¹⁹F NMR using 1,4-bis(trifluoromethyl)benzene as an internal standard.

1-(4-Methoxyphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro- $1\lambda^3$ -benzo[d][1,2]iodaoxole

(3a): Prepared according to the general procedure; White solid (87.6 mg, 92% yield); R_f 0.3 (hexane/EtOAc = 2/1); m.p. 199-201 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (app. d, J = 7.6 Hz, 1H), 7.78 (d, J = 8.6 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.39-7.31 (m, 1H), 7.00 (d, J = 8.7 Hz, 2H), 6.82 (dd, J = 8.3, 0.8 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 138.7, 131.9, 131.0, 130.2 (two signals overlapped), 127.3, 124.1 (q, J_{C-F} = 290.1 Hz), 117.0, 111.8, 108.1, 81.9-80.8 (m), 55.5; ¹⁹F NMR (282 MHz, CDCl₃) δ -76.0; HRMS (ESI) Calcd for C₁₆H₁₂O₂F₆I [M + H]⁺ 476.9786, found 476.9788.

Procedure for 3 mmol-scale reaction: A 25 mL Schlenk tube equipped with a magnetic stir

bar was charged sequentially with anisole **2a** (0.49 g, 4.5 mmol) and MeCN (7.5 mL), followed by the addition of BXT (1.55 g, 3.0 mmol). The mixture was stirred at room temperature for 24 h. Saturated aq. Na₂CO₃ (30 mL) was added, and then the mixture was extracted with EtOAc (20 mL x 3). The combined organic layer was washed with H₂O (30 mL) and brine (30 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: hexane (100 mL) \rightarrow hexane/EtOAc = 5/1 (approx. 120 mL) \rightarrow hexane/EtOAc = 2/1 (approx. 300 mL)) to afford the desired product **3a** (1.23 g, 86% yield).

1-(4-Ethoxyphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro- $1\lambda^3$ -benzo[d][1,2]iodaoxole

(3b): Prepared according to the general procedure; White solid (83.3 mg, 85% yield); R_f 0.3 (hexane/EtOAc = 2/1); m.p. 173-175 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (app. d, J = 7.6 Hz, 1H), 7.75 (d, J = 8.7 Hz, 2H), 7.54 (t, J = 7.1 Hz, 1H), 7.39-7.31 (m, 1H), 6.99 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 7.8 Hz, 1H), 4.13 (q, J = 7.0 Hz, 2H), 1.48 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.8, 138.6, 131.9, 131.0, 130.1 (two signals overlapped), 127.3, 124.1 (q, J_{C-F} = 290.3 Hz), 117.4, 111.8, 107.7, 81.9-80.7 (m), 63.9, 14.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -77.3; HRMS (ESI) Calcd for C₁₇H₁₄O₂F₆I [M + H]⁺ 490.9943, found 490.9949.

1-(4-(Benzyloxy)phenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 λ^3 -benzo[*d*][1,2]iodaoxole (3c): Prepared according to the general procedure; Brown solid (100.5 mg, 91% yield); *R_f* 0.3 (hexane/EtOAc = 2/1); m.p. 186-188 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (app. d, *J* = 7.6 Hz, 1H), 7.76 (d, *J* = 8.7 Hz, 2H), 7.59-7.50 (m, 1H), 7.49-7.39 (m, 4H), 7.39-7.30 (m, 2H), 7.07 (d, *J* = 8.7 Hz, 2H), 6.82 (d, *J* = 7.6 Hz, 1H), 5.15 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 138.7, 135.8, 131.9, 131.0, 130.2 (two signals overlapped), 128.8, 128.4, 127.5, 127.4, 124.1 (q, *J*_{C-F} = 290.4 Hz), 117.8, 111.8, 108.5, 81.9-80.7 (m), 70.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (ESI) Calcd for C₂₂H₁₆O₂F₆I [M + H]⁺ 553.0099, found 553.0106.

Ethyl 2-(4-(3,3-bis(trifluoromethyl)-1λ³-benzo[*d*][1,2]iodaoxol-1(3*H*)-yl)phenoxy)acetate (3d): Prepared according to the general procedure with a modified temperature (60 °C); White solid (80.0 mg, 73% yield); *R_f* 0.3 (hexane/EtOAc = 1/1); m.p. 178-180 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (app. d, *J* = 7.7 Hz, 1H), 7.79 (d, *J* = 8.7 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.41-7.32 (m, 1H), 7.01 (d, *J* = 8.7 Hz, 2H), 6.83 (d, *J* = 8.3 Hz, 1H), 4.73 (s, 2H), 4.31 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 160.6, 138.7, 132.0, 130.9, 130.2 (two signals overlapped), 127.4, 124.1 (q, *J*_{C-F} = 290.2 Hz), 117.5, 111.6, 109.5, 81.8-80.7 (m), 65.1, 61.7, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.1; HRMS (ESI) Calcd for C₁₉H₁₆O₄F₆I [M + H]⁺ 548.9998, found 548.9996.

1-(4-(3-Chloropropoxy)phenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[*d*][1,2] iodaoxole (3e): Prepared according to the general procedure; White solid (80.8 mg, 75% yield); *R_f* 0.3 (hexane/EtOAc = 2/1); m.p. 149-151 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (app. d, *J* = 7.7 Hz, 1H), 7.77 (d, *J* = 8.8 Hz, 2H), 7.58-7.50 (m, 1H), 7.41-7.32 (m, 1H), 7.01 (d, *J* = 8.8 Hz, 2H), 6.83 (dd, *J* = 8.3, 0.9 Hz, 1H), 4.22 (t, *J* = 5.8 Hz, 2H), 3.79 (t, *J* = 6.2 Hz, 2H), 2.37-2.24 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 138.7, 131.9, 130.9, 130.2 (two signals overlapped), 127.3, 124.1 (q, *J*_{C-F} = 290.0 Hz), 117.4, 111.8, 108.4, 81.9-80.7 (m), 64.5, 41.2, 31.9; ¹⁹F NMR (282 MHz, CDCl₃) δ -76.9; HRMS (ESI) Calcd for C₁₈H₁₅O₂F₆ClI [M + H]⁺ 538.9709, found 538.9710.

1-(2,4-Dimethylphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro- $1\lambda^3$ -benzo[d][1,2]iodaoxole

(3f): Prepared according to the general procedure with a modified temperature (60 °C); White solid (58.8 mg, 62% yield, regioisomer ratio = 21:1 as determined by ¹H NMR); R_f 0.4 (hexane/EtOAc = 3/1); m.p. 204-206 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (app. d, J = 6.8 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.60-7.51 (m, 1H), 7.39-7.31 (m, 1H), 7.29 (s, 1H), 7.07 (d, J = 7.7 Hz, 1H), 6.77 (dd, J = 8.3, 0.8 Hz, 1H), 2.45 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 142.7, 138.3, 132.0, 131.7, 131.4, 130.4, 130.3, 129.5, 126.8, 124.2 (q, $J_{C-F} = 290.2$ Hz), 118.1, 110.9, 81.9-80.8 (m), 24.3, 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ - 76.0; HRMS (ESI) Calcd for C₁₇H₁₄OF₆I [M + H]⁺ 474.9994, found 474.9994.

1-(2,4-Dimethoxyphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro- $1\lambda^3$ -benzo[d][1,2]

iodaoxole (3g): Prepared according to the general procedure; White solid (87.1 mg, 86% yield); R_f 0.4 (hexane/EtOAc = 1/1); m.p. 217-219 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (app. d, J = 7.0 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.57-7.48 (m, 1H), 7.39-7.30 (m, 1H), 6.83 (dd, J = 8.3, 0.8 Hz, 1H), 6.64-6.49 (m, 2H), 3.91 (s, 3H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 161.3, 139.5, 131.7, 131.4, 130.0, 129.9, 127.0, 124.2 (q, $J_{C-F} = 290.0$ Hz), 111.6, 107.6, 99.2, 98.8, 82.1-80.9 (m), 56.2, 55.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (ESI) Calcd for C₁₇H₁₄O₃F₆I [M + H]⁺ 506.9892, found 506.9888.

1-(4-Methoxy-2-methylphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[*d*][1,2] iodaoxole (3h): Prepared according to the general procedure; White solid (79.4 mg, 81% yield); *R_f* 0.3 (hexane/EtOAc = 2/1); m.p. 193-195 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (app. d, *J* = 6.8 Hz, 1H), 7.81 (d, *J* = 8.5 Hz, 1H), 7.59-7.51 (m, 1H), 7.40-7.32 (m, 1H), 6.99 (d, *J* = 2.7 Hz, 1H), 6.84-6.73 (m, 2H), 3.89 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 144.9, 140.0, 132.0, 131.4, 130.4, 130.2, 126.6, 124.1 (q, *J*_{C-F} = 290.7 Hz), 116.8, 114.1, 111.2, 111.1, 81.8-80.7 (m), 55.4, 24.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.9; HRMS (ESI) Calcd for C₁₇H₁₄O₂F₆I [M + H]⁺ 490.9943, found 490.9953.

1-(4-Methoxy-3-methylphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[d][1,2]

iodaoxole (3i): Prepared according to the general procedure; Brown solid (84.3 mg, 86% yield); R_f 0.3 (hexane/EtOAc = 2/1); m.p. 197-199 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (app. d, J = 7.4 Hz, 1H), 7.66 (d, J = 8.2 Hz, 1H), 7.60 (s, 1H), 7.54 (t, J = 7.4 Hz, 1H), 7.35 (t, J = 7.7 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 6.85 (d, J = 8.3 Hz, 1H), 3.93 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 138.7, 136.4, 131.9, 131.0, 130.6, 130.1 (two signals overlapped), 127.4, 124.1 (q, J_{C-F} = 290.4 Hz), 112.3, 111.8, 107.4, 81.9-81.0 (m), 55.5, 16.1; ¹⁹F NMR (282 MHz, CDCl₃) δ -76.3; HRMS (ESI) Calcd for C₁₇H₁₄O₂F₆I [M + H]⁺ 490.9943, found 490.9947.

1-(3-Fluoro-4-methoxyphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[*d*][1,2] iodaoxole (3j): Prepared according to the general procedure with a modified temperature (80 °C); White solid (75.1 mg, 76% yield); *R*_f 0.3 (hexane/EtOAc = 2/1); m.p. 195-197 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (app. d, *J* = 7.3 Hz, 1H), 7.62 (d, *J* = 8.4 Hz, 1H), 7.60-7.50 (m, 2H), 7.45-7.34 (m, 1H), 7.09 (t, *J* = 8.2 Hz, 1H), 6.83 (d, *J* = 8.2 Hz, 1H), 4.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.0 (d, ¹*J*_{C-F} = 254.4 Hz), 151.1 (d, ²*J*_{C-F} = 10.2 Hz), 133.8 (d, ³*J*_{C-F} = 4.0 Hz), 132.1, 130.9, 130.33, 130.27, 127.3, 124.1 (d, ²*J*_{C-F} = 18.4 Hz), 124.0 (q, *J*_{C-F} = 289.9 Hz), 115.6, 111.6, 108.0, 81.9-81.1 (m), 56.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0, -129.9; HRMS (ESI) Calcd for C₁₆H₁₁O₂F₇I [M + H]⁺ 494.9692, found 494.9695.

1-(3-Chloro-4-methoxyphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[*d*][1,2] iodaoxole (3k): Prepared according to the general procedure with a modified temperature (60 °C); White solid (71.5 mg, 70% yield); *R*_f 0.3 (hexane/EtOAc = 2/1); m.p. 248-250 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.82 (m, 2H), 7.74 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.44-7.35 (m, 1H), 7.03 (d, *J* = 8.4 Hz, 1H), 6.82 (d, *J* = 8.3 Hz, 1H), 4.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 138.0, 136.8, 132.1, 130.9, 130.4 (two signals overlapped), 127.4, 125.4, 124.0 (q, *J*_{C-F} = 289.5 Hz), 114.3, 111.7, 108.9, 81.6-81.0 (m), 56.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (ESI) Calcd for C₁₆H₁₁O₂F₆ClI [M + H]⁺ 510.9396, found 510.9400.

1-(3-Bromo-4-methoxyphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[*d*][1,2] iodaoxole (3l): Prepared according to the general procedure with a modified temperature (80 °C); White solid (75.5 mg, 68% yield); *R*_f 0.3 (hexane/EtOAc = 2/1); m.p. 271-273 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 1.9 Hz, 1H), 7.87 (app. d, *J* = 6.6 Hz, 1H), 7.77 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.61-7.53 (m, 1H), 7.44-7.35 (m, 1H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.82 (d, *J* = 8.3 Hz, 1H), 4.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 141.0, 137.5, 132.1, 130.9, 130.4 (two signals overlapped), 127.4, 124.0 (q, *J*_{C-F} = 288.7 Hz), 114.5, 114.1, 111.7, 109.5, 81.6-81.0 (m), 56.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.1; HRMS (ESI) Calcd for C₁₆H₁₁O₂F₆BrI [M + H]⁺ 554.8891, found 554.8889.

1-(3-Iodo-4-methoxyphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro- $1\lambda^3$ -benzo[d][1,2]

iodaoxole (3m): Prepared according to the general procedure with a modified temperature (60 °C); Brown solid (78.3 mg, 65% yield); R_f 0.4 (hexane/EtOAc = 2/1); m.p. 259-261 °C; ¹H NMR (400 MHz, DMSO) δ 8.38 (d, J = 1.9 Hz, 1H), 7.99 (dd, J = 8.4, 1.9 Hz, 1H), 7.71 (app. d, J = 7.6 Hz, 1H), 7.66-7.58 (m, 1H), 7.56-7.46 (m, 1H), 7.14 (d, J = 8.5 Hz, 1H), 6.83 (d, J = 7.6 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ 159.5, 145.7, 138.2, 131.8, 130.8, 129.6, 128.7, 128.0, 123.7 (q, $J_{C-F} = 291.5$ Hz), 113.3, 112.0, 110.5, 88.2, 81.4-80.6 (m), 56.2; ¹⁹F NMR (282 MHz, DMSO) δ -75.4; HRMS (ESI) Calcd for C₁₆H₁₁O₂F₆I₂ [M + H]⁺ 602.8753, found 602.8750.

1-(2,3-Dihydrobenzofuran-5-yl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[*d*][1,2] iodaoxole (3n): Prepared according to the general procedure; Brown solid (72.2 mg, 74% yield); *R_f* 0.3 (hexane/EtOAc = 2/1); m.p. 173-175 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (app. d, *J* = 7.6 Hz, 1H), 7.71 (s, 1H), 7.62 (d, *J* = 8.2 Hz, 1H), 7.55 (t, *J* = 7.1 Hz, 1H), 7.42-7.33 (m, 1H), 6.89 (d, *J* = 8.2 Hz, 2H), 4.71 (t, *J* = 8.8 Hz, 2H), 3.31 (t, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 138.1, 133.9, 132.0, 131.4, 131.0, 130.2 (two signals overlapped), 127.6, 124.0 (q, *J*_{C-F} = 289.6 Hz), 112.6, 111.7, 106.5, 81.5-80.4 (m), 72.1, 29.2; ¹⁹F NMR (282 MHz, CDCl₃) δ -76.0; HRMS (ESI) Calcd for C₁₇H₁₂O₂F₆I [M + H]⁺ 488.9786, found 488.9789.

1-(9,9-Dimethyl-9*H***-xanthen-2-yl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[***d***][1,2] iodaoxole (30): Prepared according to the general procedure; Brown solid (89.1 mg, 77% yield); R_f 0.3 (hexane/EtOAc = 2/1); m.p. 206-208 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.81 (m, 2H), 7.69 (dd, J = 8.3, 1.9 Hz, 1H), 7.60-7.51 (m, 1H), 7.44 (dd, J = 7.8, 1.5 Hz, 1H), 7.40-7.32 (m, 1H), 7.31-7.22 (m, 1H), 7.20-7.07 (m, 3H), 6.83 (dd, J = 8.3, 0.7 Hz, 1H), 1.67 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 149.6, 136.2, 135.4, 134.0, 132.0, 131.0, 130.32, 130.25, 129.2, 127.9, 127.3, 126.0, 124.12, 124.1 (q, J_{C-F} = 290.2 Hz), 119.6, 116.5,**

111.8, 111.2, 81.9-80.8 (m), 34.3, 32.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (ESI) Calcd for C₂₄H₁₈O₂F₆I [M + H]⁺ 579.0256, found 579.0255.

6-(3,3-Bis(trifluoromethyl)-1λ³-benzo[*d*][1,2]iodaoxol-1(3*H*)-yl)-3-methylbenzo[*d*]oxazol-2(3*H*)-one (3p): Prepared according to the general procedure; White solid (78.6 mg, 76% yield); *R_f* 0.3 (hexane/EtOAc = 1/2); m.p. 271-273 °C; ¹H NMR (400 MHz, DMSO) δ 8.08 (d, J = 1.3 Hz, 1H), 7.86 (dd, J = 8.0, 1.3 Hz, 1H), 7.69 (app. d, J = 7.6 Hz, 1H), 7.63-7.55 (m, 1H), 7.45-7.34 (m, 2H), 6.75 (dd, J = 8.3, 0.8 Hz, 1H), 3.37 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ 153.1, 142.3, 134.1, 132.7, 131.8, 130.8, 129.7, 128.7, 128.2, 123.8 (q, $J_{C-F} = 291.2$ Hz), 117.0, 112.1, 110.9, 110.3, 81.8-80.7, 27.8; ¹⁹F NMR (282 MHz, DMSO) δ -76.7; HRMS (ESI) Calcd for C₁₇H₁₁NO₃F₆I [M + H]⁺ 517.9688, found 517.9687. Recrystallization from CH₂Cl₂/hexane afforded single crystals suitable for X-ray diffraction analysis, which unambiguously confirmed the T-shaped λ^3 -iodane geometry and the site-selectivity of **3p** (Figure S2).³

Figure S2. ORTEP drawing of 3p (thermal ellipsoids set at 50% probability).

1-Mesityl-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-**benzo**[*d*][1,2]iodaoxole (3q): Prepared according to the general procedure; White solid (81.0 mg, 83% yield); R_f 0.3 (hexane/EtOAc = 3/1); m.p. 197-199 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (app. d, J = 7.3 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.39-7.29 (m, 1H), 7.09 (s, 2H), 6.76 (d, J = 8.1 Hz, 1H), 2.48 (s, 6H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 142.9, 132.2, 131.8, 130.4, 130.3, 129.2, 125.9, 124.2 (q, J_{C-F} = 290.3 Hz), 121.3, 110.3, 81.5-80.7 (m), 25.8, 21.2; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.9; HRMS (ESI) Calcd for C₁₈H₁₆OF₆I [M + H]⁺ 489.0150, found 489.0151.

1-(2-Bromo-4,6-dimethoxyphenyl)-3,3-bis(trifluoromethyl)-1λ³-benzo[*d*][1,2]iodaoxole (**3r**): Prepared according to the general procedure; White solid (98.3 mg, 84% yield); *R_f* 0.3 (hexane/EtOAc = 1/1); m.p. 185-187 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (app. d, *J* = 7.3 Hz, 1H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 6.94 (s, 1H), 6.84 (d, *J* = 8.2 Hz, 1H), 6.48 (s, 1H), 3.90 (s, 3H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 162.6, 132.2, 132.0, 131.4, 130.1 (two signals overlapped), 126.5, 124.0 (q, *J*_{C-F} = 288.8 Hz), 111.8, 110.3, 106.4, 97.5, 81.7-80.9 (m), 56.6, 55.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.8, -76.1 (The ¹⁹F NMR showed two signals, presumably due to slow rotation of the aryl-I bond); HRMS (ESI) Calcd for C₁₇H₁₃O₃F₆BrI [M + H]⁺ 584.8997, found 584.8986.

1-(4-Methoxy-2,6-dimethylphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[d]

[1,2]iodaoxole (3s): Prepared according to the general procedure; White solid (88.7 mg, 88% yield, regioisomer ratio = 15:1 as determined by ¹H NMR); R_f 0.3 (hexane/EtOAc = 2/1); m.p. 205-207 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (app. d, J = 7.6 Hz, 1H), 7.55 (t, J = 7.4 Hz, 1H), 7.39-7.29 (m, 1H), 6.84-6.72 (m, 3H), 3.87 (s, 3H), 2.50 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 145.6, 132.1, 132.0, 130.4, 130.2, 125.8, 124.2 (q, J_{C-F} = 290.4 Hz), 114.9, 114.0, 110.9, 81.9-80.8 (m), 55.3, 26.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.9; HRMS (ESI)

Calcd for $C_{18}H_{16}O_2F_6I [M + H]^+$ 505.0099, found 505.0093.

5-((4-(3,3-Bis(trifluoromethyl)-1λ³-benzo[*d*][1,2]iodaoxol-1(3*H*)-yl)-3,5-dimethylphenox y)methyl)-3-methyloxazolidin-2-one (3t): Prepared according to the general procedure; White solid (92.9 mg, 77% yield); *R_f* 0.3 (hexane/EtOAc = 1/2); m.p. 234-236 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (app. d, *J* = 7.6 Hz, 1H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.43-7.32 (m, 1H), 6.82 (s, 2H), 6.74 (d, *J* = 8.3 Hz, 1H), 4.94-4.81 (m, 1H), 4.29-4.16 (m, 2H), 3.77 (t, *J* = 8.9 Hz, 1H), 3.58 (dd, *J* = 8.8, 6.1 Hz, 1H), 2.95 (s, 3H), 2.49 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 157.5, 145.7, 132.2, 131.8, 130.4, 130.3, 125.7, 124.2 (q, *J*_{C-F} = 290.4 Hz), 116.2, 114.5, 114.4, 110.6, 81.9-80.8 (m), 70.4, 68.2, 48.5, 30.9, 26.03, 26.01; ¹⁹F NMR (282 MHz, CDCl₃) δ -76.9; HRMS (ESI) Calcd for C₂₂H₂₁NO₄F₆I [M + H]⁺ 604.0420, found 604.0415.

1-(3-Bromo-2,4-dimethoxyphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[d]

[1,2]iodaoxole (3u): Prepared according to the general procedure; White solid (106.5 mg, 91% yield); R_f 0.3 (hexane/EtOAc = 1/1); m.p. 201-203 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (app. d, J = 7.6 Hz, 1H), 7.78 (d, J = 8.5 Hz, 1H), 7.60-7.52 (m, 1H), 7.44-7.35 (m, 1H), 6.81 (d, J = 8.6 Hz, 2H), 4.01 (s, 3H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 159.7, 137.3, 132.1, 131.1, 130.3, 130.1, 127.2, 124.0 (q, J_{C-F} = 289.8 Hz), 111.8, 110.0, 107.3, 106.5, 81.8-80.7 (m), 62.1, 56.9; ¹⁹F NMR (282 MHz, CDCl₃) δ -76.1; HRMS (ESI) Calcd for C₁₇H₁₃O₃F₆BrI [M + H]⁺ 584.8997, found 584.9000.

1-(5-Bromo-2,4-dimethoxyphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[d]

[1,2]iodaoxole (3v): Prepared according to the general procedure; Yellow solid (74.9 mg, 64% yield); R_f 0.3 (hexane/EtOAc = 1/1); m.p. 226-228 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.84 (app. d, J = 7.6 Hz, 1H), 7.56 (t, J = 7.4 Hz, 1H), 7.37 (t, J = 7.7 Hz, 1H), 6.83 (d, J = 8.3 Hz, 1H), 6.60 (s, 1H), 4.02 (s, 3H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 160.5, 141.2, 131.9, 131.2, 130.2 (two signals overlapped), 126.9, 124.1 (q, J_{C-F} = 290.2 Hz), 111.3, 104.2, 99.8, 95.8, 81.7-80.8 (m), 56.6, 56.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (ESI) Calcd for C₁₇H₁₃O₃F₆BrI [M + H]⁺ 584.8997, found 584.8997.

1-(5-Bromo-2-methoxy-4-methylphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo [*d*][1,2]iodaoxole (3w): Prepared according to the general procedure; White solid (85.4 mg, 75% yield, regioisomer ratio = 10:1 as determined by ¹H NMR); *R_f* 0.3 (hexane/EtOAc = 2/1); m.p. 203-205 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.84 (app. d, *J* = 7.2 Hz, 1H), 7.59-7.53 (m, 1H), 7.41-7.33 (m, 1H), 6.96 (s, 1H), 6.82 (d, *J* = 8.3 Hz, 1H), 3.81 (s, 3H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 144.6, 140.7, 132.0, 131.2, 130.2 (two signals overlapped), 127.2, 124.1 (q, *J*_{C-F} = 289.9 Hz), 117.2, 113.4, 111.0, 107.5, 81.9-80.8 (m), 56.5, 23.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (ESI) Calcd for C₁₇H₁₃O₂F₆BrI [M + H]⁺ 568.9048, found 568.9041.

1-(Thiophen-2-yl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 λ^3 -benzo[d][1,2]iodaoxole (3x): Prepared according to the general procedure; White solid (66.9 mg, 74% yield); R_f 0.3 (hexane/EtOAc = 5/1); m.p. 217-219 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.81 (m, 1H), 7.70 (dd, J = 5.1, 0.9 Hz, 1H), 7.62 (dd, J = 3.5, 0.9 Hz, 1H), 7.61-7.53 (m, 1H), 7.46-7.38 (m, 1H), 7.20 (dd, J = 5.1, 3.6 Hz, 1H), 6.86 (d, J = 8.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 135.9, 132.3, 130.9, 130.5, 130.1, 129.8, 127.0, 123.9 (q, $J_{C-F} = 289.8$ Hz), 113.3, 109.0, 82.2-81.0 (m); ¹⁹F NMR (282 MHz, CDCl₃) δ -77.1; HRMS (ESI) Calcd for C₁₃H₈OF₆SI [M + H]⁺ 452.9245, found 452.9237.

1-(5-Bromothiophen-2-yl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[d][1,2]

iodaoxole (3y): Prepared according to the general procedure; White solid (87.1 mg, 82% yield); R_f 0.3 (hexane/EtOAc = 5/1); m.p. 198-200 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (app. d, J = 7.6 Hz, 1H), 7.61 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 7.40 (d, J = 3.7 Hz, 1H), 7.15 (d, J = 3.7 Hz, 1H), 6.99 (d, J = 8.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 132.6, 132.5, 131.0, 130.6, 130.2, 127.0, 123.8 (q, J_{C-F} = 289.5 Hz), 122.1, 113.3, 110.8, 82.3-81.1 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (ESI) Calcd for C₁₃H₇OF₆SBrI [M + H]⁺ 530.8350, found 530.8353.

1-(5-Iodothiophen-2-yl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[*d*][1,2]iodaoxole (3z): Prepared according to the general procedure; White solid (102.9 mg, 89% yield); *R_f* 0.3 (hexane/EtOAc = 5/1); m.p. 180-182 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (app. d, *J* = 7.6 Hz, 1H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 3.6 Hz, 1H), 7.29 (d, *J* = 3.6 Hz, 1H), 6.96 (d, *J* = 8.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 139.6, 132.5, 131.0, 130.6, 130.2, 127.0, 123.8 (q, *J*_{C-F} = 289.4 Hz), 114.9, 113.5, 84.0, 82.3-81.1 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (ESI) Calcd for C₁₃H₇OF₆SI₂ [M + H]⁺ 578.8211, found 578.8213.

1-(3-(3,3-Bis(trifluoromethyl)-1λ³-benzo[*d*][1,2]iodaoxol-1(3*H*)-yl)-2-phenyl-1*H*-indol-1yl)-2,2-dimethylpropan-1-one (3aa): Prepared according to the general procedure; Red solid (90.4 mg, 70% yield); *R_f* 0.3 (hexane/EtOAc = 1/2); m.p. 128-130 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (app. d, *J* = 7.7 Hz, 1H), 7.58-7.52 (m, 2H), 7.48-7.35 (m, 7H), 7.35-7.28 (m, 2H), 7.04 (dd, *J* = 8.3, 0.8 Hz, 1H), 0.97 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 185.8, 144.4, 136.6, 132.1, 131.6, 130.5, 130.3 (two signals overlapped), 130.0, 129.9, 129.3, 126.6, 125.4, 124.1 (q, *J*_{C-F} = 288.2 Hz), 123.4, 120.7, 112.2, 111.8, 90.7, 82.0-81.2 (m), 44.8, 27.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -76.4 (q, *J* = 8.5 Hz), -77.1 (q, *J* = 8.7 Hz) (The ¹⁹F NMR showed two signals, presumably due to slow rotation of the indolyl-I bond); HRMS (ESI) Calcd for C₂₈H₂₃NO₂F₆I [M + H]⁺ 646.0678, found 646.0671.

1-(2,2-Diphenylvinyl)-3,3-bis(trifluoromethyl)-1,3-dihydro- $1\lambda^3$ -benzo[d][1,2]iodaoxole

(3ab): Prepared according to the general procedure with a modified MeCN volume (1.0 mL); White solid (99.8 mg, 91% yield); R_f 0.3 (hexane/EtOAc = 3/1); m.p. 165-167 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (app. d, J = 6.7 Hz, 1H), 7.75-7.68 (m, 1H), 7.64-7.56 (m, 2H), 7.47-7.28 (m, 8H), 7.22 (s, 1H), 7.17-7.09 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 139.5, 139.3, 132.1, 131.4, 130.4 (two signals overlapped), 129.9, 129.5, 128.9, 128.8, 128.7, 128.2, 127.2, 124.0 (q, $J_{C-F} = 290.3$ Hz), 111.9, 106.0, 81.8-80.7 (m); ¹⁹F NMR (282 MHz, CDCl₃) δ -76.1; HRMS (ESI) Calcd for C₂₃H₁₆OF₆I [M + H]⁺ 549.0150, found 549.0154.

1-(2,2-Bis(4-fluorophenyl)vinyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[*d*][1,2] iodaoxole (3ac): Prepared according to the general procedure with a modified MeCN volume (1.0 mL); White solid (94.6 mg, 81% yield); *R*_f 0.3 (hexane/EtOAc = 3/1); m.p. 163-165 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (app. d, *J* = 6.7 Hz, 1H), 7.72-7.57 (m, 3H), 7.37-7.29 (m, 2H), 7.18 (s, 1H), 7.16-7.00 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.7 (d, ¹*J*_{C-F} = 250.2 Hz), 163.2 (d, ¹*J*_{C-F} = 249.1 Hz), 158.3, 135.6 (d, ⁴*J*_{C-F} = 3.3 Hz), 135.1 (d, ⁴*J*_{C-F} = 3.5 Hz), 132.2, 131.3, 130.8 (d, ³*J*_{C-F} = 8.4 Hz), 130.5 (two signals overlapped), 130.1 (d, ³*J*_{C-F} = 8.4 Hz), 127.0, 124.0 (q, *J*_{C-F} = 290.2 Hz), 116.1 (d, ²*J*_{C-F} = 21.8 Hz), 115.9 (d, ²*J*_{C-F} = 21.7 Hz), 111.9, 106.2, 81.8-80.6 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.1, -110.2, -110.6; HRMS (ESI) Calcd for C₂₃H₁₄OF₈I [M + H]⁺ 584.9962, found 584.9960.

$1-(2,2-\text{Di}-p-\text{tolylvinyl})-3,3-\text{bis}(\text{trifluoromethyl})-1,3-\text{dihydro}-1\lambda^3-\text{benzo}[d][1,2]\text{iodaoxole}$

(3ad): The general procedure was modified by the change of the stoichiometry (0.2 mmol of 2ad and 0.3 mmol of 1), the addition of Na₂CO₃ (0.4 mmol), and the use of chlorobenzene (1.0 mL) as the solvent; Yellow solid (81.8 mg, 71% yield); R_f 0.3 (hexane/EtOAc = 3/1); m.p. 161-163 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (app. d, J = 6.6 Hz, 1H), 7.75-7.68 (m, 1H), 7.64-7.54 (m, 2H), 7.28-7.22 (m, 2H), 7.19 (d, J = 8.2 Hz, 2H), 7.16 (d, J = 7.9 Hz, 2H), 7.12 (s, 1H), 7.01 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 140.2, 139.6, 136.9, 136.5, 131.9, 131.6, 130.4, 130.3, 129.5, 129.4, 128.8, 128.2, 127.1, 124.1 (q, J_{C-F} = 290.2 Hz), 112.1, 104.4, 82.0-80.8 (m), 21.24, 21.22; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (ESI) Calcd for C₂₅H₂₀OF₆I [M + H]⁺ 577.0463, found 577.0468.

1-(3,4-Dimethylphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[*d*][1,2]iodaoxole (**3ae):** Prepared by modifying the general procedure with the addition of Sc(OTf)₃ (19.7 mg, 0.04 mmol) and the use of CH₂Cl₂ (0.5 mL) as the solvent at 60 °C; Light brown solid (52.2 mg, 55% yield); R_f 0.3 (hexane/EtOAc = 3/1); m.p. 215-217 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (app. d, J = 7.7 Hz, 1H), 7.64 (s, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.57-7.50 (m, 1H), 7.38-7.31 (m, 1H), 7.26 (d, J = 7.6 Hz, 1H), 6.84 (d, J = 8.3 Hz, 1H), 2.38 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 140.3, 137.6, 134.4, 132.3, 131.9, 131.0, 130.2, 130.1, 127.6, 124.1 (q, J_{C-F} = 290.8 Hz), 115.1, 111.5, 81.9-80.7 (m), 20.0, 19.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.1; HRMS (ESI) Calcd for C₁₇H₁₄OF₆I [M + H]⁺ 474.9994, found 474.9995.

1-Phenyl-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[*d*][1,2]iodaoxole (3af): Prepared according to the general procedure using PhSiMe₃ or PhBF₃K; White solid (80.3 mg, 90% yield for PhSiMe₃; 83.9 mg, 94% yield for PhBF₃K); *R*_f 0.4 (hexane/EtOAc = 3/1); m.p. 237-239 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.81 (m, 3H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.59-7.47 (m, 3H), 7.39-7.30 (m, 1H), 6.81 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.8, 132.0, 131.8, 131.1, 130.8, 130.2 (two signals overlapped), 127.6, 124.1 (q, *J*_{C-F} = 290.3 Hz), 118.7, 111.2, 81.8-80.7 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (ESI) Calcd for C₁₅H₁₀OF₆I [M + H]⁺ 446.9681, found 446.9681.

1-(4-Bromophenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-benzo[d][1,2]iodaoxole

(3ag): Prepared according to the general procedure using (4-bromophenyl)-trimethylsilane; White solid (80.9 mg, 77% yield); R_f 0.3 (hexane/EtOAc = 3/1); m.p. 228-230 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (app. d, J = 7.0 Hz, 1H), 7.75 (d, J = 8.3 Hz, 2H), 7.65 (d, J = 8.3 Hz, 2H), 7.58 (t, J = 7.5 Hz, 1H), 7.43-7.34 (m, 1H), 6.79 (d, J = 8.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.3, 134.4, 132.2, 130.8, 130.5, 130.4, 127.5, 127.0, 124.0 (q, J_{C-F} = 289.7 Hz), 117.4, 111.2, 81.8-80.6 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (ESI) Calcd for C₁₅H₉OF₆BrI [M + H]⁺ 524.8786, found 524.8788.

4-(3,3-Bis(trifluoromethyl)-1λ³-benzo[*d*][1,2]iodaoxol-1(3*H*)-yl)benzonitrile (3ah): Prepared according to the general procedure using potassium (4-cyanophenyl)trifluoroborate; White solid (79.5 mg, 84% yield); R_f 0.3 (hexane/EtOAc = 2/1); m.p. 270-272 °C; ¹H NMR (400 MHz, DMSO) δ 8.24 (d, *J* = 7.7 Hz, 2H), 7.95 (d, *J* = 7.7 Hz, 2H), 7.71 (app. d, *J* = 6.8 Hz, 1H), 7.61 (t, *J* = 7.2 Hz, 1H), 7.45 (t, *J* = 7.4 Hz, 1H), 6.71 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (100 MHz, DMSO) δ 137.3, 133.6, 132.2, 130.7, 129.8, 128.9, 128.5, 125.6, 123.7 (q, *J*_{C-F} = 291.1 Hz), 117.7, 113.3, 111.8, 81.8,-80.7 (m); ¹⁹F NMR (376 MHz,DMSO) δ -75.0.; HRMS (ESI) Calcd for C₁₆H₉NOF₆I [M + H]⁺ 471.9633, found 471.9636.

3. Mechanochemical Synthesis

A 15 mL stainless miller jar equipped with a 10 mm stainless steel ball was charged sequentially with aromatic compound **2** (0.30 mmol) and BXT (103.6 mg, 0.20 mmol). The jar was closed, and the mixture was subjected to 30 Hz milling for 2 h. Then the mixture was dissoved in EtOAc (15 mL), and the solution was washed with saturated aq. Na₂CO₃ (5 mL), H₂O (5 mL) and brine (5 mL). The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired product **3**.

Gram-Scale Reaction without Chromatography Purification

A 15 mL stainless miller jar equipped with a 10 mm stainless steel ball was charged sequentially with 1-bromo-3,5-dimethoxybenzene (**2r**, 0.52 g, 2.4 mmol) and BXT (1.04 g, 2.0 mmol). The jar was closed, and the mixture was subjected to 30 Hz milling at room temperature for 2 h. Then the crude solid mixture was collected from the miller jar using spatula and was grated. The crude product was put onto a filter funnel, and washed with saturated aq. Na₂CO₃ (10 mL) and a mixture of hexane and Et₂O (20:1, 20 mL). The residue was dried under vacuum to afford the desired product **3r** as an analytically pure light-brown solid (1.07 g, 92% yield).

4. Product Transformations

Cross-Coupling Reactions

4'-Methoxy-2,4,6-trimethyl-1,1'-biphenyl (4): Under N₂ gas, a Schlenk tube equipped with a stir bar was charged with **3q** (97.6 mg, 0.20 mmol), 4-methoxyphenylboronic acid (45.6 mg, 0.30 mmol), Pd(PPh₃)₄ (11.6 mg, 0.010 mmol), and an aqueous solution of K₂CO₃ (1 M, 0.40 mL, 0.40 mmol), followed by the addition of DMF (2 mL). The resulting mixture was stirred at 100 °C for 8 h. The mixture was cooled to room temperature, diluted with Et₂O (10 mL), and washed with H₂O (5 mL) and brine (5 mL). The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane/Et₂O = 50/1) to afford the title compound as a white solid (38.9 mg, 86% yield); m.p. 73-75 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.09-7.00 (m, 2H), 6.98-6.88 (m, 4H), 3.84 (s, 3H), 2.32 (s, 3H), 2.01 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 138.7, 136.4 (two signals overlapped), 133.3, 130.3, 128.0, 113.7, 55.2, 21.0, 20.8; HRMS (ESI) Calcd for C₁₆H₁₉O [M + H]⁺ 227.1436, found 227.1442.

(Mesitylethynyl)trimethylsilane (5): Under N₂ gas, a Schlenk tube equipped with a stir bar was charged with 3q (97.6 mg, 0.20 mmol), $PdCl_2(PPh_3)_2$ (7.0 mg, 0.010 mmol), CuI (3.8 mg, 0.020 mmol), and DMF (2 mL). To the solution was added trimethylsilylacetylene (29.5 mg, 0.30 mmol) and Et₃N (40.5 mg, 0.40 mmol), and the resulting mixture was stirred at room temperature for 12 h. The mixture was diluted with Et₂O (10 mL) and washed with H₂O (5 mL) and brine (5 mL). The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel

(eluent: hexane) to afford the title compound as a light yellow oil (37.7 mg, 87% yield); ¹H NMR (400 MHz, CDCl₃) δ 6.86 (s, 2H), 2.41 (s, 6H), 2.28 (s, 3H), 0.28 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 137.8, 127.5, 120.0, 103.0, 101.8, 21.3, 20.9, 0.2; HRMS (ESI) Calcd for C₁₄H₂₁Si [M + H]⁺ 217.1413, found 217.1420.

4-Vinylanisole (6): Under N₂ gas, a Schlenk tube equipped with a stir bar was charged with **3a** (95.3 mg, 0.20 mmol), PdCl₂(PPh₃)₂ (14.0 mg, 0.020 mmol), and DMF (1 mL). To the solution was added tributyl(vinyl)tin (126.8 mg, 0.40 mmol), and the resulting mixture was stirred at 60 °C for 12 h. The mixture was cooled to room temperature, diluted with Et₂O (10 mL), and washed with H₂O (5 mL) and brine (5 mL). The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane) to afford the title compound as a colorless oil (21.8 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.7 Hz, 2H), 6.85 (d, *J* = 8.5 Hz, 2H), 6.66 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.60 (d, *J* = 17.6 Hz, 1H), 5.12 (d, *J* = 10.9 Hz, 1H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 136.2, 130.4, 127.4, 113.9, 111.5, 55.2; HRMS (ESI) Calcd for C₉H₁₁O [M + H]⁺ 135.0810, found 135.0815.

2-(4-Methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (7): A Schlenk tube equipped with a stir bar was charged with **3a** (95.3 mg, 0.20 mmol), bis(pinacolato)diboron (101.6 mg, 0.40 mmol), Pd(OAc)₂ (1.0 mg, 4.0 μ mol), PPh₃ (1.1 mg, 4.0 μ mol), CuI (7.6 mg, 0.040 mmol), Cs₂CO₃ (130.3 mg, 0.40 mmol), and MeCN (2 mL). The resulting mixture was stirred at room temperature for 24 h. The mixture was diluted with CH₂Cl₂ (10 mL) and washed with H₂O (5 mL) and brine (5 mL). The organic layer was dried over MgSO₄ and

concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc = 10/1) to afford the title compound as a colorless oil (37.6 mg, 80% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.5 Hz, 2H), 6.89 (d, *J* = 8.6 Hz, 2H), 3.82 (s, 3H), 1.33 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 136.5, 113.3, 83.5, 55.1, 24.8; HRMS (ESI) Calcd for C₁₃H₂₀BO₃ [M + H]⁺ 235.1506, found 235.1507.

1-Methoxy-4-(phenylsulfonyl)benzene (8): Under N₂ gas, a Schlenk tube equipped with a stir bar was charged with **3a** (95.3 mg, 0.20 mmol), sodium benzenesulfonate (49.3 mg, 0.30 mmol), CuI (3.8 mg, 0.020 mmol), L-proline sodium salt (5.5 mg, 0.040 mmol), and DMSO (1 mL). The resulting mixture was stirred at 90 °C for 24 h. The mixture was cooled to room temperature. H₂O (5 mL) was added, and the mixture was extracted with EtOAc (5 mL x 3). The combined organic layer was washed with H₂O (5 mL) and brine (5 mL), dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc = 5/1) to afford the title compound as a brown solid (35.4 mg, 71% yield); m.p. 55-57 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.6 Hz, 2H), 7.88 (d, *J* = 8.8 Hz, 2H), 7.55-7.44 (m, 3H), 6.96 (d, *J* = 8.9 Hz, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 142.3, 133.1, 132.8, 129.8, 129.2, 127.3, 114.5, 55.6; HRMS (ESI) Calcd for C₁₃H₁₃O₃S [M + H]⁺ 249.0585, found 249.0593.

4-Methoxybenzonitrile (9): Under N_2 gas, a Schlenk tube equipped with a stir bar was charged with CuCN (35.8 mg, 0.40 mmol), L-proline (23.0 mg, 0.20 mmol), and DMF (1 mL). After 10 min, **3a** (95.3 mg, 0.20 mmol) was added, and the resulting mixture was stirred at 90 °C for 24 h. The mixture was cooled to room temperature and diluted with EtOAc (15 mL).

The mixture was washed with saturated aq. NH₄Cl (5 mL), H₂O (5 mL) and brine (5 mL), dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc = 10/1) to afford the title compound as a light brown solid (22.8 mg, 86% yield); m.p. 60-62 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.9 Hz, 2H), 6.95 (d, *J* = 8.9 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 134.0, 119.1, 114.8, 104.0, 55.5; HRMS (ESI) Calcd for C₈H₈NO [M + H]⁺ 134.0606, found 134.0607.

Chemoselective Sequential Sonogashira Coupling

First step: Under N₂ gas, a Schlenk tube equipped with a stir bar was charged with **3m** or **3z** (0.22 mmol), $PdCl_2(PPh_3)_2$ (7.0 mg, 0.010 mmol), CuI (3.8 mg, 0.020 mmol), and DMF (2 mL). To the solution was added trimethylsilylacetylene (19.6 mg, 0.20 mmol) and Et₃N (40.5 mg, 0.40 mmol) at 0 °C, and the resulting mixture was stirred at 0 °C for 12 h. The mixture was diluted with Et₂O (10 mL) and washed with H₂O (5 mL) and brine (5 mL). The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane) to afford the desired product **10** or **12**.

((3-Iodo-4-methoxyphenyl)ethynyl)trimethylsilane (10): Colorless oil (43.0 mg, 65% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 2.0 Hz, 1H), 7.41 (dd, J = 8.5, 2.0 Hz, 1H), 6.72 (d, J = 8.5 Hz, 1H), 3.88 (s, 3H), 0.23 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 142.8, 133.3, 117.3, 110.2, 103.3, 93.8, 85.2, 56.4, -0.1; HRMS (ESI) Calcd for C₁₂H₁₆OSiI [M + H]⁺ 331.0015, found 331.0010.

((5-Iodothiophen-2-yl)ethynyl)trimethylsilane (12): Light yellow oil (37.4 mg, 61% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, J = 3.8 Hz, 1H), 6.87 (d, J = 3.8 Hz, 1H), 0.24 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 136.8, 133.8, 129.5, 100.9, 96.1, 74.7, -0.2; HRMS (ESI) Calcd for C₉H₁₂SiSI [M + H]⁺ 306.9474, found 306.9468. Second step: Under N₂ gas, a Schlenk tube equipped with a stir bar was charged with 10 or 12 (0.10 mmol), Pd (PPh₃)₄ (11.6 mg, 0.010 mmol), CuI (3.8 mg, 0.020 mmol), THF (1 mL), and Et₃N (0.5 mL). To the solution was added phenylacetylene (20.4 mg, 0.20 mmol), and the resulting mixture was stirred at room temperature for 6 h. The mixture was diluted with Et₂O (10 mL) and washed with H₂O (5 mL) and brine (5 mL). The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane) to afford the desired product 11 or 13.

((4-Methoxy-3-(phenylethynyl)phenyl)ethynyl)trimethylsilane (11): White solid (26.2 mg, 86% yield); m.p. 52-54 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 2.1 Hz, 1H), 7.58-7.49 (m, 2H), 7.40 (dd, J = 8.6, 2.1 Hz, 1H), 7.35-7.31 (m, 3H), 6.82 (d, J = 8.6 Hz, 1H), 3.91 (s, 3H), 0.24 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 137.2, 133.4, 131.7, 128.3 (two signals overlapped), 123.3, 115.4, 112.8, 110.6, 104.2, 93.8, 93.1, 84.7, 56.0, 0.0; HRMS (ESI) Calcd for C₂₀H₂₁OSi [M + H]⁺ 305.1362, found 305.1364.

Trimethyl((5-(phenylethynyl)thiophen-2-yl)ethynyl)silane (13): White solid (23.6 mg, 84% yield); m.p. 72-74 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.48 (m, 2H), 7.37-7.31 (m, 3H), 7.10 (d, J = 3.8 Hz, 1H), 7.09 (d, J = 3.8 Hz, 1H), 0.25 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 132.5, 131.54, 131.49, 128.7, 128.4, 124.7, 124.5, 122.6, 100.1, 96.9, 93.8, 82.2, - 0.2; HRMS (ESI) Calcd for C₁₇H₁₆KSiS [M + K]⁺ 319.0379, found 319.0374.

Halogenation of Aryl-BX Product

1-(5-Bromo-2,4-dimethoxyphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 λ^3 -benzo[d] [1,2]iodaoxole (3v): A Schlenk tube equipped with a stir bar was charged with 3g (101.2 mg, 0.20 mmol) and hexafluoroisopropanol (0.8 mL), followed by the addition of N-bromosuccinimide (46.3 mg, 0.26 mmol) under air. The resulting mixture was stirred at 40 °C for 24 h. The mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc = 1/1) to afford the title compound the title compound as a yellow solid (95.8 mg, 82% yield), with NMR spectra identical to that described above.

1-(5-Chloro-2,4-dimethoxyphenyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1λ³-

benzo[*d*][1,2] iodaoxole (14): A Schlenk tube equipped with a stir bar was charged with 3g (101.2 mg, 0.20 mmol) and hexafluoroisopropanol (0.8 mL), followed by the addition of N-chlorosuccinimide (40.1 mg, 0.30 mmol) under air. The resulting mixture was stirred at 80 °C for 24 h. The mixture was cooled down to room temperature and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc = 1/1) to afford the title compound as a white solid (95.4 mg, 88% yield); m.p. 231-233 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (app. d, *J* = 7.2 Hz, 1H), 7.77 (s, 1H), 7.60-7.51 (m, 1H), 7.41-7.32 (m, 1H), 6.82 (dd, *J* = 8.3, 0.7 Hz, 1H), 6.63 (s, 1H), 4.03 (s, 3H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 159.6, 138.4, 131.9, 131.3, 130.2 (two signals overlapped), 126.9, 124.1 (q, *J*_{C-F} = 290.5 Hz), 116.3, 111.4, 99.3, 96.0, 81.8-81.2 (m), 56.6, 56.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (ESI) Calcd for C₁₇H₁₃ClF₆IO₃ [M + H]⁺ 540.9502, found 540.9505.

1-(7-Bromo-9,9-dimethyl-9*H***-xanthen-2-yl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1\lambda^3benzo[***d***][1,2]iodaoxole (15): A Schlenk tube equipped with a stir bar was charged with 3o** (115.7 mg, 0.20 mmol) and hexafluoroisopropanol (0.8 mL), followed by the addition of Nbromosuccinimide (39.2 mg, 0.22 mmol) under air. The resulting reaction mixture was stirred at room temperature for 4 h. The mixture was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc = 3/1) to afford the title compound as a white solid (121.9 mg, 93% yield); m.p. 260-262 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.92 (m, 2H), 7.71 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.61-7.50 (m, 2H), 7.42-7.32 (m, 2H), 7.16 (d, *J* = 8.3 Hz, 1H), 7.01 (d, *J* = 8.7 Hz, 1H), 6.83 (d, *J* = 8.3 Hz, 1H), 1.66 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 148.7, 136.3, 135.3, 133.2, 132.0, 131.4, 131.0, 130.9, 130.3 (two signals overlapped), 129.0, 127.2, 124.1 (q, *J*_{C-F} = 289.8 Hz), 119.6, 118.4, 116.4, 111.9, 111.7, 81.6-80.8 (m), 34.5, 32.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (ESI) Calcd for C₂₄H₁₇BrF₆IO₂ [M + H]⁺ 656.9361, found 656.9358.

5. DFT Calculation

All the calculations were carried out using Gaussian 09 packages.⁴ Geometry optimizations were performed using the B3LYP functional⁵ with a combined basis set BSI (i.e., SDD⁶ for iodine and 6-31G(d) for the other atoms). Harmonic frequency calculations were performed using the same method as optimization to confirm each stationary point to be either a local minimum (zero imaginary frequency) or a transition state (one imaginary frequency). Intrinsic reaction coordinate (IRC)⁷ analysis was used to ensure that each transition state connects the right reactant and product. M06 functional⁸ with the BSII basis set (i.e., SDD for iodine and 6-311++G(2df,2p) for the other atoms) was used to calculate the single-point energies of all the optimized geometries. All the optimizations, frequency calculations and single-point energy calculations were simulated in acetonitrile by using SMD⁹ solvation model. The energies reported in this work were calculated by adding the Gibbs free energy corrections (obtained from frequency calculations) to the single-point energies, corresponding to the reference state of 1 mol/L, 298.15 K. The 3D structures were drawn using the CYLview program.¹⁰

Reaction pathway for *para* C–H λ^3 -iodanation of anisole

The experimentally observed, *para* C–H λ^3 -iodanation of anisole (2a) with BXT (1) was explored (Figure S4). Isomerization of 1 through TS1 brings the triflate ligand to the *trans* position of the aryl ligand, with endergonicity of 8.5 kcal mol⁻¹. This allows 2a to bind to the *cis* position of the aryl ligand, forming the pre-C–H cleavage complex CP1. The C–H cleavage occurs through a six-centered TS (TS2*p*) with an overall activation energy of 19.3 kcal mol⁻¹, where C–I bond formation and C–H deprotonation occur concertedly to afford the aryl–BX product 3a and TfOH. The slightly higher free energy of [3a + TfOH] (2.1 kcal mol⁻¹) than that of [1 + 2a] may reflect computational artifact, which does not take intermolecular hydrogen bonding between TfOH molecules into account. Binding of 2a to the *trans* position of the aryl ligand of 1 is also feasible, and the resulting complex CP1' is more stable than CP1. However, C–H λ^3 -iodanation from CP1' requires extremely high activation energy (TS2*p*', 37.3 kcal mol⁻¹) and leads to much less stable product 3a', and hence is not realistically feasible.

Figure S4. Energy diagram for the *para* C–H λ^3 -iodanation of anisole (2a) with BXT (1).

Regioselectivity of C–H λ^3 -iodanation

Having clarified the reaction pathway for *para* C–H λ^3 -iodanation and its rate-determining TS (**TS2***p*), we also located TSs for the λ^3 -iodanation of the *ortho*- (**TS2***o*) and *meta*- (**TS2***m*) positions (Figure S5). Consistent with the experiment, these TSs were higher in energy than **TS2***p*.

Figure S5. Structures of transition states for C–H λ^3 -iodanation of anisole (2a) with BXT (1). In the parentheses are shown Gibbs free energies (in MeCN, kcal mol⁻¹) in reference to that of [1 + 2a]. Bond distances are in Å.

Thermal correction to Gibbs Free Energies (TCG), single-point electronic energies (E) and Cartesian coordinates of reactants and transition states

BXT (1)

TCG = 0.091313 a.u.

E = -1992.319526 a.u.

Ι	0.337241000	-1.079619000	-0.181085000
0	-1.639701000	-1.271364000	0.471131000
С	-0.336025000	0.955651000	-0.440877000
С	-1.704425000	1.064976000	-0.223457000
С	-2.275854000	2.332013000	-0.404390000
С	-1.476953000	3.415948000	-0.769482000
С	-0.104929000	3.256643000	-0.963700000
С	0.492071000	2.001145000	-0.803283000
Н	0.514327000	4.103688000	-1.242287000
Н	1.554135000	1.864317000	-0.955422000
Н	-3.338904000	2.474400000	-0.255791000
Н	-1.935172000	4.391022000	-0.901094000
С	-2.481730000	-0.190008000	0.173886000
С	-3.284843000	0.044003000	1.486942000
С	-3.420434000	-0.635450000	-0.985045000
F	-2.460736000	0.486962000	2.450092000
F	-4.267888000	0.953285000	1.327202000
F	-3.851405000	-1.092890000	1.917998000
F	-4.105387000	-1.745213000	-0.665715000
F	-4.311512000	0.318510000	-1.316183000
F	-2.680547000	-0.909527000	-2.075461000
0	3.571574000	-1.849953000	0.641771000
S	3.726132000	-0.750879000	-0.317112000
0	2.395504000	-0.385687000	-1.016622000
0	4.819148000	-0.793419000	-1.289332000
С	4.034259000	0.765304000	0.713466000
F	5.172563000	0.613580000	1.395234000
F	4.132517000	1.846218000	-0.068489000
F	3.027359000	0.944906000	1.575984000

Anisole (2a)

TCG = 0.102002 a.u.

E = -346.6366701 a.u.

С	1.857117000	-0.998674000	0.000945000
С	2.285733000	0.335009000	0.000757000
С	1.333577000	1.354452000	-0.000221000
С	-0.035914000	1.063135000	-0.001285000
С	-0.456155000	-0.274335000	-0.001145000
С	0.499246000	-1.305096000	-0.000135000
Η	-0.756326000	1.873370000	-0.002224000
Η	3.346005000	0.571785000	0.001503000
Η	0.154809000	-2.335386000	0.000033000
0	-1.759019000	-0.675343000	-0.002240000
Η	1.649420000	2.394807000	-0.000423000
Η	2.585380000	-1.805905000	0.001823000
С	-2.774853000	0.326026000	0.002240000
Η	-3.724312000	-0.213423000	0.004293000
Η	-2.714807000	0.955853000	0.898585000
Н	-2.720526000	0.958543000	-0.892610000

TS1

TCG = 0.091659 a.u.

E = -1992.300833 a.u.

Ι	-0.414197000	0.662730000	-0.388620000
0	0.881984000	-0.926930000	-0.495331000
С	1.402389000	1.699643000	0.064105000
С	2.474147000	0.818678000	0.188604000
С	3.721527000	1.362932000	0.519024000
С	3.852167000	2.739976000	0.705502000
С	2.752535000	3.588692000	0.569892000
С	1.495563000	3.068270000	0.245280000
Η	2.863084000	4.658694000	0.716343000
Н	0.629571000	3.712000000	0.140211000

Η	4.587882000	0.721846000	0.626427000
Η	4.825103000	3.148506000	0.959271000
С	2.201940000	-0.663268000	-0.030988000
С	3.104471000	-1.239991000	-1.162872000
С	2.362472000	-1.465171000	1.293428000
F	2.973365000	-0.492846000	-2.269033000
F	4.401197000	-1.242323000	-0.803599000
F	2.758962000	-2.498432000	-1.467200000
F	2.089223000	-2.765704000	1.112232000
F	3.608901000	-1.366505000	1.787864000
F	1.506518000	-0.985305000	2.211585000
0	-3.163241000	1.353023000	-0.636556000
S	-3.688717000	-0.039412000	-0.772371000
0	-2.581069000	-1.038822000	-0.891109000
0	-4.806103000	-0.213624000	-1.708994000
С	-4.420623000	-0.395167000	0.896223000
F	-5.409766000	0.469023000	1.159873000
F	-4.916058000	-1.638889000	0.931845000
F	-3.486323000	-0.280341000	1.851906000

1'

TCG = 0.090119 a.u.

E = -1992.304771 a.u.

Ι	-0.319626000	1.139587000	-0.270298000
0	0.558378000	-0.705574000	-0.430500000
С	1.707441000	1.704083000	0.109394000
С	2.556801000	0.605374000	0.159519000
С	3.913082000	0.834448000	0.422161000
С	4.366324000	2.140494000	0.614454000
С	3.484556000	3.221510000	0.553534000
С	2.125681000	3.011377000	0.299150000
Η	3.847381000	4.233872000	0.702750000
Η	1.428339000	3.840562000	0.250828000
Н	4.612696000	0.009224000	0.474351000

Η	5.419636000	2.310496000	0.813800000
С	1.926720000	-0.766619000	-0.053474000
С	2.598915000	-1.518593000	-1.239903000
С	1.970775000	-1.606030000	1.256245000
F	2.558800000	-0.752550000	-2.340606000
F	3.885196000	-1.810145000	-0.973261000
F	1.963885000	-2.668018000	-1.509745000
F	1.360370000	-2.789797000	1.099014000
F	3.233808000	-1.838795000	1.655500000
F	1.335736000	-0.939128000	2.235441000
0	-3.476064000	1.498072000	-0.804070000
S	-3.534660000	0.021057000	-0.800131000
0	-2.157868000	-0.606145000	-0.788756000
0	-4.467424000	-0.625116000	-1.732569000
С	-4.182943000	-0.406027000	0.886519000
F	-5.409115000	0.107289000	1.052840000
F	-4.248229000	-1.733838000	1.045388000
F	-3.377514000	0.098407000	1.834064000

CP1

TCG = 0.214212 a.u.

E = -2338.955726 a.u.

С	-2.509955000	1.913710000	1.012377000
С	-2.454295000	1.491748000	-0.348497000
С	-2.301041000	2.478522000	-1.361564000
С	-2.190302000	3.820390000	-1.043662000
С	-2.249484000	4.215044000	0.313028000
С	-2.397220000	3.246535000	1.337922000
Ι	-0.179204000	-0.000583000	-0.486685000
0	1.554103000	-1.279823000	-0.617224000
С	1.406501000	1.389118000	-0.046222000
С	2.641870000	0.769061000	0.124484000
С	3.729747000	1.582626000	0.468323000
С	3.559734000	2.960324000	0.611318000

С	2.307846000	3.545050000	0.419558000
С	1.204720000	2.751971000	0.088717000
Η	2.178403000	4.617802000	0.526894000
Н	0.227276000	3.189241000	-0.059273000
Η	4.709915000	1.146086000	0.616085000
Η	4.414637000	3.576233000	0.872496000
Η	-2.078610000	4.556906000	-1.830071000
Η	-2.867473000	0.519539000	-0.619295000
Η	-2.439351000	3.585787000	2.367873000
С	2.714813000	-0.749026000	-0.052073000
С	3.842033000	-1.141963000	-1.053765000
С	2.937879000	-1.439597000	1.325667000
F	3.689577000	-0.462646000	-2.203178000
F	5.074519000	-0.873828000	-0.573406000
F	3.800812000	-2.451967000	-1.341349000
F	2.989722000	-2.776404000	1.202831000
F	4.075871000	-1.037856000	1.926339000
F	1.913501000	-1.143904000	2.148929000
0	-3.792451000	-1.533057000	-1.195134000
S	-2.966335000	-2.708538000	-0.830357000
0	-1.497988000	-2.508951000	-1.018501000
0	-3.470496000	-4.018753000	-1.283130000
С	-3.134808000	-2.782907000	1.017057000
0	-2.171977000	5.482167000	0.729454000
Η	-2.294844000	2.171277000	-2.403181000
Η	-2.661520000	1.171683000	1.790248000
С	-2.009601000	6.538305000	-0.233904000
Η	-1.958328000	7.456802000	0.351397000
Η	-1.082613000	6.406937000	-0.800804000
Η	-2.866065000	6.579888000	-0.914083000
F	-4.413266000	-2.984592000	1.373694000
F	-2.394563000	-3.780281000	1.527330000
F	-2.723106000	-1.630387000	1.581638000

TS2*p*

TCG = 0.209668 a.u.

E = -2338.938826 a.u.

С	-2.117721000	1.342546000	1.109956000
С	-1.736570000	0.988778000	-0.227207000
С	-2.029400000	1.922939000	-1.269624000
С	-2.786654000	3.052447000	-1.032633000
С	-3.211629000	3.334728000	0.287284000
С	-2.862905000	2.469916000	1.355938000
Ι	0.121551000	-0.261649000	-0.456059000
0	2.243685000	-1.209826000	-0.613680000
С	1.494305000	1.363516000	0.064477000
С	2.831753000	1.002058000	0.178287000
С	3.731501000	2.013669000	0.553050000
С	3.292947000	3.318162000	0.776609000
С	1.943531000	3.639705000	0.637481000
С	1.023785000	2.649518000	0.280013000
Н	1.595101000	4.654583000	0.804830000
Н	-0.023888000	2.900024000	0.175641000
Н	4.783083000	1.781900000	0.665327000
Н	4.010631000	4.082272000	1.059851000
Н	-3.042239000	3.713591000	-1.851884000
Н	-2.617463000	-0.021317000	-0.520194000
Н	-3.197626000	2.721509000	2.357277000
С	3.249762000	-0.464710000	-0.089976000
С	4.425303000	-0.502905000	-1.114509000
С	3.702518000	-1.110954000	1.256359000
F	4.081262000	0.162368000	-2.236255000
F	5.578724000	0.048352000	-0.659504000
F	4.718508000	-1.767141000	-1.469672000
F	4.069776000	-2.396091000	1.087590000
F	4.740178000	-0.478303000	1.854257000
F	2.673780000	-1.099023000	2.131690000
0	-3.594644000	-0.792892000	-0.778090000
S	-3.344958000	-2.311821000	-0.826215000
---	--------------	--------------	--------------
0	-1.954567000	-2.634148000	-1.182344000
0	-4.432764000	-3.010805000	-1.510498000
С	-3.496137000	-2.767138000	0.968808000
0	-3.944389000	4.392157000	0.627356000
Η	-1.697803000	1.706994000	-2.281414000
Η	-1.862388000	0.675018000	1.927483000
С	-4.369165000	5.327763000	-0.383072000
Η	-4.970265000	6.067084000	0.146391000
Η	-3.505682000	5.813873000	-0.846930000
Η	-4.977929000	4.826206000	-1.141117000
F	-4.717249000	-2.476299000	1.424403000
F	-3.272501000	-4.075718000	1.120907000
F	-2.590955000	-2.084960000	1.685022000

CP2

TCG = 0.211415 a.u.

E = -2338.959098 a.u.

С	-1.971742000	1.418046000	1.204860000
С	-1.416937000	1.248136000	-0.073819000
С	-1.967965000	1.919461000	-1.170117000
С	-3.080852000	2.750997000	-1.004159000
С	-3.634008000	2.921612000	0.274502000
С	-3.070725000	2.248515000	1.376373000
Ι	0.268143000	-0.092381000	-0.358012000
0	2.376605000	-1.190542000	-0.587308000
С	1.777368000	1.430833000	0.109480000
С	3.096203000	1.002230000	0.155621000
С	4.059541000	1.971435000	0.485910000
С	3.694537000	3.294421000	0.733391000
С	2.355900000	3.680358000	0.665539000
С	1.375416000	2.734925000	0.352369000
Η	2.064759000	4.709570000	0.854451000
Н	0.331750000	3.022632000	0.302039000

Η	5.103761000	1.691713000	0.545378000
Η	4.461522000	4.022653000	0.980284000
Η	-3.498618000	3.254885000	-1.867721000
Η	-3.122862000	-0.156553000	-0.812657000
Η	-3.515390000	2.388136000	2.357111000
С	3.433887000	-0.489187000	-0.131765000
С	4.556752000	-0.572146000	-1.212992000
С	3.939292000	-1.141505000	1.194509000
F	4.183681000	0.103242000	-2.320683000
F	5.756083000	-0.066350000	-0.823456000
F	4.783705000	-1.847936000	-1.579218000
F	4.250164000	-2.441548000	1.017460000
F	5.032301000	-0.547754000	1.734507000
F	2.962162000	-1.087501000	2.126446000
0	-3.991231000	-0.632806000	-0.793616000
S	-3.782512000	-2.229265000	-0.818748000
0	-2.545245000	-2.577608000	-1.505384000
0	-5.063282000	-2.810309000	-1.180122000
С	-3.510643000	-2.558603000	0.998386000
0	-4.703123000	3.702304000	0.549378000
Η	-1.539264000	1.799365000	-2.160751000
Η	-1.548866000	0.902022000	2.061041000
С	-5.343435000	4.393302000	-0.527974000
Η	-6.168270000	4.945223000	-0.074192000
Η	-4.657246000	5.096901000	-1.012967000
Η	-5.738737000	3.690429000	-1.270379000
F	-4.595271000	-2.213985000	1.683678000
F	-3.265299000	-3.856436000	1.156521000
F	-2.464112000	-1.847043000	1.419047000

3a

TCG = 0.187872 a.u.

E = -1376.894785 a.u.

C -3.198152000 -0.543622000 1.304238000

S38

С	-2.582774000	-0.576460000	0.046476000
С	-3.322051000	-0.309446000	-1.105612000
С	-4.682982000	-0.004558000	-1.014962000
С	-5.302804000	0.031061000	0.243537000
С	-4.551623000	-0.242723000	1.401330000
Ι	-0.504026000	-1.163863000	-0.119597000
0	1.884984000	-1.367328000	-0.264784000
С	0.276176000	0.883848000	0.029994000
С	1.655811000	1.030271000	0.036211000
С	2.145857000	2.343526000	0.152457000
С	1.278315000	3.431598000	0.243362000
С	-0.102480000	3.234819000	0.225025000
С	-0.617134000	1.939971000	0.118979000
Η	-0.784579000	4.077332000	0.293383000
Η	-1.687962000	1.772290000	0.107182000
Η	3.214047000	2.518072000	0.169642000
Η	1.686448000	4.434453000	0.328832000
Η	-5.242356000	0.199289000	-1.920680000
Η	-5.047698000	-0.212603000	2.366897000
С	2.570831000	-0.225681000	-0.068231000
С	3.554975000	-0.047174000	-1.267583000
С	3.383960000	-0.354491000	1.259277000
F	2.858904000	0.156920000	-2.406437000
F	4.423799000	0.989581000	-1.143303000
F	4.304499000	-1.152102000	-1.450045000
F	4.176800000	-1.444993000	1.247190000
F	4.185011000	0.704787000	1.538849000
F	2.534024000	-0.490021000	2.300813000
0	-6.612711000	0.315613000	0.446210000
Н	-2.848906000	-0.334800000	-2.082716000
Η	-2.628131000	-0.751532000	2.204782000
С	-7.425712000	0.635493000	-0.685397000
Η	-8.420911000	0.838189000	-0.285588000
Н	-7.052835000	1.526233000	-1.204823000

HOTf

TCG = 0.004532 a.u.

E = -962.0572 a.u.

Η	1.378286000	1.953280000	-0.075949000
0	1.264403000	1.214608000	-0.718013000
S	0.851210000	-0.142944000	0.057491000
0	1.246991000	-0.071254000	1.457257000
0	1.226703000	-1.246557000	-0.807869000
С	-1.008133000	0.009061000	-0.002671000
F	-1.416363000	-0.007684000	-1.266751000
F	-1.530801000	-1.020766000	0.657891000
F	-1.369906000	1.151237000	0.577873000

CP1'

TCG = 0.211928 a.u.

E = -2338.964328 a.u.

С	-0.549403000	3.928530000	1.066992000
С	-1.156383000	4.114710000	-0.182267000
С	-0.364440000	4.096226000	-1.331597000
С	1.018840000	3.896548000	-1.253100000
С	1.619612000	3.710400000	0.000738000
С	0.825701000	3.724831000	1.162305000
Ι	-0.397412000	0.272953000	0.204803000
0	1.534237000	-0.117311000	0.903009000
С	-0.070894000	-1.673746000	-0.669856000
С	1.235716000	-2.106949000	-0.473296000
С	1.588188000	-3.344366000	-1.029471000
С	0.643371000	-4.090406000	-1.734506000
С	-0.657489000	-3.615785000	-1.901756000
С	-1.034802000	-2.379365000	-1.366203000
Η	-1.390716000	-4.199476000	-2.449789000
Н	-2.039386000	-2.000238000	-1.496205000

Η	2.594023000	-3.727430000	-0.909904000
Η	0.931153000	-5.048581000	-2.155500000
Η	1.610842000	3.890812000	-2.161321000
Η	-2.228105000	4.276724000	-0.254054000
Η	1.308422000	3.587558000	2.125852000
С	2.190162000	-1.201255000	0.304589000
С	2.840072000	-1.962677000	1.496582000
С	3.277245000	-0.620790000	-0.647179000
F	1.881997000	-2.511429000	2.261651000
F	3.661280000	-2.948976000	1.083168000
F	3.559349000	-1.133382000	2.267564000
F	4.110896000	0.207324000	0.002224000
F	4.019715000	-1.583971000	-1.224955000
F	2.679598000	0.084544000	-1.628427000
0	-3.543889000	1.166730000	1.295520000
S	-3.800910000	0.543589000	-0.007161000
0	-2.504216000	0.261980000	-0.800088000
0	-4.823896000	1.114461000	-0.884957000
С	-4.381438000	-1.180361000	0.377411000
0	2.953084000	3.520739000	0.198772000
Η	-0.819833000	4.242267000	-2.307971000
Η	-1.149579000	3.945789000	1.973175000
С	3.801565000	3.428917000	-0.944634000
Η	4.806628000	3.250574000	-0.557394000
Η	3.509986000	2.597052000	-1.594816000
Η	3.798443000	4.362485000	-1.520551000
F	-5.536559000	-1.126208000	1.045138000
F	-4.563456000	-1.870596000	-0.754746000
F	-3.471797000	-1.812974000	1.128601000

ТS2*р*'

TCG = 0.206453 a.u.

E = -2338.906895 a.u.

C -1.158933000 1.549047000 1.040883000

S41

С	-1.084072000	1.004044000	-0.278899000
С	-0.762089000	1.880414000	-1.355553000
С	-0.754108000	3.249195000	-1.176216000
С	-0.951507000	3.775408000	0.122205000
С	-1.151184000	2.910070000	1.228367000
Ι	-0.191066000	-1.100902000	-0.433419000
0	1.512063000	0.523812000	0.036813000
С	1.749534000	-2.160273000	-0.258383000
С	2.899791000	-1.460238000	0.008567000
С	4.100324000	-2.183809000	0.113567000
С	4.092668000	-3.569292000	-0.051754000
С	2.902294000	-4.249079000	-0.323850000
С	1.703073000	-3.538093000	-0.430216000
Н	2.901021000	-5.327862000	-0.452983000
Н	0.768964000	-4.053504000	-0.639434000
Н	5.033885000	-1.676522000	0.323087000
Η	5.025083000	-4.119945000	0.032937000
Η	-0.582276000	3.904401000	-2.021551000
Η	-2.415075000	0.602852000	-0.542175000
Η	-1.282055000	3.348026000	2.212843000
С	2.786522000	0.084369000	0.164167000
С	3.293360000	0.496980000	1.577724000
С	3.641710000	0.767351000	-0.944164000
F	2.578525000	-0.143101000	2.524705000
F	4.599386000	0.213595000	1.796696000
F	3.141852000	1.819593000	1.783554000
F	3.534059000	2.109333000	-0.888688000
F	4.962000000	0.475595000	-0.876311000
F	3.206663000	0.378616000	-2.159898000
0	-3.622231000	0.509561000	-0.744715000
S	-4.299411000	-0.880672000	-0.725124000
0	-3.388312000	-1.952104000	-1.145566000
0	-5.639739000	-0.810741000	-1.306049000
С	-4.545006000	-1.141594000	1.098253000

0	-0.956373000	5.075566000	0.409941000
Η	-0.597950000	1.470857000	-2.347877000
Η	-1.312745000	0.886089000	1.886591000
С	-0.733632000	6.043491000	-0.633525000
Η	-0.798444000	7.014331000	-0.142090000
Η	0.259400000	5.914350000	-1.074071000
Η	-1.505222000	5.966264000	-1.405590000
F	-5.367446000	-0.216937000	1.598094000
F	-5.067545000	-2.353412000	1.308134000
F	-3.364521000	-1.061892000	1.728502000

CP2'

TCG = 0.207905 a.u.

E = -2338.925845 a.u.

С	-1.171008000	1.517043000	1.349914000
С	-0.832966000	1.024675000	0.084902000
С	-1.050991000	1.770785000	-1.071461000
С	-1.673634000	3.020984000	-0.974434000
С	-2.040467000	3.520539000	0.285139000
С	-1.784133000	2.760391000	1.443186000
Ι	0.057690000	-0.976649000	-0.075407000
0	1.811070000	0.790362000	0.062200000
С	2.096602000	-1.919781000	-0.162379000
С	3.234799000	-1.161172000	-0.096860000
С	4.463730000	-1.844780000	-0.157701000
С	4.488351000	-3.234316000	-0.282509000
С	3.299854000	-3.966577000	-0.346866000
С	2.071129000	-3.301287000	-0.286578000
Н	3.321333000	-5.048534000	-0.444232000
Н	1.135649000	-3.853415000	-0.335682000
Н	5.397586000	-1.298475000	-0.108939000
Η	5.444702000	-3.747292000	-0.329477000
Η	-1.860754000	3.585853000	-1.880080000
Н	-2.964713000	0.470652000	-0.526079000

Η	-2.075847000	3.161804000	2.409014000
С	3.090645000	0.391666000	0.048329000
С	3.762539000	0.823271000	1.388066000
С	3.808972000	1.074736000	-1.155779000
F	3.171110000	0.188223000	2.422127000
F	5.090003000	0.554082000	1.462643000
F	3.624057000	2.147526000	1.600817000
F	3.666255000	2.414748000	-1.111494000
F	5.141385000	0.829869000	-1.229072000
F	3.263646000	0.651935000	-2.315573000
0	-3.952952000	0.391746000	-0.525859000
S	-4.410423000	-1.118962000	-0.844130000
0	-3.363042000	-1.830130000	-1.566476000
0	-5.780830000	-1.055557000	-1.320313000
С	-4.450289000	-1.813725000	0.888057000
0	-2.645895000	4.712555000	0.490533000
Η	-0.758142000	1.392648000	-2.045482000
Η	-0.974300000	0.939951000	2.247391000
С	-2.959037000	5.527576000	-0.643031000
Η	-3.448772000	6.416087000	-0.240850000
Η	-2.052034000	5.823638000	-1.182646000
Η	-3.643659000	5.010799000	-1.325372000
F	-5.383332000	-1.190627000	1.599543000
F	-4.726217000	-3.113030000	0.814007000
F	-3.256154000	-1.638273000	1.455275000

3a'

TCG = 0.186616 a.u. E = -1376.872975 a.u. С -2.036419000 0.877185000 0.518583000-0.506265000 С -2.183882000 0.460641000 -3.367952000 -1.130799000 С 0.088697000 С -4.471297000 -0.333144000 -0.228947000 -4.358480000 С 1.065352000 -0.178552000

С	-3.137522000	1.660560000	0.191640000
Ι	-0.510361000	-1.759304000	1.003036000
0	0.878450000	0.744041000	1.211688000
С	0.881296000	-1.477323000	-0.678509000
С	1.746780000	-0.394989000	-0.787934000
С	2.592555000	-0.419747000	-1.915624000
С	2.550051000	-1.448692000	-2.855470000
С	1.657541000	-2.508603000	-2.701054000
С	0.808136000	-2.525009000	-1.595015000
Η	1.614266000	-3.315341000	-3.426969000
Η	0.106137000	-3.339183000	-1.451985000
Η	3.297637000	0.386935000	-2.065321000
Η	3.220193000	-1.417188000	-3.710058000
Η	-5.399880000	-0.811709000	-0.516830000
Η	-3.070993000	2.744387000	0.216111000
С	1.809465000	0.776169000	0.277783000
С	3.219429000	0.686298000	0.964468000
С	1.714272000	2.144485000	-0.493786000
F	3.331561000	-0.490010000	1.623366000
F	4.293269000	0.765041000	0.132347000
F	3.378017000	1.668673000	1.877327000
F	1.634607000	3.173441000	0.374380000
F	2.748186000	2.444173000	-1.330780000
F	0.588218000	2.174627000	-1.245556000
0	-5.364467000	1.924009000	-0.471603000
Η	-3.450114000	-2.211392000	0.041796000
Η	-1.069922000	1.299228000	0.790262000
С	-6.625603000	1.387857000	-0.880079000
Н	-7.267614000	2.251039000	-1.063951000
Η	-6.529150000	0.802660000	-1.802150000
Η	-7.068224000	0.765733000	-0.093324000

TS20

TCG = 0.210047 a.u.

E = -2338.937206 a.u.

С	1.904500000	1.580543000	-1.668614000
С	1.652931000	1.417472000	-0.266285000
С	1.840251000	2.556707000	0.598480000
С	2.401429000	3.735351000	0.078265000
С	2.690075000	3.816033000	-1.279333000
С	2.448049000	2.746230000	-2.163893000
Ι	0.032018000	-0.061078000	0.285280000
0	-1.877454000	-1.299473000	0.686384000
С	-1.597272000	1.207499000	-0.445932000
С	-2.863251000	0.635999000	-0.389780000
С	-3.931630000	1.413366000	-0.867321000
С	-3.719521000	2.700347000	-1.359525000
С	-2.433556000	3.237463000	-1.391198000
С	-1.351013000	2.482484000	-0.930858000
Н	-2.259695000	4.239844000	-1.770988000
Н	-0.353544000	2.901214000	-0.960950000
Н	-4.936936000	1.012066000	-0.851751000
Н	-4.563879000	3.281178000	-1.718433000
Н	2.594384000	4.586041000	0.720896000
Н	2.703034000	0.625099000	0.097048000
Н	2.683456000	2.844489000	-3.218488000
С	-3.028103000	-0.799061000	0.163651000
С	-4.089354000	-0.807754000	1.305993000
С	-3.486604000	-1.735762000	-0.996196000
F	-3.744239000	0.082720000	2.258604000
F	-5.344950000	-0.495082000	0.900359000
F	-4.163593000	-2.016740000	1.891418000
F	-3.624338000	-3.007685000	-0.575898000
F	-4.662340000	-1.378038000	-1.565085000
F	-2.554386000	-1.732252000	-1.972804000
0	3.804750000	0.069062000	0.412262000
S	3.787918000	-1.422015000	0.796005000
0	2.468891000	-1.851904000	1.285973000

0	4.981781000	-1.795401000	1.554301000
С	3.968413000	-2.227663000	-0.867949000
Η	1.716635000	0.734359000	-2.323042000
F	5.119363000	-1.863874000	-1.439167000
F	3.949753000	-3.556569000	-0.728714000
F	2.952811000	-1.858957000	-1.661237000
Η	3.113087000	4.739342000	-1.665477000
0	1.513878000	2.384827000	1.877244000
С	1.768919000	3.435981000	2.830292000
Η	1.190072000	4.330171000	2.581288000
Η	1.439975000	3.036219000	3.789447000
Η	2.836697000	3.669375000	2.869133000

TS2*m*

TCG = 0.209025 a.u.

E = -2338.925127 a.u.

С	-2.097971000	1.333860000	1.472241000
С	-1.761267000	1.131987000	0.099837000
С	-1.938935000	2.198296000	-0.823626000
С	-2.540198000	3.394242000	-0.422671000
С	-2.913509000	3.549628000	0.926681000
С	-2.693330000	2.524895000	1.857784000
Ι	0.045029000	-0.237243000	-0.316860000
0	2.048610000	-1.289179000	-0.623159000
С	1.507905000	1.227577000	0.379334000
С	2.828257000	0.791719000	0.350849000
С	3.804186000	1.690990000	0.810722000
С	3.451023000	2.961265000	1.263760000
С	2.115144000	3.359459000	1.269353000
С	1.122375000	2.482094000	0.823473000
Η	1.832284000	4.348050000	1.618337000
Η	0.086628000	2.793824000	0.831196000
Η	4.846298000	1.398056000	0.813015000
Н	4.225098000	3.638277000	1.612262000

Η	-2.622630000	0.215360000	-0.298296000
Η	-2.993750000	2.677805000	2.890007000
С	3.150033000	-0.626862000	-0.166120000
С	4.151211000	-0.536793000	-1.357660000
С	3.765450000	-1.471130000	0.990842000
F	3.635407000	0.246883000	-2.326302000
F	5.359114000	-0.022157000	-1.024366000
F	4.378743000	-1.748300000	-1.896416000
F	4.014955000	-2.733746000	0.596949000
F	4.925695000	-0.972984000	1.478746000
F	2.892666000	-1.532873000	2.018020000
0	-3.676504000	-0.513759000	-0.662463000
S	-3.514173000	-2.025164000	-0.862812000
0	-2.136984000	-2.395800000	-1.229973000
0	-4.622371000	-2.595909000	-1.631096000
С	-3.727963000	-2.657607000	0.870207000
Η	-1.942669000	0.531308000	2.185729000
F	-4.943688000	-2.353787000	1.333778000
F	-3.572675000	-3.985437000	0.890090000
F	-2.807492000	-2.103274000	1.673428000
Η	-3.378956000	4.470066000	1.261206000
Η	-1.656212000	2.071898000	-1.864540000
0	-2.711323000	4.329968000	-1.382889000
С	-3.290519000	5.589094000	-1.020673000
Η	-3.323805000	6.171489000	-1.942614000
Η	-4.307159000	5.462147000	-0.631650000
Н	-2.672231000	6.110449000	-0.280783000

6. References

(1) (a) V. V. Zhdankin, C. J. Kuehl, A. P. Krasutsky, J. T. Boltz, A. J. Simonsen, J. Org. Chem., 1996, 61, 6547; (b) Y. Li and J. Waser, Angew. Chem., Int. Ed., 2015, 54, 5438; (c) W. Ding, J. Chai, C. Wang, J. Wu, N. Yoshikai, J. Am. Chem. Soc., 2020, 142, 8619.

M. Ruiz, J. D. Sánchez, P. López-Alvarado and J. C. Menéndez, *Tetrahedron*, 2012, 68, 705.

(3) CCDC 1981452 (**3p**) provides supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

(4) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr., J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, R. D. 01, Gaussian, Inc., Wallingford CT, 2009.

(5) (a) A. D. Becke, *Phys. Rev. A* **1988**, *38*, 3098; (b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B* **1988**, *37*, 785.

(6) M. Dolg, U. Wedig, H. Stoll and H. Preuss, J. Chem. Phys. 1987, 86, 866.

(7) K. Fukui, Acc. Chem. Res. 1981, 14, 363.

(8) (a) Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 2006, 110, 13126. (b) Y. Zhao and D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157. (c) Y. Zhao and D. G. Truhlar, Chem. Phys. Lett. 2011, 502, 1.

(9) A. V. Marenich; C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.

(10) C. Y. Legault, CYLView, 1.0b; Universitéde Sherbrooke: Québec, Montreal, Canada, 2009; http://www.cylview.org.

7. NMR Spectra

-4.726 4.332 4.314 4.296 4.279 1.432 1.345 1.327 1.309 0 EtO₂C-/ -CF₃ ℃F₃ 3d 2.05H 3.03H 2.00-1.08 2.02 1.09 2.08 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 138.65 131.96 130.87 130.87 130.19 128.40 122.60 125.50 125.50 119.71 119.71 111.61 111.61 - 160.56 81.83 81.55 81.55 81.27 80.98 80.98 80.98 80.69 77.32 77.32 77.32 76.68 65.12 65.12 Ò. EtO₂C-/ -CF₃ ℃F₃ 3d 40 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 30 20 10 0

----0.000 -4.235 -4.221 -4.206 -3.803 -3.772 2.334 2.319 2.304 2.289 2.274 1.932 -- 1.432 0 -CF₃ CI ℃F₃ 3e 1.98H 2.06-1 1.00-1 1.054 2.01^A 1.074 1.044 **2.00**H 2.09 7.0 10.0 9.5 9.0 8.5 8.0 7.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0. 138.66 131.91 130.94 130.94 128.45 128.45 125.55 125.55 125.55 125.55 125.55 122.65 119.75 111.77 108.42 0 -CF₃ CI CF3 3e 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectrum

S66

- 1.741 -- 0.000 С MeO CF₃ ℃F₃ 3k 1.00H 0.98H 3.00-1.02 4.0 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0. 138.04 136.80 132.13 130.89 130.89 125.47 125.47 125.55 112.5.55 1112.5.55 1112.5.55 1112.5.55 112.5.5 - 81.60 - 81.31 - 81.03 - 81.03 - 77.00 - 76.68 --- 56.39 CI MeO С -CF₃ ℃F₃ 3k 110 100 90 80 70 60 40 30 10 220 210 200 190 180 170 160 150 140 130 120 50 20 0

¹H NMR (400 MHz, DMSO), ¹³C NMR (100 MHz, DMSO) and ¹⁹F NMR (282 MHz, DMSO) spectrum

∽ 0.077 → -0.000 7.860 7.841 7.713 7.713 7.631 7.611 7.611 7.546 7.546 7.546 7.540 7.400 7.400 7.400 7.337 7.337 7.337 7.337 7.337 6.879 6.879 4.732 4.710 4.688 $\overbrace{\begin{array}{c}3.337\\3.315\\3.293\end{array}}$ CF₃ ℃F₃ 3n J. 1.91 2.00 0.98 0.97 10.99 10.99 2.02 7.5 10.0 9.5 9.0 8.5 8.0 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0. 133.05 133.00 133.00 133.00 133.00 133.00 133.00 133.00 133.00 133.00 133.00 133.00 133.00 133.00 133.00 133.00 125.51 112.55 111.75 112.55 111.75 112.55 111.75 112.55 111.75 112.55 111.75 112.55 111.75 112.55 111.75 112.55 111.75 112.55 111.75 112.55 111.75 112.55 111.75 112.55 111.75 112.55 111.75 112.55 111.75 112.55 111.75 112.55 11 — 163.41 -CF₃ ℃F₃ 3n 210 140 130 120 110 100 90 80 60 40 30 10 220 200 190 180 170 160 150 70 **50** 20 0

— 1.312 3.3733.300 - 2.457 8.079 8.076 8.076 7.867 7.867 7.867 7.867 7.867 7.847 7.699 7.699 7.691 7.591 7.591 7.591 7.591 7.591 7.591 7.591 7.591 7.591 7.593 6.739 6.739 6.737 Me CF₃ ℃F₃ C 3p 0.98-I 3.00H 0.991 1.024 1.014 1.014 1.994 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0. -142.30 -142.69 -134.05 -134.05 -130.83 -130.83 -130.83 -130.83 -130.83 -130.83 -130.83 -130.83 -132.24 -122.22 -112.32 -117.01 -117.0 81.77 81.50 81.50 81.22 80.94 - 80.94 39.63 39.42 39.42 39.21 39.20 39.00 38.79 38.37 38.37 27.80 Me -CF₃ Ó ℃F₃ 3p

¹H NMR (400 MHz, DMSO), ¹³C NMR (100 MHz, DMSO) and ¹⁹F NMR (282 MHz, DMSO) spectrum

110

100

90

80

70

60

50

40

30

20

10 0

220 210

200

190

180

170

160 150 140

130

120

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectrum

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (282 MHz, CDCl₃) spectrum

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (282 MHz, CDCl₃) spectrum

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectrum

S102

S104

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectrum

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectrum

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectrum

S110

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectrum

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectrum

 $^{1}\mathrm{H}$ NMR (400 MHz, DMSO), $^{13}\mathrm{C}$ NMR (100 MHz, DMSO) and $^{19}\mathrm{F}$ NMR (376 MHz, DMSO) spectrum

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectrum

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectrum

S130

