Access to Substituted Cyclobutenes by Tandem [3,3]-Sigmatropic Rearrangement/[2+2] Cycloaddition of Dipropargylphosphonates under Ag/Co Relay Catalysis

Qijian Ni,* Xiaoxiao Song* Chin Wen Png, Yongliang Zhang* and Yu Zhao*

Table of Content

1. General information	2
2. General procedure for the preparation of 2 or 4	3
3. Screening of silver salts for optimization of 2a formation	3
4. Attempted enantioselective desymmetrization of 1a	4
5. Procedure for the preparation of phosphinate 8	4
6. Further derivatization of 4a	5
7. Mechanism studies	6
8. Analytical data of the products	10
9. X-ray crystallographic analysis	
10. NMR spectra	27
11. Bioscreening data	75
12. Reference	76

1. General information

The products were purified by column chromatography on Merck silica gel 60, particle size 0.040-0.063 mm (230-240 mesh, flash). For thin-layer chromatography (**TLC**) analysis, Merck precoated TLC plates (silica gel 60 GF254) were used. Visualization of the developed TLC plates was performed with ultraviolet irradiation (254 nm) or staining potassium permanganate solution followed by heating using a heat gun. Mass spectra were acquired on a Finnigan LCQ (ESI) spectrometer and high resolution mass spectra (**HRMS**) on a Finnigan/MAT 95XLT spectrometer. **Enantiomeric excesses** (ee) were determined by HPLC analysis on Agilent HPLC units. ¹H, ¹³C and ³¹P NMR spectra were recorded on AMX500 (500 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26 or DCM δ 5.32), carbon (chloroform δ 77.0) or tetramethylsilane (TMS δ 0.00) was used as a reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), bs (broad singlet). Coupling constants were reported in Hertz (Hz). All reactions were carried out under nitrogen atmosphere. All solvents were purified and dried according to standard methods prior to use. The dipropargylphosphonates were prepared via the reaction of phosphonic dichloride with propargylic alcohol according to the reported procedure.¹

2. General procedure for the preparation of 2 or 4

To a solution of $AgBF_4$ (0.005 mmol) and $Co(OAc)_2$ (0.005 mmol) in toluene (1.0 mL) in a vial in the glovebox was added dipropargylphosphonate (0.1 mmol). The mixture was sealed and taken out of the glovebox. The reaction was heated to 100 °C and allowed to stir for 16 h. The crude mixture was cooled to ambient temperature and directly purified by flash column chromatography using hexanes/ethyl acetate (5:1) as eluent to afford the desired product **2** or **4** in pure form.

3. Screening of silver salts for optimization of 2a formation

H ₃ C	0 Р СН ₃	[Ag] 10 mol% toluene, 100 °C, 16 h, №	Ph O CH_3 CH_3 CH_3 2a
Entry	[Ag]	Conv. (%)	Yield (%)
1	$AgSbF_6$	100	trace
2	AgPF ₆	100	60
3	AgOMs	N.R.	-
4	AgBF ₄	100	62
5	AgOAc	N.R.	-
6	AgOTf	100	7
7	AgOTs	N.R.	-
8	AgClO ₄	100	27
9	Silver(II) picolinate	N.R.	-

Table S1.

4. Attempted enantioselective desymmetrization of 1a

Table S2.

5. Procedure for the preparation of phosphinate 8.

A solution of dichlorophenylphosphine (10.0 mmol), 1-(4-Methylphenyl)-1-propyne-3-ol (15.0 mmol) in diethyl ether (25 mL) was stirred at room temperature for 2 h. The solvent was removed under vacuum and the residue was purified by flash column chromatography to afford phosphinate. Phosphinate (5.0 mmol) and thionylchloride (7.5 mmol) was dissolved in toluene under Ar atmosphere at room temperature overnight. After removing thionylchloride and toluene by vacuum, the residue was dissolved in dry DCM. Then propargylic alcohol (5.0 mmol) was slowly added followed by trimethylamine at 0 °C. The reaction mixture was then warmed up to room temperature and was stirred at room temperature overnight. The solution was quenched with H_2O , extracted with CH_2Cl_2 and concentrated in vacuum, and the residue was purified by flash column chromatography to afford products **8**.

6. Further derivatization of 4a

a) Procedure for the synthesis of 12

To a solution of **4a** (0.1 mmol) in dry DCM (5 mL) was added *m*-CPBA (0.11 mmol) at 0 °C. The mixture was warmed up to room temperature and allowed to stir for 6 h. The reaction was quenched with sat. Na₂SO₃ and extracted with DCM (3×10 ml). The combined organic phase was washed with brine, dried over Na₂SO₄ and concentrated by rotor vapor. The residue was purified by flash column chromatography on silica gel with hexanes/ethyl acetate (5:1 v/v) as the eluent.

b) Procedure for the synthesis of 13

To the conc. HCl was added **4a** (0.1 mmol). The mixture was allowed to stir at 80 °C for 2 h, and then diluted with H₂O. After extraction with DCM for three times, the combined organic phase was washed with sat. NaHCO₃ and brine. Concentration of the dried organic phase gave the crude product, which was subsequent purified by flash column chromatography on silica gel with hexanes/ethyl acetate (20:1 v/v) as the eluent.

c) Procedure for the synthesis of 14

To a solution of **4a** (0.1 mmol) in MeOH (10 mL) was added Raney Ni (0.1 equiv.). After stirring under H_2 (balloon) at room temperature for 12 h, the reaction mixture was filtered through Celite® pad and concentrated by vacuo. The residue was purified by flash column chromatography on silica gel with a mixture of hexanes and ethyl acetate (5:1 v/v) to give desired product.

d) Procedure for the synthesis of 15

To a solution of **4a** (0.1 mmol) in MeOH (10 mL) was added 10% Pd/C (0.1 equiv.). After stirring under H_2 (balloon) at room temperature for 12 h, the reaction mixture was filtered through Celite® pad and concentrated by vacuo. The residue was purified by flash column chromatography on silica gel with a mixture of hexanes and ethyl acetate (20:1 v/v) to give desired product.

7. Mechanism studies

a) To the NMR tube was added **1a**, 10 mol% catalyst and toluene- d_8 in the glovebox. The mixture was taken outside and heated at 100 °C for 1 h before cooling to room temperature for ³¹P NMR.

b) To a solution of **1a** in toluene- d_8 was added AgBF₄ (10 mol%) in a vial in the glovebox. After the designated time, an aliquot of 0.55 mL was taken via syringe and diluted for crude ¹H NMR.

c) 2D NMR for the crude mixture are as shown:

8. Analytical data of the products

2,6-Dimethyl-4-phenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,6-diene 4-oxide (2a)

Colorless oil, 99% yield.

¹**H NMR** (500 MHz, CDCl₃) δ 7.92 – 7.83 (m, 2H), 7.61 (dt, J = 7.2, 1.8 Hz, 1H), 7.55 – 7.44 (m, 2H), 2.73 – 2.48 (m, 4H), 1.85 (d, J = 4.2 Hz, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 139.42 (d, $J_{CP} = 9.5$ Hz), 133.00, 131.45 (d, $J_{CP} = 10.4$ Hz), 128.50 (d, $J_{CP} = 16.1$ Hz), 126.42 (d, $J_{CP} = 198.4$ Hz), 119.67 (d, $J_{CP} = 2.9$ Hz), 22.99, 16.54 (d, $J_{CP} = 6.6$ Hz).

³¹**P** NMR (202 MHz, CDCl₃) δ = 7.76.

HRMS (ESI) m/z Calcd for C₁₄H₁₅O₃P, [M+Na]⁺: 285.0651; Found: 285.0659.

2,6-Diethyl-4-phenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,6-diene 4-oxide (2b)

Colorless oil, 97% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 7.91 – 7.82 (m, 2H), 7.62 – 7.55 (m, 1H), 7.52 – 7.45 (m, 2H), 2.70 – 2.52 (m, 4H), 2.14 (q, *J* = 7.5 Hz, 4H), 1.07 (t, *J* = 7.5 Hz, 6H).

Et ¹³C NMR (126 MHz, CDCl₃) δ 144.08 (d, $J_{CP} = 10.1$ Hz), 132.89 (d, $J_{CP} = 3.4$ Hz), 131.48 (d, $J_{CP} = 10.2$ Hz), 128.45 (d, $J_{CP} = 16.1$ Hz), 126.67 (d, $J_{CP} = 198.9$ Hz), 118.89 (d, $J_{CP} = 2.9$ Hz), 24.09 (d, $J_{CP} = 6.1$ Hz), 23.20, 10.92.

³¹**P NMR** (202 MHz, CDCl₃) δ 7.77.

HRMS (ESI) m/z Calcd for C₁₆H₁₉O₃P, [M+Na]⁺: 313.0964; Found: 313.0960.

4-Phenyl-2,6-dipropyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,6-diene 4-oxide (2c)

Colorless oil, 88% yield.

¹**H** NMR (500 MHz, CDCl₃) δ7.92 – 7.82 (m, 2H), 7.63 – 7.54 (m, 1H), 7.53 – 7.43 (m, 2H), 2.70 – 2.51 (m, 4H), 2.09 (t, *J* = 7.3 Hz, 4H), 1.60 – 1.45 (m, 4H), 0.92 (t, *J* = 7.4 Hz, 6H).

n-Pr ¹³C NMR (126 MHz, CDCl₃) δ 142.90 (d, $J_{CP} = 9.9$ Hz), 132.84 (d, $J_{CP} = 3.2$ Hz), 131.47 (d, $J_{CP} = 10.3$ Hz), 128.42 (d, $J_{CP} = 15.9$ Hz), 126.76 (d, $J_{CP} = 198.8$ Hz), 119.61 (d, $J_{CP} = 2.9$ Hz), 32.60 (d, $J_{CP} = 5.9$ Hz), 23.19, 19.63, 13.55.

³¹**P NMR** (202 MHz, CDCl₃) δ 7.66.

HRMS (ESI) m/z Calcd for C₁₈H₂₃O₃P, [M+Na]⁺: 341.1277; Found: 341.1280.

2,6-Dibutyl-4-phenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,6-diene 4-oxide (2d)

n-Bu Colorless oil, 92% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 7.93 – 7.84 (m, 2H), 7.65 – 7.56 (m, 1H), 7.56 – 7.43 (m, 2H), 2.76 – 2.48 (m, 4H), 2.13 (t, *J* = 7.4 Hz, 4H), 1.60 – 1.44 (m, 4H), 1.42 – 1.30 (m, 4H), 0.90 (t, *J* = 7.3 Hz, 6H).

n-Bu ¹³C NMR (126 MHz, CDCl₃) δ 143.06 (d, $J_{CP} = 9.9$ Hz), 132.85 (d, $J_{CP} = 3.3$ Hz), 131.46 (d, $J_{CP} = 10.4$ Hz), 128.44 (d, $J_{CP} = 15.9$ Hz), 126.78 (d, $J_{CP} = 199.1$ Hz), 119.41 (d, $J_{CP} = 2.8$ Hz), 30.34 (d, $J_{CP} = 6.2$ Hz), 28.34, 23.20, 22.13, 13.82.

³¹**P NMR** (202 MHz, CDCl₃) δ 7.66.

HRMS (ESI) m/z Calcd for C₂₀H₂₇O₃P, [M+Na]⁺: 369.1590; Found: 369.1588.

2,6-Dipentyl-4-phenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,6-diene 4-oxide (2e)

n-Pent Colorless oil, 78% yield.

¹**H NMR** (500 MHz, CDCl₃) δ 7.85 (dd, J = 14.2, 7.6 Hz, 2H), 7.58 (d, J = 7.5Hz, 1H), 7.48 (td, *J* = 7.6, 4.5 Hz, 2H), 2.69 – 2.49 (m, 4H), 2.10 (t, *J* = 7.4 Hz, 4H), 1.56 – 1.41 (m, 4H), 1.33 – 1.25 (m, 8H), 0.86 (dd, *J* = 8.8, 4.8 Hz, 6H). h-Pent ¹³C NMR (126 MHz, CDCl₃) δ 143.04 (d, J_{CP} = 10.1 Hz), 132.82, 131.42 (d,

 $J_{CP} = 10.2$ Hz), 128.40 (d, $J_{CP} = 16.0$ Hz), 119.35 (d, $J_{CP} = 2.8$ Hz), 31.18, 30.57 (d, $J_{CP} = 6.2$ Hz), 25.89, 23.17, 22.35, 13.94.

³¹**P NMR** (202 MHz, CDCl₃) δ 7.55.

HRMS (ESI) m/z Calcd for C₂₂H₃₁O₃P, [M+Na]⁺ : 397.1903; Found: 397.1901.

2,6-Diphenethyl-4-phenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,6-diene 4-oxide (2f)

Colorless oil, 82% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 7.93 – 7.86 (m, 2H), 7.69 (td, J = 7.5, 1.3 Hz, 1H), 7.58 (td, *J* = 7.7, 4.7 Hz, 2H), 7.32 (dd, *J* = 10.3, 4.5 Hz, 4H), 7.28 - 7.21 (m, 6H), 2.90 - 2.79 (m, 4H), 2.51 - 2.40 (m, 4H), 2.40 - 2.30 (m, 4H).¹³C NMR (126 MHz, CDCl₃) δ 142.10 (d, J_{CP} = 10.0 Hz), 141.16, 132.99 (d,

 $J_{\rm CP} = 3.1$ Hz), 131.40 (d, $J_{\rm CP} = 10.3$ Hz), 128.62, 128.48, 128.25, 125.96,

120.16 (d, $J_{CP} = 2.8$ Hz), 32.74 (d, $J_{CP} = 6.1$ Hz), 32.52, 22.88.

³¹**P NMR** (202 MHz, CDCl₃) δ 7.53.

HRMS (ESI) m/z Calcd for C₂₈H₂₇O₃P, [M+Na]⁺ : 465.1590; Found: 465.1586.

2,6-Bis(methoxymethyl)-4-phenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,6-diene 4-oxide (2g)

Yellowish oil, 71% yield.

MeO

¹**H** NMR (500 MHz, CDCl₃) δ 7.95 – 7.86 (m, 2H), 7.59 (dd, J = 7.3, 1.5 Hz, 1H), 7.48 (td, J = 7.6, 4.7 Hz, 2H), 3.98 - 3.89 (m, 4H), 3.36 (d, J = 0.7 Hz, 6H), 2.83 – 2.69 (m, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 139.70 (d, J_{CP} = 10.1 Hz), 133.31, 131.80 (d, $J_{CP} = 10.7 \text{ Hz}$, 128.54 (d, $J_{CP} = 16.2 \text{ Hz}$), 125.39 (d, $J_{CP} = 198.5 \text{ Hz}$), 123.81 (d,

 $J_{\rm CP} = 3.0$ Hz), 68.76 (d, $J_{\rm CP} = 6.5$ Hz), 58.19, 23.69.

³¹**P NMR** (202 MHz, CDCl₃) δ 8.30.

HRMS (ESI) m/z Calcd for C₁₆H₁₉O₅P, [M+Na]⁺ : 345.0862; Found: 345.0856.

2,6-Bis(phenoxymethyl)-4-phenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,6-diene 4-oxide (2h) PhO

Yellowish oil, 56% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 7.95 – 7.86 (m, 2H), 7.62 (td, J = 7.5, 1.3 Hz, 1H), 7.49 (td, J = 7.8, 4.9 Hz, 2H), 7.31 – 7.26 (m, 4H), 6.98 (t, J = 7.4 Hz, 2H), 6.93 - 6.89 (m, 4H), 4.55 (s, 4H), 2.82 - 2.67 (m, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 158.25, 138.48 (d, J_{CP} = 9.9 Hz), 133.44 (d, J_{CP} = 3.1 Hz), 131.76 (d, J_{CP} = 10.6 Hz), 129.55, 128.62 (d, J_{CP} = 16.4 Hz), 125.20

(d, $J_{CP} = 197.5 \text{ Hz}$), 123.89 (d, $J_{CP} = 3.2 \text{ Hz}$), 121.48, 114.82, 65.27 (d, $J_{CP} = 7.5 \text{ Hz}$), 24.04.

³¹**P NMR** (202 MHz, CDCl₃) δ 8.09.

HRMS (ESI) m/z Calcd for C₂₆H₂₃O₅P, [M+Na]⁺: 469.1175; Found: 469.1171.

2,6-Bis((benzyloxy)methyl)-4-phenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,6-diene 4-oxide (2i)

Yellowish oil, 99% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 8.00 – 7.83 (m, 2H), 7.60 (td, J = 7.4, 1.3 Hz, 1H), 7.47 (td, J = 7.7, 4.8 Hz, 2H), 7.39 – 7.27 (m, 10H), 4.57 (dd, J = 34.4, 11.8 Hz, 4H), 4.05 (d, J = 1.6 Hz, 4H), 2.80 – 2.58 (m, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 139.78 (d, $J_{CP} = 10.1$ Hz), 137.76, 133.29 (d, $J_{CP} = 3.3$ Hz), 131.78 (d, $J_{CP} = 10.7$ Hz), 128.55 (d, $J_{CP} = 16.2$ Hz), 128.39, 127.83, 127.75, 125.49 (d, $J_{CP} = 198.6$ Hz), 123.83 (d, $J_{CP} = 3.1$ Hz), 72.12, 66.29 (d, $J_{CP} = 6.6$ Hz),

23.74.

³¹**P NMR** (202 MHz, CDCl₃) δ 8.25.

HRMS (ESI) m/z Calcd for C₂₈H₂₇O₅P, [M+Na]⁺: 497.1488; Found: 497.1489.

2,6-Dicyclopropyl-4-phenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,6-diene 4-oxide (2j)

Colorless oil, 30% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 7.77 (ddd, J = 14.2, 8.2, 1.4 Hz, 2H), 7.58 (dd, J = 7.6, 1.6 Hz, 1H), 7.47 (td, J = 7.6, 4.6 Hz, 2H), 2.78 – 2.64 (m, 4H), 1.50 – 1.41 (m, 2H), 0.83 – 0.61 (m, 8H).

¹³**C NMR** (126 MHz, CDCl₃) δ 141.84 (d, $J_{CP} = 9.2$ Hz), 132.91 (d, $J_{CP} = 3.4$ Hz), 131.29 (d, $J_{CP} = 10.4$ Hz), 128.49 (d, $J_{CP} = 16.0$ Hz), 126.44 (d, $J_{CP} =$

198.5 Hz), 118.72 (d, $J_{CP} = 2.9$ Hz), 23.33, 11.18 (d, $J_{CP} = 7.1$ Hz), 4.89, 4.24.

³¹**P NMR** (202 MHz, CDCl₃) δ 8.04.

HRMS (ESI) m/z Calcd for C₁₈H₁₉O₃P, [M+Na]⁺: 337.0964; Found: 337.0971.

4-Phenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,6-diene 4-oxide (2k)

White solid, 63% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 7.89 – 7.81 (m, 2H), 7.61 (td, J = 7.7, 1.3 Hz, 1H), 7.49 (td, J = 7.8, 4.8 Hz, 2H), 6.14 (d, J = 20.0 Hz, 2H), 2.82 – 2.63 (m, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 133.27 (d, J_{CP} = 3.2 Hz), 131.71 (d, J_{CP} = 10.5 Hz), 131.45 (d, J_{CP} = 10.6 Hz), 128.59 (d, J_{CP} = 16.4 Hz), 125.77 (d, J_{CP} = 3.6 Hz), 125.71 (d, J_{CP} = 198.3 Hz), 22.98.

³¹**P NMR** (202 MHz, CDCl₃) δ 8.97.

HRMS (ESI) m/z Calcd for $C_{12}H_{11}O_3P$, $[M+Na]^+$: 257.0338; Found: 257.0334.

4-Ethyl-2,6-dimethyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,6-diene 4-oxide (21)

Colorless oil, 81% yield.

¹**H NMR** (500 MHz, CDCl₃) δ 2.67 – 2.50 (m, 4H), 1.92 (dq, *J* = 18.6, 7.7 Hz, 2H), 1.81 (s, 6H), 1.31 – 1.21 (m, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 138.71 (d, J_{CP} = 9.9 Hz), 119.19 (d, J_{CP} = 3.0 Hz), 22.96 (s), 17.52 (d, J_{CP} = 141.5 Hz), 16.44 (d, J_{CP} = 6.4 Hz), 6.18 (d, J_{CP} = 7.2 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 22.88.

HRMS (ESI) m/z Calcd for C₁₀H₁₅O₃P, [M+Na]⁺: 237.0651; Found: 237.0649.

4-Benzyl-2,6-dimethyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,6-diene 4-oxide (2m)

White solid, 83% yield.

¹**H NMR** (500 MHz, CDCl₃) δ 7.41 – 7.17 (m, 5H), 3.33 (d, *J* = 21.7 Hz, 2H), 2.57 (ddd, *J* = 17.0, 12.4, 9.2 Hz, 4H), 1.70 (s, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 138.64 (d, $J_{CP} = 9.9$ Hz), 130.25 (d, $J_{CP} = 9.2$ Hz), 129.89 (d, $J_{CP} = 7.1$ Hz), 128.59 (d, $J_{CP} = 3.0$ Hz), 127.21 (d, $J_{CP} = 3.7$ Hz), 119.03, 31.72 (d, $J_{CP} = 134.5$ Hz), 23.08, 16.27 (d, $J_{CP} = 7.1$ Hz).

³¹**P NMR** (202 MHz, CDCl₃) δ 15.01.

HRMS (ESI) m/z Calcd for C₁₅H₁₇O₃P, [M+Na]⁺: 299.0821; Found: 299.0824.

2,6-Diethyl-4-phenoxy-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,6-diene 4-oxide (2n)

Et Yellowish oil, 75% yield. O H NMR (500 MHz, CD

¹**H NMR** (500 MHz, CDCl₃) δ 7.34 (t, *J* = 7.9 Hz, 2H), 7.25 (d, *J* = 8.7 Hz, 2H), 7.19 (t, *J* = 7.3 Hz, 1H), 2.63 (s, 4H), 2.15 – 1.93 (m, 4H), 0.99 (t, *J* = 7.5 Hz, 6H).

Et ¹³C NMR (126 MHz, CDCl₃) δ 150.08 (d, $J_{CP} = 7.1$ Hz), 142.58 (d, $J_{CP} = 9.8$ Hz), 129.66 (s), 125.42, 120.08 (d, $J_{CP} = 5.1$ Hz), 118.15, 23.65 (d, $J_{CP} = 8.6$ Hz), 23.47 (s), 10.72. ³¹P NMR (202 MHz, CDCl₃) δ -21.16.

HDMG (**EGD**)
$$(C_{1}, 1, 6, C_{2}, 1, 0, 0, 0, 0, 1)^{+}$$
 (20) 0000

HRMS (ESI) m/z Calcd for $C_{16}H_{19}O_4P$, $[M+Na]^+$: 329.0909; Found: 329.0913.

2,4,8-Triphenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,7-diene 4-oxide (4a)

White solid, 73% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 8.04 – 7.97 (m, 2H), 7.65 – 7.49 (m, 5H), 7.40 (dd, J = 10.4, 4.7 Hz, 2H), 7.34 – 7.22 (m, 6H), 5.45 (ddd, J = 15.3, 7.8, 4.3 Hz, 1H), 5.19 – 5.05 (m, 1H), 3.72 – 3.46 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 140.75, 137.54, 133.93 (d, $J_{CP} = 7.9$ Hz), 133.67 (d, $J_{CP} = 10.2$ Hz), 133.33, 133.11 (d, $J_{CP} = 3.1$ Hz), 131.59 (d, $J_{CP} = 10.2$ Hz), 128.87, 128.60, 128.49 (d, $J_{CP} = 5.2$ Hz), 128.34, 127.98, 126.68 (d, $J_{CP} = 200.6$ Hz), 126.48, 125.50, 121.70 (d, $J_{CP} = 3.2$ Hz), 63.13 (d, $J_{CP} = 7.4$ Hz), 34.60.

³¹**P NMR** (202 MHz, CDCl₃) δ 20.61.

HRMS (ESI) m/z Calcd for C₂₄H₁₉O₃P, [M+Na]⁺: 409.0964; Found: 409.0965.

4-Phenyl-2,8-di-p-tolyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,7-diene 4-oxide (4b)

Yellowish solid, 39% yield.

¹**H NMR** (500 MHz, CDCl₃) δ 8.04 – 7.96 (m, 2H), 7.65 – 7.59 (m, 1H), 7.52 (td, *J* = 7.6, 4.7 Hz, 2H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 7.13 (dd, *J* = 8.0, 3.5 Hz, 4H), 5.47 – 5.38 (m, 1H), 5.10 (dd, *J* = 25.0, 15.4 Hz, 1H), 3.63 – 3.48 (m, 2H), 2.36 (d, *J* = 18.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 140.42, 138.67, 137.85, 136.47, 133.52 (d, $J_{CP} = 10.2$ Hz), 133.04 (d, $J_{CP} = 3.1$ Hz), 131.62 (d, $J_{CP} = 10.1$ Hz), 131.24 (d, $J_{CP} = 8.0$ Hz), 130.78, 129.61, 129.07, 128.53 (d,

 $J_{CP} = 15.8$ Hz), 126.88 (d, $J_{CP} = 200.4$ Hz), 126.43, 125.40, 121.14 (d, $J_{CP} = 3.2$ Hz), 63.19 (d, $J_{CP} = 7.4$ Hz), 34.58, 21.48, 21.25.

³¹P NMR (202 MHz, CDCl₃) δ 20.52. HRMS (ESI) m/z Calcd for C₂₆H₂₃O₃P, [M+Na]⁺: 437.1277; Found: 437.1288.

2,8-Bis(4-fluorophenyl)-4-phenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,7-diene 4-oxide (4c)

Yellowish oil, 68% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 8.04 – 7.95 (m, 2H), 7.68 – 7.60 (m, 1H), 7.56 – 7.49 (m, 4H), 7.24 – 7.16 (m, 2H), 7.10 (dd, *J* = 12.0, 5.3 Hz, 2H),

7.05 - 6.97 (m, 2H), 5.42 (ddd, J = 15.3, 7.8, 4.0 Hz, 1H), 5.08 (dd, J = 25.2, 15.4 Hz, 1H), 3.57 (dt, J = 13.1, 3.1 Hz, 1H), 3.50 (ddd, J = 13.1, 4.1, 2.0 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 162.62 (d, J_{CF} = 250.7 Hz), 162.43 (d, J_{CF} = 248.8 Hz), 139.48, 136.89, 133.22 (d, J_{CP} = 3.1 Hz), 131.56 (d, J_{CP} = 10.2 Hz), 130.07 (d, J_{CF} = 8.1 Hz), 130.04 (d, J_{CF} = 8.0 Hz), 129.69 (d,

 $J_{CP} = 3.4 \text{ Hz}$), 128.58 (d, $J_{CP} = 15.9 \text{ Hz}$), 128.21 (d, $J_{CF} = 8.2 \text{ Hz}$), 127.30 (d, $J_{CF} = 8.0 \text{ Hz}$), 126.47 (d, $J_{CP} = 199.2 \text{ Hz}$), 120.95, 116.14 (d, $J_{CF} = 22.1 \text{ Hz}$), 115.42 (d, $J_{CF} = 21.8 \text{ Hz}$), 63.02 (d, $J_{CP} = 7.4 \text{ Hz}$), 34.54.

³¹**P NMR** (202 MHz, CDCl₃) δ 20.73.

HRMS (ESI) m/z Calcd for $C_{24}H_{17}F_2O_3P$, $[M+Na]^+$: 445.0776; Found: 445.0778.

Dimethyl	4,4'-(4-oxido-4-phenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,7-diene-2,8-diyl)
dibenzoate (4d)	

White solid, 56% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 8.10 (d, J = 8.3 Hz, 2H), 8.03 (ddd, J = 9.8, 8.5, 5.3 Hz, 4H), 7.74 – 7.64 (m, 3H), 7.58 (td, J = 7.7, 4.8 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 5.50 (ddd, J = 15.6, 7.3, 3.9 Hz, 1H), 5.18 (dd, J = 25.4, 15.7 Hz, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.71 (dt, J = 13.1, 3.0 Hz, 1H), 3.65 (ddd, J = 13.2, 4.1, 2.0 Hz, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 166.58, 166.40, 140.49, 140.34, 138.01 (d, $J_{CP} = 7.9$ Hz), 136.97, 133.93 (d, $J_{CP} = 10.1$ Hz),

133.42 (d, $J_{CP} = 3.1$ Hz), 131.61 (d, $J_{CP} = 10.3$ Hz), 130.20, 129.82, 129.70, 129.52, 128.68 (d, $J_{CP} = 16.0$ Hz), 126.40, 126.16 (d, $J_{CP} = 200.8$ Hz), 125.33, 63.06 (d, $J_{CP} = 7.4$ Hz), 123.55 (d, $J_{CP} = 3.2$ Hz), 52.28, 52.17, 34.85.

³¹**P NMR** (202 MHz, CDCl₃) δ 20.93.

HRMS (ESI) m/z Calcd for C₂₈H₂₃O₇P, [M+Na]⁺: 503.1254; Found: 503.1267.

2,8-Bis(3-methoxyphenyl)-4-phenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,7-diene 4-oxide (4e)

¹**H NMR** (500 MHz, CDCl₃) δ 8.00 (dd, J = 14.0, 8.2 Hz, 2H), 7.62 (dd, J = 10.8, 4.2 Hz, 1H), 7.52 (dd, J = 12.2, 7.5 Hz, 2H), 7.32 (t, J = 7.9 Hz, 1H), 7.26 – 7.22 (m, 1H), 7.19 – 7.15 (m, 1H), 7.11 (s, 1H), 6.86 (dd, J = 8.2, 1.9 Hz, 1H), 6.84 – 6.79 (m, 2H), 6.74 (s, 1H), 5.48 – 5.39 (m, 1H), 5.11 (dd, J = 25.1, 15.4 Hz, 1H), 3.83 (s, 3H), 3.78 (d, J = 0.8 Hz, 3H), 3.64 – 3.51 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 159.86, 159.48, 140.70, 137.80, 135.24 (d, $J_{CP} = 8.1$ Hz), 134.55, 133.58 (d, $J_{CP} = 10.3$ Hz), 133.09 (d, $J_{CP} = 3.1$ Hz), 131.54 (d, $J_{CP} = 10.1$ Hz), 129.88, 129.33, 128.52 (d, $J_{CP} = 16.0$ Hz), 126.60 (d, $J_{CP} = 200.4$ Hz), 121.88 (d, $J_{CP} = 3.2$ Hz), 119.15, 118.15, 114.05, 113.29, 111.89, 111.42, 63.03 (d, $J_{CP} = 7.3$ Hz), 55.25, 55.21, 34.70.

³¹**P NMR** (202 MHz, CDCl₃) δ 20.57.

HRMS (ESI) m/z Calcd for C₂₆H₂₃O₅P, [M+Na]⁺: 469.1175; Found: 469.1184.

2,8-Bis(3,5-dimethylphenyl)-4-phenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,7-diene 4-oxide (4f)

Yellowish oil, 60% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 8.06 – 7.96 (m, 2H), 7.63 (td, *J* = 7.6, 1.2 Hz, 1H), 7.52 (td, *J* = 7.7, 4.6 Hz, 2H), 7.19 (s, 2H), 6.93 (d, *J* = 24.9 Hz, 2H), 6.87 (s, 2H), 5.43 (dt, *J* = 15.1, 6.2 Hz, 1H), 5.10 (dd, *J* = 24.6, 15.3 Hz, 1H), 3.60 (dt, *J* = 13.3, 3.0 Hz, 1H), 3.51 (ddd, *J* = 13.2, 4.0, 2.0 Hz, 1H), 2.34 (s, 6H), 2.30 (s, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 140.93, 138.38, 137.79, 137.11, 133.91 (d, $J_{CP} = 7.9$ Hz), 133.80 (d, $J_{CP} = 10.3$ Hz), 133.39, 132.99, 131.65 (d, $J_{CP} = 10.1$ Hz), 130.39, 129.77, 128.52 (d, $J_{CP} = 15.8$ Hz),

126.94 (d, J_{CP} = 199.8 Hz), 124.37, 123.44, 121.67, 63.17 (d, J_{CP} = 7.4 Hz), 34.79, 21.45, 21.33. ³¹**P NMR** (202 MHz, CDCl₃) δ 20.44.

HRMS (ESI) m/z Calcd for C₂₈H₂₇O₃P, [M+Na]⁺: 465.1590; Found: 465.1602.

4-Ethyl-2,8-diphenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,7-diene 4-oxide (4g)

Yellowish oil, 80% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 7.59 (d, J = 7.8 Hz, 2H), 7.42 – 7.33 (m, 4H), 7.29 (q, J = 7.3 Hz, 2H), 7.21 (d, J = 7.6 Hz, 2H), 5.34 (ddd, J = 15.3, 7.5, 3.9 Hz, 1H), 5.09 – 4.97 (m, 1H), 3.63 – 3.42 (m, 2H), 2.07 (dd, J = 18.9, 7.7 Hz,

2H), 1.35 (dt, *J* = 20.8, 7.7 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 140.42, 137.79, 134.14 (d, $J_{CP} = 7.6$ Hz), 133.42, 133.32, 128.86, 128.42, 128.37, 127.98, 126.44, 125.50, 121.47 (d, $J_{CP} = 3.6$ Hz), 62.84 (d, $J_{CP} = 7.9$ Hz), 34.49, 18.78 (d, $J_{CP} = 145.1$ Hz), 6.55 (d, $J_{CP} = 7.0$ Hz).

³¹**P NMR** (202 MHz, CDCl₃) δ 36.27.

HRMS (ESI) m/z Calcd for C₂₀H₁₉O₃P, [M+Na]⁺ : 361.0964; Found: 361.0965.

4-Benzyl-2,8-diphenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1,7-diene 4-oxide (4h)

White solid, 83% yield.

_ (→	
Bn /	-	
0~.	o√∕	<u> </u>

Ph

¹**H** NMR (500 MHz, CDCl₃) δ 7.49 (dd, J = 5.3, 3.4 Hz, 2H), 7.45 – 7.27 (m, 11H), 7.24 – 7.19 (m, 2H), 5.32 (ddd, J = 15.3, 7.9, 4.3 Hz, 1H), 5.02 (ddt, J = 24.6, 15.4, 2.6 Hz, 1H), 3.60 – 3.43 (m, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 140.54, 137.57, 133.96 (d, $J_{CP} = 7.4$ Hz), 133.34, 130.54 (d, $J_{CP} = 9.8$ Hz), 129.98 (d, $J_{CP} = 6.8$ Hz), 128.86, 128.70 (d, $J_{CP} = 3.1$ Hz), 128.48, 128.32, 127.94, 127.25 (d, $J_{CP} = 3.8$ Hz), 126.45, 125.42, 121.66, 63.15 (d, $J_{CP} = 8.0$ Hz), 34.47, 33.25 (d, $J_{CP} = 141.2$ Hz). ³¹P NMR (202 MHz, CDCl₃) δ 28.60.

HRMS (ESI) m/z Calcd for C₂₅H₂₁O₃P, [M+Na]⁺: 423.1121; Found: 423.1119.

2,8-Dimethyl-4,6,9-triphenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]nona-1(9),6-diene 4-oxide (4i)

 CH_3 ¹**H** NMR (500 MHz, CD_2Cl_2) δ 8.02 – 7.94 (m, 2H), 7.68 – 7.61 (m, 1H), 7.54 (ddd, J = 9.7, 6.0, 3.0 Hz, 4H), 7.46 – 7.30 (m, 8H), 5.84 – 5.77 (m, 1H), 4.09 (qd, J = 6.7, 2.2 Hz, 1H), 1.62 (dd, J = 6.6, 1.0 Hz, 3H), 1.10 (d, J = 6.7 Hz, 3H).

¹³C NMR (126 MHz, CD₂Cl₂) δ 146.46, 141.22, 133.98 (d, J_{CP} = 7.9 Hz), 133.34 (d, J_{CP} = 9.6 Hz), 132.91, 132.89, 132.06, 131.46 (d, $J_{CP} = 10.0$ Hz), 128.74, 128.52, 128.45, 128.40, 128.21, 128.13, 127.61, 127.60 (d, $J_{CP} = 215.2$ Hz), 126.87, 71.94 (d, $J_{CP} = 7.6$ Hz), 41.23, 19.35 (d, $J_{CP} = 10.5$ Hz), 14.74.

³¹**P NMR** (202 MHz, CD₂Cl₂) δ 17.76.

Ρh

ĆΗ₃

HRMS (ESI) m/z Calcd for C₂₆H₂₃O₃P, [M+Na]⁺: 437.1277; Found: 437.1284.

Yellowish oil, 38% yield.

4,6,9-Triphenyl-3-oxa-5-thia-4-phosphabicyclo[5.2.0]nona-1(9),6-diene 4-oxide (6)

¹**H** NMR (500 MHz, CD_2Cl_2) δ 7.85 (ddd, J = 13.8, 8.0, 1.0 Hz, 2H), 7.58 – 7.53 (m, 1H), 7.50 - 7.39 (m, 7H), 7.28 - 7.19 (m, 5H), 5.68 - 5.60 (m, 1H), 5.27 (dd, J = 23.2, 13.4 Hz, 1H), 3.52 (dd, J = 14.3, 2.6 Hz, 1H), 3.41 (d, J =

14.3 Hz, 1H).

Ph`

¹³C NMR (126 MHz, CD₂Cl₂) δ 148.58, 142.18, 137.45, 136.62, 132.96, 132.88 (d, J_{CP} = 3.2 Hz), 132.82, 131.75, 131.20 (d, *J*_{CP} = 10.9 Hz), 129.70, 128.93, 128.49 (d, *J*_{CP} = 15.1 Hz), 128.27, 127.65, 127.52, 127.32, 61.54 (d, $J_{CP} = 8.2$ Hz), 37.52.

³¹**P NMR** (202 MHz, CD₂Cl₂) δ 45.15.

Me

HRMS (ESI) m/z Calcd for C₂₄H₁₉O₂PS, [M+Na]⁺ : 425.0736; Found: 425.0731.

O-but-2-yn-1-yl S-buta-2,3-dien-2-yl phenylphosphonothioate (7)

Colorless oil, 65% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 7.96 – 7.86 (m, 2H), 7.58 (dd, J = 8.0, 6.8 Hz, 1H), 7.54 - 7.47 (m, 2H), 4.87 - 4.80 (m, 2H), 4.51 (dddd, J = 7.3, 6.6, 3.3, 0.8 Hz, 2H), 1.90 (ddd, J = 4.2, 2.6, 0.9 Hz, 3H), 1.88

(td, J = 2.3, 0.8 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 212.02 (d, J_{CP} = 7.7 Hz), 132.67 (d, J_{CP} = 3.2 Hz), 131.71 (d, J_{CP} = 10.9 Hz), 131.31 (d, $J_{CP} = 149.5$ Hz), 128.35 (d, $J_{CP} = 15.0$ Hz), 88.21 (d, $J_{CP} = 7.0$ Hz), 84.73, 74.84 (d, $J_{CP} = 15.0$ Hz), 88.21 (d, $J_{CP} = 15.0$ Hz), 88.21 (d, $J_{CP} = 15.0$ Hz), 84.73, 74.84 (d, $J_{CP} = 15.0$ Hz), 88.21 (d, = 4.2 Hz), 73.31 (d, J_{CP} = 10.0 Hz), 54.21 (d, J_{CP} = 5.4 Hz), 22.35, 3.72.

³¹**P NMR** (202 MHz, CDCl₃) δ 44.68.

HRMS (ESI) m/z Calcd for C₁₄H₁₅O₂PS, [M+Na]⁺ : 301.0423; Found: 301.0428.

White solid, 57% yield.

2-Ethyl-4-phenyl-5-(p-tolyl)-3-oxa-4-phosphabicyclo[4.2.0]octa-1,5-diene 4-oxide (9)

¹**H** NMR (400 MHz, CDCl₃) δ 7.78 (ddd, J = 13.5, 8.3, 1.5 Hz, 2H), 7.46 (dd, J =7.3, 1.7 Hz, 1H), 7.39 (ddd, *J* = 8.5, 6.6, 3.7 Hz, 2H), 7.34 (d, *J* = 7.9 Hz, 2H), 7.02 (d, J = 7.9 Hz, 2H), 3.51 – 3.24 (m, 1H), 3.17 – 2.91 (m, 3H), 2.36 (d, J = 7.6 Hz, 2H), 2.24 (s, 3H), 1.15 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 152.03 (d, J_{CP} = 4.4 Hz), 147.80 (d, J_{CP} = 14.0 Hz), 136.95, 132.56, 132.20 (d, J_{CP} = 2.9 Hz), 131.88 (d, J_{CP} = 11.4 Hz), 131.11, 130.65 (d, J_{CP} = 13.2 Hz), 129.31, 128.29 (d, J_{CP} = 13.9 Hz), 127.39 (d, J_{CP} = 8.5 Hz), 118.15 (d, J_{CP} = 22.3 Hz), 116.53, 115.33, 31.11 (d, J_{CP} = 13.7 Hz), 24. 63 (d, J_{CP} = 4.3 Hz), 21.15, 10.05.

³¹**P NMR** (160 MHz, CDCl₃) δ 25.93.

HRMS (ESI) m/z Calcd for $C_{21}H_{21}O_2P$, $[M+H]^+$: 337.1352; Found: 337.1347.

4-phenyl-5-(p-tolyl)-8-(trimethylsilyl)-3-oxa-4-phosphabicyclo[4.2.0]octa-1(8),5-diene 4-oxide (10)

White solid, 63% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (ddd, *J* = 13.1, 7.6, 1.6 Hz, 2H), 7.45 (dd, *J* = 7.4, 1.6 Hz, 1H), 7.37 (dd, *J* = 10.4, 5.8 Hz, 4H), 7.00 (d, *J* = 7.9 Hz, 2H), 5.27 – 5.14 (m, 1H), 4.81 (tdd, *J* = 15.8, 3.4, 1.9 Hz, 1H), 3.55 (dd, *J* = 14.1, 2.7 Hz, 1H), 3.36 – 3.14 (m, 1H), 2.23 (s, 3H), 0.16 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 152.45 (d, J_{CP} = 3.1 Hz), 152.00, 151.80,

149.35 (d, J_{CP} = 3.8 Hz), 137.31, 132.23 (d, J_{CP} = 3.0 Hz), 131.64 (d, J_{CP} = 10.8 Hz), 131.41, 130.46 (d, J_{CP} = 12.0 Hz), 130.00, 129.31, 128.43 (d, J_{CP} = 13.7 Hz), 127.53 (d, J_{CP} = 7.5 Hz), 116.73, 115.57, 63.46 (d, J_{CP} = 8.4 Hz), 39.43 (d, J_{CP} = 13.8 Hz), 21.16, -2.04.

³¹**P NMR** (160 MHz, CDCl₃) δ 21.71.

HRMS (ESI) m/z Calcd for C₂₂H₂₅O₂PSi, [M+H]⁺: 381.1434; Found: 381.1428.

But-2-yn-1-yl buta-2,3-dien-2-yl phenylphosphonate (11)

Colorless oil, 73% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 7.93 – 7.83 (m, 2H), 7.62 – 7.54 (m, 1H), 7.47 (tdd, J = 6.8, 4.5, 1.3 Hz, 2H), 6.15 (ddd, J = 17.0, 10.8, 2.2 Hz, 1H), 5.58 (dd, J = 16.9, 1.2 Hz, 1H), 5.18 (dq, J =

10.8, 1.1 Hz, 1H), 5.09 (q, J = 2.0 Hz, 1H), 4.76 (ddq, J = 10.0, 5.0, 2.5 Hz, 2H), 4.71 (t, J = 2.3 Hz, 1H), 1.79 (t, J = 2.4 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 151.01 (d, J = 8.2 Hz), 132.82 (d, J = 3.2 Hz), 131.98 (d, J = 10.3 Hz), 131.52 (d, J = 5.5 Hz), 128.41 (d, J = 15.6 Hz), 127.41 (d, J = 191.8 Hz), 116.25 , 102.12 (d, J = 4.2 Hz), 84.54 , 73.34 (d, J = 8.1 Hz), 54.88 (d, J = 4.8 Hz), 3.59 .

³¹**P NMR** (202 MHz, CDCl₃) δ 16.65.

HRMS (ESI) m/z Calcd for C₂₄H₁₉O₂PS, [M+H]⁺ : 263.0832; Found: 263.0829.

2,4,7-Triphenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]non-1-en-8-one 4-oxide (12)

Colorless oil, 75% yield.

Ph, O O^EP, O D^ED, O

¹H NMR (500 MHz, Acetone- d_6) δ 8.05 – 7.97 (m, 3H), 7.69 – 7.65 (m, 1H), 7.57 – 7.48 (m, 9H), 7.37 – 7.30 (m, 2H), 5.59 – 5.39 (m, 2H), 3.59 (ddd, J = 13.2, 3.0, 1.9 Hz, 1H), 3.47 (ddd, J = 13.1, 3.1, 1.1 Hz, 1H).

¹³C NMR (126 MHz, Acetone- d_6) δ 196.04 (d, J = 2.0 Hz), 144.13 , 135.27 , 134.24 (d, J = 3.1 Hz), 133.67 , 133.06 (d, J = 10.5 Hz), 131.79 , 131.34 , 130.90 , 130.35 , 130.18 , 129.87 , 129.75 , 129.413 (d, J = 151.3 Hz)128.87 , 82.32 (d, J = 6.4 Hz), 66.18 (d, J = 7.8 Hz), 43.53 (d, J = 2.5 Hz).

³¹**P NMR** (202 MHz, Acetone- d_6) δ 14.49

HRMS (ESI) m/z Calcd for C₂₄H₁₉O₄P, [M+Na]⁺: 425.0913; Found: 425.0916.

(2-(Chloromethyl)-3-phenylcyclobut-2-en-1-yl)(phenyl)methanone (13)

Yellowish oil, 44% yield.

¹**H NMR** (500 MHz, CDCl₃) δ 8.07 – 8.00 (m, 2H), 7.63 – 7.59 (m, 1H), 7.51 (t, J 0= = 7.7 Hz, 2H), 7.43 – 7.33 (m, 5H), 4.69 (dd, J = 5.3, 2.0 Hz, 1H), 4.59 (d, J = 12.2 Ph Hz, 1H), 4.40 (d, J = 12.2 Hz, 1H), 3.16 (dd, J = 13.3, 5.0 Hz, 1H), 2.97 (dt, J = 12.8, 1.8 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 199.18, 143.58, 136.22, 134.77, 133.50, 133.37, 128.78, 128.66, 128.59, 128.20, 126.66, 44.90, 39.26, 32.05.

HRMS (APCI) m/z Calcd for C₁₈H₁₅ClO, [M+H]⁺: 283.0884; Found: 283.0886.

(2,4,8-Triphenyl-3,5-dioxa-4-phosphabicyclo[5.2.0]non-1-ene 4-oxide (14)

Colorless oil, 69% yield.

Ph

CI

Ph

¹**H NMR** (500 MHz, CDCl₃) δ 8.02 – 7.89 (m, 2H), 7.59 (d, J = 7.6 Hz, 1H), 7.56 – 7.45 (m, 4H), 7.35 (qt, J = 14.5, 7.5 Hz, 7H), 7.25 – 7.21 (m, 1H), 4.29 (td, J = 11.0, 6.4 Hz, 1H), 4.21 - 4.11 (m, 1H), 3.95 (td, J = 9.7, 5.6 Hz, 1H),3.76 – 3.57 (m, 2H), 3.38 (dt, *J* = 12.2, 5.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 140.85, 138.97, 133.74, 132.94, 131.64 (d, $J_{CP} = 9.9$ Hz), 128.63, 128.38 (d, $J_{CP} = 2.0$ Hz), 128.34 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 127.73, 127.09, 126.15, 124.19, 65.47 (d, $J_{CP} = 154.0$ Hz), 126.15, 126.19, 126.1 6.6 Hz), 46.48, 37.14, 32.82.

³¹**P NMR** (202 MHz, CDCl₃) δ 16.92.

HRMS (ESI) m/z Calcd for $C_{24}H_{21}O_3P$, $[M+Na]^+$: 411.1121; Found: 411.1122.

(3-Benzyl-2-methylcyclobutyl)benzene (15)

Colorless oil, 78% yield.

 ${}^{1}\!H \ NMR \ (500 \ MHz, \ CDCl_{3}) \ \delta \ 7.33 - 7.27 \ (m, \ 4H), \ 7.22 - 7.12 \ (m, \ 6H), \ 3.68 - 7.27 \ (m, \ 4H), \ 7.22 - 7.12 \ (m, \ 6H), \ 7.68 - 7.27 \ (m, \ 7.22 - 7.12 \ (m, \ 7.22 - 7.22 \ (m, \ 7.$

H₃C 3.55 (m, 1H), 2.86 (qd, J = 13.7, 7.5 Hz, 2H), 2.79 – 2.59 (m, 1H), 2.53 – 2.39 (m, 1H), 2.33 – 2.02 (m, 2H), 0.76 (d, J = 7.3 Hz, 1H, minor), 0.59 (d, J = 7.1 Hz, 2H, major).

¹³C NMR (126 MHz, CDCl₃, major diastereomer) δ 142.23, 141.18, 128.69, 128.25, 128.05, 127.94, 125.76, 125.58, 41.88, 41.68, 39.60, 39.50, 28.72, 16.27; minor diastereomer δ 141.54, 141.40 , 128.43 , 128.28 , 127.90 , 127.64 , 125.63 , 125.52 , 39.34 , 37.14 , 36.71 , 35.43 , 29.30 , 10.48.

HRMS (**APCI**) m/z Calcd for C₁₈H₂₀, [M+H]⁺ : 237.1638; Found: 237.1633.

9. X-ray crystallographic analysis

a) The structure of **2k** was assigned by X-ray crystallographic analysis:

Molecule's view of 2k:

Table S3. Sample and crystal data for g546.

Identification code	g546	
Chemical formula	$C_{12}H_{11}O_3P$	
Formula weight	234.18 g/mol	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	(0.080 x 0.160 x 0.350)) mm ³
Crystal system	monoclinic	
Space group	P 1 2(1)/c 1	
Unit cell dimensions	a = 8.145(3) Å	$\alpha=90^\circ$
	b = 13.268(4) Å	$\beta = 108.850(10)^{\circ}$
	c = 10.374(3) Å	$\gamma=90^\circ$
Volume	1061.0(6) Å ³	

Ζ	4
Density (calculated)	1.466 g/cm ³
Absorption coefficient	0.246 mm ⁻¹
F(000)	488

Table S4. Data collection and structure refinement for g546.

Theta range for data collection	2.58 to 30.55°	
Index ranges	-11<=h<=10, -16<=	-k<=18, -14<=l<=14
Reflections collected	11289	
Independent reflections	3235 [R(int) = 0.03	37]
Coverage of independen reflections	t 99.4%	
Absorption correction	multi-scan	
Max. and min. transmission	0.9810 and 0.9190	
Refinement method	Full-matrix least-sq	uares on F ²
Refinement program	SHELXL-2014/7 (S	Sheldrick, 2014)
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	
Data / restraints / parameters	3235 / 0 / 145	
Goodness-of-fit on F ²	1.031	
Final R indices	2751 data; I>2o(I)	R1 = 0.0344, wR2 = 0.0836
	all data	R1 = 0.0442, wR2 = 0.0886
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(0.03)]$	86P) ² +0.5991P]
	where $P=(F_o^2+2F_c^2)$	/3
Largest diff. peak and hole	0.422 and -0.366 eÅ	-3
R.M.S. deviation from mean	0.060 eÅ ⁻³	

b) The structure of **4a** was assigned by X-ray crystallographic analysis

Molecule's view of 4a:

Table S5. Sample and crystal data for g511.

Identification code	g511	
Chemical formula	$C_{24}H_{19}O_3P$	
Formula weight	386.36 g/mol	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	(0.174 x 0.271 x 0.50	67) mm ³
Crystal system	monoclinic	
Space group	P 1 2(1)/c 1	
Unit cell dimensions	a = 14.464(6) Å	$\alpha = 90^{\circ}$
	b = 13.000(5) Å	$\beta = 97.227(10)^{\circ}$
	c = 10.236(4) Å	$\gamma=90^\circ$
Volume	1909.4(13) Å ³	
Z	4	

Density (calculated)	1.344 g/cm ³
Absorption coefficient	0.167 mm ⁻¹
F(000)	808

Table S6. Data collection and structure refinement for g511.

Theta range for data collection	2.54 to 29.36°	
Index ranges	-19<=h<=19, -17<	<=k<=17, -14<=l<=14
Reflections collected	31186	
Independent reflections	5211 [R(int) = 0.1	016]
Coverage of independent reflections	99.3%	
Absorption correction	multi-scan	
Max. and min. transmission	0.9720 and 0.9110)
Refinement method	Full-matrix least-s	squares on F ²
Refinement program	SHELXL-2014/7	(Sheldrick, 2014)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$	
Data / restraints / parameters	5211 / 0 / 253	
Goodness-of-fit on F ²	1.037	
Δ/σ_{max}	0.001	
Final R indices	3840 data; I>2σ(I) $R1 = 0.0548$, $wR2 = 0.1326$
	all data	R1 = 0.0818, wR2 = 0.1457
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(0.0)]$	0742P) ² +0.7139P]
	where $P=(F_o^2+2F_o^2)$	²)/3
Largest diff. peak and hole	0.499 and -0.574	eÅ ⁻³
R.M.S. deviation from mean	0.083 eÅ ⁻³	

c) The structure of **4i** was assigned by X-ray crystallographic analysis:

Molecule's view of 4i:

Table S7. Sample and crystal data for g766.

Identification code	g766	
Chemical formula	$C_{26}H_{23}O_3P$	
Formula weight	414.41 g/mol	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	(0.112 x 0.233 x 0.3	344) mm ³
Crystal system	monoclinic	
Space group	P 1 2(1)/c 1	
Unit cell dimensions	a = 14.668(5) Å	$\alpha = 90^{\circ}$
	b = 13.512(4) Å	$\beta = 92.316(9)^{\circ}$
	c = 10.815(3) Å	$\gamma=90^\circ$
Volume	2141.7(11) Å ³	
Z	4	
Density (calculated)	1.285 g/cm ³	
Absorption coefficient	0.153 mm ⁻¹	
F(000)	872	

Table S8. Data collection and structure refinement for g766.

C		
Index ranges	-20<=h<=20, -19<=k<=18, -15<=l<=15	
Reflections collected	31655	
Independent reflections	6290 [R(int) = 0.0655]	
Coverage of independen reflections	t 99.0%	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.9830 and 0.9490	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)	
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$	
Data / restraints / parameters	6290 / 0 / 273	
Goodness-of-fit on F ²	1.021	
Δ/σ_{max}	0.001	
Final B indices	4671 data; R1 = 0.0456, wR2 =	
Final K mulles	I>2σ(I) 0.0968	
	R1 = 0.0753, WR2 = all data	
	0.1073	
Weighting scheme	$w=1/[\sigma^{2}(F_{o}^{2})+(0.0446P)^{2}+0.9664P]$	
	where $P = (F_o^2 + 2F_c^2)/3$	
Largest diff. peak and hole	0.324 and -0.431 eÅ ⁻³	
R.M.S. deviation from mean	0.065 eÅ ⁻³	

Theta range for data collection $2.41 \text{ to } 30.18^\circ$

d) The structure of 14 was assigned by X-ray crystallographic analysis:

Molecule's view of 14

Table S9. Sample and crystal data for g807.

Identification code	g807		
Chemical formula	$C_{24}H_{21}O_3P$		
Formula weight	388.38 g/mol		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal size	(0.134 x 0.237 x 0.304) mm ³		
Crystal system	monoclinic		
Space group	P1c1		
Unit cell dimensions	a = 6.2565(10) Å	$\alpha = 90^{\circ}$	
	b = 9.4325(10) Å	$\beta = 96.178(4)^{\circ}$	
	c = 16.395(2) Å	$\gamma=90^\circ$	
Volume	961.9(2) Å ³		
Z	2		
Density (calculated)	1.341 g/cm ³		
Absorption coefficient	0.166 mm ⁻¹		

F(000)

408

Table S10. Data collection and structure refinement for g807.

Theta range for data collection	2.50 to 30.59°		
Index ranges	-8<=h<=8, -13<=k<=13, -23<=l<=23		
Reflections collected	33800		
Independent reflections	5781 [R(int) = 0.0258]		
Coverage of independent reflections	99.7%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.9780 and 0.9510		
Structure solution technique	direct methods		
Structure solution program	SHELXT, Acta Cryst., Sect. A 2015, A71, 3-8.		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	5781 / 2 / 254		
Goodness-of-fit on F ²	1.025		
Final R indices	5652 data; I>2σ(I)	R1 = 0.0252, wR2 = 0.0678	
	all data	R1 = 0.0263, wR2 = 0.0685	
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(0.0475P)^2+0.1011P]$		
	where $P = (F_o^2 + 2F_c^2)/3$		
Absolute structure parameter	-0.013(12)*		
Extinction coefficient	0.0180(40)		
Largest diff. peak and hole	0.272 and -0.219 eÅ ⁻³		
R.M.S. deviation from mean	0.044 eÅ ⁻³		
* Flack x determined using 2671 quotients [(I+)-(I-)]/[(I+)+(I-)]			

(Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).

¹H NMR of 2c

¹³C NMR of **2c**

¹H NMR of **2d**

7.874 7.859 7.8546 7.583 7.598 7.583 7.583 7.583 7.583 7.583 7.449 7.749 7.474 7.474 7.474 7.459

³¹P NMR of **2e**

¹H NMR of **2f**

¹³C NMR of **2g**

5.5 5.0 f1 (ppm)

6.0

4.5

4.0 3.5 3.0 2.5

2.0 1.5 1.0 0.5 0.0 -0

8.5 8.0 7.5 7.0 6.5

¹³C NMR of 2i

9.5 9.0

10.5

¹H NMR of **2**j

¹³C NMR of 2k

¹H NMR of **2n**

 1 H NMR of **4**a

¹³C NMR of 4a

¹H NMR of **4b**

8.024 8.010 8.010 8.010 8.010 8.010 7.1982 7.1982 7.1982 7.1982 7.1982 7.1982 7.1516 7.51666 7.51666 7.51666 7.516666 7.5166666 7.5166666666

-40 f1 (ppm)

-70

-100

-140

-180

-220

¹H NMR of **4d**

110

80

60

40

20

140

0 -10

4d

CH₃

¹H NMR of **4e** H₃C-0 CH_a 4e 11 F001 3.05 204 105 106 106 101 101 101 101 101 102 5.5 5.0 f1 (ppm) 4.5 4.0 3.5 3.0 2.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 2.0 1.5 1.0 0.5 0.0 -0

¹³C NMR of **4e**

¹H NMR of **4f**

¹³C NMR of 4g

¹H NMR of **4h**

¹³C NMR of **4i**

¹H NMR of **6**

¹³C NMR of 7

¹H NMR of **9**

³¹P NMR of **10**

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

1H NMK of 11 1A NMK of 14 1A NMK of 14 1B NMK of 15 1B NMK of 14 1B NMK of 14 1B NMK of 15 1B NMK of 15 1B NMK of 14 1B NMK of 15 1B N NK 1B NMK of 15 1B NMK of 15 1B NMK of 16 1B NMK of 16 1B NMK of 16 1B NMK of 17 1B NMK of 18 1B NMK of 18 1B NMK of 18 1B NMK of 18 1B N NK 1B N NK

¹³C NMR of **12**

¹H NMR of **13**

¹H NMR of 14

¹³C NMR of **15**

NOESY of 15

11. Bioscreening data

Material and methods

Cell cultures

Human derived colorectal cancer cell line, DLD1 was obtained from American Type Culture Collection (ATCC) and was maintained in DMEM medium supplemented with 10% fetal calf serum and 100U/ml penicillin-streptomycin (Sigma-Aldrich) in humidified 37oC incubator with 5% CO2. Cells were passaged and harvested with 0.25% trypsin for use in subsequent in vitro experiments. For all experiments, equal number of DLD1 cells were seeded for all conditions within the same experimental setup.

Cellular proliferation and IC50 determination

End point cellular proliferation was assessed using standard MTT assay.² Briefly, 0.5mg/ml of (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reagent was added to DLD1 cell culture that were treated with either the medium ring compounds at various concentrations or DMSO for 48 hours and incubated in a humidified 37oC incubator with 5% CO2 for two hours. The resultant purple formazan salt crystals were solubilised with DMSO before measurement at test wavelength of 570 nm (reference wavelength at 630 nm). Level of cellular proliferation was expressed as percentage relative to DMSO control. IC50 of the respective medium ring compound was subsequently determined using the variable slope model which incorporated the proliferation rate of DLD1 after treatment with the different medium ring compounds at dosage between 0.15mg/ml to 0.005 mg/ml for 48 hours.

On the other hand, real-time assessment of cellular proliferation and viability were assessed using xCELLigence real-time cell analysis (RTCA) assay (ACEA Bioscience, Inc. USA). DLD1 cells were seeded and rested overnight before addition of the respective compounds or DMSO as control. Impedance-based time-dependent cell response profiles (TCRPs) were recorded for 48 hours post treatment. The TCRPs showed changes in impedance which reflect the changes in cell density due to variation in cellular proliferation capacity, viability and apoptotic rate. Two or more independent experiments were carried out for all proliferation assays with 4-8 replicates per group.

Cellular apoptosis

Levels of cellular apoptosis in DLD1 cells treated with the respective compounds or DMSO for 48 hours were determined using FITC Annexin V apoptosis detection kit with 7-AAD (Biolegend, USA). Relative fluorescence were analysed using flow cytometer, BD Fortessa (BD Biosciences, USA) and data were tabulated using FlowJoTM v10.6 software (FlowJo, USA). Two independent experiments were carried out with at least two replicates for each condition tested.

Statistical analysis

All statistical analysis and graphing were done using GraphPad Prism (Graphpad Software, USA). Non-parametric, One-way ANOVA with Dunn's multiple comparison test were carried out for all multiple comparisons.

12. Reference

a) N. P. Kenny, K. V. Rajendran and D. G. Gilheany, *Chem. Commun.*, **2015**, *51*, 16561-16564; b) D.
A. Erzunov, G. V. Latyshev, A. D. Averin, I. P. Beletskaya, N. V. Lukashev, *Eur. J. Org. Chem.* **2015**, 2015, 6289-6297.

2. T. Mosmann, J. Immunol. Methods 1983, 65, 55-63.