
 
 
 

S1 

Supplementary Information 

 

 

Catalytic Three-component C–C Bond Forming Dearomatization 

of Bromoarenes with Malonates and Diazo Compounds 
 

Hiroki Kato,a Itsuki Musha,a Masaaki Komatsuda,a Kei Muto,*,b Junichiro Yamaguchi*,a 
a Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan 

b Waseda Institute for Advanced Study, Waseda University, Shinjuku, Tokyo 169-8050, Japan. 

 

E-mail: keimuto@aoni.waseda.jp (KM), junyamaguchi@waseda.jp (JY) 

 
Table of Contents 

 
1. General S2–S3 

2. Synthesis of diethyl 2-(3-(1,3-dioxoisoindolin-2-yl)propyl)malonate (3c) S4 

3. Pd-Catalyzed three-component C–C bond forming dearomatization of 1 S5–S12 

4. Pd-Catalyzed three-component C–C bond forming dearomatization of 5 S12–S17 

5. Pd-Catalyzed three-component C–C bond forming dearomatization using N-tosylhydrazones

  S17–S20 

6. Derivatization of products S21–S26 

7. Attempts toward asymmetric dearomatization S27–S28 

8. Effect of parameters S29–S35 

9. References S36 

10. 1H and 13C NMR Spectra S37–S119 

11. Crude 1H NMR spectra of 4, 6, 8 and 9 S120–S150 

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2020



 
 
 

S2 

1. General 

  Unless otherwise noted, all reactants or reagents including dry solvents were obtained from 

commercial suppliers and used as received. Pd(OAc)2 and bromobenzene (1F) were obtained from 

FUJIFILM Wako Pure Chemical Corporation. (Trimethylsilyl)diazomethane solution 2.0 M in diethyl 

ether, 4-(dimethylamino)phenyldiphenylphosphine (L1), molecular sieves, 3 Å (3Å MS) and 

2-bromonaphthalene (1I) were obtained from Sigma-Aldrich. 1-Bromonaphthalene (1A), 

1-bromoanthracene (1B), 1,5-dibromoanthracene (1C), 1-bromo-2-methylnaphthalene (1D), 

5-bromoisoquinoline (1E), 2-bromotoluene (1G), methyl 6-bromo-2-naphthoate (1J), 

3-bromoquinoline (1K), diethyl methylmalonate (3a), diethyl benzylmalonate (3d), diethyl malonate 

(3e), 2-bromo-3-hexylthiophene (5B), 2-bromo-5-phenylthiophene (5G) and 

4-bromo-2-methylthiophene (5J) were obtained from Tokyo Chemical Industry (TCI). 

2-Bromothiophene (5A) was obtained from Acros Organics. 1-Bromo-4-methylnaphthalene (1H),[1] 

2-bromo-3-ethylthiophene (5C),[2] 2-bromo-3-phenylthiophene (5D),[3] 2-bromo-4-phenylthiophene 

(5E),[4,5] 2-bromo-5-methylthiophene (5F),[6] 2-bromo-5-(methoxymethyl)furan (5H),[7] 

2-((benzyloxy)methyl)-5-bromofuran (5I),[7] di-tert-butyl 2-methylmalonate (3b),[8] diethyl 

2-(3-(1,3-dioxoisoindolin-2-yl)propyl)malonate (3c),[9] 

N'-benzylidene-4-methylbenzenesulfonohydrazide (7a),[10] N'-(diphenyl 

methylene)-4-methylbenzenesulfonohydrazide (7b),[11] 4-methyl-N'-(4-methylbenzylidene) 

benzenesulfonohydrazide (7c),[10] and N'-(4-fluorobenzylidene)-4-methylbenzenesulfonohydrazide 

(7d)[10] were synthesized according to procedures and the spectra matched with those of compounds 

reported in the literature. Unless otherwise noted, all reactions were performed with dry solvents under 

an atmosphere of N2 in dried glassware using standard vacuum-line techniques. All three-component 

C–C bond forming dearomatizations were performed in an 8-mL glass vessel tube equipped with a 

screw cap and heated (IKA Plate RCT digital) in a 16-well aluminum reaction block (IKA DB4.3 

Block) unless otherwise noted. All work-up and purification procedures were carried out with 

reagent-grade solvents in air. 

  Analytical thin-layer chromatography (TLC) was performed using Silica-gel 70 TLC Plate-Wako 

(0.25 mm). The developed chromatogram was analyzed by UV lamp (254 nm). Flash column 

chromatography was performed with Biotage Isolera® equipped with Biotage SNAP Cartridge KP-Sil 

columns and hexane/EtOAc as an eluent unless otherwise noted. Preparative thin-layer 

chromatography (PTLC) was performed using Wakogel B5-F silica coated plates (0.75 mm) prepared 

in our laboratory. Basic alumina chromatography was performed using basic alumina, activated (pH = 

9.0–11.0) from Wako Pure Chemical Corporation. Preparative recycling gel permeation 

chromatography (GPC) was performed with a JAI LaboACE LC-5060 instrument equipped with 

JAIGEL-2HR columns using CHCl3 as an eluent. High-resolution mass spectra were conducted on 

Thermo Fisher Scientific ExactivePlus (ESI). Chiral high performance liquid chromatography (HPLC) 
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was performed using SHIMADZU Prominence-i LC-2030C Plus® equipped with DAICEL Chiralcel®. 

Details of chromatographic conditions on the separation of the products are described with compound 

data in Section 7. Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL 

JNM-ECS-400 (1H 400 MHz, 13C 101 MHz) spectrometer. Chemical shifts for 1H NMR are expressed 

in parts per million (ppm) relative to tetramethylsilane (δ 0.00 ppm). Chemical shifts for 13C NMR are 

expressed in ppm relative to CDCl3 (δ 77.0 ppm). Data are reported as follows: chemical shift, 

multiplicity (s = singlet, d = doublet, dd = doublet of doublets, ddd = doublet of doublets of doublets, t 

= triplet, dt = doublet of triplets, td = triplet of doublets, q = quartet, qd = quartet of doublets, m = 

multiplet), coupling constant (Hz), and integration. 
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2. Synthesis of diethyl 2-(3-(1,3-dioxoisoindolin-2-yl)propyl)malonate (3c)[9] 

 
  To a solution of sodium hydride (60%, dispersion in paraffin liquid: 143.8 mg, 3.6 mmol, 1.2 equiv) 

in THF (7.8 mL) was added diethyl malonate (3e: 460 µL, 3.0 mmol, 1.0 equiv) at 0 °C. After stirring 

at room temperature for 20 min, to the mixture were added the solution of 

N-(3-bromopropyl)phthalimide (816.5 mg, 3.0 mmol, 1.0 equiv) in THF (5.2 mL) slowly and sodium 

iodide (45.0 mg, 300 µmol, 0.10 equiv). After stirring the mixture at room temperature for 10 h with 

monitoring the reaction progress by TLC, the mixture was stirred at 40 °C overnight. The mixture was 

diluted with Et2O and quenched with 1M HCl aq. and brine. The solvent was extracted three times 

with Et2O. The combined organic layer was dried over MgSO4, filtrated, and concentrated in vacuo. 

Purification by Isolera® (hexane:EtOAc = 99:1 to 3:1) afforded diethyl 

2-(3-(1,3-dioxoisoindolin-2-yl)propyl)malonate (3c: 543 mg, 1.56 mmol, 52% yield) as a yellow oil. 

The spectra are in accordance with those of the compounds reported in the literature. 
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3. Pd-Catalyzed three-component C–C bond forming dearomatization of 1 

 
General Procedure A 

  To an 8-mL glass vessel equipped with a screw cap containing a magnetic stirring bar and 3Å MS 

(50.0 mg) was dried with a heat-gun in vacuo and filled with N2 after cooling to room temperature. To 

this vessel were added bromoarene 1 (0.20 mmol, 1.0 equiv), Pd(OAc)2 (2.3 mg, 0.010 mmol, 5.0 

mol%), 4-(dimethylamino)phenyldiphenylphosphine (L1: 12.2 mg, 0.040 mmol, 20 mol%), sodium 

hydride (60%, dispersion in paraffin liquid: 8.0 mg, 0.20 mmol, 1.0 equiv) and malonate 3 (0.20 mmol, 

1.0 equiv). The vessel was placed under vacuum and refilled N2 gas three times, and then added a 

solution of (trimethylsilyl)diazomethane (2, 2.0 M in Et2O: 100 µL, 0.20 mmol, 1.0 equiv) and toluene 

(1.0 mL). The vessel was sealed with a screw cap and then heated at 60 °C for 12 h with stirring. After 

cooling the reaction mixture to room temperature, the mixture was passed through a short alumina pad 

with hexane/EtOAc (1:1) as an eluent. The filtrate was concentrated in vacuo. The yield of 4 was 

determined by 1H NMR analysis using CH2Br2 as an internal standard. The residue was purified by 

Isolera® with a basic alumina column cartridge (hexane) to afford the corresponding dearomatized 

product 4.  

 

 
Diethyl (E)-2-methyl-2-(4-((trimethylsilyl)methylene)-1,4-dihydronaphthalen-1-yl)malonate 

(4Aa) 

  Following the General Procedure A, the reaction was conducted by using DPEphos (10.7 mg, 0.020 

mmol, 10 mol%) as the ligand. 1H NMR yield of 4Aa was 92% (1H NMR peak at 4.59 ppm (d, J = 5.6 

Hz, 1H) was used). Purification by Isolera® with a basic alumina column cartridge (hexane/EtOAc = 

99:1 to 9:1) afforded 4Aa (58.5 mg, 152 µmol, 76% yield) as a colorless oil. A part of product 

decomposed during purification (rearomatization). 1H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 8.0 Hz, 

1H), 7.32–7.25 (m, 1H), 7.20–7.13 (m, 2H), 6.83 (d, J = 10.0 Hz, 1H), 6.30 (s, 1H), 6.27 (dd, J = 10.0, 

5.6 Hz, 1H), 4.59 (d, J = 5.6 Hz, 1H), 4.29–4.10 (m, 4H), 1.30–1.21 (m, 6H), 1.05 (s, 3H), 0.23 (s, 

9H); 13C NMR (101 MHz, CDCl3) δ 170.8, 145.4, 136.9, 133.6, 132.0, 128.4, 128.3, 127.00, 126.96, 

Br
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125.1, 123.8, 61.4, 44.9, 14.5, 14.0, 13.9, 0.2 (three peaks are missing due to overlapping); HRMS 

(ESI) m/z calcd for C22H31O4Si [M + H]+: 387.1986 found 387.1980. 

 

 
Di-tert-butyl (E)-2-methyl-2-(4-((trimethylsilyl)methylene)-1,4-dihydronaphthalen-1-yl)malonate 

(4Ab) 

  1H NMR yield of 4Ab was 93% (1H NMR peak at 4.56 ppm (d, J = 5.2 Hz, 1H) was used). 

Purification by Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1) afforded 

the mixture of 4Ab and L1 (80.2 mg, 4Ab:L1 = 90:10) and the yield of 4Ab was determined as 84%. 

Further purification by Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1, 

two times) was performed to give partially pure 4Ab as a yellow oil for the characterization. A part of 

product decomposed during purification (rearomatization). 1H NMR (400 MHz, CDCl3) δ 7.71 (d, J = 

8.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.27–7.23 (m, 1H), 7.18–7.14 (m, 1H), 6.81 (d, J = 10.8 Hz, 1H), 

6.29–6.25 (m, 2H), 4.56 (d, J = 5.2 Hz, 1H), 1.50 (s, 9H), 1.46 (s, 9H), 0.94 (s, 3H), 0.23 (s, 9H); 13C 

NMR (101 MHz, CDCl3) δ 170.0, 169.9, 145.5, 136.7, 134.1, 131.5, 129.1, 129.0, 126.8, 124.5, 123.7, 

81.7, 81.4, 62.7, 44.4, 27.9, 27.8, 14.7, 0.2 (one peak is missing due to overlapping); HRMS (ESI) m/z 

calcd for C26H38O4NaSi [M + Na]+: 465.2432 found 465.2427. 

 

 
Diethyl (E)-2-methyl-2-(4-((trimethylsilyl)methylene)-1,4-dihydroanthracen-1-yl)malonate (4Ba) 

  1H NMR yield of 4Ba was 79% (1H NMR peak at 4.77 ppm (d, J = 5.6 Hz, 1H) was used). 

Purification by Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1) afforded 

4Ba (47.6 mg, 109 µmol, 55% yield) as a colorless oil. A part of product decomposed during 

purification (rearomatization). 1H NMR (400 MHz, CDCl3) δ 8.17 (s, 1H), 7.86–7.82 (m, 1H), 7.71–

7.68 (m, 1H), 7.66 (s, 1H), 7.45–7.38 (m, 2H), 6.90 (d, J = 10.0 Hz, 1H), 6.50 (s, 1H), 6.33 (ddd, J = 

10.0, 5.6, 1.6 Hz, 1H), 4.77 (d, J = 5.6 Hz, 1H), 4.31–4.14 (m, 4H), 1.29 (t, J = 7.2 Hz, 3H), 1.18 (t, J 

= 7.2 Hz, 3H), 1.09 (s, 3H), 0.27 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 170.8, 170.7, 145.8, 135.1, 

132.3, 132.2, 131.9, 128.3, 128.0, 127.3, 127.2, 126.0, 125.9, 125.4, 122.8, 62.0, 61.5, 44.8, 14.7, 14.0, 

13.9, 0.2 (two peaks are missing due to overlapping); HRMS (ESI) m/z calcd for C26H33O4Si [M + 

H]+: 437.2143 found 437.2139. 
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Diethyl (E)-2-(8-bromo-4-((trimethylsilyl)methylene)-1,4-dihydroanthracen-1-yl)-2-methyl- 

malonate (4Ca) 

  1H NMR yield of 4Ca was 75% (1H NMR peak at 4.83 ppm (d, J = 5.6 Hz, 1H) was used). 

Purification by Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1) afforded 

4Ca (65.0 mg, 126 µmol, 63% yield) as a colorless oil. A part of product decomposed during 

purification (rearomatization). 1H NMR (400 MHz, CDCl3) δ 8.15 (s, 1H), 8.01 (s, 1H), 7.80 (d, J = 

8.0 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.27 (t, J = 8.0 Hz, 1H), 6.90 (d, J = 10.0 Hz, 1H), 6.52 (s, 1H), 

6.39 (dd, J = 10.0, 5.6 Hz, 1H), 4.83 (d, J = 5.6 Hz, 1H), 4.37–4.18 (m, 4H), 1.30 (t, J = 7.2 Hz, 3H), 

1.24 (t, J = 7.2 Hz, 3H), 1.09 (s, 3H), 0.27 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 170.8, 170.4, 145.2, 

136.0, 133.6, 133.5, 132.0, 130.7, 129.9, 128.5, 128.1, 126.5, 126.4, 126.2, 123.3, 122.2, 62.0, 61.9, 

61.5, 44.9, 14.6, 14.0, 13.9, 0.2; HRMS (ESI) m/z calcd for C26H32BrO4Si [M + H]+: 515.1248 found 

515.1245. 

 

 
Tetraethyl 2,2'-((4E,8E)-4,8-bis((trimethylsilyl)methylene)-1,4,5,8-tetrahydroanthracene-1,5- 

diyl)bis(2-methylmalonate) (4Caa) 

  Following the general procedure, the reaction was conducted by using 2 (2.0 equiv), 3a (2.0 equiv), 

and NaH (2.0 equiv) in cyclohexane. 1H NMR yield of 4Caa was 67% (1H NMR peak at 4.63 ppm (d, 

J = 4.8 Hz, 2H) was used). Purification by Isolera® with a basic alumina column cartridge 

(hexane/EtOAc = 99:1 to 9:1) afforded the mixture of 4Caa and 4Ca (102.1 mg, 4Caa:4Ca = 77:23) 

and the yield of 4Caa was determined as 60%. Further purification by Isolera® with a basic alumina 

column cartridge (hexane/EtOAc = 99:1 to 9:1) was performed to give partially pure 4Caa as a yellow 

oil for the characterization. A part of product decomposed during purification (rearomatization). 1H 

NMR (400 MHz, CDCl3) δ 7.54 (s, 2H), 6.79 (d, J = 10.0 Hz, 2H), 6.24–6.20 (m, 4H), 4.63 (d, J = 4.8 

Hz, 2H), 4.31–4.13 (m, 8H), 1.29 (t, J = 7.2 Hz, 6H), 1.23 (t, J = 7.2 Hz, 6H), 1.04 (s, 6H), 0.21 (s, 

18H); 13C NMR (101 MHz, CDCl3) δ 170.7, 145.1, 135.4, 132.4, 131.8, 128.4, 125.2, 124.0, 61.53, 

61.47, 45.0, 14.3, 14.0, 13.9, 0.2 (two peaks are missing due to overlapping); HRMS (ESI) m/z calcd 

for C38H55O8Si2 [M + H]+: 695.3430 found 695.3419. 
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Diethyl (E)-2-methyl-2-(3-methyl-4-((trimethylsilyl)methylene)-1,4-dihydronaphthalen-1-yl) 

malonate (4Da) 

  Following the General Procedure A, the reaction was conducted by using 3a (1.5 equiv) and NaH 

(1.5 equiv) at 90 °C. 1H NMR yield of 4Da was 70%, E/Z = 57:43 (1H NMR peak at 6.13 ppm (s, 

0.57H), 5.74 ppm (s, 0.43H) was used). Purification by Isolera® with a basic alumina column cartridge 

(hexane/EtOAc = 99:1 to 9:1) afforded 4Da as an inseparable diastereoisomeric mixture (39.0 mg, 

97.4 µmol, 49% yield, E/Z = 57:43) as a yellow oil. A part of product decomposed during purification 

(rearomatization). 1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 7.6 Hz, 0.57H), 7.51–7.49 (m, 0.43H), 

7.25–7.19 (m, 2H), 7.13–7.12 (m, 1H), 6.17–6.15 (m, 0.57H), 6.13 (s, 0.57H), 5.97–5.96 (m, 0.43H), 

5.74 (s, 0.43H), 4.48–4.45 (m, 1H), 4.29–4.08 (m, 4H), 2.12 (s, 1.71H), 2.03 (s, 1.29H), 1.30–1.19 (m, 

6H), 1.07 (s, 1.71H), 1.04 (s, 1.29H), 0.24 (s, 5.13H), 0.14 (s, 3.87H); 13C NMR (101 MHz, CDCl3) δ 

171.1, 170.90, 170.87, 170.8, 151.3, 150.9, 141.7, 140.9, 139.3, 138.4, 135.5, 133.7, 128.3, 127.8, 

127.6, 127.3, 127.0, 126.8, 126.2, 126.1, 125.9, 124.2, 123.9, 123.1, 62.1, 62.0, 61.4, 61.3, 53.4, 45.3, 

45.1, 23.2, 19.7, 14.8, 14.7, 14.03, 14.01, 13.9, 1.0, 0.6 (two peaks are missing due to overlapping); 

HRMS (ESI) m/z calcd for C23H33O4Si [M + H]+: 401.2143 found 401.2139. 

 

 
Diethyl (E)-2-methyl-2-(5-((trimethylsilyl)methylene)-5,8-dihydroisoquinolin-8-yl)malonate 

(4Ea) 

  1H NMR yield of 4Ea was 63% (1H NMR peak at 6.47 ppm (s, 1H) was used). Purification by 

Isolera® (hexane/EtOAc = 19:1 to 4:1) afforded 4Ea (33.5 mg, 86.4 µmol, 43% yield) as a colorless 

oil. A part of product decomposed during purification (rearomatization). 1H NMR (400 MHz, CDCl3) 

δ 8.48 (d, J = 5.2 Hz, 1H), 8.42 (s, 1H), 7.53 (d, J = 5.2 Hz, 1H), 6.82 (d, J = 10.4 Hz, 1H), 6.47 (s, 

1H), 6.30–6.26 (m, 1H), 4.63 (d, J = 5.2 Hz, 1H), 4.28–4.13 (m, 4H), 1.28 (t, J = 7.2 Hz, 3H), 1.23 (t, 

J = 7.2 Hz, 3H), 1.07 (s, 3H), 0.25 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 170.5, 170.4, 150.1, 148.1, 

143.8, 143.1, 131.2, 129.6, 128.7, 128.4, 117.3, 61.8, 61.7, 61.1, 42.3, 14.9, 14.0, 13.9, 0.0; HRMS 

(ESI) m/z calcd for C21H30NO4Si [M + H]+: 388.1939 found 388.1935. 
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Diethyl 2-methyl-2-(4-((trimethylsilyl)methylene)cyclohexa-2,5-dien-1-yl)malonate (4Fa) 

  Following the General Procedure A, the reaction was conducted by using Pd(cod)Cl2 (2.9 mg, 0.010 

mmol, 5.0 mol%) and DPEphos (10.7 mg, 0.020 mmol, 10 mol%) as the catalyst and KBr (2.0 equiv) 

as an additive at 40 °C. 1H NMR yield of 4Fa and 4Fa’ were 65% and 34%, respectively (1H NMR 

peaks at 5.37 ppm (s, 1H) for 4Fa and 2.06 ppm (s, 2H, CH2) for 4Fa’ were used). Purification by 

Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1) afforded a mixture of 

4Fa and rearomatized compound 4Fa’ (50.2 mg, 149 µmol, 75% yield, 4Fa:4Fa’ = 59:41) and the 

yield of 4Fa was determined as 44%. Further purification by PTLC (hexane/EtOAc = 9:1) was 

performed to give 4Fa as a colorless oil for the characterization. A part of product decomposed during 

purification (rearomatization). 1H NMR (400 MHz, CDCl3) δ 6.57 (d, J = 10.0 Hz, 1H), 6.28 (d, J = 

10.0 Hz, 1H), 5.82–5.79 (m, 1H), 5.73–5.70 (m, 1H), 5.37 (s, 1H), 4.25–4.17 (m, 4H), 3.96–3.95 (m, 

1H), 1.28–1.24 (m, 9H), 0.15 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 170.7, 143.7, 134.4, 129.7, 129.5, 

128.7, 127.2, 61.5, 57.5, 42.3, 16.1, 14.0, 0.2 (three peaks are missing due to overlapping); HRMS 

(ESI) m/z calcd for C18H29O4Si [M + H]+: 337.1830 found 337.1824. 

 

 
Diethyl (E)-2-methyl-2-(3-methyl-4-((trimethylsilyl)methylene)cyclohexa-2,5-dien-1-yl)malonate 

(4Ga) 

  Following the General Procedure A, the reaction was conducted by using Pd(cod)Cl2 (2.9 mg, 0.010 

mmol, 5.0 mol%) and DPEphos (10.7 mg, 0.020 mmol, 10 mol%) as the catalyst and KBr (2.0 equiv) 

as an additive at 50 °C. 1H NMR yield of 4Ga and 4Ga’ were 56% and 34%, respectively (1H NMR 

peaks at 5.55 ppm (s, 1H) for 4Ga and 2.08 ppm (s, 2H, CH2) for 4Ga’ were used). Purification by 

PTLC (hexane/EtOAc = 19:1) afforded 4Ga (29.0 mg, 82.7 µmol, 41% yield) as a colorless oil. A part 

of product decomposed during purification (rearomatization). 1H NMR (400 MHz, CDCl3) δ 6.60 (dd, 

J = 10.0, 1.6 Hz, 1H), 5.82–5.78 (m, 1H), 5.67–5.66 (m, 1H), 5.55 (s, 1H), 4.26–4.17 (m, 4H), 3.91–

3.90 (m, 1H), 1.87 (s, 3H), 1.28–1.24 (m, 9H), 0.16 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 170.9, 

145.2, 136.2, 130.6, 127.9, 125.7, 124.8, 61.4, 57.6, 42.8, 20.0, 16.0 14.0, 0.3 (three peaks are missing 

due to overlapping); HRMS (ESI) m/z calcd for C19H31O4Si [M + H]+: 351.1986 found 351.1983. 
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Diethyl (E)-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)-2-(4-((trimethylsilyl)methylene)-1,4- 

dihydronaphthalen-1-yl)malonate (4Ac) 

  1H NMR yield of 4Ac was 47% (1H NMR peak at 4.41 ppm (d, J = 5.2 Hz, 1H) was used). 

Purification by Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1) afforded 

4Ac (40.1 mg, 71.6 µmol, 36% yield) as a colorless oil. A part of product decomposed during 

purification (rearomatization). 1H NMR (400 MHz, CDCl3) δ 7.84–7.80 (m, 2H), 7.73–7.69 (m, 2H), 

7.67 (d, J = 8.0 Hz, 1H), 7.28–7.22 (m, 2H), 7.16 (t, J = 8.0 Hz, 1H), 6.79 (d, J = 10.0 Hz, 1H), 6.28 (s, 

1H), 6.25–6.21 (m, 1H), 4.41 (d, J = 5.2 Hz, 1H), 4.18–3.91 (m, 4H), 3.57 (t, J = 7.2 Hz, 2H), 1.88–

1.77 (m, 2H), 1.66–1.58 (m, 2H), 1.18 (t, J = 7.2 Hz, 3H), 1.09 (t, J = 7.2 Hz, 3H), 0.22 (s, 9H); 13C 

NMR (101 MHz, CDCl3) δ 169.9, 169.7, 168.1, 145.0, 136.8, 133.8, 133.7, 132.1, 131.7, 129.1, 127.8, 

126.9, 126.8, 124.9, 123.7, 123.1, 64.4, 61.4, 61.2, 45.1, 38.2, 29.5, 24.5, 13.9, 13.7, 0.2; HRMS (ESI) 

m/z calcd for C32H38NO6Si [M + H]+: 560.2463 found 560.2450. 

 

 
Diethyl (E)-2-benzyl-2-(4-((trimethylsilyl)methylene)-1,4-dihydronaphthalen-1-yl)malonate 

(4Ad) 

  Following the General Procedure A, the reaction was conducted at 70 °C. 1H NMR yield of 4Ad 

was 34% (1H NMR peak at 4.54 ppm (d, J = 5.6 Hz, 1H) was used). Purification by Isolera® with a 

basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1) afforded 4Ad (25.0 mg, 54.0 µmol, 

27% yield) as a yellow oil. A part of product decomposed during purification (rearomatization). 1H 

NMR (400 MHz, CDCl3) δ 7.69 (d, J = 7.6 Hz, 1H), 7.36 (d, J = 7.6 Hz, 1H), 7.30–7.25 (m, 1H), 

7.22–7.14 (m, 6H), 6.88 (d, J = 10.0 Hz, 1H), 6.46 (ddd, J = 10.0, 5.6, 1.2 Hz, 1H), 6.28 (s, 1H), 4.53 

(d, J = 5.6 Hz, 1H), 4.03–3.63 (m, 4H), 3.33 (d, J = 14.0 Hz, 1H), 3.13 (d, J = 14.0 Hz, 1H), 0.95 (t, J 

= 7.6 Hz, 3H), 0.88 (t, J = 7.6 Hz, 3H), 0.24 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 169.7, 169.4, 

145.1, 137.3, 137.0, 134.1, 131.9, 130.3, 129.2, 127.9, 127.8, 126.9, 126.5, 124.9, 123.6, 67.1, 61.1, 

60.9, 46.6, 39.0, 13.5, 13.4, 0.2 (one peak is missing due to overlapping); HRMS (ESI) m/z calcd for 

C28H35O4Si [M + H]+: 463.2299 found 463.2296. 
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Diethyl (Z)-2-(4-methyl-1-((trimethylsilyl)methylene)-1,2-dihydronaphthalen-2-yl)malonate 

(4He) 

  Following the General Procedure A, the reaction was conducted by using DPEphos (21.5 mg, 0.040 

mmol, 20 mol%) as the ligand. 1H NMR yield of 4He was 72% (1H NMR peak at 5.88 ppm (s, 1H) 

was used). Purification by Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 

9:1) afforded 4He (35.3 mg, 91.3 µmol, 46% yield) as a yellow oil. A part of product decomposed 

during purification (rearomatization). 1H NMR (400 MHz, CDCl3) δ 7.44 (dd, J = 7.2, 1.6 Hz, 1H), 

7.31–7.16 (m, 3H), 6.09 (d, J = 6.0 Hz, 1H), 5.88 (s, 1H), 4.21–3.90 (m, 5H), 3.28 (d, J = 9.6 Hz, 1H), 

2.05 (s, 3H), 1.23 (t, J = 6.8 Hz, 3H), 1.13 (t, J = 6.8 Hz, 3H), 0.21 (s, 9H); 13C NMR (101 MHz, 

CDCl3) δ 168.1, 167.9, 151.9, 136.7, 133.7, 133.4, 132.6, 128.2, 127.8, 126.0, 125.3, 123.0, 61.3, 61.1, 

57.1, 40.3, 19.5, 14.2, 14.0, 0.5; HRMS (ESI) m/z calcd for C22H31O4Si [M + H]+: 387.1986 found 

387.1983. 

 

 
Diethyl (E)-2-(2-((trimethylsilyl)methylene)-1,2-dihydronaphthalen-1-yl)malonate (4Ie) 

  1H NMR yield of 4Ie was 61% (1H NMR peak at 5.78 ppm (s, 1H) was used). Purification by 

Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1) afforded the mixture of 

4Ie and benzyl substituted compound 4Ie’ (38.6 mg, 104 µmol, 52% yield, 4Ie:4Ie’ = 78:22) and the 

yield of 4Ie was determined as 40%. A part of product decomposed during purification 

(rearomatization). 4Ie was used to derivatization (diimide reduction to give 14, see the section 6) 

without further purification. We determined the structure of 4Ie by the structural analysis of 14. 

 

 
Diethyl (E)-2-(6-(methoxycarbonyl)-2-((trimethylsilyl)methylene)-1,2-dihydronaphthalen-1-yl) 

-2-methylmalonate (4Ja) 
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  1H NMR yield of 4Ja was 59% (1H NMR peak at 4.66 ppm (s, 1H) was used). Purification by 

Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 3:1) afforded 4Ja (39.5 mg, 

88.8 µmol, 44% yield) as a colorless oil. A part of product decomposed during purification 

(rearomatization). 1H NMR (400 MHz, CDCl3) δ 7.79–7.74 (m, 2H), 7.50 (d, J = 7.6 Hz, 1H), 6.54 (d, 

J = 10.0 Hz, 1H), 6.46 (d, J = 10.0 Hz, 1H), 5.79 (s, 1H), 4.66 (s, 1H), 4.22–4.03 (m, 4H), 3.90 (s, 3H), 

1.27 (t, J = 7.2 Hz, 3H), 1.21 (s, 3H), 1.15 (t, J = 7.2 Hz, 3H), 0.16 (s, 9H); 13C NMR (101 MHz, 

CDCl3) δ 170.6, 169.8, 166.9, 148.6, 140.7, 138.5, 134.6, 129.5, 129.4, 129.1, 128.1, 127.9, 127.2, 

61.9, 61.4, 61.2, 52.1, 51.8, 16.8, 14.0, 13.8, 0.1; HRMS (ESI) m/z calcd for C24H33O6Si [M + H]+: 

445.2041 found 445.2037. 

 
Diethyl (Z)-2-methyl-2-(3-((trimethylsilyl)methylene)-3,4-dihydroquinolin-4-yl)malonate (4Ka) 

  1H NMR yield of 4Ka was 61% (1H NMR peak at 4.53 ppm (s, 1H) was used). Purification by 

Isolera® with a basic alumina column cartridge (hexane/EtOAc = 19:1 to 4:1) afforded 4Ka (31.5 mg, 

81.2 µmol, 41% yield) as a colorless oil. A part of product decomposed during purification 

(rearomatization). 1H NMR (400 MHz, CDCl3) δ 8.21 (s, 1H), 7.40 (dd, J = 7.6, 1.2 Hz, 1H), 7.36 (dd, 

J = 7.6, 1.2 Hz, 1H), 7.29 (td, J = 7.6, 1.2 Hz, 1H), 7.15 (td, J = 7.6, 1.2 Hz, 1H), 6.33 (s, 1H), 4.53 (s, 

1H), 4.23–4.05 (m, 4H), 1.28 (t, J = 7.2 Hz, 3H), 1.20–1.16 (m, 6H), 0.22 (s, 9H); 13C NMR (101 MHz, 

CDCl3) δ 170.2, 169.5, 158.8, 147.7, 144.8, 144.0, 129.3, 128.3, 127.9, 127.7, 127.2, 61.7, 61.5, 61.3, 

48.2, 15.8, 14.0, 13.8, 0.3; HRMS (ESI) m/z calcd for C21H30NO4Si [M + H]+: 388.1939 found 

388.1932. 

 

 

4. Pd-Catalyzed three-component C–C bond forming dearomatization of 5 

 
General Procedure B 

  Following the General Procedure A, bromoheterol 5 was subjected to the catalytic dearomative 

reaction at 60 °C for 12 h. After cooling the reaction mixture to room temperature, the mixture was 

passed through a short alumina pad with hexane/EtOAc (1:1) as an eluent. The filtrate was 

concentrated in vacuo. The yield of 6 was determined by 1H NMR analysis using CH2Br2 as an 

internal standard.  
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Diethyl (E)-2-methyl-2-(5-((trimethylsilyl)methylene)-2,5-dihydrothiophen-2-yl)malonate (6Aa) 

  1H NMR yield of 6Aa was 91%, E/Z = 85:15 (1H NMR peaks at 5.58 ppm (s, 0.85H) and 5.46 ppm 

(s, 0.15H) were used). Purification by Isolera® with a basic alumina column cartridge (hexane/EtOAc 

= 99:1 to 9:1) afforded 6Aa (49.7 mg, 145 µmol, 73% yield, E/Z = 84:16) as a colorless oil. A part of 

product decomposed during purification (rearomatization). 1H NMR (400 MHz, CDCl3) δ 6.53–6.51 

(m, 0.84H), 6.29–6.26 (m, 0.16H), 6.19–6.16 (m, 0.84H), 6.01–5.99 (m, 0.16H), 5.58 (s, 0.84H), 5.46 

(s, 0.16H), 5.24–5.23 (m, 0.16H), 5.17–5.15 (m, 0.84H), 4.28–4.14 (m, 4H), 1.41 (s, 2.52H), 1.40 (s, 

0.48H), 1.29–1.24 (m, 6H), 0.15 (s, 1.44H), 0.13 (s, 7.56H); 13C NMR (101 MHz, CDCl3) δ 170.5, 

170.33, 170.29, 158.5, 156.8, 138.1, 137.1, 133.6, 133.5, 116.6, 115.9, 61.8, 61.1, 59.0, 58.1, 57.9, 

15.7, 15.3, 14.01, 13.99, 0.3, –1.2 (several peaks are missing due to overlapping); HRMS (ESI) m/z 

calcd for C16H27O4SSi [M + H]+: 343.1394 found 343.1389. 

 

 
Di-tert-butyl (E)-2-methyl-2-(5-((trimethylsilyl)methylene)-2,5-dihydrothiophen-2-yl)malonate 

(6Ab) 

  1H NMR yield of 6Ab was 73%, E/Z = 89:11 (1H NMR peaks at 5.56 ppm (s, 0.89H) and 5.43 ppm 

(s, 0.11H) were used). Purification by Isolera® with a basic alumina column cartridge (hexane/EtOAc 

= 99:1 to 9:1) afforded 6Ab (45.6 mg, 114 µmol, 57% yield, E/Z = 89:11) as a colorless oil. A part of 

product decomposed during purification (rearomatization). 1H NMR (400 MHz, CDCl3) δ 6.50–6.48 

(m, 0.89H), 6.26–6.24 (m, 0.11H), 6.20–6.18 (m, 0.89H), 6.02–6.00 (m, 0.11H), 5.56 (s, 0.89H), 5.43 

(s, 0.11H), 5.13 (d, J = 1.2 Hz, 0.11H), 5.06 (d, J = 1.2 Hz, 0.89H), 1.46 (s, 18H), 1.33 (s, 0.33H), 

1.32 (s, 2.67H), 0.15 (s, 0.99H), 0.12 (s, 8.01H); 13C NMR (101 MHz, CDCl3) δ 169.8, 169.5, 157.2, 

137.7, 133.1, 116.0, 82.0, 59.3, 59.0, 27.8, 16.0, 0.4 (two peaks are missing due to overlapping); 

HRMS (ESI) m/z calcd for C20H34O4SSiNa [M + Na]+: 421.1839 found 421.1831. 
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  1H NMR yield of 6Ba was 78% (1H NMR peak at 5.38 ppm (s, 1H) was used). Purification by 

Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1) afforded 6Ba (55.9 mg, 

131 µmol, 66% yield) as a colorless oil. A part of product decomposed during purification 

(rearomatization). 1H NMR (400 MHz, CDCl3) δ 5.80 (d, J = 1.2 Hz, 1H), 5.38 (s, 1H), 5.00 (d, J = 

1.2 Hz, 1H), 4.29–4.15 (m, 4H), 2.20 (t, J = 7.6 Hz, 2H), 1.54–1.47 (m, 2H), 1.36 (s, 3H), 1.33–1.24 

(m, 12H), 0.89 (t, J = 7.2 Hz, 3H), 0.17 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 170.7, 170.5, 158.6, 

147.3, 129.8, 111.0, 61.7, 58.2, 56.6, 31.6, 29.3, 28.2, 27.8, 22.6, 15.1, 14.04, 14.02, 13.99, –1.1 (one 

peak is missing due to overlapping); HRMS (ESI) m/z calcd for C22H39O4SSi [M + H]+: 427.2333 

found 427.2329. 

 

 
Diethyl (Z)-2-(4-ethyl-5-((trimethylsilyl)methylene)-2,5-dihydrothiophen-2-yl)-2-methylmalonate 

(6Ca) 

  1H NMR yield of 6Ca was 81% (1H NMR peak at 5.38 ppm (s, 1H) was used). Purification by 

Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1) afforded 6Ca (52.9 mg, 

143 µmol, 71% yield) as a colorless oil. A part of product decomposed during purification 

(rearomatization). 1H NMR (400 MHz, CDCl3) δ 5.82–5.81 (m, 1H), 5.38 (s, 1H), 5.00 (d, J = 1.2 Hz, 

1H), 4.28–4.15 (m, 4H), 2.23 (qd, J = 7.2, 1.2 Hz, 2H), 1.36 (s, 3H), 1.28–1.24 (m, 6H), 1.14 (t, J = 

7.2 Hz, 3H), 0.17 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 170.7, 170.5, 158.5, 148.7, 129.3, 111.0, 

61.7, 58.2, 56.6, 21.0, 15.1, 14.00, 13.97, 12.8, –1.1 (one peak is missing due to overlapping); HRMS 

(ESI) m/z calcd for C18H31O4SSi [M + H]+: 371.1707 found 371.1703. 

 

 
Diethyl 

(Z)-2-methyl-2-(4-phenyl-5-((trimethylsilyl)methylene)-2,5-dihydrothiophen-2-yl)malonate (6Da) 

  1H NMR yield of 6Da was 87% (1H NMR peak at 5.40 ppm (s, 1H) was used). Purification by 

Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1) afforded 6Da (61.8 mg, 

148 µmol, 74% yield) as a colorless oil. A part of product decomposed during purification 

(rearomatization). 1H NMR (400 MHz, CDCl3) δ 7.40–7.34 (m, 3H), 7.29–7.27 (m, 2H), 6.05 (d, J = 

3.2 Hz, 1H), 5.40 (s, 1H), 5.16 (d, J = 3.2 Hz, 1H), 4.31–4.17 (m, 4H), 1.49 (s, 3H), 1.30–1.24 (m, 6H), 

0.14 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 170.6, 170.2, 157.4, 148.7, 134.9, 133.0, 128.9, 128.2, 

128.0, 115.5, 61.8, 58.5, 56.9, 15.7, 14.03, 14.00, –1.1 (one peak is missing due to overlapping); 

HRMS (ESI) m/z calcd for C22H31O4SSi [M + H]+: 419.1707 found 419.1701. 
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Diethyl 

(Z)-2-methyl-2-(3-phenyl-5-((trimethylsilyl)methylene)-2,5-dihydrothiophen-2-yl)malonate (6Ea) 

  Following the general procedure, the reaction was conducted by using cyclohexane as the solvent. 
1H NMR yield of 6Ea was 70%, E/Z = 89:11 (1H NMR peaks at 5.58 ppm (s, 0.85H) and 5.52 ppm (s, 

0.15H) were used). Purification by Isolera® with a basic alumina column cartridge (hexane/EtOAc = 

99:1 to 9:1) afforded 6Ea (44.7 mg, 107 µmol, 53% yield, E/Z = 85:15) as a colorless oil. A part of 

product decomposed during purification (rearomatization). 1H NMR (400 MHz, CDCl3) δ 7.36–7.28 

(m, 5H), 6.53 (s, 0.85H), 6.31 (s, 0.15H), 5.76 (s, 0.15H), 5.68 (s, 0.85H), 5.58 (s, 0.85H), 5.52 (s, 

0.15H), 4.25–4.09 (m, 2H), 3.58–3.46 (m, 2H), 1.44 (s, 2.55H), 1.43 (s, 0.45H), 1.26–1.21 (m, 3H), 

1.05–1.01 (m, 3H), 0.18 (s, 1.35H), 0.15 (s, 7.65H); 13C NMR (101 MHz, CDCl3) δ 170.9, 168.8, 

155.6, 150.5, 135.6, 133.0, 128.5, 128.2, 127.4, 117.0, 61.9, 61.4, 59.3, 58.7, 13.9, 13.7, 13.5, 0.4; 

HRMS (ESI) m/z calcd for C22H31O4SSi [M + H]+: 419.1707 found 419.1703. 

 

 
Diethyl 

(Z)-2-methyl-2-(5-methyl-2-((trimethylsilyl)methylene)-2,3-dihydrothiophen-3-yl)malonate (6Fa) 

  Following the general procedure, the reaction was conducted by using cyclohexane as the solvent. 
1H NMR yield of 6Fa was 56% (1H NMR peak at 5.45 ppm (d, J = 1.6 Hz, 1H) was used). Purification 

by Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1) afforded 6Fa (33.3 

mg, 93.4 µmol, 47% yield) as a colorless oil. A part of product decomposed during purification 

(rearomatization). 1H NMR (400 MHz, CDCl3) δ 5.45 (d, J = 1.6 Hz, 1H), 5.32–5.31 (m, 1H), 4.49–

4.47 (m, 1H), 4.25–4.11 (m, 4H), 1.99 (s, 3H), 1.40 (s, 3H), 1.29–1.24 (m, 6H), 0.12 (s, 9H); 13C NMR 

(101 MHz, CDCl3) δ 170.8, 170.0, 156.5, 139.0, 122.1, 118.5, 61.4, 61.3, 60.5, 59.9, 16.7, 14.1, 14.02, 

14.00, –1.3; HRMS (ESI) m/z calcd for C17H29O4SSi [M + H]+: 357.1550 found 357.1548. 
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Diethyl (Z)-2-methyl-2-(5-phenyl-2-((trimethylsilyl)methylene)-2,3-dihydrothiophen-3-yl) 

malonate (6Ga) 

  Following the general procedure, the reaction was conducted by using cyclohexane as the solvent. 
1H NMR yield of 6Ga was 60% (1H NMR peak at 5.35 ppm (d, J = 1.6 Hz, 1H) was used). 

Purification by Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1) afforded 

6Ga (38.3 mg, 91.5 µmol, 46% yield) as a colorless oil. A part of product decomposed during 

purification (rearomatization). 1H NMR (400 MHz, CDCl3) δ 7.46–7.43 (m, 2H), 7.37–7.30 (m, 3H), 

6.06 (d, J = 3.2 Hz, 1H), 5.53 (d, J = 1.6 Hz, 1H), 4.68–4.67 (m, 1H), 4.28–4.16 (m, 4H), 1.47 (s, 3H), 

1.30 (t, J = 7.2 Hz, 3H), 1.26 (t, J = 7.2 Hz, 3H), 0.17 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 170.8, 

169.8, 154.6, 142.6, 133.5, 128.6, 128.5, 126.4, 123.2, 118.0, 61.6, 61.34, 61.25, 60.2, 14.4, 14.03, 

14.00, –1.2; HRMS (ESI) m/z calcd for C22H31O4SSi [M + H]+: 419.1707 found 419.1700. 

 

 
Diethyl (Z)-2-(5-(methoxymethyl)-2-((trimethylsilyl)methylene)-2,3-dihydrofuran-3-yl)-2- 

methylmalonate (6Ha) 

  1H NMR yield of 6Ha was 50% (1H NMR peak at 5.09–5.08 ppm (m, 1H) was used). Purification 

by Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1) afforded 6Ha (36.9 

mg, 100 µmol, 50% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 5.09–5.08 (m, 1H), 4.36–

4.34 (m, 2H), 4.29–4.12 (m, 4H), 4.02 (s, 2H), 3.38 (s, 3H), 1.31 (s, 3H), 1.30–1.23 (m, 6H), 0.09 (s, 

9H); 13C NMR (101 MHz, CDCl3) δ 170.6, 170.0, 166.0, 154.9, 101.2, 98.1, 66.7, 61.5, 61.4, 58.5, 

57.9, 50.9, 15.3, 14.0, –0.5 (one peak is missing due to overlapping); HRMS (ESI) m/z calcd for 

C18H30O6SiNa [M + Na]+: 393.1704 found 393.1696. 

 

 
Diethyl (Z)-2-(5-((benzyloxy)methyl)-2-((trimethylsilyl)methylene)-2,3-dihydrofuran-3-yl)- 

2-methylmalonate (6Ia) 

  1H NMR yield of 6Ia was 70% (1H NMR peak at 5.40 ppm (s, 1H) was used). Purification by 

Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1) afforded 6Ia (54.3 mg, 

122 µmol, 61% yield) as a colorless oil. A part of product decomposed during purification 

(rearomatization). 1H NMR (400 MHz, CDCl3) δ 7.37–7.28 (m, 5H), 5.12 (d, J = 2.4 Hz, 1H), 4.57 (s, 

2H), 4.37–4.35 (m, 2H), 4.27–4.14 (m, 4H), 4.11 (s, 2H), 1.31 (s, 3H), 1.30–1.23 (m, 6H), 0.10 (s, 
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9H); 13C NMR (101 MHz, CDCl3) δ 170.6, 170.0, 166.1, 154.9, 137.8, 128.4, 127.8, 101.5, 98.1, 72.4, 

64.2, 61.5, 61.4, 57.9, 51.0, 15.3, 14.0, –0.4 (two peaks are missing due to overlapping); HRMS (ESI) 

m/z calcd for C24H34O6SiNa [M + Na]+: 469.2017 found 469.2011. 

 

 
Diethyl 

(E)-2-methyl-2-(5-methyl-3-((trimethylsilyl)methylene)-2,3-dihydrothiophen-2-yl)malonate (6Ja) 

  1H NMR yield of 6Ja was 64% (1H NMR peak at 5.89 ppm (s, 1H) was used). Purification by 

Isolera® with a basic alumina column cartridge (hexane/EtOAc = 99:1 to 9:1) afforded 6Ja (37.5 mg, 

105 µmol, 53% yield) as a colorless oil. A part of product decomposed during purification 

(rearomatization). 1H NMR (400 MHz, CDCl3) δ 5.89 (s, 1H), 5.03 (s, 1H), 4.94 (s, 1H), 4.26–4.12 (m, 

4H), 2.05 (s, 3H), 1.40 (s, 3H), 1.31–1.24 (m, 6H), 0.10 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 170.8, 

169.0, 158.4, 149.5, 122.8, 121.4, 61.8, 61.5, 61.0, 58.8, 17.2, 13.99, 13.97, 12.7, –0.1; HRMS (ESI) 

m/z calcd for C17H29O4SSi [M + H]+: 357.1550 found 357.1547. 

 

 

5. Pd-Catalyzed three-component C–C bond forming dearomatization using N-tosylhydrazones 

 
General Procedure C 

  To an 8-mL glass vessel equipped with a screw cap containing a magnetic stirring bar and 3Å MS 

(50.0 mg) was dried with a heat-gun in vacuo and filled with N2 after cooling to room temperature. To 

this vessel were added bromoarene 1a or 5a (0.20 mmol, 1.0 equiv), Pd(OAc)2 (2.3 mg, 0.010 mmol, 

5.0 mol%), 4-(dimethylamino)phenyldiphenylphosphine (L1: 12.2 mg, 0.040 mmol, 20 mol%), 

sodium hydride (60%, dispersion in paraffin liquid: 24.0 mg, 0.60 mmol, 3.0 equiv), tosylhydrazones 

7 (0.30 mmol, 1.5 equiv) and malonate 3a (52.3 mg, 0.30 mmol, 1.5 equiv). The vessel was placed 

under vacuum and refilled N2 gas three times, and then added toluene (1.0 mL). The vessel was sealed 

with a screw cap and then heated at 50 °C for 36 h with stirring. After cooling the reaction mixture to 

room temperature, the mixture was passed through a short alumina pad with hexane/EtOAc (1:1) as an 

eluent. The filtrate was concentrated in vacuo. The yield of 8 or 9 was determined by 1H NMR 

analysis using CH2Br2 as an internal standard. 
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Diethyl (E)-2-(4-benzylidene-1,4-dihydronaphthalen-1-yl)-2-methylmalonate (8Aa) [12] 

  1H NMR yield of 8Aa was 43% (1H NMR peak at 4.64 ppm (d, J = 5.2 Hz, 1H) was used). 

Purification by PTLC (hexane/EtOAc = 19:1) afforded 8Aa (28.8 mg, 73.8 µmol, 37% yield) as a 

colorless oil. A part of product decomposed during purification (rearomatization). 1H NMR (400 MHz, 

CDCl3) δ 7.83 (d, J = 8.0 Hz, 1H), 7.43–7.37 (m, 4H), 7.34–7.28 (m, 2H), 7.23–7.21 (m, 2H), 7.17 (s, 

1H), 7.02 (d, J = 10.4 Hz, 1H), 6.33–6.29 (m, 1H), 4.64 (d, J = 5.2 Hz, 1H), 4.30–4.11 (m, 4H), 1.28 (t, 

J = 7.2 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H), 1.19 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 170.8, 137.2, 

136.5, 134.1, 132.2, 129.5, 129.2, 128.9, 128.8, 128.2, 127.0, 126.8, 124.0, 123.1, 61.5, 61.4, 45.1, 

14.9, 14.0, 13.9 (three peaks are missing due to overlapping); HRMS (ESI) m/z calcd for C25H26O4Na 

[M + Na]+: 413.1723 found 413.1719. 

 

 
Diethyl 2-(4-(diphenylmethylene)-1,4-dihydronaphthalen-1-yl)-2-methylmalonate (8Ab) 

  1H NMR yield of 8Ab was 45% (1H NMR peak at 4.59 ppm (d, J = 5.2 Hz, 1H) was used). 

Purification by PTLC (hexane/EtOAc = 19:1) afforded 8Ab (35.8 mg, 76.7 µmol, 38% yield) as a 

white solid. A part of product decomposed during purification (rearomatization). 1H NMR (400 MHz, 

CDCl3) δ 7.37–7.33 (m, 2H), 7.30–7.26 (m, 1H), 7.24–7.17 (m, 7H), 7.15–7.13 (m, 1H), 7.07–7.04 (m, 

2H), 6.88–6.83 (m, 2H), 6.09 (dd, J = 10.0, 5.2 Hz, 1H), 4.59 (d, J = 5.2 Hz, 1H), 4.29–4.14 (m, 4H), 

1.39 (s, 3H), 1.30–1.24 (m, 6H); 13C NMR (101 MHz, CDCl3) δ 170.8, 170.6, 143.3, 143.2, 138.7, 

136.4, 136.1, 133.2, 131.0, 130.2, 130.0, 128.9, 128.4, 128.3, 127.2, 127.1, 127.0, 126.4, 125.7, 61.49, 

61.47, 61.2, 46.1, 15.0, 14.02, 13.98 (one peak is missing due to overlapping); HRMS (ESI) m/z calcd 

for C31H30O4Na [M + Na]+: 489.2036 found 489.2035. 
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Diethyl (Z)-2-methyl-2-(5-(4-methylbenzylidene)-2,5-dihydrothiophen-2-yl)malonate (9Ac) 

  1H NMR yield of 9Ac was 44%, E/Z = 7:93 (1H NMR peak at 5.33 ppm (s, 0.93H) and 5.23 ppm (s, 

0.07H) was used). Purification by PTLC (hexane/EtOAc = 19:1) afforded 9Ac (29.4 mg, 81.6 µmol, 

41% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.38 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 

Hz, 2H), 6.50–6.47 (m, 2H), 5.99–5.97 (m, 1H), 5.33 (s, 1H), 4.31–4.18 (m, 4H), 2.34 (s, 3H), 1.41 (s, 

3H), 1.30–1.26 (m, 6H); 13C NMR (101 MHz, CDCl3) δ 170.7, 170.3, 142.6, 137.2, 136.2, 134.2, 

131.0, 129.1, 127.8, 119.1, 61.9, 61.7, 58.1, 21.3, 15.1, 14.04, 14.01 (one peak is missing due to 

overlapping); HRMS (ESI) m/z calcd for C20H24O4SNa [M + Na]+: 383.1288 found 383.1288. 

 

 
Diethyl (Z)-2-(5-(4-fluorobenzylidene)-2,5-dihydrothiophen-2-yl)-2-methylmalonate (9Ad) 

  1H NMR yield of 9Ad was 50%, E/Z = 6:94 (1H NMR peak at 5.34 ppm (s, 0.94H) and 5.23 ppm (s, 

0.06H) was used). Purification by PTLC (hexane/EtOAc = 19:1) afforded a mixture of 9Ad and 

rearomatized compound 9Ad’ (31.0 mg, 85.1 µmol, 43% yield, 9Ad:9Ad’ = 86:14) and the yield of 

9Ad was determined as 37%. Further purification by GPC was performed to give pure 9Ad as a 

colorless oil for the characterization. A part of product decomposed during purification 

(rearomatization). 1H NMR (400 MHz, CDCl3) δ 7.47–7.42 (m, 2H), 7.07–7.01 (m, 2H), 6.49–6.47 (m, 

2H), 6.01 (dd, J = 6.4, 2.8 Hz, 1H), 5.34 (s, 1H), 4.32–4.19 (m, 4H), 1.41 (s, 3H), 1.28 (t, J = 7.2 Hz, 

6H); 13C NMR (101 MHz, CDCl3) δ 170.7, 170.2, 161.1 (d, JC–F = 248 Hz), 143.2, 137.1, 133.3 (d, JC–

F = 2.9 Hz), 131.5, 129.4 (d, JC–F = 7.7 Hz), 117.9, 115.4 (d, JC–F = 22.2 Hz), 61.9, 61.7, 58.0, 15.2, 

14.04, 14.02 (one peak is missing due to overlapping); HRMS (ESI) m/z calcd for C19H22FO4S [M + 

H]+: 365.1217 found 365.1214. 

 

 
Diethyl 2-(5-(diphenylmethylene)-2,5-dihydrothiophen-2-yl)-2-methylmalonate (9Ab) 
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  1H NMR yield of 9Ab was 56% (1H NMR peak at 5.26–5.24 ppm (m, 1H) was used). Purification 

by PTLC (hexane/EtOAc = 19:1) afforded 9Ab (32.0 mg, 75.7 µmol, 38% yield) as a white solid. A 

part of product decomposed during purification (rearomatization). 1H NMR (400 MHz, CDCl3) δ 

7.38–7.35 (m, 2H), 7.33–7.25 (m, 5H), 7.23–7.19 (m, 1H), 7.16–7.14 (m, 2H), 6.53 (dd, J = 6.4, 2.0 

Hz, 1H), 6.01 (dd, J = 6.4, 3.2 Hz, 1H), 5.26–5.24 (m, 1H), 4.25–4.13 (m, 4H), 1.46 (s, 3H), 1.28–1.22 

(m, 6H); 13C NMR (101 MHz, CDCl3) δ 170.5, 170.3, 142.6, 142.3, 142.0, 134.0, 133.4, 130.6, 130.2, 

129.1, 128.15, 128.07, 127.0, 126.9, 61.8, 59.6, 58.1, 15.3, 14.03, 13.97 (one peak is missing due to 

overlapping); HRMS (ESI) m/z calcd for C25H26O4SNa [M + Na]+: 445.1444 found 445.1442. 
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6. Derivatization of products 

Diimide reduction of 4Aa for the synthesis of diethyl 2-methyl-2-((1R*,4S*)-4-((trimethylsilyl) 

methyl)-1,4-dihydronaphthalen-1-yl)malonate (10) 

 
  To a 20-mL glass drum-vial containing magnetic stirring bar and the solution of 4Aa (190 mg, 491 

µmol, 1.0 equiv) in MeOH (6.0 mL) was added potassium diazocarboxylate (381 mg, 2.0 mmol, 4.0 

equiv). The mixture was cooled at 0 °C, and then AcOH (223 µL, 3.9 mmol, 8.0 equiv) was slowly 

added. After stirring 1 h at room temperature, potassium diazocarboxylate (381 mg, 2.0 mmol, 4.0 

equiv) and AcOH (223 µL, 3.9 mmol, 8.0 equiv) were added again in this order at 0 °C. The mixture 

was further stirred at room temperature until the color of suspension turned to white from yellow. The 

mixture was slowly quenched with NaHCO3 aq. and extracted three times with EtOAc. Combined 

organic layer was dried over Na2SO4, filtrated, and concentrated in vacuo. The mixture was purified 

by Isolera® with basic alumina column cartridge (hexane/EtOAc = 99:1 to 4:1) to afford 10 (189 mg, 

485 µmol, 99% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.21–7.14 (m, 2H), 7.09–7.03 

(m, 2H), 6.09 (dd, J = 10.4, 4.4 Hz, 1H), 5.87 (dd, J = 10.4, 4.4 Hz, 1H), 4.56 (t, J = 4.4 Hz, 1H), 

4.29–4.16 (m, 4H), 3.45–3.42 (m, 1H), 1.31–1.22 (m, 7H), 1.17 (s, 3H), 0.94 (dd, J = 14.4, 12.0 Hz, 

1H), 0.13 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 171.3, 170.9, 143.5, 133.8, 132.7, 128.3, 128.2, 

126.9, 125.3, 124.1, 61.43, 61.39, 59.2, 43.2, 36.0, 27.9, 16.2, 14.0, 13.9, –0.7; HRMS (ESI) m/z calcd 

for C22H32O4NaSi [M + Na]+: 411.1962 found 411.1958. 

 

Bromolactonization of 10 for the synthesis of ethyl (1R*,3aS*,4S*,5S*,9bR*)-4-bromo-1-methyl 

-2-oxo-5-((trimethylsilyl)methyl)-1,2,3a,4,5,9b-hexahydronaphtho[2,1-b]furan-1-carboxylate (11) 

 
  To an 8-mL glass tube containing magnetic stirring bar was added 10 (18.2 mg, 46.8 µmol, 1.0 

equiv), THF (0.50 mL), water (0.10 mL), and then N-bromosuccinimide (NBS: 10.0 mg, 56.2 µmol, 

1.2 equiv) at 0 °C. After warming the mixture to room temperature and stirring for 2 h, to the mixture 

were slowly added NaHCO3 aq. and Na2S2O3 aq. The mixture was extracted three times with EtOAc. 

Combined organic layer was dried over MgSO4, filtrated, and concentrated in vacuo. The mixture was 

purified by PTLC (hexane/EtOAc = 9:1) to afford 11 (13.6 mg, 31.0 µmol, 66% yield) as a colorless 
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oil. 1H NMR (400 MHz, CDCl3) δ 7.29–7.26 (m, 2H), 7.18–7.15 (m, 1H), 7.05–7.03 (m, 1H), 5.32 (dd, 

J = 8.8, 4.0 Hz, 1H), 4.65 (t, J = 4.0 Hz, 1H), 4.36–4.30 (m, 3H), 3.38 (td, J = 7.2, 4.0 Hz, 1H), 1.36 (t, 

J = 7.2 Hz, 3H), 1.22–1.16 (m, 4H), 0.93 (dd, J = 15.2, 6.8 Hz, 1H), 0.09 (s, 9H); 13C NMR (101 MHz, 

CDCl3) δ 174.2, 170.8, 139.3, 130.8, 129.5, 128.6, 127.8, 126.9, 79.8, 62.7, 55.3, 51.4, 44.5, 42.3, 

25.5, 18.6, 14.0, –0.6; HRMS (ESI) m/z calcd for C20H27BrO4NaSi [M + Na]+: 461.0754 found 

461.0750. 

 

Epoxidation of 10 for the synthesis of diethyl 2-methyl-2-((1aR*,2R*,7R*,7aS*)-7- 

((trimethylsilyl)methyl)-1a,2,7,7a-tetrahydronaphtho[2,3-b]oxiren-2-yl)malonate (12) 

 
  To an 8-mL glass tube containing magnetic stirring bar were added 10 (28.2 mg, 72.6 µmol, 1.0 

equiv), CH2Cl2 (1.0 mL), and then m-chloroperbenzoic acid (mCPBA, 77% purity: 12.5 mg, 72.6 

µmol, 1.0 equiv) at 0 °C. After stirring at 0 °C overnight, to the mixture were slowly added NaHCO3 

aq. and then Na2S2O3 aq. The mixture was extracted three times with CH2Cl2. Combined organic layer 

was dried over Na2SO4, filtrated, and concentrated in vacuo. The mixture was purified by PTLC 

(hexane/EtOAc = 3:1) to afford 12 (18.0 mg, 44.5 µmol, 61% yield) as a colorless oil. 1H NMR (400 

MHz, CDCl3) δ 7.18 (t, J = 8.0 Hz, 1H), 7.04 (t, J = 8.0 Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 6.94 (d, J = 

8.0 Hz, 1H), 4.43 (s, 1H), 4.31–4.15 (m, 4H), 3.53 (dt, J = 4.0, 1.2 Hz, 1H), 3.42 (dd, J = 7.6, 6.0 Hz, 

1H), 3.22 (d, J = 4.0 Hz, 1H), 1.34 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.12–1.03 

(m, 2H), 0.16 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 170.9, 170.6, 140.0, 130.1, 129.9, 129.1, 127.9, 

126.0, 61.8, 61.7, 57.8, 55.6, 54.1, 42.9, 35.1, 23.5, 17.8, 14.0, 13.8, –1.0; HRMS (ESI) m/z calcd for 

C22H33O5Si [M + H]+: 405.2092 found 405.2089. 

 

Lactonization of 12 for the synthesis of hydroxy lactone (13) 

 
  To an 8-mL glass tube containing magnetic stirring bar were added 12 (33.4 mg, 82.6 µmol, 1.0 

equiv), CH2Cl2 (1.0 mL), and BF3·OEt2 (12.5 mg, 165 µmol, 2.0 equiv) at 0 °C. After stirring at 0 °C 

for 5 min, the mixture was diluted with Et2O and added NaHCO3 aq. to quench the reaction. The 

mixture was extracted three times with CH2Cl2. Combined organic layer was dried over Na2SO4, 
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filtrated, and concentrated in vacuo. The mixture was purified by PTLC (hexane/EtOAc = 5:1) to 

afford a mixture of 13 and 13’ (20.9 mg, 55.5 µmol, 67% yield, 13:13’ = 71:29) as a yellow oil. 

Ethyl (1S*,3aS*,4S*,5R*,9bR*)-4-hydroxy-1-methyl-2-oxo-5-((trimethylsilyl)methyl)-1,2,3a,4,5,9b- 

hexahydronaphtho[2,1-b]furan-1-carboxylate (13): 1H NMR (400 MHz, CDCl3) δ 7.31–7.28 (m, 

2H), 7.24–7.20 (m, 1H), 6.94 (d, J = 8.0 Hz, 1H), 4.83 (t, J = 4.8 Hz, 1H), 4.53 (d, J = 8.8 Hz, 1H), 

4.36 (q, J = 7.2 Hz, 2H), 3.83 (dt, J = 8.8, 3.2 Hz, 1H), 2.99–2.94 (m, 1H), 2.29–2.28 (m, 1H), 1.36 (t, 

J = 7.2 Hz, 3H), 1.28 (dd, J = 15.6, 6.0 Hz, 1H), 1.20 (s, 3H), 1.16 (dd, J = 15.6, 6.0 Hz, 1H), 0.04 (s, 

9H); 13C NMR (101 MHz, CDCl3) δ 175.3, 171.1, 139.3, 129.9, 129.3, 128.4, 127.7, 126.9, 81.8, 73.0, 

62.7, 54.3, 45.6, 39.4, 18.2, 18.1, 14.0, –0.1; HRMS (ESI) m/z calcd for C20H28O5NaSi [M + Na]+: 

399.1598 found 399.1596. 

Ethyl (1R*,3aS*,4S*,5R*,9bR*)-4-hydroxy-1-methyl-2-oxo-5-((trimethylsilyl)methyl)-1,2,3a,4,5,9b- 

hexahydronaphtho[2,1-b]furan-1-carboxylate (13’): 1H NMR (400 MHz, CDCl3) δ 7.29–7.27 (m, 

1H), 7.26–7.23 (m, 1H), 7.20–7.15 (m, 2H), 4.72 (dd, J = 9.6, 8.8 Hz, 1H), 4.14 (dt, J = 9.6, 3.2 Hz, 

1H), 3.97 (d, J = 9.6 Hz, 1H), 3.76 (q, J = 7.2 Hz, 2H), 2.86–2.81 (m, 1H), 2.39 (d, J = 3.2 Hz, 1H), 

1.87 (s, 3H), 1.34 (dd, J = 15.2, 5.2 Hz, 1H), 1.15 (dd, J = 15.2, 5.2 Hz, 1H), 0.78 (t, J = 7.2 Hz, 3H), 

0.08 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 175.6, 168.6, 139.4, 130.8, 128.1, 127.9, 127.8, 126.5, 

82.3, 72.5, 61.9, 56.1, 49.2, 38.8, 24.4, 17.7, 13.6, –0.1; HRMS (ESI) m/z calcd for C20H28O5NaSi [M 

+ Na]+: 399.1598 found 399.1598. 

 

Diimide reduction of 4Ie for the synthesis of diethyl 2-((1S*,2S*)-2-((trimethylsilyl)methyl)- 

1,2-dihydronaphthalen-1-yl)malonate (14) 

 
  To a crude mixture of 4Ie (NMR yield was 61%, 0.20 mmol scale) in a 20 mL drum-vial with a 

magnetic stirring bar were added potassium diazocarboxylate (155 mg, 0.80 mmol, 4.0 equiv) and 

MeOH (2.0 mL). The mixture was cooled at 0 °C, and then AcOH (90.9 µL, 1.6 mmol, 8.0 equiv) was 

slowly added. After stirring 1 h at room temperature, potassium diazocarboxylate (155 mg, 0.80 mmol, 

4.0 equiv) and AcOH (90.9 µL, 1.6 mmol, 8.0 equiv) were added again in this order at 0 °C. The 

mixture was further stirred at room temperature until the color of suspension turned to white from 

yellow. The mixture was slowly quenched with NaHCO3 aq. and extracted three times with EtOAc. 

Combined organic layer was dried over Na2SO4, filtrated, and concentrated in vacuo. The mixture was 

purified by PTLC (hexane/EtOAc = 19:1, three times) to afford 14 (34.3 mg, 46% yield in 2 steps (for 

this reduction, 75% yield)) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.17 (td, J = 7.2, 2.0 Hz, 
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1H), 7.12–7.07 (m, 2H), 7.03 (d, J = 7.2 Hz, 1H), 6.47 (dd, J = 9.6, 2.8 Hz, 1H), 5.78 (dd, J = 9.6, 2.8 

Hz, 1H), 4.28–4.15 (m, 2H), 3.90 (d, J = 8.8 Hz, 1H), 3.86–3.69 (m, 2H), 3.65 (dd, J = 8.8, 5.2 Hz, 

1H), 2.85–2.73 (m, 1H), 1.28 (t, J = 7.2 Hz, 3H), 0.97 (t, J = 7.2 Hz, 3H), 0.68 (dd, J = 14.0, 3.2 Hz, 

1H), 0.59 (t, J = 14.0 Hz, 1H), 0.01 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 169.3, 168.6, 135.6, 134.2, 

133.3, 127.8, 127.3, 126.8, 125.7, 61.5, 61.2, 50.8, 44.3, 34.3, 16.9, 14.0, 13.7, –0.8 (one peak is 

missing due to overlapping); HRMS (DART) m/z calcd for C21H30O4SiNa [M + Na]+: 397.1806 found 

397.1809. 

 

Epoxidation of 14 for the synthesis of diethyl 2-((1aS*,2R*,3S*,7bR*)-2-((trimethylsilyl)methyl)- 

1a,2,3,7b-tetrahydronaphtho[1,2-b]oxiren-3-yl)malonate (15) 

 
  To a solution of 14 (13.0 mg, 34.7 µmol, 1.0 equiv) in CH2Cl2 (1.0 mL) was added 

m-chloroperbenzoic acid (mCPBA, 77% purity: 8.6 mg, 38.2 µmol, 1.1 equiv) at 0 °C. After stirring 

the solution at 0 °C for several hours with monitoring reaction progress by TLC, NaHCO3 aq. and 

Na2S2O3 aq. were added to quench the reaction. The mixture was extracted three times with CH2Cl2, 

dried over Na2SO4, filtrated, and then concentrated in vacuo. Purification by PTLC (hexane/EtOAc = 

9:1) afforded 15 (9.3 mg, 23.8 µmol, 69% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.41 

(dd, J = 7.2, 2.0 Hz, 1H), 7.29–7.21 (m, 2H), 6.84 (d, J = 7.2 Hz, 1H), 4.32–4.17 (m, 4H), 3.92 (dd, J 

= 12.0, 4.0 Hz, 1H), 3.87 (d, J = 4.0 Hz, 1H), 3.84 (d, J = 12.0 Hz, 1H), 3.60 (t, J = 4.0 Hz, 1H), 2.50–

2.44 (m, 1H), 1.33 (t, J = 7.2 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H), 0.61 (dd, J = 14.8, 2.8 Hz, 1H), 0.02 (s, 

9H), –0.13 (dd, J = 14.8, 12.0 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 168.5, 168.2, 135.9, 132.5, 

129.4, 128.6, 126.4, 125.4, 61.8, 57.6, 53.8, 53.1, 37.8, 31.5, 14.1, 14.0, 12.9, –0.5 (one peak is 

missing due to overlapping); HRMS (ESI) m/z calcd for C21H30O5SiNa [M + Na]+: 413.1755 found 

413.1751. 

 

Bromohydrin formation (synthesis of 16) 

 
  To a solution of 14 (19.0 mg, 50.7 µmol, 1.0 equiv) in THF (0.80 mL) and H2O (0.40 mL) was 

added N-bromosuccinimide (NBS: 9.9 mg 55.8 µmol, 1.1 equiv) at 0 °C. After stirring the solution at 

EtO2C

EtO2C H
H

TMS

EtO2C

EtO2C H
H

TMS

O

15

mCPBA

CH2Cl2, 0 °C

14

EtO2C

EtO2C H
H

TMS

Br

16

EtO2C

EtO2C H
H

TMS

NBS

THF/H2O = 2/1, RT

14

EtO2C

EtO2C H
H

TMS

Br

16’

OH
H

NOE

H
OHH

NOE
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room temperature for several hours with monitoring reaction progress by TLC, water was added to 

quench the reaction. The mixture was extracted three times with EtOAc, dried over MgSO4, filtrated, 

and then concentrated in vacuo. Purification by PTLC (hexane/EtOAc = 9:1, two times) afforded 16 

(13.1 mg, 27.8 µmol, 55% yield) as a colorless oil and diastereo isomer 16’ (4.0 mg, 8.5 µmol, 17% 

yield) as a colorless oil. 

Diethyl 

2-((1S*,2S*,3S*,4S*)-3-bromo-4-hydroxy-2-((trimethylsilyl)methyl)-1,2,3,4-tetrahydronaphthalen-

1-yl)malonate (16): 1H NMR (400 MHz, CDCl3) δ 7.58 (d, J = 7.6 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 

7.24 (t, J = 7.6 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 5.03 (dd, J = 7.6, 4.0 Hz, 1H), 4.38–4.30 (m, 1H), 

4.26–4.18 (m, 1H), 4.03–3.87 (m, 5H), 2.85 (d, J = 4.0 Hz, 1H), 2.59–2.53 (m, 1H), 1.33 (t, J = 7.2 Hz, 

3H), 1.10 (t, J = 7.2 Hz, 3H), 0.40 (dd, J = 14.8, 5.6 Hz, 1H), 0.35–0.25 (m, 1H), 0.03 (s, 9H); 13C 

NMR (101 MHz, CDCl3) δ 168.32, 168.28, 136.8, 136.0, 127.2, 125.8, 125.2, 75.5, 64.7, 62.0, 61.9, 

52.8, 42.5, 41.4, 18.9, 14.1, 13.8, –1.0 (one peak is missing due to overlapping); HRMS (ESI) m/z 

calcd for C21H31BrO5SiNa [M + Na]+: 493.1016 found 493.1016. 
Diethyl 

2-((1S*,2S*,3R*,4R*)-3-bromo-4-hydroxy-2-((trimethylsilyl)methyl)-1,2,3,4-tetrahydronaphthalen

-1-yl)malonate (16’): 1H NMR (400 MHz, CDCl3) δ 7.51 (d, J = 7.6 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 

7.21 (t, J = 7.6 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 5.27 (t, J = 5.2 Hz, 1H), 4.49 (t, J = 5.2 Hz, 1H), 

4.39 (d, J = 8.8 Hz, 1H), 4.35–4.22 (m, 2H), 3.95 (dd, J = 8.8, 4.0 Hz, 1H), 3.87–3.78 (m, 1H), 3.75–

3.66 (m, 1H), 2.52–2.46 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H), 0.98 (dd, J = 14.4, 10.8 Hz, 1H), 0.88 (t, J = 

7.2 Hz, 3H), 0.69 (dd, J = 14.4, 3.2 Hz, 1H), 0.07 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 169.5, 168.5, 

137.0, 135.8, 128.5, 127.7, 127.6, 127.1, 75.0, 62.5, 61.8, 61.3, 51.7, 45.1, 36.7, 18.3, 14.1, 13.5, –0.6; 

HRMS (ESI) m/z calcd for C21H32BrO5Si [M + H]+: 471.1197 found 471.1202. 

 

Hydrogenation of 14 for the synthesis of diethyl 

2-((1S*,2S*)-2-((trimethylsilyl)methyl)-1,2,3,4-tetrahydronaphthalen-1-yl)malonate (17) 

 
  To a solution of 14 (15.6 mg, 41.6 µmol, 1.0 equiv) in MeOH (0.40 mL) was added Pd/C (10 wt%, 

1.6 mg, 1.5 µmol, 3.6 mol%) and equipped with H2 balloon (1 atm) then stirred for overnight at room 

temperature. The mixture was passed through a pad of Celite® and filtrate was concentrated in vacuo 

to afford 17 (14.0 mg, 37.2 µmol, 89% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.12–

7.09 (m, 2H), 7.06–7.02 (m, 2H), 4.26 (q, J = 7.2 Hz, 2H), 3.74–3.66 (m, 3H), 3.62–3.54 (m, 1H), 

2.90–2.77 (m, 2H), 2.12–2.04 (m, 1H), 1.87–1.80 (m, 1H), 1.75–1.64 (m, 1H), 1.30 (t, J = 7.2 Hz, 3H), 

EtO2C

EtO2C H
H

TMS

17

EtO2C

EtO2C H
H

TMS

Pd/C
H2 (balloon)

MeOH, RT

14
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0.88 (t, J = 7.2 Hz, 3H), 0.57 (dd, J = 14.4, 2.4 Hz, 1H), 0.41 (dd, J = 14.4, 11.2 Hz, 1H), 0.01 (s, 9H); 

13C NMR (100 MHz, CDCl3) δ 170.0, 169.0, 137.6, 136.9, 129.5, 128.4, 126.7, 124.9, 61.5, 61.0, 53.3, 

44.7, 34.0, 28.3, 26.0, 20.4, 14.0, 13.5, –0.7; HRMS (ESI) m/z calcd for C21H32O4Na [M + Na]+: 

399.1962 found 399.1964. 

 

mCPBA Oxidation of 6Aa for the synthesis of diethyl (E)-2-(1,1-dioxido-5-((trimethylsilyl) 

methylene)-2,5-dihydrothiophen-2-yl)-2-methylmalonate (18) 

 
  To a solution of 6Aa (35.0 mg, 102 µmol, 1.0 equiv, E/Z = 84:16) in a 20 mL drum-vial with a 

magnetic stirring bar was added CH2Cl2 (1.0 mL). The mixture was cooled to 0 °C, and then 

m-chloroperbenzoic acid (mCPBA, 77% purity: 28.6 mg, 128 µmol, 1.25 equiv) was added. After 

stirring 1 h at 0 °C, mCPBA (77% purity: 28.6 mg, 128 µmol, 1.25 equiv) was added again at 0 °C. 

The mixture was stirred for 4 h at room temperature. The mixture was quenched with NaHCO3 aq. at 

0 °C and extracted three times with CH2Cl2. Combined organic layer was dried over Na2SO4, filtrated, 

and concentrated in vacuo. The mixture was purified by PTLC (hexane/EtOAc = 9:1) to afford 6Aa 

(31.1 mg, 83.0 µmol, 81% yield, E/Z = 85:15) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 6.84–

6.82 (m, 0.85H), 6.55–6.52 (m, 0.15H), 6.44 (s, 0.85H), 6.42–6.39 (m, 0.85H), 6.23–6.21 (m, 0.30H), 

4.61 (t, J = 2.8 Hz, 0.15H), 4.58 (t, J = 2.8 Hz, 0.85H), 4.37–4.17 (m, 4H), 1.56 (s, 0.45H), 1.55 (s, 

2.55H), 1.35–1.30 (m, 3H), 1.29–1.25 (m, 3H), 0.28 (s, 1.35H), 0.23 (s, 7.65H); 13C NMR (101 MHz, 

CDCl3) δ 169.2, 169.1, 168.73, 168.69, 153.5, 152.8, 134.5, 131.8, 131.0, 130.9, 128.4, 127.8, 67.3, 

65.1, 62.6, 62.5, 62.4, 55.3, 55.2, 16.2, 16.1, 14.0, 13.9, –0.4, –0.6 (several peaks are missing due to 

overlapping); HRMS (ESI) m/z calcd for C16H27O6SSi [M + H]+: 375.1292 found 375.1289. 

  

S

H

CO2Et

EtO2C
Me mCPBA

CH2Cl2
0 °C to RT

S

H

EtO2C

EtO2C
Me

OO

186Aa

TMS TMS
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7. Attempts toward asymmetric dearomatization 

 
  Following the General Procedure A, the reaction of 1A, 2, and 3a was conducted by using 

(11bS)-N,N-dibenzyl-2,6-diphenyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine (26.6 mg, 

0.040 mmol, 20 mol%) as a chiral ligand, 1H NMR yield of 4Aa* was 13% (1H NMR peak at 4.60 

ppm (d, J = 5.6 Hz, 1H) was used). The crude material was used next step without further purification. 

  To a crude mixture of 4Aa* (NMR yield was 13%, 0.026 mmol) in a 20 mL drum-vial with a 

magnetic stirring bar were added potassium diazocarboxylate (51.8 mg, 0.27 mmol, 10.3 equiv, based 

on the amount of 4Aa*) and MeOH (2.0 mL). The mixture was cooled to 0 °C, and then AcOH (30.3 

µL, 0.53 mmol, 20.4 equiv) was slowly added. After stirring 1 h at room temperature, potassium 

diazocarboxylate (51.8 mg, 0.27 mmol, 10.3 equiv) and AcOH (30.3 µL, 0.53 mmol, 20.4 equiv) were 

added again in this order at 0 °C. After stirring 1 h at room temperature, potassium diazocarboxylate 

(51.8 mg, 0.27 mmol, 10.3 equiv) and AcOH (30.3 µL, 0.53 mmol, 20.4 equiv) were added again in 

this order at 0 °C (total three portions). The mixture was further stirred at room temperature until the 

color of suspension turned to white from yellow. The mixture was slowly quenched with NaHCO3 aq. 

and extracted three times with EtOAc. Combined organic layer was dried over Na2SO4, filtrated, and 

concentrated in vacuo. The mixture was purified by PTLC (hexane/EtOAc = 19:1, three times) to 

afford pure 10* (7.7 mg, 10% yield, 34% ee in 2 steps) as a colorless oil. Enantiomeric excess 34% 

was determined by chiral HPLC analysis: Chiralpak OD-3, hexane/IPA 99:1, 1.0 mL/min, 40 °C, 

detection at 220 nm, retention time (min): 5.67 (minor) and 6.00 (major). 

 

 

 

 

 

 

  

Br

+

N2
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O
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O

5 mol% Pd(OAc)2
20 mol% chiral ligand

NaH (1.0 equiv)

3Å MS (50 mg)
toluene (1.0 mL)

60 ºC, 12 h
*

H

TMS

CO2Et
EtO2C Me

1A (0.20 mmol)

2 (1.0 equiv)

3a (1.0 equiv) 4Aa*
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O
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8. Effect of parameters 

Effect of ligand 

 
 

Effect of base 

 
 

 

 

recovery of 1Aa (%)

44
51
52
46
56
45
96

100
10
84
64

100
94
94
72
69
96
92
76
93

yield of 4Aaa (%)

56
44
39
2

44
15
0
0
1

15
32
0
6
0
0
6
4
0
0
0

[a] Recoveries and yields were determined by 1H NMR using CH2Br2 
     as an internal standard.
[b] Without Pd(OAc)2.

Br

+
TMS

N2
+

TMS

H
EtO2C

CO2Et
Me

EtO2C
CO2Et

Me

5.0 mol% Pd(OAc)2
ligand

NaH (1.2 equiv)

toluene (1.0 mL)
60 °C, 12 h

P
3

MeO

PR2

NMe2

L1 (R = Ph)
L2 (R = tBu)

L3 (R = OMe)
L4 (R = Me)

P R

3

L5

entry

1
2
3b

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

ligand (X mol%)

L1 (20)
PPh3 (20)

Pd(PPh3)4 (5)
L2 (20)
L3 (20)
L4 (20)
L5 (20)
L6 (20)
L7 (20)
L8 (20)

DPEphos (10)
Xantphos (10)

XPhos (20)
(±) BINAP (10)
PPh2Me (20)
PPh2Et (20)
PnBu3 (20)

P(OPh)3 (20)
P(C6F5)3 (20)

none

1A
(0.20 mmol)

2
(1.0 equiv)

3a
(1.0 equiv)

4Aa

L6

P
3

OMe

tBu

tBu
L7

P
3

MeO

MeO

OMe

L8

P
3

MeO

MeO

Br

+
TMS

N2
+

TMS

H
EtO2C

CO2Et
Me

EtO2C
CO2Et

Me

1A
(0.20 mmol)

2
(1.0 equiv)

3a
(1.0 equiv)

4Aa

5.0 mol% Pd(OAc)2
20 mol% L1

base (X equiv)

toluene (1.0 mL)
60 °C, 12 h

entry

1
2
3
4
5
6
7
8

base

Cs2CO3
Na2CO3
NaOtBu
LiOtBu
K3PO4
NaH
NaH
NaH

recovery of 1Aa (%)

100
95
87

100
98
44
12
15

yield of 4Aaa (%)

6
0
0
3
0

56
71
20

[a] Recoveries and yields were determined by 1H NMR using CH2Br2 
     as an internal standard.

X

2.0
2.0
2.0
2.0
2.0
1.2
1.0
2.0
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Effect of additive 

 
 

Effect of Pd source 

 
 

  

5.0 mol% Pd(OAc)2
20 mol% L1

NaH (1.0 equiv)
additive

toluene (1.0 mL)
60 °C, 12 h

entry

1
2
3
4
5
6

recovery of 1Aa (%)

12
81
12
64
69
41

yield of 4Aaa (%)

71
19
88
36
31
48

additive (X equiv)

none
H2O (1.0)

3Å MS  (50 mg)
KF (2.0) with 3Å MS
KCl (2.0) with 3Å MS
KBr (2.0) with 3Å MS

[a] Recoveries and yields were determined by 1H NMR using CH2Br2 
     as an internal standard.

Br

+
TMS

N2
+

TMS

H
EtO2C

CO2Et
Me

EtO2C
CO2Et

Me

1A
(0.20 mmol)

2
(1.0 equiv)

3a
(1.0 equiv)

4Aa

Br

+
TMS

N2
+

TMS

H
EtO2C

CO2Et
Me

EtO2C
CO2Et

Me

1A
(0.20 mmol)

2
(1.0 equiv)

3a
(1.0 equiv)

4Aa

5.0 mol% Pd source
20 mol% L1

NaH (1.0 equiv)

toluene (1.0 mL)
3Å MS (50 mg)

60 °C, 12 h

entry

1 
2
3
4
5
6b

7b

8

Pd source

Pd(OAc)2
PdBr2

Pd(COOCF3)2
Pd(cod)Cl2
Pd(acac)2

Pd2(allyl)2Cl2
Pd2(dba)3

Pd(MeCN)4(BF4)2

recovery of 1Aa (%)

12
52
54
52
65
68
69

100

yield of 4Aaa (%)

88
48
46
48
28
28
25
0

[a] Recoveries and yields were determined by 1H NMR using CH2Br2
     as an internal standard.
[b] 2.5 mol% of Pd source
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Effect of temperature 

 
Effect of solvent 

 
 

  

Br

+
TMS

N2
+

TMS

H
EtO2C

CO2Et
Me

EtO2C
CO2Et

Me

1A
(0.20 mmol)

2
(1.0 equiv)

3a
(1.0 equiv)

4Aa

5.0 mol% Pd(OAc)2
20 mol% L1

NaH (1.0 equiv)

toluene (1.0 mL)
3Å MS (50 mg)

temperature, 12 h

entry

1
2
3
4

temperature (°C)

50
60
70
80

recovery of 1Aa (%)

48
12
54
49

yield of 4Aaa (%)

52
88
24
30

[a] Recoveries and yields were determined by 1H NMR using CH2Br2
     as an internal standard.

Br

+
TMS

N2
+

TMS

H
EtO2C

CO2Et
Me

EtO2C
CO2Et

Me

1A
(0.20 mmol)

2
(1.0 equiv)

3a
(1.0 equiv)

4Aa

5.0 mol% Pd(OAc)2
20 mol% L1

NaH (1.0 equiv)

solvent (1.0 mL)
3Å MS (50 mg)

60 °C, 12 h

entry

1
2
3
4
5
6
7
8

recovery of 1Aa (%)

12
32
60
68
82
54
78
91

yield of 4Aaa (%)

88
54
40
32
18
26
4
0

solvent

toluene
cyclohexane
1,4-dioxane

CH2Cl2
DCE
Et2O

tAmylOH
tBuOH

[a] Recoveries and yields were determined by 1H NMR using CH2Br2
     as an internal standard.



 
 
 

S32 

Condition screening for dearomatization of bromobenzene (1F) 

 
 

  

Br

+
TMS

N2
+

TMS

H
EtO2C

CO2Et
R

EtO2C
CO2Et

R

1F
(0.20 mmol)

2
(1.0 equiv)

3a (R = Me) or 3e (R = H)
(1.0 equiv)

4Fa or 4Fe

5.0 mol% PdCl2(cod)
20 mol% DPEphos

NaH (1.0 equiv)
KBr (2.0 equiv)

toluene (1.0 mL)
3Å MS (50 mg)

40 °C, 12 h

entry

1
2
3
4
5

6
7
8
9

10
11

yield of 4Fa or 4Fe (%)a

0
6
8

10
17

37
32
45
54
57
65

variation from above conditions

Pd(OAc)2 and L1 were used w/o KBr at 60 °C
Pd(OAc)2 was used w/o KBr at 60 °C

Pd2(allyl)2Cl2 was used w/o KBr at 60 °C
w/o KBr at 70 °C

at 70 °C

at 70 °C
cyclohexane at 70 °C

cyclohexane at 70 °C, 6 h
at 50 °C

6 h
none

[a] Yields were determined by 1H NMR using CH2Br2 as an internal standard.

4Fa’ or 4Fe’

yield of 4Fa’ or 4Fe’ (%)a

0
0
0
0
0

21
37
25
18
12
26

malonate

3e
3e
3e
3e
3e

3a
3a
3a
3a
3a
3a

TMS

EtO2C CO2EtR
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Solvent effect for dearomatization using benzaldehyde p-toluenesulfonylhydrazone (7a)  

 
 

Base effect for dearomatization using benzaldehyde p-toluenesulfonylhydrazone (7a)  

 
 

  

Br

+
Ph

NNHTs
+

Ph

H
EtO2C

CO2Et
Me

EtO2C
CO2Et

Me

1A
(0.20 mmol)

7a
(1.0 equiv)

3a
(1.0 equiv)

8Aa

5.0 mol% Pd(OAc)2
20 mol% L1

NaH (2.0 equiv)

solvent (1.0 mL)
3Å MS (50 mg)

60 °C, 12 h

entry

1
2
3
4
5
6
7
8
9

10
11
12

recovery of 1Aa (%)

69
46
40
31
48
73
75
45
40
38
54
97

yield of 8Aaa (%)

13
1

20
3
8
1
8

12
2

31
9
0

solvent

toluene
THF

1,4-dioxane
DME

CH2Cl2
DCE

m-xylene
benzene
PhCF3

1,4-dioxane
Et2O

CHCl3

[a] Recoveries and yields were determined by 1H NMR using CH2Br2
     as an internal standard.

Br

+
Ph

NNHTs
+

Ph

H
EtO2C

CO2Et
Me

EtO2C
CO2Et

Me

1A
(0.20 mmol)

7a
(1.0 equiv)

3a
(1.0 equiv)

8Aa

5.0 mol% Pd(OAc)2
20 mol% L1

base (X equiv)

1,4-dioxane (1.0 mL)
3Å MS (50 mg)

60 °C, 12 h

entry

1
2
3
4
5
6
7

recovery of 1Aa (%)

38
100
65
52
77
22
13

yield of 8Aaa (%)

31
0
7
6
0

17
11

base

NaH
K2CO3
NaOtBu
KOtBu
LiOtBu
NaH
NaH

[a] Recoveries and yields were determined by 1H NMR using CH2Br2
     as an internal standard.

X

2.0
2.0
2.0
2.0
2.0
2.5
3.0
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Equivalent effect for dearomatization using benzaldehyde p-toluenesulfonylhydrazone (7a) 

 
 

Temperature and reaction time effects for dearomatization using benzaldehyde 

p-toluenesulfonylhydrazone (7a) 

 
  

Br

+
Ph

NNHTs
+

Ph

H
EtO2C

CO2Et
Me

EtO2C
CO2Et

Me

1A
(0.20 mmol)

7a
(X equiv)

3a
(Y equiv)

8Aa

5.0 mol% Pd(OAc)2
20 mol% L1

NaH (Z equiv)

1,4-dioxane (1.0 mL)
3Å MS (50 mg)

60 °C, 12 h

entry

1
2
3
4
5
6

recovery of 1Aa (%)

38
54
87
31
22
0

yield of 8Aaa (%)

31
18
0

32
41
38

[a] Recoveries and yields were determined by 1H NMR using CH2Br2
     as an internal standard.

Z

2.0
2.0
2.0
3.0
3.0
4.0

X

1.0
1.5
2.0
1.0
1.5
2.0

Y

1.0
1.0
1.0
2.0
1.5
2.0

Br

+
Ph

NNHTs
+

Ph

H
EtO2C

CO2Et
Me

EtO2C
CO2Et

Me

1A
(0.20 mmol)

7a
(1.5 equiv)

3a
(1.5 equiv)

8Aa

5.0 mol% Pd(OAc)2
20 mol% L1

NaH (3.0 equiv)

1,4-dioxane (1.0 mL)
3Å MS (50 mg)

temperature, time

entry

1
2
3
4

recovery of 1Aa (%)

22
63
21
16

yield of 8Aaa (%)

41
11
35
43

[a] Recoveries and yields were determined by 1H NMR using CH2Br2
     as an internal standard.

time

12 h
24 h
24 h
36 h

temperature

60 °C
40 °C
50 °C
50 °C
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Limitation (Ar–Br) 

 
Limitation (nucleophile) 

 
Limitation (diazo compound) 

  

Br

+
TMS

N2
+

TMS

H
EtO2C

CO2Et
Me

EtO2C
CO2Et

Me

1
(0.20 mmol)

2
(1.0 equiv)

3a
(1.0 equiv)

S1

5.0 mol% Pd(OAc)2
20 mol% L1

NaH (1.0 equiv)

toluene (1.0 mL)
60 °C, 12 h

Ar

1H NMR yielda

[a] Yields were determined by 1H NMR using CH2Br2 as an internal standard.
[b] Pd(cod)Cl2 (5.0 mol %), DPEphos (10 mol %) were used as catalysts and KBr (2.0 equiv) was added at 40 °C.

N

TMS

H
EtO2C

CO2Et
Me

S1a : 19%
S2a’ : 59%

N

TMS

H
EtO2C

CO2Et
Me

S1b : 8%
S2b’ : 74%

N

TMS

H
EtO2C

CO2Et
Me

S1c : 0%
S2c’ : 0%

Me N

TMS

H
EtO2C

CO2Et
Me

S1eb : 0%
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10. 1H and 13C NMR Spectra 
1H NMR of 4Aa (400 MHz, CDCl3) 
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13C NMR of 4Aa (101 MHz, CDCl3) 
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1H NMR of 4Ab (400 MHz, CDCl3) 
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13C NMR of 4Ab (101 MHz, CDCl3) 
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1H NMR of 4Ba (400 MHz, CDCl3) 
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13C NMR of 4Ba (101 MHz, CDCl3) 
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1H NMR of 4Ca (400 MHz, CDCl3) 
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1H NMR of 4Caa (400 MHz, CDCl3) 
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13C NMR of 4Caa (101 MHz, CDCl3) 
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1H NMR of 4Da (400 MHz, CDCl3) 
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13C NMR of 4Da (101 MHz, CDCl3) 
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1H NMR of 4Ea (400 MHz, CDCl3)  
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13C NMR of 4Ea (101 MHz, CDCl3) 
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1H NMR of 4Fa (400 MHz, CDCl3)  

  

H

TMS

CO2Et
EtO2C Me

4Fa



 
 
 

S52 

13C NMR of 4Fa (101 MHz, CDCl3) 
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1H NMR of 4Ga (400 MHz, CDCl3)  
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13C NMR of 4Ga (101 MHz, CDCl3) 

 
  

H

TMS

CO2Et
EtO2C Me

4Ga

Me



 
 
 

S55 

1H NMR of 4Ac (400 MHz, CDCl3) 
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4Ac

H

TMS

CO2Et
EtO2C

NPhth



 
 
 

S57 

1H NMR of 4Ad (400 MHz, CDCl3) 
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1H NMR of 4He (400 MHz, CDCl3) 
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1H NMR of 4Ja (400 MHz, CDCl3) 
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13C NMR of 4Ja (101 MHz, CDCl3) 
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1H NMR of 4Ka (400 MHz, CDCl3) 
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13C NMR of 4Ka (101 MHz, CDCl3) 
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1H NMR of 6Aa (400 MHz, CDCl3)  
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13C NMR of 6Aa (101 MHz, CDCl3)  

 
  

S TMS

H

CO2Et

CO2Et
Me

(E)-6Aa*

S

TMS

H

CO2Et

CO2Et
Me

(Z)-6Aa*



 
 
 

S67 

1H NMR of 6Ab (400 MHz, CDCl3)  
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13C NMR of 6Ab (101 MHz, CDCl3)  
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1H NMR of 6Ba (400 MHz, CDCl3)  
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13C NMR of 6Ba (101 MHz, CDCl3) 
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1H NMR of 6Ca (400 MHz, CDCl3)  
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13C NMR of 6Ca (101 MHz, CDCl3) 
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1H NMR of 6Da (400 MHz, CDCl3)  
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13C NMR of 6Da (101 MHz, CDCl3) 
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1H NMR of 6Ea (400 MHz, CDCl3)  
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13C NMR of 6Ea (101 MHz, CDCl3) 

 
  

6Ea
mixture of 

diastereomer

S

Ph
H

CO2Et

EtO2C
Me TMS



 
 
 

S77 

1H NMR of 6Fa (400 MHz, CDCl3)  
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13C NMR of 6Fa (101 MHz, CDCl3) 

 
  

S

TMS

Me
H
CO2Et

EtO2C Me
6Fa



 
 
 

S79 

1H NMR of 6Ga (400 MHz, CDCl3)  
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1H NMR of 6Ha (400 MHz, CDCl3)  
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1H NMR of 6Ia (400 MHz, CDCl3)  
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1H NMR of 6Ja (400 MHz, CDCl3)  
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1H NMR of 8Aa (400 MHz, CDCl3)  
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1H NMR of 9Ac (400 MHz, CDCl3)  
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1H NMR of 10 (400 MHz, CDCl3) 
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H TMS

O
EtO2CMe O

Br

11



 
 
 

S100 

13C NMR of 11 (101 MHz, CDCl3) 

H TMS

O
EtO2CMe O

Br

11



 
 
 

S101 

1H NMR of 12 (400 MHz, CDCl3) 
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1H NMR of 13 (400 MHz, CDCl3) 
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13C NMR of 15 (101 MHz, CDCl3, 323 K) 
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1H NMR of 17 (400 MHz, CDCl3)  
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13C NMR of 18 (101 MHz, CDCl3) 
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11. Crude 1H NMR spectra of 4, 6, 8 and 9 
1H NMR of 4Aa (400 MHz, CDCl3) 
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1H NMR of 4Ab (400 MHz, CDCl3) 
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1H NMR of 4Ba (400 MHz, CDCl3) 
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1H NMR of 4Ca (400 MHz, CDCl3) 

  

H

TMS

CO2Et
EtO2C Me
4Ca

Br

CH2Br2 



 
 
 

S124 

1H NMR of 4Caa (400 MHz, CDCl3) 
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1H NMR of 4Da (400 MHz, CDCl3)  
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1H NMR of 4Ea (400 MHz, CDCl3) 
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1H NMR of 4Fa (400 MHz, CDCl3) 
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1H NMR of 4Ga (400 MHz, CDCl3) 
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1H NMR of 4Ac (400 MHz, CDCl3) 
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1H NMR of 4Ad (400 MHz, CDCl3) 
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1H NMR of 4He (400 MHz, CDCl3) 
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1H NMR of 4Ie (400 MHz, CDCl3) 
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1H NMR of 4Ja (400 MHz, CDCl3) 
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1H NMR of 4Ka (400 MHz, CDCl3) 
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1H NMR of 6Aa (400 MHz, CDCl3)  
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1H NMR of 6Ab (400 MHz, CDCl3)  
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1H NMR of 6Ba (400 MHz, CDCl3) 
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1H NMR of 6Ca (400 MHz, CDCl3) 
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1H NMR of 6Da (400 MHz, CDCl3) 
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1H NMR of 6Ea (400 MHz, CDCl3)  
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1H NMR of 6Fa (400 MHz, CDCl3) 
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1H NMR of 6Ga (400 MHz, CDCl3) 
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1H NMR of 6Ha (400 MHz, CDCl3) 
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1H NMR of 9Ab (400 MHz, CDCl3) 
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