Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Synthesis of the bis(cyclohexenone) core of (–)-lomaiviticin A.

John A. Rose,¹ Subham Mahapatra,¹ Xin Li,¹ Chao Wang,¹ Lei Chen,¹ Steven M. Swick,¹ and Seth B. Herzon^{*,1,2}

¹Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States. ²Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States

*seth.herzon@yale.edu

Supporting Information

Index

1.	General experimental procedures	
2.	Materials	
3.	Instrumentation	
4.	Synthetic procedures	
5.	Crystallographic analysis of the thiocarbonate 17	
6.	Catalog of nuclear magnetic resonance spectra	
7.	References	S101

General experimental procedures. All reactions were performed in single-neck, flamedried, round-bottomed flasks fitted with rubber septa under a positive pressure of argon, unless otherwise noted. Air- and moisture-sensitive liquids were transferred via syringe or stainless steel cannula, or were handled in a nitrogen-filled drybox (working oxygen level <10 ppm). Organic solutions were concentrated by rotary evaporation at 28–32 °C. Flashcolumn chromatography was performed as described by Still et al.,¹ employing silica gel (SiliaFlash® P60, 60 Å, 40–63 µm particle size) purchased from SiliCycle (Québec, Canada). Analytical thin-layered chromatography (TLC) was performed using glass plates pre-coated with silica gel (250 µm, 60 Å pore size) impregnated with a fluorescent indicator (254 nm). TLC plates were visualized by exposure to ultraviolet light (UV) and/or submersion in aqueous ceric ammonium molybdate solution (CAM) or aqueous potassium permanganate solution (KMnO₄), followed by brief heating on a hot plate (120 °C, 10–15 s).

Materials. Commercial solvents and reagents were used as received with the following Dess-Martin periodinane was purchased from Alfa Aesar and used as exceptions. received. Dichloromethane, ether, N,N-dimethylformamide, tetrahydrofuran, and toluene were purified according to the method of Pangborn et al.² Degassed solvents were prepared via freeze-pump-thaw cycling. Pyridine was distilled from calcium hydride under an atmosphere of nitrogen immediately prior to use. Triethylamine was distilled from calcium hydride under an atmosphere of nitrogen immediately prior to use. N-Methylmorpholine was distilled from calcium hydride under an atmosphere of argon, and stored under argon at 23 °C. Concentrations of organolithium reagents were determined by titration against a standard solution of salicylaldehyde phenylhydrazone.³ Concentrations of Grignard reagents were determined by titration against a standard solution of iodine and lithium chloride in tetrahydrofuran.⁴ Trimethylsilyl trifluoromethanesulfonate was purified by distillation and stored under transfer argon at -20 °C. vacuum 2-Nitrobenzenesulfonylhydrazide (NBSH) was prepared according to the method of Myers et al.⁵ Tris(dibenzylideneacetone)dipalladium chloroform complex, JohnPhos, copper (I) thiophene-2-carboxylate, chromium trioxide, methanesulfonic anhydride, lithium chloride, and sodium methanesulfonate were stored and handled in a nitrogen-filled drybox. The ketone 7 was prepared according to a published procedure.⁶ Dimethyldioxirane (DMDO) was prepared and titrated according to the method of Taber et al.⁷

Instrumentation. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded at 400, 500, or 600 MHz at 24 °C, unless otherwise stated. Chemical shifts are expressed in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃, δ 7.26; C₆D₅H, δ 7.16). Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q= quartet, p = pentet, m = multiplet and/or multiple resonances, br = broad), integration, coupling constants in Hertz, and assignment. Proton-decoupled carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded at 100, 125, or 150 MHz at 24 °C, unless otherwise stated. Chemical shifts are expressed in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonances of the NMR solvent (CDCl₃, δ 77.0, C₆D₆, δ 128.0). Two dimensional nuclear Overhauser effect spectroscopy (2D NOESY) experiments were performed at 500 MHz at 23 °C, unless otherwise noted.

Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra were obtained using a Thermo Electron Corporation Nicolet 6700 FTIR spectrometer referenced to a polystyrene standard. Data are represented as follows: frequency of absorption (cm⁻¹), intensity of absorption (s = strong, m = medium, w = weak, br = broad). High-resolution mass spectrometry (HRMS) were obtained on a Waters UPLC/HRMS instrument equipped with a dual API/ESI high-resolution mass spectrometry detector and photodiode array detector. Unless otherwise noted samples were eluted over a reverse-phase C18 column (1.7 µm particle size, 2.1 × 50 mm) with a linear gradient of 5% acetonitrile–water containing 0.1% formic acid→95% acetonitrile–water containing 0.1% formic acid for 12 min, at a flow rate of 600 µL/min. Optical rotations were measured on a Rudolph Research Analytical Autopol IV polarimeter equipped with a sodium (589 nm, D) lamp. Optical rotation data are represented as follows: specific rotation ([α]^T_D,), concentration (g/mL), and solvent.

Synthetic procedures.

Note: Synthetic intermediates appearing in the Supporting Information only are numbered consecutively beginning with **S1**.

Synthesis of 4-O-benzyl-3-hydroxy-L-rhamnal (9):

Benzyl bromide (24.9 mL, 209 mmol, 2.00 equiv), a solution of sodium hydroxide (41.9 g, 1.05 mol, 10.0 equiv) in water (42 mL), and tetrabutylammonium iodide (7.75 g, 21.0 mmol, 0.200 equiv) were added in sequence to a solution of 3,4-di-*O*-acetyl-6-deoxy-L-glucal (8, 22.4 g, 105 mmol, 1 equiv) in dichloromethane (52 mL) at 23 °C. The reaction mixture was stirred for 2.5 d at 23 °C. The product mixture was diluted with saturated aqueous ammonium chloride solution (300 mL). The diluted solution was extracted with dichloromethane (3×200 mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated.

Potassium carbonate (3.10 g, 22.0 mmol, nominally 0.20 equiv) was added to a solution of the unpurified residue obtained in the preceding step in methanol (210 mL) at 23 °C. The reaction mixture was stirred for 3 h at 23 °C. The product mixture was diluted with saturated aqueous ammonium chloride solution (400 mL). The diluted solution was extracted with dichloromethane (3×300 mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with 10% ethyl acetate–hexanes) to provide 4-*O*-benzyl-3-hydroxy-L-rhamnal (9) as a white solid (16.7 g, 74% over two steps).

Spectroscopic data for 4-*O*-benzyl-3-hydroxy-L-rhamnal (9) obtained in this way were in agreement with literature values.⁸

 R_f = 0.20 (30% ethyl acetate–hexanes, CAM). ¹H NMR (500 MHz, CDCl₃): δ 7.40 − 7.35 (m, 4H, H₈, H₉), 7.32 (td, *J* = 5.9, 2.6 Hz, 1H, H₁₀), 6.32 (dd, *J* = 6.0, 1.7 Hz, 1H, H₁), 4.85 (d, *J* = 11.5 Hz, 1H, H₇), 4.79 (d, *J* = 11.5 Hz, 1H, H₇), 4.69 (dd, *J* = 6.0, 2.4 Hz, 1H, H₂), 4.35 (d, *J* = 6.9 Hz, 1H, H₃), 3.91 (dq, *J* = 9.8, 6.5 Hz, 1H, H₅), 3.28 (dd, *J* = 9.6, 6.9 Hz, 1H, H₄), 2.00 (s, 1H, H₁₁), 1.41 (d, *J* = 6.5 Hz, 3H, H₆). ¹³C NMR (125 MHz, CDCl₃): δ 144.6, 138.3, 128.6, 128.0, 127.9, 103.2, 82.4, 74.2, 74.1, 69.9, 17.6. IR (ATR-FTIR), cm⁻¹: 3272 (br), 1645 (s), 1248 (s), 1099 (s), 742 (s). $[\alpha]_D^{21} = -4.9^\circ$ (*c* = 2.0, CHCl₃).

Rose et al. "Synthesis of the bis(cyclohexenone) core of (–)-lomaiviticin A." *Chem. Sci.*

Synthesis of 4-O-benzyl-3-methoxy-L-rhamnal (S1):

Sodium hydride (60% dispersion in mineral oil, 4.48 g, 112 mmol, 1.30 equiv) was added to a solution of 4-*O*-benzyl-3-methoxy-L-rhamnal (**9**, 19.0 g, 86.0 mmol, 1 equiv) in *N*,*N*dimethylformamide (220 mL) at 0 °C. The reaction mixture was stirred for 15 min at 0 °C. Methyl iodide (6.40 mL, 104 mmol, 1.20 equiv) was then added dropwise via syringe. The reaction mixture was stirred for 1 h at 0 °C. The product mixture was diluted with ethyl acetate (600 mL). The diluted product mixture was washed sequentially with water (2 × 500 mL) and saturated aqueous sodium chloride solution (500 mL). The washed organic layer was dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with 10% ethyl acetate–hexanes) to provide 4-*O*-benzyl-3-methoxy-L-rhamnal **S1** as a pale oil (17.1 g, 85%).

 R_f = 0.40 (20% ethyl acetate–hexanes, CAM). ¹H NMR (500 MHz, CDCl₃): δ 7.41 − 7.34 (m, 4H, H₈, H₉), 7.33 − 7.29 (m, 1H, H₁₀), 6.38 (dd, *J* = 6.1, 1.4 Hz, 1H, H₁), 4.89 (d, *J* = 11.5 Hz, 1H, H₇), 4.86 (dd, *J* = 6.1, 2.5 Hz, 1H, H₂), 4.72 (d, *J* = 11.4 Hz, 1H, H₇), 4.01 (ddd, *J* = 6.5, 2.5, 1.5 Hz, 1H, H₃), 3.95 (dd, *J* = 9.0, 6.4 Hz, 1H, H₅), 3.41 (m, 4H, H₄, H₁₁), 1.39 (d, *J* = 6.4 Hz, 3H, H₆). ¹³C NMR (125 MHz, CDCl₃) δ 144.8, 138.4, 128.4, 127.9, 127.7, 99.8, 79.1, 78.3, 73.9, 73.8, 55.8, 17.5. IR (ATR-FTIR), cm⁻¹: 2882 (m), 1647 (m), 1104 (s), 1055 (s), 737 (m). HRMS-ESI (*m*/*z*):* [2×M − CH₃OH − CH₃O]⁺ calcd for C₂₆H₂₉O₄, 405.2060; found, 405.2092. [*α*]_D²¹ = −5.9 (c = 2.0, CHCl₃).

* The parent ion is believed to derived from ionization and dimerization of S1, as shown:

Rose et al. "Synthesis of the bis(cyclohexenone) core of (–)-lomaiviticin A." *Chem. Sci.*

Synthesis of the glycosyl acetate 10:

Triphenylphosphine hydrogen bromide (1.77 g, 5.00 mmol, 0.06 equiv) was added to a solution of 4-*O*-benzyl-3-methoxy-L-rhamnal (**S1**, 17.1 g, 73.0 mmol, 1 equiv) in dichloromethane (430 mL) at 23 °C. The resulting solution was stirred for 15 min at 23 °C. Acetic acid (7.90 mL, 138 mmol, 1.60 equiv) was then added. The reaction mixture was then stirred for 5 h at 23 °C. The product mixture was diluted with saturated aqueous sodium bicarbonate solution (400 mL). The diluted solution was extracted with dichloromethane (2×200 mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with 10% ethyl acetate–hexanes initially, grading to 30% ethyl acetate–hexanes, two steps) to provide the glycosyl acetate **10** as a pale oil (20.4 g, 95%).

R_f = 0.20 (20% ethyl acetate–hexanes, CAM). ¹H NMR (500 MHz, CDCl₃): δ 7.40 – 7.32 (m, 4H, H₈, H₉), 7.30 (d, J = 6.3 Hz, 1H, H₁₀), 6.16 (dd, J = 3.7, 1.6 Hz, 1H, H₁), 4.92 (d, J = 11.0 Hz, 1H, H₇), 4.66 (d, J = 11.0 Hz, 1H, H₇), 3.80 (dq, J = 9.5, 6.2 Hz, 1H, H₅), 3.66 (ddd, J = 11.4, 8.7, 5.0 Hz, 1H, H₃), 3.46 (s, 3H, H₁₁), 3.09 (t, J = 9.2 Hz, 1H, H₄), 2.28 (ddd, J = 13.6, 5.0, 1.7 Hz, 1H, H₂), 2.07 (s, 3H, H₁₂), 1.68 (ddd, J = 13.6, 11.4, 3.6 Hz, 1H, H₂), 1.28 (d, J = 6.3 Hz, 3H, H₆) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 169.5, 138.4, 128.4, 128.0, 127.7, 91.8, 83.5, 78.5, 75.2, 69.6, 57.3, 33.9, 21.1, 18.2 ppm. IR (ATR-FTIR), cm⁻¹: 2934 (w), 1750 (s), 1194 (m), 1101 (s), 965 (m). HRMS-ESI (*m*/*z*): [M + Na]⁺ calcd for C₁₆H₂₂O₅Na, 317.1365; found, 317.1377. [α]²¹_D = -79.9° (*c* = 2.0, CHCl₃).

Synthesis of the tertiary alcohol 11:

A solution of ethylmagnesium bromide in ether (3.0 M, 1.86 mL, 5.58 mmol, 1.50 equiv) was added dropwise via syringe to a solution of the ketone 7 (1.31 g, 3.72 mmol, 1 equiv) in toluene (40 mL) at -78 °C. The reaction mixture was stirred for 10 min at -78 °C. The product mixture was diluted with saturated aqueous ammonium chloride solution (100 mL). The diluted solution was extracted with ether (3 × 100 mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with hexanes initially, grading to 2% ethyl acetate–hexanes, one step) to provide the tertiary alcohol **11** as a colorless oil (986 mg, 70%).

 R_f = 0.40 (5% ethyl acetate–hexanes, CAM). ¹H NMR (500 MHz, CDCl₃): δ 6.50 (t, *J* = 4.1 Hz, 1H, H₁), 4.02 (dd, *J* = 7.7, 2.6 Hz, 1H, H₄), 2.93 (s, 1H, H₁₀), 2.23 – 2.13 (m, 1H, H₂), 2.00 – 1.91 (m, 1H, H₂), 1.88 – 1.73 (m, 3H, H₃, H₅), 1.62 (dq, *J* = 14.7, 7.4 Hz, 1H, H₃), 0.90 (s, 9H, H₉), 0.85 (t, *J* = 7.5 Hz, 3H, H₆), 0.11 (s, 3H, H₇), 0.11 (s, 3H, H₈). ¹³C NMR (100 MHz, CDCl₃): δ 140.3, 109.7, 74.7, 69.3, 31.7, 26.7, 26.2, 25.7, 18.0, 8.0, −4.3, −5.1. IR (ATR-FTIR), cm⁻¹: 3549 (br, w), 2930 (m), 1254 (m), 1085 (m), 836 (s). HRMS-ESI (*m*/*z*): [M + Na]⁺ calcd for C₁₄H₂₇IO₂SiNa, 405.0723; found, 405.0743. [α]_D²¹ = −22.6 (*c* = 1.0, CHCl₃).

Rose et al. "Synthesis of the bis(cyclohexenone) core of (–)-lomaiviticin A." *Chem. Sci.*

A solution of hydrogen fluoride in pyridine (0.8 M, 6.50 mL, 5.23 mmol, 1.06 equiv) was added dropwise via syringe to a solution of the glycosyl acetate **10** (1.45 g, 4.93 mmol, 1 equiv) in dichloromethane (37 mL) in a high density polyethylene bottle at -25 °C. The reaction mixture was stirred for 25 min at -25 °C then was warmed to -10 °C for 10 min. The product mixture was diluted with ice-cold water (80 mL). The mixture was transferred to a separatory funnel and the aqueous layer was extracted with dichloromethane (3 × 150 mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated to provide the glycosyl fluoride **6** as a pale oil. The glycosyl fluoride **6** was unstable toward purification and was used directly in the following step.

Partial characterization data for **6**: ¹H NMR (400 MHz, C₆D₆): δ 7.25 (d, *J* = 7.1 Hz, 2H, H₈), 7.17-7.11 (m, 2H, H₉), 7.09-7.02 (m, 1H, H₁₀), 5.37 (d, *J* = 52.4, 1 H, H₁), 4.84 (d, *J* = 11.5 Hz, 1H, H₇), 4.48 (d, *J* = 11.5 Hz, 1H, H₇), 4.01 (dq, *J* = 9.6, 6.2 Hz, 1 H, H₅), 3.58 (ddd, *J* = 11.3, 8.8, 5.1 Hz, 1H, H₃), 3.01 (s, 3H, H₁₁), 2.95 (t, *J* = 9.2 Hz, 1H, H₄), 2.05 (dtd, *J* = 13.7, 4.9, 1.6 Hz, 1H, H₂), 1.22 (d, *J* = 6.2 Hz, 3H, H₆), 1.20 (dddd, *J* = 52.4, 13.7, 11.4, 3.6 Hz, 1H, H₂).

Boron trifluoride diethyl etherate complex (640 μ L, 5.18 mmol, 1.05 equiv) was added dropwise via syringe over 25 min to a solution of the unpurified glycosyl fluoride 6 obtained in the preceding step (nominally 4.93 mmol, 1 equiv) and the tertiary alcohol **11** (3.77 g, 9.87 mmol, 2.00 equiv) in tetrahydrofuran (52 mL) at -25 °C. The reaction mixture was stirred for 1.5 h at -25 °C. The product mixture was diluted with saturated aqueous sodium bicarbonate solution (75 mL). The diluted solution was extracted with dichloromethane (2 × 125 mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with 2% ethyl acetate–hexanes initially, grading to 6% ethyl acetate–hexanes, two steps) to provide the glycoside **12** as a colorless oil (1.37 g, 45% over two steps).

 $R_f = 0.40 (10\% \text{ ethyl acetate-hexanes, CAM})$. ¹H NMR (600 MHz, CDCl₃): δ 7.38 – 7.32 (m, 4H, H₁₉, H₂₀), 7.28 – 7.26 (m, 1H, H₂₁), 6.51 (d, J = 5.4 Hz, 1H, H₅), 5.49 (d, J = 3.3 Hz, 1H, H₁₁), 4.89 (d, J = 11.2 Hz, 1H, H₁₁), 4.65 (d, J = 11.2 Hz, 1H, H₁₁), 4.30 (dq, J = 11.2 Hz, 1H, H₁₁), 4.89 (d, J = 11.2 Hz, 1H, H₁₁), 4.65 (d, J = 11.2 Hz, 1H, H₁₁), 4.30 (dq, J = 11.2 Hz, 1H, H₁₁), 4.89 (d, J = 11.2 Hz, 1H, H₁₁), 4.80 (dq, J = 11.2 Hz, H₁₁), 4.80 (dq, J = 11.2 Hz, H₁₁), 4.80 (dq, J = 11.2 Hz, H₁₁), 4.80 (dq, J = 11.2 Hz,

Rose et al. "Synthesis of the bis(cyclohexenone) core of (–)-lomaiviticin A." *Chem. Sci.*

9.6, 6.3 Hz, 1H, H₁₅), 3.92 – 3.86 (m, 1H, H₄), 3.75 (ddd, J = 11.5, 8.7, 4.9 Hz, 1H, H₁₃), 3.44 (s, 1H, H₁₇), 3.01 (t, J = 9.2 Hz, 1H, H₁₄), 2.29 (dd, J = 12.5, 5.0 Hz, 1H, H₁₂), 2.15 (dq, J = 14.6, 7.4 Hz, 1H, H₅), 2.08 – 2.01 (m, 3H, H₂, H₃), 1.88 (dq, J = 14.7, 7.5 Hz, 1H, H₅), 1.61 – 1.58 (m, 1H, H₃), 1.51 (td, J = 12.0, 3.9 Hz, 1H, H₁₂), 1.26 (d, J = 6.3 Hz, 3H, H₁₆), 0.90 (s, 9H, H₁₀), 0.82 (t, J = 7.4 Hz, 3H, H₆), 0.09 (s, 3H, H₈), 0.08 (s, 3H, H₉) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 142.6, 139.2, 128.4, 128.0, 127.6, 106.9, 92.8, 84.9, 82.5, 79.1, 74.8, 70.7, 67.4, 57.3, 36.5, 29.1, 27.5, 26.5, 25.9, 18.2, 18.1, 8.9, -4.0, -4.8 ppm. IR (ATR-FTIR), cm⁻¹: 2930 (m), 1102 (s), 1035 (m), 994 (s). HRMS-ESI (*m*/*z*): [M + Na]⁺ calcd for C₂₈H₄₅INaO₅Si, 639.1973; found, 639.1988.[α]_D²¹ = +40.7 (*c* = 1.0, CHCl₃).

A solution of *tert*-butyllithium in pentane (1.7 M, 11.0 mL, 18.8 mmol, 2.20 equiv) was added dropwise via syringe to a solution of the glycoside **12** (5.26 g, 8.53 mmol, 1 equiv) in tetrahydrofuran (120 mL) at -78 °C. The reaction mixture was stirred for 30 min at -78 °C. A solution of trimethyltin chloride in tetrahydrofuran (1.0 M, 23.5 mL, 23.5 mmol, 2.75 equiv) was then added dropwise via syringe. The reaction mixture was warmed to -10 °C over 2.5 h. The product mixture was diluted sequentially with water (250 mL) and ether (400 mL). The resulting mixture was transferred to a separatory funnel and the layers that formed were separated. The aqueous layer was extracted with ether (3 × 500 mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with hexanes buffered with 2% triethylamine initially, grading to 3% ethyl acetate–hexanes buffered with 2% triethylamine, three steps) to provide the vinyl stannane **13** as a colorless oil (4.79 g, 86%).

R_f = 0.55 (10% ethyl acetate–hexanes; CAM). ¹H NMR (500 MHz, CDCl₃): δ 7.37 – 7.25 (m, 5H, H₁₉, H₂₀, H₂₁), 5.89 (d, J = 3.2 Hz, 1H, H₁), 5.60 (d, J = 2.4 Hz, 1H, H₁₁), 4.90 (d, J = 11.4 Hz, 1H, H₁₈), 4.65 (d, J = 11.4 Hz, 1H, H₁₈), 3.97 – 3.90 (m, 1H, H₁₅), 3.81 (dd, J = 11.5, 3.3 Hz, 1H, H₄), 3.73 (ddd, J = 11.0, 8.6, 4.8 Hz, 1H, H₁₃), 3.41 (s, 3H, H₁₇), 2.98 (t, J = 9.0 Hz, 1H, H₁₄), 2.32 – 2.19 (m, 3H. H₂, H₅, H₁₂), 2.14 – 2.07 (m, 1H, H₂), 2.00 (qd, J = 11.5, 5.7 Hz, 1H, H₃), 1.60 – 1.46 (m, 3H, H₃, H₅, H₁₂), 1.22 (d, J = 6.2, 3H, H₁₆), 0.90 (s, 9H, H₁₁₀), 0.77 (t, J = 7.5 Hz, 3H, H₆), 0.16 (s, 9H, H₂₂, H₂₃, H₂₄), 0.09 (s, 3H, H₈), 0.08 (s, 3H, H₉) ppm.¹³C NMR (125 MHz, CDCl₃): δ 146.6, 140.4, 139.4, 128.3, 127.8, 127.4, 92.4, 84.9, 82.3, 79.2, 74.6, 72.7, 67.2, 57.0, 36.6, 28.5, 27.3, 26.8, 26.0, 18.6, 18.3, 9.5, -3.7, -4.8, -7.1 ppm. IR (ATR-FTIR), cm⁻¹: 2930 (m), 1099 (s), 1077 (m), 986 (s), 771 (s). [α]_D²¹ = +56.1° (*c* = 1.0, CHCl₃).

Rose et al. "Synthesis of the bis(cyclohexenone) core of (–)-lomaiviticin A." *Chem. Sci.*

JohnPhos (2.11 g, 7.06 mmol, 1.00 equiv), tris(dibenzylideneacetone)dipalladium chloroform complex (1.83 g, 1.77 mmol, 0.25 equiv), copper (I) thiophene-2-carboxylate (2.02 g, 10.6 mmol, 1.50 equiv) and tetra-*n*-butylammonium diphenylphosphinate (13.0 g, 28.3 mmol, 4.00 equiv) were added to a round-bottomed flask charged with the vinyl stannane 13 (4.62 g, 7.06 mmol, 1 equiv) and the vinyl iodide 12 (4.89 g, 7.93 mmol, 1.12 equiv) under argon. Degassed N,N-dimethylformamide (36 mL) was added, and the resulting mixture was sonicated for 10 min, with vigorous stirring. The reaction mixture was stirred for 15 h at 23 °C. The product mixture was diluted with ethyl acetate (500 mL). The diluted mixture was transferred to a separatory funnel. The mixture was washed with saturated aqueous sodium chloride solution (3×150 mL). The aqueous layers were combined, and the combined aqueous layers were extracted with ethyl acetate (2×100) mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with 4% ethyl acetate-hexanes initially, grading to 16% ethyl acetate-hexanes, three steps) to provide the diene 4 as a pale yellow oil (5.62 g, 81%).

R_f = 0.40 (15% ethyl acetate–hexanes; CAM). ¹H NMR (500 MHz, CDCl₃): δ 7.38 – 7.27 (m, 5H, H₁₈, H₁₉, H₂₀), 6.35 (s, 1H, H₁), 5.62 (d, *J* = 3.7 Hz, 1H, H₁₀), 4.91 (d, *J* = 11.0 Hz, 1H, H₁₇), 4.63 (d, *J* = 11.0 Hz, 1H, H₁₇), 3.91 (dq, *J* = 9.3, 6.2 Hz, 1H, H₁₅), 3.83 (ddd, *J* = 11.3, 8.6, 4.7 Hz, 1H, H₁₂), 3.74 (dd, *J* = 12.0, 3.4 Hz, 1H, H₄), 3.47 (s, 3H, H₁₆), 3.00 (t, *J* = 9.0 Hz, 1H, H₁₃), 2.36 (dd, *J* = 12.8, 4.8 Hz, 1H, H₁₁), 2.24 – 2.00 (m, 5H, H₂, H₃, H₅), 1.56 – 1.51 (m, 2H, H₃, H₁₁), 1.22 (d, *J* = 6.4 Hz, 3H, H₁₅), 0.90 (s, 9H, H₉), 0.76 (t, *J* = 7.4 Hz, 3H, H₆), 0.11 (s, 3H, H₇), 0.09 (s, 3H, H₈). ¹³C NMR (125 MHz, CDCl₃): δ 139.0, 134.5, 130.8, 128.4, 128.2, 127.6, 92.6, 84.8, 82.5, 79.2, 75.0, 74.6, 67.5, 57.2, 36.6, 26.0, 25.9, 25.2, 21.9, 18.3 (2C), 10.3, -3.4, -5.0. IR (ATR-FTIR), cm⁻¹: 2930 (m), 1100 (s), 984 (m), 835 (m). HRMS-ESI (*m*/z): [M + Na]⁺ calcd for C₅₆H₉₀O₁₀Si₂Na, 1029.5550; found, 1029.5578. [*α*]₂^D = +3.6 (*c* = 1.0, CHCl₃).

3,5-Dimethylpyrazole (1.03 g, 10.7 mmol, 35.0 equiv) was added to a stirred suspension of chromium trioxide (1.07 g, 10.7 mmol, 35.0 equiv) in dichloromethane (7.0 mL) at –15 °C. The resulting mixture was stirred for 15 min at –15 °C. A solution of the diene 4 (300 mg, 306 μ mol, 1 equiv) in dichloromethane (7.0 mL) was then added via cannula. The reaction mixture was stirred for 20 h at –15 °C. The product mixture was diluted sequentially with aqueous sodium hydroxide solution (3 M, 35 mL) and ether (100 mL). The diluted solution was washed with aqueous sodium hydroxide solution (3 M, 2 × 35 mL). The aqueous layers were combined, and the combined aqueous layers were extracted with ether (3 × 50 mL). The organic layers were combined, and the combined and the filtrate was concentrated. The residue obtained was triturated with 10% ether–hexanes (~100 mL). The supernatant was filtered, and the filtrate was collected and concentrated. This process was repeated once. The residue obtained was purified by flash-column chromatography (eluting with 6% ethyl acetate–hexanes initially, grading to 24% ethyl acetate–hexanes, three steps) to provide the bis(enone) **S2** as a colorless oil (208.9 mg, 66%).

R_f = 0.30 (20% ethyl acetate–hexanes; CAM). ¹H NMR (600 MHz, CDCl₃): δ 8.06 (d, J = 7.5 Hz, 2H, H₁₆), 7.56 (t, J = 7.4 Hz, 1H, H₁₈), 7.44 (t, J = 7.7 Hz, 2H, H₁₇), 6.71 (s, 1H, H₁), 5.68 (s, 1H, H₉), 4.95 (t, J = 9.0 Hz, 1H, H₁₂), 4.26 (dd, J = 11.0, 4.6 Hz, 1H, H₃), 4.11 (dq, J = 12.4, 6.4 Hz, 1H, H₁₃), 3.78 – 3.74 (m, 1H, H₁₁), 3.34 (s, 3H, H₁₅), 3.03 (dd, J = 16.9, 10.7 Hz, 1H, H₂), 2.67 (dd, J = 16.9, 4.5 Hz, 1H, H₂), 2.48 (dq, J = 15.0, 7.6 Hz, 1H, H₄), 2.36 – 2.34 (m, 1H, H₁₀), 2.16 (dd, J = 14.5, 7.5 Hz, 1H, H₄), 1.82 (ddd, J = 13.2, 10.8, 4.0 Hz, 1H, H₁₀), 1.29 (d, J = 6.2 Hz, 3H, H₁₄), 0.95 (t, J = 7.6 Hz, 3H, H₅), 0.94 (s, 9H, H₈), 0.15 (s, 3H, H₆), 0.14 (s, 3H, H₇). ¹³C NMR (150 MHz, CDCl₃): δ 196.7, 166.0, 153.0, 133.2, 132.8, 130.1, 129.9, 128.5, 93.1, 81.9, 76.8, 76.0, 71.2, 67.4, 57.4, 43.0, 35.4, 30.5, 25.9, 18.2, 17.7, 10.2, -3.6, -4.8. IR (ATR-FTIR), cm⁻¹: 2932 (m), 1726 (s), 1676 (m), 1262 (s), 1096 (s). HRMS-ESI (*m*/*z*): [M + Na]⁺ calcd for C₅₆H₈₂O₁₄Si₂Na, 1057.5135; found, 1057.5184. [α]₂²¹ = -38.1° (c = 1.0, CHCl₃).

Cerium (III) trichloride heptahydrate (2.57 g, 6.89 mmol, 8.00 equiv) was added to a solution of the bis(enone) **S2** (892 mg, 862 µmol, 1 equiv) in 50% tetrahydrofuranmethanol (v/v, 180 mL) at 23 °C. The resulting solution was cooled to 0 °C and stirred for 15 min at 0 °C. Sodium borohydride (1.30 g, 34.46 mmol, 40.0 equiv) was then added. The reaction mixture was stirred for 1.5 h at 0 °C. The product mixture was diluted with saturated aqueous sodium chloride solution (200 mL). The diluted solution was extracted with ethyl acetate (4 × 200 mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with 15% ethyl acetate–hexanes initially, grading to 45% ethyl acetate–hexanes, two steps) to provide the dienyl diol **14** as a colorless oil (684 mg, 76%).

 R_f = 0.60 (40% ethyl acetate–hexanes; CAM). ¹H NMR (600 MHz, CDCl₃): δ 8.09 − 8.07 (m, 2H, H₁₈), 7.57 (t, *J* = 7.4 Hz, 1H, H₂₀), 7.45 (t, *J* = 7.8 Hz, 2H, H₁₉), 6.55 (s, 1H, H₁), 5.50 (s, 1H, H₁₁), 4.94 (t, *J* = 9.2 Hz, 1H, H₁₄), 4.35 − 4.29 (m, 2H, H₂, H₁₅), 3.89 (ddd, *J* = 11.1, 8.7, 4.6 Hz, 1H, H₁₃), 3.66 (dd, *J* = 12.3, 3.5 Hz, 1H, H₄), 3.34 (s, 3H, H₁₇), 2.45 (ddd, *J* = 12.9, 4.7, 1.9 Hz, 1H, H₁₂), 2.30 − 2.19 (m, 2H, H₃, H₅), 2.10 (ddd, *J* = 11.2, 6.9, 3.6 Hz, 1H, H₃), 2.02 (dq, *J* = 14.5, 7.4 Hz, 1H, H₅), 1.80 − 1.74 (m, 2H, H₁₀, H₁₂), 1.21 (d, *J* = 6.2 Hz, 3H, H₁₆), 0.95 (s, 9H, H₉), 0.84 (t, *J* = 7.5 Hz, 3H, H₆), 0.14 (s, 3H, H₈), 0.13 (s, 3H, H₇). ¹³C NMR (150 MHz, CDCl₃): δ 166.1, 137.7, 133.9, 133.2, 130.3, 129.9, 128.5, 92.9, 82.6, 77.2, 76.1, 71.8, 66.8, 57.1, 36.2, 36.0, 26.0, 25.1, 18.2, 17.9, 10.3, −3.5, −5.0. IR (ATR-FTIR), cm⁻¹: 3503 (br, w), 2932 (m), 1727 (s), 1271 (s), 1098 (s). HRMS-ESI (*m*/*z*): [M + Na]⁺ calcd for C₅₆H₈₆O₁₄Si₂Na, 1061.5448; found, 1061.5491. [α]_D²¹ = − 36.9° (*c* = 1.0, CHCl₃).

Rose et al. "Synthesis of the bis(cyclohexenone) core of (–)-lomaiviticin A." *Chem. Sci.*

Diethyl azodicarboxylate (917 mg, 830 μ L, 5.26 mmol, 8.00 equiv) was added dropwise via syringe to a solution of triphenylphosphine (1.52 g, 5.79 mmol, 8.80 equiv) in Nmethylmorpholine (12 mL) at -30 °C. The reaction mixture was stirred for 12 min at -30 °C. A solution of the dienyl diol 9 (684 mg, 658 µmol, 1 equiv) in tetrahydrofuran (12 mL) was then added dropwise via cannula. The resulting mixture was stirred for 20 min at -30°C. 2-Nitrobenzenesulfonyl hydrazine (1.14 g, 5.26 mmol, 8.0 equiv) was then added in one portion. The reaction mixture was stirred for 2 h at -30 °C. The reaction mixture was warmed to -20 °C. The reaction mixture was stirred for 5 h at -20 °C and was then allowed to warm to 23 °C. The reaction mixture was stirred for 16 h at 23 °C. The product mixture was diluted with water (75 mL). The diluted product mixture was extracted with dichloromethane (3×50 mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with 5% ethyl acetate-hexanes initially, grading to 15% ethyl acetate-hexanes, two steps) to provide the transposed diene 15 as a colorless solid (366 mg, 55%).

R_f = 0.50 (15% ethyl acetate–hexanes; CAM). ¹H NMR (600 MHz, CDCl₃): δ 8.07 – 8.05 (m, 2H, H₁₈), 7.60 – 7.57 (m, 1H, H₂₀), 7.47 (t, *J* = 7.8 Hz, 2H, H₁₉), 6.02 (d, *J* = 2.3 Hz, 1H, H₃), 5.73 (d, *J* = 10.3 Hz, 1H, H₂), 5.69 – 5.66 (m, 1H, H₁₁), 4.90 (t, *J* = 9.3 Hz, 1H, H₁₄), 3.97 – 3.93 (m, 2H, H₅, H₁₅), 3.79 (ddd, *J* = 11.6, 8.9, 4.9 Hz, 1H, H₁₃), 3.33 (s, 3H, H₁₇), 2.80 (s, 3H, H₁), 2.48 (dq, *J* = 14.7, 7.3 Hz, 1H, H₆), 2.32 – 2.21 (m, 3H, H₄, H₁₂), 1.74 (ddd, *J* = 12.7, 11.6, 3.8 Hz, 1H, H₄), 1.61 (dq, *J* = 14.6, 7.2 Hz, 1H, H₆), 1.16 (d, *J* = 6.3 Hz, 3H, H₁₆), 0.94 (t, *J* = 7.4 Hz, 3H, H₇), 0.91 (s, 9H, H₁₀), 0.12 (s, 3H, H₉), 0.09 (s, 3H, H₈). ¹³C NMR (150 MHz, CDCl₃): δ 165.9, 133.2, 130.6, 130.5, 129.9, 128.5, 122.3, 92.6, 83.5, 77.2, 76.3, 72.7, 66.2, 57.1, 40.4, 35.8, 32.0, 26.0, 22.6, 18.2, 18.0, 9.2, -3.3, – 5.0. IR (ATR-FTIR), cm⁻¹: 2930 (m), 1727 (s), 1267 (s), 1104 (s), 978 (s). HRMS-ESI (*m*/*z*): [M + Na]⁺ calcd for C₅₆H₈₆O₁₂Si₂Na, 1029.5550; found, 1029.5594. [*α*]²¹_{*D*} = -20.5 (*c* = 1.0, CHCl₃).

N-Methylmorpholine-*N*-oxide (25.2 mg, 215 µmol, 6.00 equiv) and a solution of osmium (IV) tetroxide in water (2% w/v, 107 µL, 7.17 µmol, 0.200 equiv) were added in sequence to a solution of the transposed diene **15** (36.1 mg, 35.8 µmol, 1 equiv) in *tert*-butanol–tetrahydrofuran–water (7:2:1 v/v, 1.4 mL) at 23 °C. The reaction mixture was stirred for 42 h at 23 °C. The product mixture was diluted sequentially with saturated aqueous sodium sulfite solution (10 mL) and ethyl acetate (20 mL). The biphasic mixture was stirred vigorously for 60 min at 23 °C. The biphasic mixture was transferred to a separatory funnel, and the aqueous layer was extracted with ethyl acetate (4 × 20 mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with 15% ethyl acetate–hexanes initially, grading to 45% ethyl acetate–hexanes, two steps) to provide the tetraol **16** as a colorless oil (29.0 mg, 75%).

R_f = 0.30 (40% ethyl acetate in hexanes; CAM). ¹H NMR (600 MHz, CDCl₃): δ 8.07 – 8.05 (m, 2H), 7.59 – 7.56 (m, 1H), 7.48 – 7.45 (m, 2H), 6.21 (t, *J* = 4.3 Hz, 1H, H₁₃), 5.99 (s, 1H, H, H₂), 4.89 (dd, *J* = 8.2, 6.6 Hz, 1H, H₁₆), 4.37 (dd, *J* = 12.1, 4.2 Hz, 1H, H₅), 4.25 (dq, *J* = 8.2, 6.4 Hz, 1H, H₁₇), 4.15 – 4.09 (m, 2H, H₃, H₁₁), 3.79 (ddd, *J* = 8.7, 6.6, 4.6 Hz, 1H, H₁₅), 3.36 (s, 3H, H₁₉), 2.75 (s, 1H, H₁), 2.45 – 2.39 (m, 2H, H₆, H₁₂), 2.19 (dt, *J* = 13.7, 4.4 Hz, 1H, H₁₄), 2.08 (dt, *J* = 13.1, 3.9 Hz, 1H, H₄), 1.92 – 1.83 (m, 2H, H₄, H₁₄), 1.70 – 1.65 (m, 1H, H₆), 1.27 (d, *J* = 6.5 Hz, 3H, H₁₇), 0.97 (t, *J* = 7.3 Hz, 3H, H₇), 0.91 (s, 9H, H₁₀), 0.15 (s, 6H, H₈, H₉). ¹³C NMR (150 MHz, CDCl₃): δ 165.9, 133.3, 130.0, 129.9, 128.6, 92.7, 86.2, 76.0, 75.4, 69.5, 68.8, 68.7, 67.8, 57.6, 41.9, 34.1, 33.2, 26.0, 23.6, 18.2, 17.8, 9.6, -3.2, -4.8. IR (ATR-FTIR), cm⁻¹: 3342 (br), 2933 (w), 1726 (s), 1261 (s), 1097 (s). HRMS-ESI (*m*/*z*): [M + Na]⁺ calcd for C₅₆H₉₀O₁₆Si₂Na, 1097.5660; found, 1097.5705. [*α*]_D²¹ = -73.6 (*c* = 1.0, CHCl₃)

Thiocarbonyldiimidazole (90% purity, 12.1 mg, 61.0 μ mol, 8.00 equiv) was added to a solution of the tetraol **16** (8.2 mg, 7.6 μ mol, 1 equiv) in toluene (500 μ L) at 23 °C. The reaction vessel was placed in an oil bath that had been preheated to 110 °C. The reaction mixture was stirred and heated for 24 h at 110 °C. The product mixture was cooled to 23 °C. The cooled product mixture was purified (without concentration) by flash-column chromatography (eluting with 10% ethyl acetate–hexanes initially, grading to 30% ethyl acetate–hexanes, two steps) to provide the cyclic thiocarbonate **17** as a white solid (6.4 mg, 72%).

Single crystals of **17** suitable for X-ray analysis were grown by the slow evaporation (4 °C) of solutions of **17** in 5% dichloromethane–hexanes.

R_f= 0.55 (30% ethyl acetate–hexanes; CAM). ¹H NMR (600 MHz, CDCl₃): δ 8.28 (d, J= 7.4 Hz, 2H, H₁₈), 7.57 (t, J = 7.4 Hz, 1H, H₂₀), 7.45 (t, J = 7.8 Hz, 2H, H₁₉), 6.01 (dd, J = 4.9, 2.6 Hz, 1H, H₁₁), 5.06 (t, J = 7.2 Hz, 1H, H₃), 4.91 (dd, J = 9.4, 7.5 Hz, 1H, H₁₁), 4.69 (d, J = 7.6 Hz, 1H, H₂), 4.21 (dq, J = 9.5, 6.3 Hz, 1H, H₁₅), 4.13 (dd, J = 12.4, 3.8 Hz, 1H, H₅), 3.81 (ddd, J = 10.0, 7.5, 4.6 Hz, 1H, H₁₃), 3.39 (s, 3H, H₁₇), 3.22 (s, 1H, H₁), 2.50 (dq, J = 14.6, 7.3 Hz, 1H, H₆), 2.36 (ddd, J = 15.1, 12.4, 6.9 Hz, 1H, H₄), 2.16 (ddd, J = 13.6, 4.7, 2.6 Hz, 1H, H₁₂), 2.02 (dd, J = 15.2, 3.8 Hz, 1H, H₄), 1.90 (ddd, J = 13.5, 10.1, 4.9 Hz, 1H, H₁₂), 1.59 – 1.53 (m, 1H, H₆), 1.21 (d, J = 6.3 Hz, 3H, H₁₅), 1.01 (t, J = 7.4 Hz, 3H, H₇), 0.91 (s, 9H, H₁₀), 0.17 (s, 3H, H₉), 0.15 (s, 3H, H₈).¹³C NMR (150 MHz, CDCl₃): δ 189.3, 166.3, 133.3, 130.6, 129.9, 128.4, 93.7, 82.6, 81.8, 79.1, 76.0, 68.3, 67.1, 58.7, 40.6, 35.5, 32.7, 30.5, 25.8, 25.4, 18.1, 17.9, 8.9, -4.1, -4.8. IR (ATR-FTIR), cm⁻¹: 2955 (m), 1724 (s), 1287 (s), 976 (m). 3342, 2933, 2857, 1726, 1452, 1261, 1097, 1067, 1026, 978, 886, 711 cm⁻¹. HRMS-ESI (*m*/*z*): [M + Na]⁺ calcd for C₅₈H₈₆O₁₆S₂Si₂Na, 1181.4788; found, 1181.4825. [α]²¹ = -20.2 (*c* = 0.5, CHCl₃).

Triethylamine (62.9 mg, 87.0 μ L, 621 μ mol, 8.00 equiv) and a solution of methanesulfonic anhydride (54.1 mg, 311 μ mol, 4.00 equiv) in dichloromethane (1.6 mL) were added in sequence to a solution of the tetraol **16** (83.5 mg, 77.6 μ mol, 1 equiv) in dichloromethane (3.0 mL) at -20 °C. The reaction mixture was stirred for 3 h at -20 °C. The product mixture was diluted with saturated aqueous sodium bicarbonate solution (15 mL). The diluted solution was extracted with dichloromethane (3 × 30 mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with 20% ethyl acetate–hexanes initially, grading to 80% ethyl acetate–hexanes, three steps) to provide the bis(mesylate) **18** as a colorless oil (68.0 mg, 71%).

R_f = 0.40 (60% ethyl acetate–hexanes; CAM). ¹H NMR (600 MHz, CDCl₃): δ 8.01 (d, *J* = 7.3 Hz, 2H, H₂₀), 7.59 (t, *J* = 7.4 Hz, 1H, H₂₂), 7.47 (t, *J* = 7.8 Hz, 2H, H₂₁), 6.15 (t, *J* = 4.6 Hz, 1H, H₁₃), 5.58 (bs, 1H, H₁₁), 4.91 – 4.89 (m, 2H, H₃, H₁₆), 4.33 – 4.29 (m, 2H, H₂, H₅), 4.22 (p, *J* = 6.5 Hz, 1H, H₁₇), 3.67 (ddd, *J* = 7.4, 5.8, 4.1 Hz, 1H, H₁₅), 3.36 (s, 3H, H₁₉), 2.92 (s, 3H, H₁₂), 2.46 – 2.40 (m, 2H, H₁, H₆), 2.35 (dt, *J* = 13.6, 4.7 Hz, 1H, H₄), 2.10 (dt, *J* = 13.6, 4.7 Hz, 1H, H₁₄), 2.01 – 1.93 (m, 2H, H₄, H₁₄), 1.70 (dq, *J* = 14.3, 7.0 Hz, 1H, H₆), 1.35 (d, *J* = 6.5 Hz, 3H, H₁₈), 0.99 (t, *J* = 7.3 Hz, 3H, H₇), 0.91 (s, 9H, H₁₀), 0.17 (s, 3H, H₈), 0.15 (s, 3H, H₉). ¹³C NMR (150 MHz, CDCl₃): δ 166.1, 133.5, 130.0, 129.8, 128.7, 91.9, 85.9, 81.0, 76.5, 73.9, 69.4, 67.5, 57.4, 43.0, 37.5, 34.2, 33.4, 30.5, 25.9, 23.4, 18.2, 17.7, 9.5, -3.3, -5.0. IR (ATR-FTIR), cm⁻¹: 3407 (br), 2955 (m), 1728 (s), 1271 (s), 1095 (s). HRMS-ESI (*m*/*z*): [M + Na]⁺ calcd for C₅₈H₉₄O₂₀S₂Si₂Na, 1253.5211; found, 1253.5258. [*α*]_{*D*²} = -55° (*c* = 0.1, CHCl₃).

Rose et al. "Synthesis of the bis(cyclohexenone) core of (–)-lomaiviticin A." *Chem. Sci.*

Pyridine (46.0 μ L, 568 μ mol, 20.0 equiv) and the Dess–Martin periodinane (120 mg, 284 μ mol, 10.0 equiv) were added in sequence to a solution of the bis(mesylate) **18** (35.0 mg, 28.4 μ mol, 1 equiv) in dichloromethane (2.0 mL) at 23 °C. The reaction mixture was stirred for 48 h at 23 °C. The product mixture was diluted with saturated aqueous sodium bicarbonate solution (15 mL). The diluted solution was extracted with dichloromethane (3 × 20 mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with 20% ethyl acetate–hexanes initially, grading to 60% ethyl acetate–hexanes, two steps) to provide the hemiketal **19** as a colorless oil (30.2 mg, 86%).

 $R_f = 0.55$ (50% ethyl acetate-hexanes; CAM). ¹H NMR (600 MHz, CDCl₃): $\delta 8.13 - 8.08$ $(m, 4H, H_{19}, H_{39}), 7.62 - 7.57 (m, 2H, H_{21}, H_{41}), 7.50 - 7.43 (m, 4H, H_{20}, H_{40}), 5.92 (d, J)$ = 2.3 Hz, 1H, H₃₂), 5.83 (bs, 1H, H₁₂), 5.43 (t, J = 9.2 Hz, 1H, H₂₃), 5.27 (d, J = 2.9 Hz, 1H, H₃), 4.95 - 4.91 (m, 2H, H₁₅, H₃₅), 4.66 (dd, J = 11.1, 2.1 Hz, 1H, H₂), 4.22 (dq, J = 11.1, 2.1 Hz, 1H, H₂), 4.22 (dq, J = 11.1, 2.1 Hz, 1H, H₂), 4.22 (dq, J = 11.1, 2.1 Hz, 1H, H₂), 4.22 (dq, J = 11.1, 2.1 Hz, 1H, H₂), 4.22 (dq, J = 11.1, 2.1 Hz, 1H, H₂), 4.22 (dq, J = 11.1, 2.1 Hz, 1H, H₂), 4.22 (dq, J = 11.1, 2.1 Hz, 1H, H₂), 4.22 (dq, J = 11.1, 2.1 Hz, 1H, H₂), 4.22 (dq, J = 11.1, 2.1 Hz, 11.1, 19.9, 6.3 Hz, 1H, H₃₆), 4.11 – 4.05 (m, 3H, H₃, H₁₆, H₂₃), 3.83 – 3.79 (m, 2H, H₁₄, H₃₄), 3.38 (s, 3H, H₃₈), 3.32 (s, 3H, H₁₈), 3.17 (s, 3H, H₃₁), 3.09 (s, 1H, H₄₂), 3.06 (s, 3H, H₁₁), 2.67 $(dd, J = 11.0, 9.2 Hz, 1H, H_1), 2.56 (d, J = 9.5 Hz, 1H, H_{22}), 2.51 - 2.41 (m, 3H, H_6, H_{26}), 10.51 - 2.5$ H_{33}), 2.37 – 2.28 (m, 2H, H_{13} , H_{24}), 2.23 (dt, J = 14.1, 4.3 Hz, 1H, H_4), 2.11 (ddd, J = 13.6, 9.4, 7.0 Hz, 1H, H₂₄), 1.98 – 1.94 (m, 1H, H₄), 1.80 – 1.73 (m, 2H, H₁₃, H₃₃), 1.64 – 1.56 (m, 2H, H₆, H₂₆), 1.18 (d, J = 6.1 Hz, 3H, H₃₇), 1.17 (d, J = 6.1 Hz, 1H, H₁₇), 1.04 (t, J = 6.1 Hz, 1H, H 7.3 Hz, 3H, H₂₇), 0.97 (t, J = 7.3 Hz, 1H, H₇), 0.91 (s, 9H, H₃₀), 0.90 (s, 9H, H₁₀), 0.14 (s, 3H, H₂₉), 0.13 (s, 6H, H₂₈, H₉), 0.10 (s, 3H, H₈). ¹³C NMR (150 MHz, CDCl₃): δ 166.2, 166.0, 133.3, 133.2, 130.4, 130.2, 130.0, 129.9, 128.6 (2C), 105.0, 92.4, 91.7, 83.7, 82.9, 80.6, 76.1, 76.0, 75.9, 75.5, 70.8, 70.1, 67.0, 66.8, 57.6, 57.3, 52.0, 43.2, 39.3, 39.0, 36.0, 35.7, 35.4, 34.4, 29.9, 25.9 (2C), 23.0, 22.6, 18.2, 18.1, 18.0, 17.8, 10.2, 9.9, -3.3, -3.7, -4.9, -5.1 ppm. IR (ATR-FTIR), cm⁻¹: 2931 (m), 1728 (s), 1269 (s), 1112 (s). HRMS-ESI (m/z): $[M + Na]^+$ calcd for C₅₈H₉₂O₂₀S₂Si₂Na, 1251.5054; found, 1251.5100. $[\alpha]_D^{21} = -$ 22.5° (c = 1.0, CHCl₃).

Lithium chloride (42.2 mg, 996 µmol, 25.0 equiv) and sodium methanesulfonate (235 mg, 1.99 mmol, 50.0 equiv) were added in sequence to a stirred solution of the hemiketal **19** (49.0 mg, 39.8 µmol, 1 equiv) in hexamethylphosphoramide (3.7 mL) at 23 °C. The reaction vessel was placed in an oil bath that had been preheated to 85 °C. The reaction mixture was stirred and heated for 2 h 40 min at 85 °C. The product mixture cooled to 23 °C over 5 min. The cooled product mixture was diluted with ethyl acetate (20 mL). The diluted solution was transferred to a separatory funnel. The solution was washed sequentially with water (2×20 mL) and saturated aqueous sodium chloride solution (20 mL). The washed organic layer was dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with 8% ethyl acetate–hexanes initially, grading to 30% ethyl acetate–hexanes, four steps) to provide separately the starting hemiketal **19** (24.5 mg, 50%, colorless oil) and the *C*₁-symmetric diketone **20** (18.1 mg, 40%, colorless oil).

 $R_f = 0.45$ (30% ethyl acetate-hexanes; CAM). ¹H NMR (600 MHz, CDCl₃): δ 8.26 – 8.18 (m, 2H, H₁₉), 8.07 - 7.98 (m, 2H, H₃₇), 7.63 - 7.57 (m, 2H, H₂₀, H₃₉), 7.54 (t, J = 7.3 Hz, 2H, H₁₉), 7.47 (t, J = 7.6 Hz, 2H, H₃₈), 6.16 (dd, J = 3.9, 1.8 Hz, 1H, H₂), 6.16 (bs, 1H, H_{11}), 6.02 (bs, 1H, H_{30}) 4.96 – 4.87 (m, 3H, H_{14} , H_{15} , H_{33}), 4.25 (dd, J = 11.5, 4.6 Hz, 1H, H_{24}), 3.98 (t, J = 9.0 Hz, 1H, H₄), 3.88 – 3.76 (m, 2H, H_{13} , H_{34}), 3.54 (ddd, J = 11.1, 8.9, 4.6 Hz, 1H, H₃₂), 3.36 (s, 3H, H₁₇), 3.25 (s, 3H, H₃₆), 3.19 (s, 4H, H₁₀, H₁), 2.71 (dq, J =15.2, 7.5 Hz, 1H, H₅), 2.62 (s, 1H, H₂₁) 2.57 - 2.45 (m, 4H, H₃, H₂₂, H₂₃), 2.43 - 2.30 (m, 2H, H₃, H₃₁), 2.21 - 2.14 (m, 1H, H₂₃), 2.11 - 1.99 (m, 2H, H₅, H₁₂), 1.82 - 1.60 (m, 2H, H_{31} , H_{12}), 1.50 - 1.40 (m, 1H, H_5), 1.28 - 1.24 (m, 6H, H_{16} , H_{35}), 0.98 (t, J = 7.4 Hz 3H, H_6) 0.93 (s, 9H, H_9), 0.92 (s, 9H, H_{29}), 0.86 (t, J = 7.4 Hz, 3H, H_{26}) 0.18 (s, 3H, H_7), 0.16 (s, 3H, H₂₇), 0.15 (s, 3H, H₈), 0.11 (s, 3H, H₂₈). ¹³C NMR (150 MHz, CDCl₃): δ 207.1, 202.3, 166.1, 165.6, 133.20, 133.17, 130.3, 130.1, 129.7, 129.6, 128.8, 128.5, 93.1, 92.5, 88.1, 85.5, 79.4, 76.4, 75.6, 75.2, 74.9, 70.5, 67.0, 65.8, 57.7, 57.4, 56.4, 47.2, 38.8, 38.6, 36.8, 35.4, 34.8, 30.6, 29.7, 25.8, 25.8, 24.4, 18.2, 18.0, 17.9, 9.4, 8.6, -3.1, -3.5, -5.0, -5.3 ppm. IR (ATR-FTIR), cm⁻¹: 2934 (m), 1724 (s), 1271 (m), 1095 (s). HRMS-ESI (*m/z*): $[M + Na]^+$ calcd for C₅₇H₈₈O₁₇SSi₂Na, 1155.5173; found, 1155.5223. $[\alpha]_D^{21} = -35.5$ (c = $0.2, CHCl_3).$

A solution of samarium (II) iodide in tetrahydrofuran (0.1 M, 1.8 mL, 180 µmol, 8.00 equiv) was added to a solution of the C_1 -symmetric diketone **20** (25.7 mg, 22.7 µmol, 1 equiv) in degassed tetrahydrofuran–methanol (v/v, 20:1, 4.0 mL) at 0 °C. The reaction mixture was stirred for 30 min at 0 °C. The product mixture was diluted sequentially with saturated aqueous sodium bicarbonate solution (10 mL), saturated aqueous sodium thiosulfate solution (10 mL), and ethyl acetate (40 mL). The diluted solution was washed with saturated aqueous sodium chloride solution (10 mL). The washed organic layer was dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with 10% ethyl acetate–hexanes buffered with 4% triethylamine initially, grading to 30% ethyl acetate–hexanes buffered with 4% triethylamine, two steps) to provide the cyclic enol ether **21** as colorless oil. The enol ether **21** was unstable toward storage and was used directly in the following step.

Palladium (II) acetate (19.1 mg, 85.1 μ mol, 5.00 equiv) was added to a solution of the unpurified cyclic enol ether **21** obtained in the preceding step (nominally 17.0 μ mol, 1 equiv) in dimethyl sulfoxide (2.4 mL) at 23 °C. The headspace was purged with oxygen gas and the vessel was fitted with an oxygen-filled balloon. The reaction mixture was stirred for 16 h at 23 °C. The product mixture was diluted sequentially with water (10 mL), saturated aqueous sodium bicarbonate solution (5 mL), and ethyl acetate (40 mL). The mixture was transferred to a separatory funnel and the layers that formed were separated. The organic layer was washed sequentially with water (10 mL), saturated aqueous sodium chloride solution (10 mL), and saturated aqueous ammonium chloride solution (10 mL). The washed organic layer was dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with 6% ethyl acetate–hexanes initially, grading to 25% ethyl acetate–hexanes, four steps) to provide the enone **22** as a colorless oil (16.0 mg, 91%).

 $R_f = 0.50$ (20% ethyl acetate–hexanes; CAM). ¹H NMR (600 MHz, CDCl₃): δ 8.11 (d, J = 7.8 Hz, 2H, H₁₇), 8.06 (dd, J = 7.1, 1.4 Hz, 2H, H₃₆), 7.59-7.55 (m, 2H, H₁₉, H₃₈), 7.48 – 7.43 (m, 4H, H₁₈, H₃₇), 6.55 (ddd, J = 10.2, 3.3, 1.0 Hz, 1H, H₂₂), 6.25 (d, J = 10.2 Hz, 1H, H₂₁), 5.97 (d, J = 3.6 Hz, 1H, H₁₀), 5.70 (bs, 1H, H₂₉), 4.90 – 4.83 (m, 2H, H₁₃, H₃₂), 4.56

Rose et al. "Synthesis of the bis(cyclohexenone) core of (–)-lomaiviticin A." *Chem. Sci.*

(s, 1H, H₂₃), 4.14 (dt, J = 9.5, 6.1 Hz, 2H, H₁₄), 4.10 – 4.05 (m, 1H, H₄), 3.84 (ddd, J = 11.0, 9.0, 4.9 Hz, 1H, H₁₂), 3.74 (ddd, J = 11.0, 8.8, 4.8 Hz, 1H, H₃₁), 3.32 (s, 4H, H₁₆, H₁), 3.30 (3, 3H, H₃₅), 3.05 (s, 1H, H₂₀) 2.54 (tt, J = 15.4, 7.8 Hz, 1H, H₂), 2.34 (ddd, J = 14.9, 12.2, 7.1 Hz, 1H, H₃), 2.26 – 2.18 (m, 3H, H₂ H₁₁, H₃₀), 2.02 – 1.92 (m, 1H, H₂), 1.88 – 1.79 (m, 1H, H₅), 1.67 – 1.60 (m, 3H, H₃ H₁₁, H₃₀), 1.16 (m, 7H, H₁₅, H₃₄,), 1.07 (m, 3H, H₅, H₂₄) 0.93 (m, 24H, H₆, H₉, H₂₄, H₂₈), 0.17 – 0.11 (m, 12H, H₇, H₈, H₂₆, H₂₇), ppm ¹³C NMR (150 MHz, CDCl₃): δ 207.2 (2C), 166.0, 165.8, 133.0, 132.9, 130.4, 130.2, 129.8, 129.7, 129.7, 128.4, 128.3, 125.5, 92.6, 92.2, 85.1, 77.5, 75.8, 75.51, 75.47, 73.9, 66.8, 66.4, 66.2, 57.5, 57.3, 39.2, 38.8, 35.8, 35.4, 30.3, 29.7, 28.0, 26.0, 25.8, 24.0, 23.9, 18.0, 17.8, 17.7, 9.0, -3.7, -5.0 ppm. IR (ATR-FTIR), cm⁻¹: 2932 (s), 1727 (s), 1271 (s), 1111 (s). HRMS-ESI (*m*/*z*): [M + Na]⁺ calcd for C₅₆H₈₄O₁₄Si₂Na, 1059.5292; found, 1059.5343. [α]_D²¹ = -45.0 (c = 0.2, CHCl₃).

Synthesis of the bis(enone) 3:

2,6-Lutidine (22.2 μ L, 191 μ mol, 15.0 equiv) and a solution of trimethylsilyl trifluoromethanesulfonate (16.1 μ L, 89.1 μ mol, 7.00 equiv) in dichloromethane (1.0 mL) were added in sequence to a solution of the enone **22** (13.2 mg, 12.7 μ mol, 1 equiv) in dichloromethane (1.0 mL) at 0 °C. The reaction mixture was stirred for 3 h at 0 °C. The product mixture was diluted with water (20 mL). The diluted solution was extracted with dichloromethane (3 × 20 mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated to provide cyclic enol ether **23** as a colorless oil. The cyclic enol ether **23** was unstable toward purification and was used directly in the following step.

A solution of phenylselenyl bromide (13.2 mg, 55.9 μ mol, 5.00 equiv) in *N*,*N*-dimethylformamide (2.0 mL) was added dropwise via syringe to a solution of the unpurified enol ether **19** obtained in the preceding step (nominally 12.7 μ mol) in *N*,*N*-dimethylformamide (500 μ L) at 0 °C. The reaction mixture was allowed to slowly warm to 23 °C over 5 h. The product mixture was diluted sequentially with ethyl acetate (20 mL) and saturated aqueous sodium bicarbonate solution (15 mL). The layers that formed were separated, and the organic layer was washed sequentially with water (15 mL) and saturated aqueous sodium chloride solution (15 mL). The washed organic layer was dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated to provide the selenide **S3** as a colorless oil.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (–)-lomaiviticin A." *Chem. Sci.*

Pyridine (30.4 μ L, 370 μ mol, 40.0 equiv) and a solution of hydrogen peroxide in water (30%, 21.5 μ L, 188 μ mol, 20.0 equiv) were added in sequence to a solution of the selenide **S3** (nominally 12.7 μ mol) in tetrahydrofuran (1.9 mL) at 23 °C. The reaction mixture was stirred for 2.5 h at 23 °C. The product mixture was diluted sequentially with ethyl acetate (20 mL), saturated aqueous sodium thiosulfate solution (15 mL), and saturated aqueous sodium bicarbonate solution (15 mL). The diluted solution was extracted with ethyl acetate (2 × 20 mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with 8% ethyl acetate–hexanes initially, grading to 24% ethyl acetate–hexanes, two steps) to provide the bis(enone) **3** as a colorless oil (9.5 mg, 72% from **22**).

 R_f = 0.50 (20% ethyl acetate–hexanes; CAM). ¹H NMR (600 MHz, CD₂Cl₂): δ 8.08 − 8.06 (m, 2H, H₁₇), 7.61 − 7.58 (m, 1H, H₁₉), 7.49 − 7.46 (m, 2H, H₁₈), 6.57 (dd, *J* = 10.2, 2.6 Hz, 1H, H₃), 6.15 (d, *J* = 10.0 Hz, 1H, H₂), 5.81 (s, 1H, H₁₀), 4.78 (t, *J* = 9.4 Hz, 1H, H₁₃), 4.69 (s, 1H, H₄), 4.24 (bs, 1H, H₁₄), 3.75 (ddd, *J* = 11.4, 9.1, 4.8 Hz, 1H, H₁₂), 3.26 (s, 3H, H₁₆), 3.20 (bs, 1H, H₁), 2.36 − 2.26 (m, 1H, H₅), 2.20 (dd, *J* = 12.6, 4.3 Hz, 1H, H₁₁), 1.86 (dt, *J* = 14.8, 7.0 Hz, 1H, H₅), 1.54 (td, *J* = 12.8, 3.8 Hz, 1H, H₁₁), 1.11 (d, *J* = 6.3 Hz, 3H, H₁₅), 1.08 (t, *J* = 7.2 Hz, 3H, H₆), 0.95 (s, 9H, H₉), 0.19 (s, 3H, H₇), 0.18 (s, 3H, H₈) ¹³C NMR (150 MHz, CD₂Cl₂): δ 196.7, 166.3, 143.7, 133.5, 131.1, 130.9, 130.1, 128.9, 92.9, 77.8, 76.2, 72.9, 67.0, 57.5, 57.4, 35.9, 30.6, 26.2, 18.6, 18.1, 9.4, −3.4, −3.5. IR (ATR-FTIR), cm⁻¹: 2929 (s), 1725 (s), 1684 (m), 1270 (s), 1101 (s). HRMS-ESI (*m*/*z*): [M + Na]⁺ calcd for C₅₆H₈₄O₁₄Si₂Na, 1057.5141; found, 1057.5185. [α]²¹_{*D*} = −45.0 (*c* = 0.5, CHCl₃).

Synthesis of the hydroxy ketone 24:

A solution of dimethlydioxirane in acetone (73.0 mM, 6.20 mL, 46.0 μ mol, 7.00 equiv) was added to a round-bottomed flask charged with the tetraol **16** (70.0 mg, 65.0 μ mol, 1 equiv) at 23 °C. The reaction mixture was stirred for 24 h at 23 °C. The product mixture was concentrated and the residue obtained was purified by flash-column chromatography (eluting with 30% ethyl acetate–hexanes initially, grading to 40% ethyl acetate–hexanes, one step) to provide the hydroxy ketone **24** as a pale oil (66.0 mg, 95%).

R_f = 0.50 (50% ethyl acetate–hexanes; CAM). ¹H NMR (600 MHz, CDCl₃) δ 8.13 (d, J = 7.7 Hz, 2H, H₁₇), 7.58 (t, J = 7.2 Hz, 1H, H₁₉), 7.47 (t, J = 7.6 Hz, 2H, H₁₈), 5.98 (t, J = 3.6 Hz, 1H, H₁₈), 4.84 (t, J = 7.3 Hz, 1H, H₁₃), 4.47 (d, J = 4.8 Hz, 1H, H₂), 4.39 (dd, J = 10.9, 6.1 Hz, 1H, H₄), 4.24 (p, J = 6.7 Hz, 1H, H₁₄), 4.01 (d, J = 4.2 Hz, 1H, H₂₀), 3.86 (td, J = 8.2, 4.5 Hz, 1H, H₁₂), 3.39 (s, 1H, H₁₆), 2.83 (dd, J = 15.1, 6.0 Hz, 1H, H₃), 2.67 (dd, J = 15.1, 10.9 Hz, 1H, H₃), 2.42-2.53 (m, 2H, H₁, H₅), 2.21 (dt, J = 13.3, 4.1 Hz, 1H, H₁₁), 1.84 (dd, J = 12.9, 8.8, 3.6 Hz, 1H, H₁₁), 1.73 (dt, J = 14.2, 7.2 Hz, 1H, H₅), 1.25 (d, J = 6.4 Hz, 3H, H₁₅), 0.97 (t, J = 7.3 Hz, 3H, H₆), 0.91 (s, 9H, H₉), 0.12 (s, 3H, H₇), 0.11 (s, 3H, H₈); ¹³C NMR (150 MHz, CDCl₃) δ 205.9, 165.9, 133.2, 129.91, 129.86, 128.5, 128.3, 92.0, 84.6, 75.7, 75.2, 71.3, 68.1, 57.4, 45.2, 43.4, 34.2, 25.7, 23.0, 17.9, 17.4, 9.0, -3.7, -5.1. IR (ATR-FTIR), cm⁻¹: 3458 (br), 2931 (m), 1724 (s), 1259 (s), 1096 (s), 984 (s). HRMS-ESI (m/z): [M + Na]⁺ calcd for C₅₆H₈₆O₁₆Si₂Na, 1093.5347; found, 1093.5381[α]^D^D¹ = -84.5 (c = 1.0, CHCl₃).

Triethylamine (130 μ L, 930 μ mol, 15.0 equiv) was added to a solution of the hydroxy ketone **24** (66 mg, 61.0 μ mol, 1 equiv) in tetrahydrofuran (5.7 mL) at 23 °C. The resulting solution was cooled to 0 °C. A solution of hydrazine in tetrahydrofuran (1.0 M, 1.25 mL, 620 μ mol, 10.0 equiv) was then added. The reaction mixture was warmed to 23 °C and was stirred for 16 h at 23 °C. The product mixture was concentrated to provide the bis(hydrazone) **25** as a pale brown oil. The bis(hydrazone) **25** was unstable toward purification and was used directly in the following step.

Triethylamine (346 μ L, 2.48 mmol, 40.0 equiv) and a solution of iodine in tetrahydrofuran (1.9 M, 640 μ L, 20.0 equiv) were added in sequence to a solution of the unpurified hydrazone **25** obtained in the preceding step (nominally 61.0 μ mol, 1 equiv) in tetrahydrofuran (11 mL) at 0 °C. The reaction mixture was stirred for 20 min at 0 °C. The product mixture was diluted with saturated aqueous sodium thiosulfate solution (60 mL). The diluted product mixture was extracted with ethyl acetate (3 × 60 mL). The organic layers were combined, and the combined organic layers were dried over sodium sulfate. The dried solution was filtered and the filtrate was concentrated. The residue obtained was purified by flash-column chromatography (eluting with 1% methanol–dichloromethane initially, grading to 3% methanol–dichloromethane, two steps) to provide the α-iodoketone **30** as a pale yellow oil (31.2 mg, 40%).

 R_f = 0.70 (30% ethyl acetate–hexanes; CAM). ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, *J* = 8.4 Hz, 2H, H₁₇), 7.55 (t, *J* = 7.5 Hz, 1H, H₁₉), 7.42 (t, *J* = 7.4 Hz, 2H, H₁₈), 5.99 (d, *J* = 3.3 Hz, 1H, H₁₀), 4.94 (dd, *J* = 4.3, 2.3 Hz, 1H, H₂), 4.87 (t, *J* = 9.3 Hz, 1H, H₁₃), 4.57 (dd, *J* = 11.2, 2.7 Hz, 1H, H₄), 4.11 – 4.03 (m, 1H, H₁₄), 3.85 (ddd, *J* = 11.2, 9.0, 4.6 Hz, 1H, H₁₂), 3.37 (s, 3H, H₁₆), 3.29 (s, 1H, H₁), 2.64 (ddd, *J* = 15.1, 11.3, 4.4 Hz, 1H, H₃), 2.51 (dt, *J* = 14.6, 7.2 Hz, 1H, H₅), 2.35 (t, *J* = 7.5 Hz, 1H), 2.30 (dd, *J* = 12.8, 4.7 Hz, 1H, H₁₁), 2.01–1.94 (m, 1H, H₃), 1.72 (td, *J* = 12.2, 4.0 Hz, 1H, H₁₁), 1.41 (dd, *J* = 14.6, 7.4 Hz, 1H, H₅), 1.18 (d, *J* = 6.3 Hz, 3H, H₁₅), 1.08 (t, *J* = 7.3 Hz, 3H, H₆), 0.92 (s, 9H, H₉), 0.20 (s, 3H, H₈), 0.18 (s, 3H, H₇); ¹³C NMR (150 MHz, CDCl₃) δ 203.2, 166.0, 133.0, 130.1, 128.3, 9.5, -3.4, -4.5. IR (ATR-FTIR), cm⁻¹: 2930 (m), 1724 (s), 1264 (s), 1101 (s), 980 (s).

HRMS-ESI (*m/z*): $[M + Na]^+$ calcd for C₅₆H₈₄I₂O₁₄Si₂Na, 1313.3381; found, 1313.3437. $[\alpha]_D^{21} = -135$ (*c* = 1.0, CHCl₃).

Rose et al. "Synthesis of the bis(cyclohexenone) core of (–)-lomaiviticin A." *Chem. Sci.*

Synthesis of the bis(enone) 3:

A solution of dimethlydioxirane in acetone (73.0 mM, 1.50 mL, 460 μ mol, 15.0 equiv) was added to a solution of the α -iodoketone **30** (10.1 mg, 7.70 μ mol, 1 equiv) in acetone (300 μ L) at 0 °C. The reaction mixture was stirred for 30 min at 0 °C. The product mixture was concentrated and the residue obtained was purified by flash-column chromatography (eluting with 25% ethyl acetate–hexanes) to provide the bis(enone) **3** as a pale oil (6.0 mg, 75%).

Spectroscopic data for the bis(enone) **3** obtained in this way were in agreement with those obtained by the alternative procedure above.

Crystallographic analysis of thiocarbonate 17.

<u>Experimental</u>

Low-temperature diffraction data (ω-scans) were collected on a Rigaku MicroMax-007HF diffractometer coupled to a Saturn994+ CCD detector with Cu K α (λ = 1.54178 Å) for the structure of 007-16115. The diffraction images were processed and scaled using the Rigaku CrystalClear software (CrystalClear and CrystalStructure: Rigaku/MSC: The Woodlands, TX, 2005). The data was collected and refined as a 2-component twin. The fractional volume contributions of the second twin component to the reflections list refined to 0.181(3). The structure was solved with SHELXT and was refined against F^2 on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of compound 007-16115 can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number 2001251 (007-16115) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (–)-lomaiviticin A." *Chem. Sci.*

Figure S1. The complete numbering scheme of 007-16115 with 50% thermal ellipsoid probability levels. The hydrogen atoms have been removed for clarity.

Table S1. Crystal data and structure	e refinement for 007-16115.			
Identification code	007-16115	007-16115		
Empirical formula	C58 H86 O16 S2 Si2	C58 H86 O16 S2 Si2		
Formula weight	1159.56			
Temperature	93(2) K			
Wavelength	1.54178 Å			
Crystal system	Orthorhombic	Orthorhombic		
Space group	P212121			
Unit cell dimensions	a = 17.8150(12) Å	= 90°.		
	b = 18.8153(13) Å	= 90°.		
	c = 19.2663(13) Å	= 90°.		
Volume	6458.0(8) Å ³			
Z	4			
Density (calculated)	1.193 Mg/m ³			
Absorption coefficient	1.611 mm ⁻¹	1.611 mm ⁻¹		
F(000)	2488			
Crystal size	0.200 x 0.200 x 0.020 r	0.200 x 0.200 x 0.020 mm ³		
Theta range for data collection	3.283 to 68.094°.	3.283 to 68.094°.		
Index ranges	-21<=h<=21, 0<=k<=22	-21<=h<=21, 0<=k<=22, 0<=l<=23		
Reflections collected	11690			
Independent reflections	11690 [R(int) = 0.157]	11690 [R(int) = 0.157]		
Completeness to theta = 67.679°	99.9 %	99.9 %		
Absorption correction	Semi-empirical from eq	Semi-empirical from equivalents		
Max. and min. transmission	1.000 and 0.695	1.000 and 0.695		
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²		
Data / restraints / parameters 11690 / 0 / 720				
Goodness-of-fit on F ²	1.086			
Final R indices [I>2sigma(I)]	R1 = 0.0711, wR2 = 0.2	R1 = 0.0711, wR2 = 0.2108		
R indices (all data)	R1 = 0.0823, wR2 = 0.2	R1 = 0.0823, wR2 = 0.2205		
Absolute structure parameter	0.032(8)	0.032(8)		
Largest diff. peak and hole	0.552 and -0.375 e.Å ⁻³	0.552 and -0.375 e.Å ⁻³		

	x	У	Z	U(eq)	
S(1)	9085(1)	4684(1)	3326(1)	44(1)	
S(2)	3348(1)	5363(1)	2530(1)	46(1)	
Si(1)	8602(1)	7638(1)	2446(1)	28(1)	
Si(2)	4203(1)	4089(1)	5306(1)	31(1)	
O(1)	6166(2)	6757(2)	2694(2)	25(1)	
O(2)	5626(3)	7887(2)	2736(3)	33(1)	
O(3)	4522(3)	7148(3)	1014(3)	42(1)	
O(4)	3713(3)	7416(2)	2277(3)	33(1)	
O(5)	3264(3)	8492(3)	1955(3)	46(1)	
O(6)	7742(2)	7326(2)	2543(2)	28(1)	
O(7)	7783(3)	5264(2)	3598(2)	26(1)	
O(8)	7947(3)	4934(2)	2513(2)	29(1)	
O(9)	6316(2)	5090(2)	4607(2)	25(1)	
O(10)	6782(3)	5360(3)	5711(2)	35(1)	
O(11)	8136(3)	3656(3)	5278(3)	44(1)	
O(12)	8767(3)	5038(3)	5358(2)	34(1)	
O(13)	9205(3)	4982(3)	6454(2)	38(1)	
O(14)	4783(3)	4718(3)	5050(2)	31(1)	
O(15)	4533(3)	4597(2)	2802(2)	30(1)	
O(16)	4670(3)	5747(2)	2998(2)	29(1)	
C(1)	6767(4)	6703(3)	3199(3)	24(1)	
C(2)	7534(3)	6660(3)	2822(3)	25(1)	
C(3)	7481(4)	6113(3)	2248(3)	27(1)	
C(4)	7267(4)	5377(3)	2503(3)	26(1)	
C(5)	7042(3)	5346(3)	3267(3)	24(1)	
C(6)	6636(3)	5987(3)	3584(3)	22(1)	

Table 2. Atomic coordinates ($x\,10^4)$ and equivalent isotropic displacement parameters (Å $^2x\,10^3)$

for 007-16115. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(7)	5791(3)	5832(3)	3707(3)	22(1)
C(8)	5425(4)	5444(3)	3095(3)	24(1)
C(9)	5268(4)	4649(3)	3147(3)	25(1)
C(10)	5176(4)	4374(4)	3882(4)	30(1)
C(11)	4980(3)	4965(3)	4381(3)	24(1)
C(12)	5641(3)	5488(3)	4442(3)	23(1)
C(13)	6063(4)	7410(3)	2333(3)	28(1)
C(14)	5689(4)	7263(4)	1645(4)	34(2)
C(15)	4850(4)	7089(4)	1678(4)	34(2)
C(16)	4481(4)	7627(4)	2150(4)	31(2)
C(17)	4870(4)	7645(4)	2850(4)	31(2)
C(18)	4587(8)	6539(6)	608(6)	70(3)
C(19)	4525(4)	8129(4)	3375(4)	39(2)
C(20)	3172(4)	7920(4)	2224(4)	34(2)
C(21)	2464(4)	7686(4)	2562(4)	33(2)
C(22)	1840(4)	8115(4)	2477(5)	45(2)
C(23)	1171(5)	7951(5)	2836(6)	59(2)
C(24)	1144(5)	7373(6)	3277(6)	63(3)
C(25)	1777(5)	6945(5)	3358(5)	56(2)
C(26)	2441(5)	7109(4)	2994(4)	40(2)
C(27)	6733(4)	7333(4)	3711(4)	30(1)
C(28)	7326(5)	7324(4)	4291(4)	36(2)
C(29)	9268(4)	6899(5)	2271(5)	43(2)
C(30)	8915(5)	8103(5)	3250(4)	46(2)
C(31)	8522(4)	8269(4)	1691(4)	32(2)
C(32)	7981(5)	8872(4)	1870(5)	46(2)
C(33)	8244(5)	7872(4)	1048(4)	41(2)
C(34)	9302(5)	8591(5)	1534(5)	49(2)
C(35)	8251(4)	4973(4)	3143(4)	29(1)
C(36)	6429(4)	4849(4)	5296(3)	32(2)
C(37)	6883(4)	4163(4)	5262(4)	34(2)
C(38)	7726(4)	4277(4)	5116(4)	34(2)
C(39)	8013(4)	4865(4)	5573(4)	31(2)
C(40)	7533(4)	5531(4)	5500(4)	31(2)
C(41)	8131(7)	3146(5)	4749(6)	66(3)

C(42)	7781(5)	6136(4)	5945(4)	43(2)
C(43)	9310(4)	5088(4)	5842(4)	32(2)
C(44)	10045(4)	5298(4)	5537(4)	33(2)
C(45)	10629(4)	5462(4)	5983(4)	37(2)
C(46)	11325(5)	5657(5)	5717(4)	45(2)
C(47)	11436(5)	5655(5)	5018(5)	52(2)
C(48)	10858(6)	5488(6)	4572(5)	61(3)
C(49)	10156(5)	5310(5)	4831(4)	48(2)
C(50)	5495(4)	6080(4)	4971(3)	30(2)
C(51)	4763(5)	6481(4)	4872(4)	41(2)
C(52)	3425(4)	3972(5)	4663(5)	47(2)
C(53)	4762(5)	3259(4)	5408(4)	41(2)
C(54)	3816(4)	4412(4)	6166(4)	40(2)
C(55)	3414(7)	3799(6)	6535(6)	74(3)
C(56)	3262(5)	5011(5)	6036(5)	54(2)
C(57)	4458(5)	4684(6)	6624(4)	53(2)
C(58)	4202(4)	5230(3)	2788(4)	29(1)

S(1)-C(35)	1.622(7)
S(2)-C(58)	1.619(7)
Si(1)-O(6)	1.651(4)
Si(1)-C(29)	1.860(8)
Si(1)-C(30)	1.864(8)
Si(1)-C(31)	1.882(7)
Si(2)-O(14)	1.647(5)
Si(2)-C(53)	1.863(8)
Si(2)-C(52)	1.873(8)
Si(2)-C(54)	1.894(8)
O(1)-C(13)	1.423(7)
O(1)-C(1)	1.451(8)
O(2)-C(13)	1.419(8)
O(2)-C(17)	1.439(8)
O(3)-C(18)	1.393(12)
O(3)-C(15)	1.412(9)
O(4)-C(20)	1.356(8)
O(4)-C(16)	1.446(8)
O(5)-C(20)	1.206(9)
O(6)-C(2)	1.412(8)
O(7)-C(35)	1.329(8)
O(7)-C(5)	1.474(7)
O(8)-C(35)	1.331(8)
O(8)-C(4)	1.471(7)
O(9)-C(36)	1.416(8)
O(9)-C(12)	1.452(7)
O(10)-C(36)	1.400(9)
O(10)-C(40)	1.435(8)
O(11)-C(41)	1.401(12)
O(11)-C(38)	1.412(9)
O(12)-C(43)	1.347(8)
O(12)-C(39)	1.443(8)
O(13)-C(43)	1.210(9)

Table 3. Bond lengths [Å] and angles [°] for 007-16115.

O(14)-C(11)	1.413(8)
O(15)-C(58)	1.329(8)
O(15)-C(9)	1.472(8)
O(16)-C(58)	1.345(8)
O(16)-C(8)	1.472(7)
C(1)-C(27)	1.542(9)
C(1)-C(2)	1.549(9)
C(1)-C(6)	1.556(9)
C(2)-C(3)	1.514(10)
C(2)-H(2)	1.0000
C(3)-C(4)	1.517(9)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-C(5)	1.527(9)
C(4)-H(4)	1.0000
C(5)-C(6)	1.533(9)
C(5)-H(5)	1.0000
C(6)-C(7)	1.552(8)
C(6)-H(6)	1.0000
C(7)-C(8)	1.532(9)
C(7)-C(12)	1.580(9)
C(7)-H(7)	1.0000
C(8)-C(9)	1.526(9)
C(8)-H(8)	1.0000
C(9)-C(10)	1.516(9)
C(9)-H(9)	1.0000
C(10)-C(11)	1.511(10)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(11)-C(12)	1.539(9)
C(11)-H(11)	1.0000
C(12)-C(50)	1.532(9)
C(13)-C(14)	1.509(11)
C(13)-H(13)	1.0000
C(14)-C(15)	1.531(10)

C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15)-C(16)	1.512(11)
C(15)-H(15)	1.0000
C(16)-C(17)	1.516(10)
C(16)-H(16)	1.0000
C(17)-C(19)	1.495(10)
C(17)-H(17)	1.0000
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(20)-C(21)	1.486(10)
C(21)-C(26)	1.368(11)
C(21)-C(22)	1.384(10)
C(22)-C(23)	1.410(12)
C(22)-H(22)	0.9500
C(23)-C(24)	1.381(15)
C(23)-H(23)	0.9500
C(24)-C(25)	1.394(15)
C(24)-H(24)	0.9500
C(25)-C(26)	1.408(12)
C(25)-H(25)	0.9500
C(26)-H(26)	0.9500
C(27)-C(28)	1.538(10)
C(27)-H(27A)	0.9900
C(27)-H(27B)	0.9900
C(28)-H(28A)	0.9800
C(28)-H(28B)	0.9800
C(28)-H(28C)	0.9800
C(29)-H(29A)	0.9800
C(29)-H(29B)	0.9800
C(29)-H(29C)	0.9800
C(30)-H(30A)	0.9800
--------------	-----------
C(30)-H(30B)	0.9800
C(30)-H(30C)	0.9800
C(31)-C(32)	1.529(11)
C(31)-C(33)	1.530(11)
C(31)-C(34)	1.545(9)
C(32)-H(32A)	0.9800
C(32)-H(32B)	0.9800
C(32)-H(32C)	0.9800
C(33)-H(33A)	0.9800
C(33)-H(33B)	0.9800
C(33)-H(33C)	0.9800
C(34)-H(34A)	0.9800
C(34)-H(34B)	0.9800
C(34)-H(34C)	0.9800
C(36)-C(37)	1.525(11)
C(36)-H(36)	1.0000
C(37)-C(38)	1.542(10)
C(37)-H(37A)	0.9900
C(37)-H(37B)	0.9900
C(38)-C(39)	1.504(10)
C(38)-H(38)	1.0000
C(39)-C(40)	1.522(10)
C(39)-H(39)	1.0000
C(40)-C(42)	1.493(11)
C(40)-H(40)	1.0000
C(41)-H(41A)	0.9800
C(41)-H(41B)	0.9800
C(41)-H(41C)	0.9800
C(42)-H(42A)	0.9800
C(42)-H(42B)	0.9800
C(42)-H(42C)	0.9800
C(43)-C(44)	1.488(10)
C(44)-C(49)	1.375(11)
C(44)-C(45)	1.384(11)

C(45)-C(46)	1.392(12)
C(45)-H(45)	0.9500
C(46)-C(47)	1.361(13)
C(46)-H(46)	0.9500
C(47)-C(48)	1.379(13)
C(47)-H(47)	0.9500
C(48)-C(49)	1.387(13)
C(48)-H(48)	0.9500
C(49)-H(49)	0.9500
C(50)-C(51)	1.519(11)
C(50)-H(50A)	0.9900
C(50)-H(50B)	0.9900
C(51)-H(51A)	0.9800
C(51)-H(51B)	0.9800
C(51)-H(51C)	0.9800
C(52)-H(52A)	0.9800
C(52)-H(52B)	0.9800
C(52)-H(52C)	0.9800
C(53)-H(53A)	0.9800
C(53)-H(53B)	0.9800
C(53)-H(53C)	0.9800
C(54)-C(56)	1.519(12)
C(54)-C(57)	1.531(13)
C(54)-C(55)	1.533(12)
C(55)-H(55A)	0.9800
C(55)-H(55B)	0.9800
C(55)-H(55C)	0.9800
C(56)-H(56A)	0.9800
C(56)-H(56B)	0.9800
C(56)-H(56C)	0.9800
C(57)-H(57A)	0.9800
C(57)-H(57B)	0.9800
C(57)-H(57C)	0.9800

O(6)-Si(1)-C(29) 110.2(3)

O(6)-Si(1)-C(30)	110.5(3)
C(29)-Si(1)-C(30)	108.1(4)
O(6)-Si(1)-C(31)	104.0(3)
C(29)-Si(1)-C(31)	112.3(4)
C(30)-Si(1)-C(31)	111.7(4)
O(14)-Si(2)-C(53)	107.3(3)
O(14)-Si(2)-C(52)	110.5(3)
C(53)-Si(2)-C(52)	111.6(4)
O(14)-Si(2)-C(54)	105.0(3)
C(53)-Si(2)-C(54)	111.8(4)
C(52)-Si(2)-C(54)	110.4(4)
C(13)-O(1)-C(1)	119.0(5)
C(13)-O(2)-C(17)	113.3(5)
C(18)-O(3)-C(15)	114.2(6)
C(20)-O(4)-C(16)	117.8(5)
C(2)-O(6)-Si(1)	127.0(4)
C(35)-O(7)-C(5)	108.6(5)
C(35)-O(8)-C(4)	108.4(5)
C(36)-O(9)-C(12)	119.3(5)
C(36)-O(10)-C(40)	114.2(5)
C(41)-O(11)-C(38)	113.7(6)
C(43)-O(12)-C(39)	119.1(5)
C(11)-O(14)-Si(2)	131.7(4)
C(58)-O(15)-C(9)	110.2(5)
C(58)-O(16)-C(8)	108.9(5)
O(1)-C(1)-C(27)	110.2(5)
O(1)-C(1)-C(2)	109.9(5)
C(27)-C(1)-C(2)	112.0(5)
O(1)-C(1)-C(6)	105.6(5)
C(27)-C(1)-C(6)	110.8(5)
C(2)-C(1)-C(6)	108.1(5)
O(6)-C(2)-C(3)	110.0(5)
O(6)-C(2)-C(1)	111.3(5)
C(3)-C(2)-C(1)	108.8(5)
O(6)-C(2)-H(2)	108.9

C(3)-C(2)-H(2)	108.9
C(1)-C(2)-H(2)	108.9
C(2)-C(3)-C(4)	113.6(5)
C(2)-C(3)-H(3A)	108.8
C(4)-C(3)-H(3A)	108.8
C(2)-C(3)-H(3B)	108.8
C(4)-C(3)-H(3B)	108.8
H(3A)-C(3)-H(3B)	107.7
O(8)-C(4)-C(3)	108.4(5)
O(8)-C(4)-C(5)	100.5(5)
C(3)-C(4)-C(5)	114.3(5)
O(8)-C(4)-H(4)	111.1
C(3)-C(4)-H(4)	111.1
C(5)-C(4)-H(4)	111.1
O(7)-C(5)-C(4)	100.8(5)
O(7)-C(5)-C(6)	109.4(5)
C(4)-C(5)-C(6)	118.6(5)
O(7)-C(5)-H(5)	109.2
C(4)-C(5)-H(5)	109.2
C(6)-C(5)-H(5)	109.2
C(5)-C(6)-C(7)	111.8(5)
C(5)-C(6)-C(1)	114.9(5)
C(7)-C(6)-C(1)	112.4(5)
C(5)-C(6)-H(6)	105.6
C(7)-C(6)-H(6)	105.6
C(1)-C(6)-H(6)	105.6
C(8)-C(7)-C(6)	112.6(5)
C(8)-C(7)-C(12)	115.0(5)
C(6)-C(7)-C(12)	112.2(5)
C(8)-C(7)-H(7)	105.3
C(6)-C(7)-H(7)	105.3
C(12)-C(7)-H(7)	105.3
O(16)-C(8)-C(9)	102.8(5)
O(16)-C(8)-C(7)	107.6(5)
C(9)-C(8)-C(7)	119.6(5)

O(16)-C(8)-H(8)	108.8
C(9)-C(8)-H(8)	108.8
C(7)-C(8)-H(8)	108.8
O(15)-C(9)-C(10)	107.6(5)
O(15)-C(9)-C(8)	101.4(5)
C(10)-C(9)-C(8)	114.6(5)
O(15)-C(9)-H(9)	110.9
C(10)-C(9)-H(9)	110.9
C(8)-C(9)-H(9)	110.9
C(11)-C(10)-C(9)	111.6(5)
C(11)-C(10)-H(10A)	109.3
C(9)-C(10)-H(10A)	109.3
C(11)-C(10)-H(10B)	109.3
C(9)-C(10)-H(10B)	109.3
H(10A)-C(10)-H(10B)	108.0
O(14)-C(11)-C(10)	113.3(5)
O(14)-C(11)-C(12)	109.4(5)
C(10)-C(11)-C(12)	110.0(5)
O(14)-C(11)-H(11)	108.0
C(10)-C(11)-H(11)	108.0
C(12)-C(11)-H(11)	108.0
O(9)-C(12)-C(50)	111.6(5)
O(9)-C(12)-C(11)	108.7(5)
C(50)-C(12)-C(11)	112.7(5)
O(9)-C(12)-C(7)	105.6(5)
C(50)-C(12)-C(7)	109.1(5)
C(11)-C(12)-C(7)	108.9(5)
O(2)-C(13)-O(1)	110.5(5)
O(2)-C(13)-C(14)	110.8(5)
O(1)-C(13)-C(14)	109.2(5)
O(2)-C(13)-H(13)	108.8
O(1)-C(13)-H(13)	108.8
C(14)-C(13)-H(13)	108.8
C(13)-C(14)-C(15)	115.6(6)
C(13)-C(14)-H(14A)	108.4

C(15)-C(14)-H(14A)	108.4
C(13)-C(14)-H(14B)	108.4
C(15)-C(14)-H(14B)	108.4
H(14A)-C(14)-H(14B)	107.4
O(3)-C(15)-C(16)	108.2(6)
O(3)-C(15)-C(14)	110.5(6)
C(16)-C(15)-C(14)	107.9(6)
O(3)-C(15)-H(15)	110.1
C(16)-C(15)-H(15)	110.1
C(14)-C(15)-H(15)	110.1
O(4)-C(16)-C(15)	109.2(6)
O(4)-C(16)-C(17)	106.8(6)
C(15)-C(16)-C(17)	110.5(6)
O(4)-C(16)-H(16)	110.1
C(15)-C(16)-H(16)	110.1
C(17)-C(16)-H(16)	110.1
O(2)-C(17)-C(19)	107.2(6)
O(2)-C(17)-C(16)	107.5(6)
C(19)-C(17)-C(16)	115.3(6)
O(2)-C(17)-H(17)	108.9
C(19)-C(17)-H(17)	108.9
C(16)-C(17)-H(17)	108.9
O(3)-C(18)-H(18A)	109.5
O(3)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
O(3)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(17)-C(19)-H(19A)	109.5
C(17)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(17)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
O(5)-C(20)-O(4)	124.1(7)

O(5)-C(20)-C(21)	124.6(6)
O(4)-C(20)-C(21)	111.3(6)
C(26)-C(21)-C(22)	120.6(7)
C(26)-C(21)-C(20)	121.8(6)
C(22)-C(21)-C(20)	117.2(7)
C(21)-C(22)-C(23)	119.6(8)
C(21)-C(22)-H(22)	120.2
C(23)-C(22)-H(22)	120.2
C(24)-C(23)-C(22)	120.2(8)
C(24)-C(23)-H(23)	119.9
C(22)-C(23)-H(23)	119.9
C(23)-C(24)-C(25)	119.7(8)
C(23)-C(24)-H(24)	120.2
C(25)-C(24)-H(24)	120.2
C(24)-C(25)-C(26)	119.8(9)
C(24)-C(25)-H(25)	120.1
C(26)-C(25)-H(25)	120.1
C(21)-C(26)-C(25)	120.1(8)
C(21)-C(26)-H(26)	119.9
C(25)-C(26)-H(26)	119.9
C(28)-C(27)-C(1)	115.4(6)
C(28)-C(27)-H(27A)	108.4
C(1)-C(27)-H(27A)	108.4
C(28)-C(27)-H(27B)	108.4
C(1)-C(27)-H(27B)	108.4
H(27A)-C(27)-H(27B)	107.5
C(27)-C(28)-H(28A)	109.5
C(27)-C(28)-H(28B)	109.5
H(28A)-C(28)-H(28B)	109.5
C(27)-C(28)-H(28C)	109.5
H(28A)-C(28)-H(28C)	109.5
H(28B)-C(28)-H(28C)	109.5
Si(1)-C(29)-H(29A)	109.5
Si(1)-C(29)-H(29B)	109.5
H(29A)-C(29)-H(29B)	109.5

109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.9(7)
108.6(6)
108.9(6)
110.0(5)
110.1(5)
109.3(5)
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
111.7(6)
124.8(5)

O(8)-C(35)-S(1)	123.5(5)
O(10)-C(36)-O(9)	112.3(5)
O(10)-C(36)-C(37)	111.6(6)
O(9)-C(36)-C(37)	107.8(6)
O(10)-C(36)-H(36)	108.4
O(9)-C(36)-H(36)	108.4
C(37)-C(36)-H(36)	108.4
C(36)-C(37)-C(38)	114.0(6)
C(36)-C(37)-H(37A)	108.7
C(38)-C(37)-H(37A)	108.7
C(36)-C(37)-H(37B)	108.7
C(38)-C(37)-H(37B)	108.7
H(37A)-C(37)-H(37B)	107.6
O(11)-C(38)-C(39)	107.7(6)
O(11)-C(38)-C(37)	110.4(6)
C(39)-C(38)-C(37)	109.1(6)
O(11)-C(38)-H(38)	109.9
C(39)-C(38)-H(38)	109.9
C(37)-C(38)-H(38)	109.9
O(12)-C(39)-C(38)	108.3(6)
O(12)-C(39)-C(40)	108.1(5)
C(38)-C(39)-C(40)	111.1(6)
O(12)-C(39)-H(39)	109.7
C(38)-C(39)-H(39)	109.7
C(40)-C(39)-H(39)	109.7
O(10)-C(40)-C(42)	106.5(6)
O(10)-C(40)-C(39)	108.3(5)
C(42)-C(40)-C(39)	114.1(6)
O(10)-C(40)-H(40)	109.3
C(42)-C(40)-H(40)	109.3
C(39)-C(40)-H(40)	109.3
O(11)-C(41)-H(41A)	109.5
O(11)-C(41)-H(41B)	109.5
H(41A)-C(41)-H(41B)	109.5
O(11)-C(41)-H(41C)	109.5

H(41A)-C(41)-H(41C)	109.5
H(41B)-C(41)-H(41C)	109.5
C(40)-C(42)-H(42A)	109.5
C(40)-C(42)-H(42B)	109.5
H(42A)-C(42)-H(42B)	109.5
C(40)-C(42)-H(42C)	109.5
H(42A)-C(42)-H(42C)	109.5
H(42B)-C(42)-H(42C)	109.5
O(13)-C(43)-O(12)	123.5(7)
O(13)-C(43)-C(44)	124.3(6)
O(12)-C(43)-C(44)	112.2(6)
C(49)-C(44)-C(45)	120.2(7)
C(49)-C(44)-C(43)	121.4(7)
C(45)-C(44)-C(43)	118.4(6)
C(44)-C(45)-C(46)	119.9(7)
C(44)-C(45)-H(45)	120.0
C(46)-C(45)-H(45)	120.0
C(47)-C(46)-C(45)	119.6(8)
C(47)-C(46)-H(46)	120.2
C(45)-C(46)-H(46)	120.2
C(46)-C(47)-C(48)	120.6(8)
C(46)-C(47)-H(47)	119.7
C(48)-C(47)-H(47)	119.7
C(47)-C(48)-C(49)	120.3(8)
C(47)-C(48)-H(48)	119.8
C(49)-C(48)-H(48)	119.8
C(44)-C(49)-C(48)	119.3(8)
C(44)-C(49)-H(49)	120.4
C(48)-C(49)-H(49)	120.4
C(51)-C(50)-C(12)	115.0(6)
C(51)-C(50)-H(50A)	108.5
C(12)-C(50)-H(50A)	108.5
C(51)-C(50)-H(50B)	108.5
C(12)-C(50)-H(50B)	108.5
H(50A)-C(50)-H(50B)	107.5

C(50)-C(51)-H(51A)	109.5
C(50)-C(51)-H(51B)	109.5
H(51A)-C(51)-H(51B)	109.5
C(50)-C(51)-H(51C)	109.5
H(51A)-C(51)-H(51C)	109.5
H(51B)-C(51)-H(51C)	109.5
Si(2)-C(52)-H(52A)	109.5
Si(2)-C(52)-H(52B)	109.5
H(52A)-C(52)-H(52B)	109.5
Si(2)-C(52)-H(52C)	109.5
H(52A)-C(52)-H(52C)	109.5
H(52B)-C(52)-H(52C)	109.5
Si(2)-C(53)-H(53A)	109.5
Si(2)-C(53)-H(53B)	109.5
H(53A)-C(53)-H(53B)	109.5
Si(2)-C(53)-H(53C)	109.5
H(53A)-C(53)-H(53C)	109.5
H(53B)-C(53)-H(53C)	109.5
C(56)-C(54)-C(57)	109.4(8)
C(56)-C(54)-C(55)	109.3(8)
C(57)-C(54)-C(55)	109.4(8)
C(56)-C(54)-Si(2)	109.3(6)
C(57)-C(54)-Si(2)	109.9(5)
C(55)-C(54)-Si(2)	109.5(6)
C(54)-C(55)-H(55A)	109.5
C(54)-C(55)-H(55B)	109.5
H(55A)-C(55)-H(55B)	109.5
C(54)-C(55)-H(55C)	109.5
H(55A)-C(55)-H(55C)	109.5
H(55B)-C(55)-H(55C)	109.5
C(54)-C(56)-H(56A)	109.5
C(54)-C(56)-H(56B)	109.5
H(56A)-C(56)-H(56B)	109.5
C(54)-C(56)-H(56C)	109.5
H(56A)-C(56)-H(56C)	109.5

H(56B)-C(56)-H(56C)	109.5
C(54)-C(57)-H(57A)	109.5
C(54)-C(57)-H(57B)	109.5
H(57A)-C(57)-H(57B)	109.5
C(54)-C(57)-H(57C)	109.5
H(57A)-C(57)-H(57C)	109.5
H(57B)-C(57)-H(57C)	109.5
O(15)-C(58)-O(16)	111.5(6)
O(15)-C(58)-S(2)	124.2(5)
O(16)-C(58)-S(2)	124.3(5)

Symmetry transformations used to generate equivalent atoms:

	 U11	U ²²	U33	U ²³	U13	U12	
S(1)	29(1)	58(1)	44(1)	-15(1)	-9(1)	15(1)	
S(2)	28(1)	48(1)	61(1)	-5(1)	-16(1)	1(1)	
Si(1)	22(1)	36(1)	28(1)	1(1)	1(1)	-2(1)	
Si(2)	26(1)	36(1)	31(1)	6(1)	2(1)	-2(1)	
O(1)	22(2)	29(2)	23(2)	3(2)	D(2)	3(2)	
O(2)	25(2)	27(2)	47(3)	0(2)	-1(2)	1(2)	
O(2)	46(3)	52(3)	28(3)	2(2)	-11(2)	10(2)	
O(4)	23(2)	29(2)	47(3)	7(2)	-1(2)	4(2)	
O(5)	28(3)	36(3)	73(4)	21(3)	0(3)	2(2)	
O(6)	22(2)	28(2)	32(2)	5(2)	2(2)	-2(2)	
O(7)	24(2)	35(2)	21(2)	-3(2)	-4(2)	2(2) 4(2)	
O(8)	26(2)	36(2)	26(2)	-7(2)	-1(2)	8(2)	
O(9)	22(2)	35(2)	19(2)	1(2)	-5(2)	1(2)	
O(10)	30(3)	52(3)	22(2)	-3(2)	-3(2)	-5(2)	
O(11)	45(3)	41(3)	45(3)	8(2)	-9(3)	9(2)	
O(12)	29(3)	51(3)	22(2)	6(2)	-4(2)	-4(2)	
O(12)	26(2)	64(3)	24(3)	8(2)	-2(2)	-3(2)	
O(14)	30(2)	42(3)	20(2)	0(2)	3(2)	-7(2)	
O(15)	31(2)	30(2)	29(2)	-4(2)	-7(2)	-1(2)	
O(16)	24(2)	30(2)	33(3)	-1(2)	-5(2)	3(2)	
C(1)	22(3)	31(3)	21(3)	-3(3)	1(2)	-1(3)	
C(2)	20(3)	32(3)	24(3)	7(3)	2(2)	2(2)	
C(3)	25(3)	34(3)	21(3)	5(3)	-(-) 4(2)	4(3)	
C(4)	24(3)	31(3)	21(3)	-5(3)	3(3)	7(2)	
C(5)	19(3)	32(3)	20(3)	-2(3)	-5(2)	0(2)	
C(6)	15(3)	31(3)	19(3)	-2(3)	1(2)	2(2)	
C(7)	19(3)	27(3)	19(3)	0(2)	0(2)	0(2)	
· /	x - /	(- <i>)</i>	(- <i>)</i>	()	· · /	· /	

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 007-16115. The anisotropic

displacement factor exponent takes the form: -2 2 [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(8)	21(3)	29(3)	24(3)	-1(3)	-2(2)	2(2)
C(9)	22(3)	30(3)	23(3)	-5(3)	-2(2)	3(3)
C(10)	35(4)	30(3)	26(3)	4(3)	-4(3)	-4(3)
C(11)	21(3)	31(3)	21(3)	7(3)	0(2)	-3(3)
C(12)	20(3)	26(3)	23(3)	2(3)	-1(2)	0(2)
C(13)	28(3)	29(3)	29(3)	9(3)	5(3)	5(3)
C(14)	29(4)	44(4)	29(4)	11(3)	9(3)	6(3)
C(15)	35(4)	39(4)	26(3)	8(3)	-5(3)	3(3)
C(16)	29(4)	27(3)	37(4)	9(3)	0(3)	1(3)
C(17)	28(3)	28(3)	37(4)	5(3)	6(3)	-1(3)
C(18)	90(8)	72(6)	48(5)	-6(5)	-22(5)	11(6)
C(19)	34(4)	42(4)	41(4)	-9(3)	-2(3)	11(3)
C(20)	27(3)	30(3)	44(4)	6(3)	-6(3)	5(3)
C(21)	22(3)	36(3)	41(4)	0(3)	-4(3)	-5(3)
C(22)	22(3)	43(4)	69(6)	1(4)	-5(4)	1(3)
C(23)	32(4)	61(5)	84(7)	6(5)	12(4)	3(4)
C(24)	27(4)	82(6)	79(7)	-3(6)	21(4)	-7(4)
C(25)	41(5)	65(5)	64(6)	19(5)	6(4)	-10(4)
C(26)	32(4)	43(4)	45(4)	6(4)	-1(3)	0(3)
C(27)	29(3)	30(3)	30(3)	-2(3)	4(3)	-3(3)
C(28)	42(4)	37(4)	27(3)	-11(3)	-3(3)	-8(3)
C(29)	21(3)	57(5)	52(5)	10(4)	7(3)	2(3)
C(30)	40(4)	59(5)	38(4)	-4(4)	-3(4)	-8(4)
C(31)	30(4)	32(3)	33(4)	4(3)	8(3)	-6(3)
C(32)	51(5)	40(4)	46(5)	2(4)	0(4)	-4(4)
C(33)	39(4)	50(4)	33(4)	7(4)	3(3)	-2(3)
C(34)	29(4)	59(5)	58(5)	16(4)	6(4)	-17(4)
C(35)	26(3)	31(3)	30(4)	-2(3)	-1(3)	4(3)
C(36)	31(3)	46(4)	19(3)	6(3)	-5(3)	-7(3)
C(37)	32(4)	40(4)	31(4)	13(3)	-8(3)	-4(3)
C(38)	38(4)	38(4)	27(4)	9(3)	-6(3)	-1(3)
C(39)	19(3)	47(4)	27(3)	8(3)	-3(3)	-5(3)
C(40)	29(3)	44(4)	21(3)	7(3)	-1(3)	-6(3)
C(41)	83(8)	45(5)	68(6)	-3(5)	-6(6)	21(5)
C(42)	43(5)	46(4)	39(4)	2(4)	-8(4)	-3(3)

C(43)	32(4)	39(4)	24(4)	2(3)	-5(3)	-1(3)	
C(44)	39(4)	34(3)	26(3)	7(3)	2(3)	0(3)	
C(45)	34(4)	48(4)	31(4)	2(3)	3(3)	-1(3)	
C(46)	36(4)	57(5)	42(4)	1(4)	-2(4)	-1(4)	
C(47)	36(4)	70(6)	50(5)	3(4)	8(4)	-17(4)	
C(48)	59(6)	93(7)	32(4)	-2(5)	7(4)	-28(5)	
C(49)	48(5)	68(5)	29(4)	-1(4)	-1(3)	-21(4)	
C(50)	36(4)	35(3)	20(3)	-4(3)	9(3)	-4(3)	
C(51)	47(5)	39(4)	37(4)	-5(3)	15(4)	7(3)	
C(52)	28(4)	59(5)	54(5)	0(4)	-2(4)	-9(3)	
C(53)	41(4)	43(4)	39(4)	5(3)	2(3)	3(3)	
C(54)	35(4)	46(4)	40(4)	5(4)	13(3)	3(3)	
C(55)	85(8)	68(6)	70(7)	17(6)	51(6)	-6(6)	
C(56)	44(5)	66(5)	52(5)	-1(5)	2(4)	17(4)	
C(57)	58(5)	74(6)	27(4)	-3(4)	-1(4)	13(5)	
C(58)	31(4)	29(3)	25(3)	3(3)	-3(3)	0(3)	

	x	у	z	U(eq)	
H(2)	7926	6506	3162	30	
H(3A)	7971	6084	2008	32	
H(3B)	7103	6273	1905	32	
H(4)	6871	5162	2201	31	
H(5)	6738	4908	3350	28	
H(6)	6859	6051	4056	26	
H(7)	5543	6309	3723	26	
H(8)	5728	5536	2667	29	
H(9)	5656	4369	2890	30	
H(10A)	4775	4010	3891	37	
H(10B)	5649	4144	4033	37	
H(11)	4540	5229	4188	29	
H(13)	6565	7629	2245	34	
H(14A)	5951	6859	1421	41	
H(14B)	5757	7684	1343	41	
H(15)	4775	6598	1865	40	
H(16)	4494	8109	1932	37	
H(17)	4886	7152	3043	37	
H(18A)	4349	6620	157	105	
H(18B)	4340	6140	842	105	
H(18C)	5120	6427	540	105	
H(19A)	4838	8139	3793	59	
H(19B)	4022	7956	3495	59	
H(19C)	4487	8610	3183	59	
H(22)	1861	8517	2180	54	
H(23)	739	8239	2774	71	

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10 3)

for 007-16115.

H(24)	696	7267	3523	75
H(25)	1761	6544	3657	68
H(26)	2873	6818	3049	48
H(27A)	6791	7780	3444	36
H(27B)	6230	7341	3927	36
H(28A)	7828	7298	4085	53
H(28B)	7244	6909	4589	53
H(28C)	7283	7759	4568	53
H(29A)	9252	6559	2657	65
H(29B)	9777	7089	2226	65
H(29C)	9125	6658	1840	65
H(30A)	8489	8355	3457	69
H(30B)	9312	8444	3134	69
H(30C)	9110	7753	3582	69
H(32A)	7484	8675	1972	69
H(32B)	7945	9199	1475	69
H(32C)	8168	9130	2277	69
H(33A)	8234	8197	651	61
H(33B)	7737	7689	1133	61
H(33C)	8583	7474	947	61
H(34A)	9492	8832	1949	73
H(34B)	9258	8933	1153	73
H(34C)	9649	8211	1401	73
H(36)	5928	4738	5504	38
H(37A)	6671	3857	4893	41
H(37B)	6828	3907	5708	41
H(38)	7802	4404	4617	41
H(39)	8015	4705	6068	37
H(40)	7530	5685	5003	38
H(41A)	8377	3340	4336	98
H(41B)	7612	3020	4636	98
H(41C)	8401	2721	4905	98
H(42A)	7416	6524	5911	64
H(42B)	8274	6303	5789	64
H(42C)	7816	5978	6429	64

H(45)	10554	5441	6471	45
H(46)	11721	5790	6021	54
H(47)	11917	5771	4836	63
H(48)	10940	5493	4085	74
H(49)	9756	5198	4523	58
H(50A)	5497	5869	5442	36
H(50B)	5914	6424	4948	36
H(51A)	4724	6643	4390	61
H(51B)	4751	6893	5184	61
H(51C)	4340	6166	4979	61
H(52A)	3224	4438	4534	70
H(52B)	3025	3684	4869	70
H(52C)	3619	3733	4248	70
H(53A)	4964	3115	4956	62
H(53B)	4440	2881	5592	62
H(53C)	5178	3345	5731	62
H(55A)	3004	3624	6241	112
H(55B)	3210	3968	6977	112
H(55C)	3771	3413	6621	112
H(56A)	3507	5388	5767	81
H(56B)	3091	5204	6481	81
H(56C)	2830	4828	5776	81
H(57A)	4801	4291	6728	80
H(57B)	4252	4873	7058	80
H(57C)	4731	5060	6379	80

C(29)-Si(1)-O(6)-C(2)	31.9(6)
C(30)-Si(1)-O(6)-C(2)	-87.5(6)
C(31)-Si(1)-O(6)-C(2)	152.5(5)
C(53)-Si(2)-O(14)-C(11)	93.2(6)
C(52)-Si(2)-O(14)-C(11)	-28.6(7)
C(54)-Si(2)-O(14)-C(11)	-147.6(6)
C(13)-O(1)-C(1)-C(27)	50.5(7)
C(13)-O(1)-C(1)-C(2)	-73.4(6)
C(13)-O(1)-C(1)-C(6)	170.2(5)
Si(1)-O(6)-C(2)-C(3)	-90.9(6)
Si(1)-O(6)-C(2)-C(1)	148.4(4)
O(1)-C(1)-C(2)-O(6)	73.6(6)
C(27)-C(1)-C(2)-O(6)	-49.3(7)
C(6)-C(1)-C(2)-O(6)	-171.6(5)
O(1)-C(1)-C(2)-C(3)	-47.7(6)
C(27)-C(1)-C(2)-C(3)	-170.6(5)
C(6)-C(1)-C(2)-C(3)	67.0(6)
O(6)-C(2)-C(3)-C(4)	179.4(5)
C(1)-C(2)-C(3)-C(4)	-58.5(7)
C(35)-O(8)-C(4)-C(3)	92.7(6)
C(35)-O(8)-C(4)-C(5)	-27.5(6)
C(2)-C(3)-C(4)-O(8)	-103.1(6)
C(2)-C(3)-C(4)-C(5)	8.0(8)
C(35)-O(7)-C(5)-C(4)	-24.8(6)
C(35)-O(7)-C(5)-C(6)	-150.5(5)
O(8)-C(4)-C(5)-O(7)	30.0(5)
C(3)-C(4)-C(5)-O(7)	-85.8(6)
O(8)-C(4)-C(5)-C(6)	149.3(5)
C(3)-C(4)-C(5)-C(6)	33.4(8)
O(7)-C(5)-C(6)-C(7)	-138.8(5)
C(4)-C(5)-C(6)-C(7)	106.5(6)
O(7)-C(5)-C(6)-C(1)	91.5(6)
C(4)-C(5)-C(6)-C(1)	-23.1(8)

Table 6. Torsion angles [°] for 007-16115.

O(1)-C(1)-C(6)-C(5)	91.5(6)
C(27)-C(1)-C(6)-C(5)	-149.1(5)
C(2)-C(1)-C(6)-C(5)	-26.1(7)
O(1)-C(1)-C(6)-C(7)	-37.8(6)
C(27)-C(1)-C(6)-C(7)	81.5(6)
C(2)-C(1)-C(6)-C(7)	-155.4(5)
C(5)-C(6)-C(7)-C(8)	-43.4(7)
C(1)-C(6)-C(7)-C(8)	87.5(6)
C(5)-C(6)-C(7)-C(12)	88.3(6)
C(1)-C(6)-C(7)-C(12)	-140.8(5)
C(58)-O(16)-C(8)-C(9)	-18.4(6)
C(58)-O(16)-C(8)-C(7)	-145.4(5)
C(6)-C(7)-C(8)-O(16)	-140.4(5)
C(12)-C(7)-C(8)-O(16)	89.3(6)
C(6)-C(7)-C(8)-C(9)	103.1(6)
C(12)-C(7)-C(8)-C(9)	-27.2(8)
C(58)-O(15)-C(9)-C(10)	101.1(6)
C(58)-O(15)-C(9)-C(8)	-19.5(7)
O(16)-C(8)-C(9)-O(15)	21.8(6)
C(7)-C(8)-C(9)-O(15)	140.8(5)
O(16)-C(8)-C(9)-C(10)	-93.8(6)
C(7)-C(8)-C(9)-C(10)	25.2(8)
O(15)-C(9)-C(10)-C(11)	-91.2(6)
C(8)-C(9)-C(10)-C(11)	20.7(8)
Si(2)-O(14)-C(11)-C(10)	-48.3(8)
Si(2)-O(14)-C(11)-C(12)	-171.4(4)
C(9)-C(10)-C(11)-O(14)	171.3(5)
C(9)-C(10)-C(11)-C(12)	-65.9(7)
C(36)-O(9)-C(12)-C(50)	47.6(7)
C(36)-O(9)-C(12)-C(11)	-77.3(7)
C(36)-O(9)-C(12)-C(7)	166.0(5)
O(14)-C(11)-C(12)-O(9)	72.4(6)
C(10)-C(11)-C(12)-O(9)	-52.7(6)
O(14)-C(11)-C(12)-C(50)	-51.8(7)
C(10)-C(11)-C(12)-C(50)	-176.9(5)

O(14)-C(11)-C(12)-C(7)	-173.0(5)
C(10)-C(11)-C(12)-C(7)	61.9(6)
C(8)-C(7)-C(12)-O(9)	100.8(6)
C(6)-C(7)-C(12)-O(9)	-29.7(6)
C(8)-C(7)-C(12)-C(50)	-139.2(6)
C(6)-C(7)-C(12)-C(50)	90.4(6)
C(8)-C(7)-C(12)-C(11)	-15.8(7)
C(6)-C(7)-C(12)-C(11)	-146.2(5)
C(17)-O(2)-C(13)-O(1)	-65.0(7)
C(17)-O(2)-C(13)-C(14)	56.2(7)
C(1)-O(1)-C(13)-O(2)	-83.9(6)
C(1)-O(1)-C(13)-C(14)	154.0(5)
O(2)-C(13)-C(14)-C(15)	-46.9(8)
O(1)-C(13)-C(14)-C(15)	75.0(7)
C(18)-O(3)-C(15)-C(16)	-157.0(8)
C(18)-O(3)-C(15)-C(14)	85.1(9)
C(13)-C(14)-C(15)-O(3)	164.4(6)
C(13)-C(14)-C(15)-C(16)	46.4(8)
C(20)-O(4)-C(16)-C(15)	-133.9(6)
C(20)-O(4)-C(16)-C(17)	106.6(7)
O(3)-C(15)-C(16)-O(4)	69.1(7)
C(14)-C(15)-C(16)-O(4)	-171.4(5)
O(3)-C(15)-C(16)-C(17)	-173.7(6)
C(14)-C(15)-C(16)-C(17)	-54.2(7)
C(13)-O(2)-C(17)-C(19)	170.4(6)
C(13)-O(2)-C(17)-C(16)	-65.1(7)
O(4)-C(16)-C(17)-O(2)	-177.4(5)
C(15)-C(16)-C(17)-O(2)	63.9(7)
O(4)-C(16)-C(17)-C(19)	-57.9(7)
C(15)-C(16)-C(17)-C(19)	-176.6(6)
C(16)-O(4)-C(20)-O(5)	14.5(11)
C(16)-O(4)-C(20)-C(21)	-163.3(6)
O(5)-C(20)-C(21)-C(26)	-164.6(8)
O(4)-C(20)-C(21)-C(26)	13.2(10)
O(5)-C(20)-C(21)-C(22)	9.5(12)

O(4)-C(20)-C(21)-C(22)	-172.7(7)
C(26)-C(21)-C(22)-C(23)	-0.4(13)
C(20)-C(21)-C(22)-C(23)	-174.6(8)
C(21)-C(22)-C(23)-C(24)	0.9(15)
C(22)-C(23)-C(24)-C(25)	-1.0(16)
C(23)-C(24)-C(25)-C(26)	0.5(16)
C(22)-C(21)-C(26)-C(25)	0.0(12)
C(20)-C(21)-C(26)-C(25)	173.9(8)
C(24)-C(25)-C(26)-C(21)	0.0(15)
O(1)-C(1)-C(27)-C(28)	177.9(6)
C(2)-C(1)-C(27)-C(28)	-59.4(7)
C(6)-C(1)-C(27)-C(28)	61.4(7)
O(6)-Si(1)-C(31)-C(32)	62.0(6)
C(29)-Si(1)-C(31)-C(32)	-178.8(5)
C(30)-Si(1)-C(31)-C(32)	-57.2(6)
O(6)-Si(1)-C(31)-C(33)	-59.3(5)
C(29)-Si(1)-C(31)-C(33)	59.9(6)
C(30)-Si(1)-C(31)-C(33)	-178.5(5)
O(6)-Si(1)-C(31)-C(34)	-178.9(5)
C(29)-Si(1)-C(31)-C(34)	-59.7(6)
C(30)-Si(1)-C(31)-C(34)	61.9(7)
C(5)-O(7)-C(35)-O(8)	8.4(7)
C(5)-O(7)-C(35)-S(1)	-170.6(5)
C(4)-O(8)-C(35)-O(7)	13.1(7)
C(4)-O(8)-C(35)-S(1)	-167.9(5)
C(40)-O(10)-C(36)-O(9)	-64.7(7)
C(40)-O(10)-C(36)-C(37)	56.4(7)
C(12)-O(9)-C(36)-O(10)	-87.0(7)
C(12)-O(9)-C(36)-C(37)	149.7(5)
O(10)-C(36)-C(37)-C(38)	-47.1(8)
O(9)-C(36)-C(37)-C(38)	76.6(7)
C(41)-O(11)-C(38)-C(39)	-158.3(7)
C(41)-O(11)-C(38)-C(37)	82.7(9)
C(36)-C(37)-C(38)-O(11)	164.0(6)
C(36)-C(37)-C(38)-C(39)	45.9(8)

C(43)-O(12)-C(39)-C(38)	-131.2(6)
C(43)-O(12)-C(39)-C(40)	108.2(7)
O(11)-C(38)-C(39)-O(12)	68.8(7)
C(37)-C(38)-C(39)-O(12)	-171.4(5)
O(11)-C(38)-C(39)-C(40)	-172.6(6)
C(37)-C(38)-C(39)-C(40)	-52.8(7)
C(36)-O(10)-C(40)-C(42)	173.6(6)
C(36)-O(10)-C(40)-C(39)	-63.3(7)
O(12)-C(39)-C(40)-O(10)	179.8(5)
C(38)-C(39)-C(40)-O(10)	61.0(7)
O(12)-C(39)-C(40)-C(42)	-61.9(8)
C(38)-C(39)-C(40)-C(42)	179.4(6)
C(39)-O(12)-C(43)-O(13)	1.3(11)
C(39)-O(12)-C(43)-C(44)	-177.7(6)
O(13)-C(43)-C(44)-C(49)	170.5(8)
O(12)-C(43)-C(44)-C(49)	-10.5(11)
O(13)-C(43)-C(44)-C(45)	-7.6(11)
O(12)-C(43)-C(44)-C(45)	171.4(6)
C(49)-C(44)-C(45)-C(46)	1.6(12)
C(43)-C(44)-C(45)-C(46)	179.7(7)
C(44)-C(45)-C(46)-C(47)	-2.8(13)
C(45)-C(46)-C(47)-C(48)	2.3(15)
C(46)-C(47)-C(48)-C(49)	-0.7(17)
C(45)-C(44)-C(49)-C(48)	0.0(14)
C(43)-C(44)-C(49)-C(48)	-178.0(9)
C(47)-C(48)-C(49)-C(44)	-0.5(17)
O(9)-C(12)-C(50)-C(51)	-174.9(5)
C(11)-C(12)-C(50)-C(51)	-52.3(8)
C(7)-C(12)-C(50)-C(51)	68.8(7)
O(14)-Si(2)-C(54)-C(56)	73.4(7)
C(53)-Si(2)-C(54)-C(56)	-170.5(6)
C(52)-Si(2)-C(54)-C(56)	-45.7(7)
O(14)-Si(2)-C(54)-C(57)	-46.7(6)
C(53)-Si(2)-C(54)-C(57)	69.4(7)
C(52)-Si(2)-C(54)-C(57)	-165.8(6)

-166.9(7)
-50.8(8)
74.0(8)
8.9(7)
-172.7(5)
6.7(7)
-171.8(5)

Symmetry transformations used to generate equivalent atoms:

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A." Chem. Sci.

References.

- 1. W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
- 2. A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics*, 1996, **15**, 1518.
- 3. B. E. Love and E. G. Jones, J. Org. Chem., 1999, 64, 3755.
- 4. A. Krasovskiy and P. Knochel, *Synthesis*, 2006, 890.
- 5. A. G. Myers, B. Zheng and M. Movassaghi, J. Org. Chem., 1997, 62, 7507.
- 6. H. Koizumi, S. Yokoshima and T. Fukuyama, *Chem. Asian J.*, 2010, 5, 2192.
- 7. D. F. Taber, P. W. DeMatteo and R. A. Hassan, Org. Synth., 2013, 90, 350.
- 8. A. Kirschning, U. Hary, C. Plumeier, M. Ries and L. Rose, J. Chem. Soc., Perkin Trans. 1, 1999, 519.

Rose et al. "Synthesis of the bis(cyclohexenone) core of (–)-lomaiviticin A." *Chem. Sci.*