Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

A single-ion conducting covalent organic frameworks for aqueous rechargeable Zn-ion batteries

Sodam Park,^a Imanuel Kristanto,^b Gwan Yeong Jung,^b David B. Ahn,^a Kihun Jeong^{*a}, Sang Kyu Kwak^{*a} and Sang-Young Lee^{*c}

^aDepartment of Energy Engineering and ^bDepartment of Chemical Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea

^cDepartment of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea

*E-mail: jkh1905@unist.ac.kr; skkwak@unist.ac.kr; sangyounglee87@gmail.com

Table of Contents

Experimental details

Simulation details	S3
--------------------	----

Scheme S1 Synthesis of TpPa-SO ₃ Zn _{0.5} S5
--

Tables

Table S1 CHN analysis and ICP-OES (for Zn) results for TpPa-SO3Zn0.5
Table S2 Unit cell parameters of TpPa-SO3Zn0.5 S7
Table S3 $t_{Zn^{2+}}$ values of TpPa-SO ₃ Zn _{0.5} and previously reported Zn ²⁺ conducting polyanionsS8
Table S4 Details on model systems constructed for MD simulations S9
Table S5 Characteristics of electrochemical cells containing TpPa-SO ₃ Zn _{0.5} compared with
those containing previously reported single Zn^{2+} conductorsS10

Figs.

Fig. S1 CP-MAS ¹³ C NMR and FT-IR spectra of TpPa-SO ₃ Zn _{0.5}	S11
Fig. S2 TEM image of TpPa-SO ₃ Zn _{0.5}	S12
Fig. S3 Theoretical unit cell structure of TpPa-SO ₃ Zn _{0.5}	S13
Fig. S4 Electrostatic potential (ESP) for TpPa-SO ₃ Zn _{0.5}	S14
Fig. S5 Pore size distribution of TpPa-SO ₃ Zn _{0.5}	S15
Fig. S6 Cross-sectional SEM images of a TpPa-SO ₃ Zn _{0.5} pellet and a TpPa-SO ₃ Z	Zn _{0.5} –PTFE
composite membrane	S16

Fig. S7 EIS profiles of the hydrated TpPa-SO ₃ Zn _{0.5} measured at varied temperaturesS17
Fig. S8 Chemical structure, XRD patterns and N ₂ gas isotherms of TpPaS18
Fig. S9 EIS profile of the hydrated TpPa measured at room temperature
Fig. S10 Velocity distribution of Zn ²⁺ and fraction of Zn–O coordination numbers in TpPa-SO ₃ Zn _{0.5} and LE
Fig. S11 TGA curve of TpPa-SO3Zn0.5
Fig. S12 LSV profile of TpPa-SO ₃ Zn _{0.5} S21
Fig. S13 XRD patterns of TpPa-SO ₃ Zn _{0.5} before and after the Zn plating/stripping testS22
Fig. S14 XPS spectra (Zn 2p _{3/2} and S 2p) and XRD patterns of of Zn metal electrodes after Zn plating/stripping tests in contact with TpPa-SO ₃ Zn _{0.5} or LES23
Fig. S15 SEM and TEM images, XRD pattern and cyclic voltammograms of α- MnO ₂
Fig. S16 Cycling performance of a Zn LE MnO ₂ cell, along with postmortem analysis results on the electrodes after the cycling test
Fig. S17 XPS spectra (Mn 2p _{3/2}) of MnO ₂ cathodes cycled in contact with TpPa-SO ₃ Zn _{0.5} or LE

References	S27
------------	-----

Experimental details

Materials

1,4-phenylenediamine-2-sulfonic acid (Pa-SO₃H), 1,4-dioxane, mesitylene, acetic acid, zinc acetate and polytetrafluoroethylene (PTFE, 60 wt% dispersion in H₂O) were purchased from Merck. The Zn metal foil (99.98%) was purchased from Alfa Aesar. 1,3,5-triformylphloroglucinol (Tp),^{S1} the sulfonic acid COF (TpPa-SO₃H),^{S2,S3} the non-sulfonated COF (TpPa)^{S4} and α -MnO₂^{S5} were synthesised as previously reported. All other chemicals were obtained from commercial sources and used as received unless otherwise noted.

Synthesis of TpPa-SO₃Zn_{0.5}

TpPa-SO₃H (605 mg) was suspended in a 1 M aqueous zinc acetate solution (40 mL) and stirred for 72 h at room temperature, during which the solution was exchanged at an interval of 24 h. The resultant powders were collected by filtration and washed with H₂O to ensure the removal of excess zinc acetate. After dried under vacuum at 120 °C for overnight, the reddish powders of TpPa-SO₃Zn_{0.5} were obtained (yield: 612 mg, 91%).

Structural and physicochemical characterisations

The elemental analysis was performed using a Leco TruSpec Micro CHN analyser. The Zn content was determined by inductively coupled plasma optical emission spectrometry (ICP-OES) using a Varian 700-ES. The Fourier transform infrared (FT-IR) spectrum was recorded using a Bruker ALPHA Laser class 1. The cross polarisation magic angle spinning ¹³C nuclear magnetic resonance (CP-MAS ¹³C NMR) experiment was performed using an Agilent VNMRS 600 MHz NMR spectrometer at a 20 kHz spinning rate. Chemical shifts were referenced to hexamethylbenzene at 17.3 ppm as an external standard. Morphological analyses were performed using a Hitachi S-4800 field-emission scanning electron microscope (FE-SEM) equipped with a JEOL JSM-6400 energy dispersive X-ray spectroscopy (EDS) detector and a Tecnai G2 F20 X-Twin transmission electron microscope (TEM) equipped with an Oxford INCA X-sight 7688 EDS detector. X-ray diffraction (XRD) patterns were recorded through a transmittance mode at the 6D UNIST-PAL beamline of the Pohang Accelerator Laboratory or using a Rigaku D/MAX2500. N₂ gas sorption isotherms were measured at 77 K with a Micromerites ASAP 2020 physisorption analyser. Brunauer–Emmett–Teller (BET) and non-

local density functional theory (NLDFT) methods were utilised to calculate the specific surface area and the pore size, respectively. The thermogravimetric analysis (TGA) was performed on a TA Instruments Q500 thermogravimetric analyser under a N₂ atmosphere at a heating rate of 10 °C min⁻¹. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) mapping images were obtained using IONTOF TOF-SIMS 5. The X-ray photoelectron spectroscopy (XPS) analysis was conducted using a Thermo Fisher Scientific ESCALAB 250Xi.

Electrochemical characterisations

The self-standing TpPa-SO₃Zn_{0.5} pellets were prepared by a cold-pressing method under *ca*. 40 MPa at room temperature. The flexible TpPa-SO₃Zn_{0.5} membranes were prepared by mixing PTFE (5 wt%) with the TpPa-SO₃Zn_{0.5} powders. The obtained pellets and membranes were hydrated before the electrochemical tests.

[Ionic conductivity]

Ionic conductivity was measured with Zn^{2+} blocking Ti|TpPa-SO₃Zn_{0.5}|Ti cells based on an electrochemical impedance spectroscopy (EIS) analysis in a frequency range from 10^{-2} to 10^{6} Hz at an applied amplitude of 10 mV using a Bio-logic VSP classic potentiostat. The ionic conductivity (σ) was determined according to the following equation:

$$\sigma = \frac{l}{RA}$$

where *l* is the pellet (or membrane) thickness, *R* is the resistance and *A* is the area in contact with the electrodes. The control experiment without Zn^{2+} was conducted using a Ti|TpPa|Ti cell.

$[Zn^{2+} transference number]^{S6}$

The time-dependent current flowing through a Zn|TpPa-SO₃Zn_{0.5}|Zn cell and the impedance of the cell before and after direct current (DC) polarisation (20 mV) were measured. The Zn²⁺ transference number ($t_{Zn^{2+}}$) was determined according to the following equation:

$$t_{\mathrm{Zn}^{2+}} = \frac{I_{\mathrm{ss}}(\Delta V - I_0 R_0)}{I_0 (\Delta V - I_{\mathrm{ss}} R_{\mathrm{ss}})}$$

where I_{ss} is the steady-state current, I_0 is the initial current, ΔV is the applied potential, R_0 and R_{ss} are the interfacial resistances before and after polarisation, respectively.

[Linear sweep voltammetry]

Linear sweep voltammetry (LSV) was conducted with a $Zn|TpPa-SO_3Zn_{0.5}|Ti$ cell operated under a sweep rate of 0.2 mV s⁻¹ in a voltage range from -0.2 to 3 V (vs. Zn/Zn^{2+}) at room temperature.

[*Zn stripping/plating experiments*]

The galvanostatic cyclability of a Zn|TpPa-SO₃Zn_{0.5}|Zn cell and a Zn|liquid electrolyte (LE)|Zn cell (LE = 2 M ZnSO₄ in H₂O) was examined at room temperature (current density = 0.1 mA cm⁻², capacity = 0.1 mAh cm⁻²). The reversibility of Zn stripping/plating was investigated with the Zn||Ti configurations, in which Zn metal was electrochemically plated on the Ti working electrode and subsequently stripped out during a cycle (current density = 0.1 mA cm⁻², capacity = 0.1 mAh cm⁻²). The Zn||Cu configurations were used for monitoring Zn electroplating behaviour (current density = 0.3 mA cm⁻², capacity = 3 mAh cm⁻²).

[Zn//MnO₂ battery tests]

The electrode slurry composed of MnO₂, carbon black and polyvinylidene fluoride in a weight ratio of 7/2/1 was dispersed in N-methyl-2-pyrrolidone and casted onto a Ti foil current collector. The solvent was removed under vacuum at 60 °C for overnight. The prepared MnO₂ cathode was immersed with an LE (2 M ZnSO₄ + 0.2 M MnSO₄ in H₂O) and assembled with TpPa-SO₃Zn_{0.5} (or a glass fibre containing the LE) and a Zn metal anode. The resultant Zn||MnO₂ cells were tested under a current density of 0.6 A g⁻¹ at room temperature.

Simulation details

Density functional theory (DFT) calculations

The structural model of TpPa-SO₃Zn_{0.5} was constructed based on those reported for TpPa-SO₃X (X = H, Li),^{S2,S3} in which Zn atoms were introduced upon consideration of the charge balance between the sulfonated framework and Zn²⁺. The stable positions of Zn atoms were investigated by geometry optimisation. All DFT calculations were performed using DMol³ program.^{S7,S8} The generalised gradient approximation with Perdew–Burke–Ernzerhof functional (GGA-PBE)^{S9} was used for the exchange-correlation energy. The double numerical polarisation basis set with spin-polarised calculations were used, while core-electron treatment was conducted with the DFT semi-core pseudopotential. The dispersion correction pertaining to van der Waals interactions was applied with semi-empirical Tkatchenko-Scheffler (TS)

scheme.^{S10} The Brillouin zone was sampled by Monkhorst-Pack^{S11} $1 \times 1 \times 2$ *k*-point mesh for all systems. The self-consistent field (SCF) convergence for each electronic energy was set as 1.0×10^{-6} Ha. The convergence precision of geometry optimisation for energy, force and displacement were set to 1.0×10^{-5} Ha, 0.002 Ha Å⁻¹ and 0.005 Å, respectively.

Molecular dynamics (MD) simulations

All MD simulations were carried out in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS).^{S12} The visualisation was conducted with 3D visualisation Open Visualisation Tool (OVITO).^{S13} Based upon the thermodynamically stable structure of TpPa-SO₃Zn_{0.5} obtained from DFT calculation, a $4 \times 4 \times 54$ supercell was constructed. The carbon atoms of the framework were assumed to be dynamically rigid. H₂O was saturated in the pores of TpPa-SO₃Zn_{0.5} for similarity with the experimental conditions. An LE system with the same magnitude was constructed by a fixed density of 1.31 g cc⁻¹ for 2 M ZnSO₄ in H₂O. Both systems were equilibrated with *NVT* ensemble at 298 K for 2 ns. After then, an external electric field of 1.0 V Å⁻¹ in the *-z*-axis direction was applied to the systems for 3 ns. The Zn²⁺ number density profiles, velocity distributions and fraction of Zn–O coordination numbers were obtained by analysis of average trajectories during the last 1 ns of this stage.

The Nose–Hoover thermostat was used to control temperature.^{S14} The Assisted Model Building with Energy Refinement (AMBER) force field^{S15} was used for both TpPa-SO₃Zn_{0.5} and LE systems. The optimised AMBER force field for SO_4^{2-} ,^{S16} the optimised non-bonded interaction for Zn²⁺,^{S17} the general AMBER force field (GAFF)^{S18} for the other atoms were used for this analysis. The Mulliken charge^{S19} obtained from the DFT calculation was assigned as a partial atomic charge for all systems.

Scheme S1 Synthesis of TpPa-SO₃ $Zn_{0.5}$.

Tables

	C	Н	N	Zn
Calcd. (wt%) for C ₇₂ H ₄₂ N ₁₂ O ₃₀ S ₆ Zn ₃	44.49	2.18	8.65	10.09
Found (wt%)	44.32	2.62	8.79	9.82

Table S1 CHN analysis and ICP-OES (for Zn) results for TpPa-SO $_3$ Zn $_{0.5}$

	TpPa-SO ₃ Zn _{0.5}
Formula	$C_{72}H_{42}N_{12}O_{30}S_6Zn_3$
Symmetry	Triclinic
Space group	<i>P</i> 1
a (Å)	22.8345
<i>b</i> (Å)	22.9434
<i>c</i> (Å)	6.8744
α (°)	89.8514
β (°)	89.7964
γ (°)	120.5433

Table S2 Unit cell parameters of TpPa-SO₃Zn_{0.5}

Anionic host	Guest	$t_{Zn^{2+}}$	Ref.
Zinc sulfonated COF (TpPa-SO ₃ Zn _{0.5})	H ₂ O	0.91	This study
Zn ²⁺ -paired anionic MOF (ZnMOF-808)	H ₂ O	0.93	S20
Zinc sulfonated poly(ether ether ketone) (Zn-SPEEK)	H ₂ O	0.89	S21
Sulfonated perfluoro polyolefin (3M-Nafion)	3 M ZnSO ₄ in H ₂ O	0.52	S22
Zinc sulfonated perfluoro polyolefin (ZPSAM)	H_2O	0.2	S23

Table S3 $t_{Zn^{2+}}$ values of TpPa-SO₃Zn_{0.5} and previously reported Zn²⁺ conducting polyanions

		TpPa-SO ₃ Zn _{0.5}	LE (2 M ZnSO ₄ in H ₂ O)
Number of species	Zn^{2+}	2592	3216
	TpPa-SO ₃ ⁻	1 (139968 atoms)	_
	SO4 ²⁻	_	3216
	H ₂ O	46656	89208
Total number of atoms		282528	286920
Cell parameters	<i>a</i> (Å)		91.34
	<i>b</i> (Å)		91.77
	<i>c</i> (Å)		371.22
	α (°)		90
	β (°)		90
	γ (°)		120

Table S4 Details on model systems constructed for MD simulations

conductors				
Single Zn^{2+} conductor	Cycling time of the Zn Zn cell, h (current density, mA cm ⁻² ; capacity, mAh cm ⁻²)	Battery application (operating voltage, V)	Cycle number (current density, A g ⁻¹)	Ref.
Zinc sulfonated COF (TpPa-SO ₃ Zn _{0.5})	500 (0.1; 0.1)	Zn MnO ₂ (<i>ca</i> . 1.4)	800 (0.6)	This study
Zn ²⁺ -paired anionic MOF (ZnMOF-808)	360 (0.1; 0.05)	Zn VS ₂ (ca. 0.7)	250 (0.2)	S20
Zinc sulfonated poly(ether ether ketone) (Zn-SPEEK)	50 (1; 0.5)	Ι	I	S21
Sulfonated polyacrylonitrile (PAN-S)	350 (0.5; 0.25)	1	1	S24

Table S5 Characteristics of electrochemical cells containing TpPa-SO₃Zn_{0.5} compared with those containing previously reported single Zn²⁺

Figs.

Fig. S1 (a) CP-MAS ¹³C NMR and (b) FT-IR spectra of TpPa-SO₃Zn_{0.5}.

Fig. S2 TEM image of TpPa-SO₃Zn_{0.5}.

Fig. S3 Theoretical unit cell structure of TpPa-SO₃Zn_{0.5} displayed along (a) *c*- and (b) *a*-axes. (c) Optimal geometry of Zn²⁺.

Fig. S4 Electrostatic potential (ESP) for TpPa-SO₃Zn_{0.5} mapped on the electron density surface.

Fig. S5 Pore size distribution of TpPa-SO₃Zn_{0.5}.

Fig. S6 Cross-sectional SEM images of (a) a TpPa-SO₃Zn_{0.5} pellet and (b) a TpPa-SO₃Zn_{0.5}– PTFE composite membrane (arrows: PTFE fibres).

Fig. S7 EIS profiles of the hydrated TpPa-SO₃Zn_{0.5} measured at varied temperatures.

Fig. S8 (a) Chemical structure, (b) XRD patterns and (c) N_2 gas isotherms of TpPa.

Fig. S9 EIS profile of the hydrated TpPa measured at room temperature.

Fig. S10 (a) Velocity distribution of Zn^{2+} in TpPa-SO₃Zn_{0.5} and LE (2 M ZnSO₄ in H₂O) in the *z*-axis. (b) Fraction of Zn–O coordination numbers in TpPa-SO₃Zn_{0.5} and LE. O_w belongs to H₂O, O_f belongs to TpPa-SO₃⁻ and O_s belongs to SO₄²⁻.

Fig. S11 TGA curve of TpPa-SO₃Zn_{0.5}.

Fig. S12 LSV profile of TpPa-SO₃Zn_{0.5}.

Fig. S13 XRD patterns of TpPa-SO $_3$ Zn $_{0.5}$ (as a PTFE composite membrane) before and after the Zn plating/stripping test. *PTFE.

Fig. S14 (a) XPS spectra (Zn $2p_{3/2}$ and S 2p) of Zn metal electrodes after Zn plating/stripping tests in contact with TpPa-SO₃Zn_{0.5} (top) or LE (2 M ZnSO₄ in H₂O; bottom). (b) XRD patterns of Zn metal electrodes before (black) and after Zn plating/stripping tests in contact with TpPa-SO₃Zn_{0.5} (purple) or LE (green). *Zn₄SO₄(OH)₆·5H₂O (PDF 39-0688).

Fig. S15 (a) SEM and TEM (the inset) images, (b) XRD pattern (PDF 44-0141) and (c) cyclic voltammograms of α -MnO₂.

Fig. S16 (a) Cycling performance of a $Zn|LE|MnO_2$ cell (LE = 2 M ZnSO₄ + 0.2 M MnSO₄ in H₂O). (b) SEM image of the Zn metal anode after the 400th cycle. (c) TEM (left) and EDS mapping (for Mn; right) images of the MnO₂ cathode after the 400th cycle.

Fig. S17 XPS spectra (Mn $2p_{3/2}$) of MnO₂ cathodes cycled in contact with TpPa-SO₃Zn_{0.5} (top) or LE (2 M ZnSO₄ + 0.2 M MnSO₄ in H₂O; bottom).

References

- S1 J. H. Chong, M. Sauer, B. O. Patrick and M. J. MacLachlan, *Org. Lett.*, 2003, 5, 3823–3826.
- S2 K. Jeong, S. Park, G. Y. Jung, S. H. Kim, Y.-H. Lee, S. K. Kwak and S.-Y. Lee, J. Am. Chem. Soc., 2019, 141, 5880–5885.
- S. Chandra, T. Kundu, K. Dey, M. Addicoat, T. Heine and R. Banerjee, *Chem. Mater.*, 2016, 28, 1489–1494.
- S4 S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine and R. Banerjee, J. Am. Chem. Soc., 2012, 134, 19524–19527.
- S5 H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K. T. Mueller and J. Liu, *Nat. Energy*, 2016, 1, 16039.
- S6 J. Evans, C. A. Vincent and P. G. Bruce, *Polymer*, 1987, **28**, 2324–2328.
- S7 B. Delley, J. Chem. Phys., 1990, 92, 508–517.
- S8 B. Delley, J. Chem. Phys., 2000, 113, 7756–7764.
- S9 J. P. Perdew, K. Bruke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3856–3868.
- S10 A. Tkatchenko and M. Scheffler, *Phys. Rev. Lett.*, 2009, **102**, 073005.
- S11 H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188–5192.
- S12 S. Plimpton, J. Comp. Phys., 1995, 117, 1–19.
- S13 A. Stukowski, *Modelling Simul. Mater. Sci. Eng.*, 2010, **18**, 015012.
- S14 W. G. Hoover, *Phys. Rev. A*, 1985, **31**, 1695–1697.
- W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D.
 C. Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman, *J. Am. Chem. Soc.*, 1995, 117, 5179–5197.
- S16 S. Kashefolgheta and A. V. Verde, *Phys. Chem. Chem. Phys.*, 2017, **19**, 20593–20607.
- S17 P. Li, B. P. Roberts, D. K. Chakravorty and K. M. Merz Jr., J. Chem. Theory Comput., 2013, 9, 2733–2748.

- S18 J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, J. Comput. Chem., 2004, 25, 1157–1174.
- S19 R. S. Mulliken, J. Chem. Phys., 1955, 23, 1833–1840.
- S20 Z. Wang, J. Hu, L. Han, Z. Wang, H. Wang, Q. Zhao, J. Liu and F. Pan, *Nano Energy*, 2019, 56, 92–99.
- S21 C. Hänsel and D. Kundu, *ACS Omega*, 2019, **4**, 2684–2692.
- S22 M. Ghosh, V. Vijayakumar and S. Kurungot, *Energy Technol.*, 2019, 7, 1900442.
- S23 Y. Cui, Q. Zhao, X. Wu, Z. Wang, R. Qin, Y. Wang, M. Liu, Y. Song, G. Qian, Z. Song,
 L. Yang and F. Pan, *Energy Storage Mater.*, 2020, 27, 1–8.
- S24 B.-S. Lee, S. Cui, X. Xing, H. Liu, X. Yue, V. Petrova, H.-D. Lim, R. Chen and P. Liu, ACS Appl. Mater. Interfaces, 2018, 10, 38928–38935.