Supporting Information for

Covalent grafting of molecular catalysts on C₃N_xH_y as robust, efficient and well-defined photocatalysts for solar fuel synthesis

Christopher D. Windle,[†] Alexander Wieczorek,[‡] Lunqiao Xiong,[†] Michael Sachs,[‡] Carlota Bozal-Ginesta,[‡] Hy-ojung Cha,[‡] Jeremy K. Cockcroft,[§] James Durrant[‡] and Junwang Tang^{*,†}

[†] Department of Chemical Engineering, UCL Torrington Place, London, WC1E 7JE, UK

^{*}Department of Chemistry and Centre for Plastic Electronics, Imperial College London, White City Campus, London, W12 0BZ, United Kingdom

[§]Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK[.]

Figure S1. XPS of CN_{urea} -Ni(abt)₂ after 24 h irradiation ($\lambda > 420$ nm, 10% TEOA, pH = 11)

Figure S2. Effect of the pH of CN_{urea} -Ni(abt)₂ suspension on the rate of photocatalytic H₂ evolution in H₂O with 10% TEOA (pH = 11) and visible irradiation ($\lambda > 420$ nm) (adjusted by H₂SO₄).

Figure S3. Photocatalytic hydrogen production by CN_{urea} -Ni(abt)₂ compared with CN_{urea} with Pt loaded. The H₂ evolution rate on CN_{urea} -Ni(abt)₂ is 60% of that on Pt-CN while the turnover frequency of CN_{Urea} -Ni(abt)₂ is 9.2 h⁻¹, is 6.9 h⁻¹ on Pt loaded CN under the same condition. All in H₂O with 10% TEOA (pH = 11) and visible irradiation ($\lambda > 420$ nm).. Similar amount of Pt was loaded on CN_{urea} by photodeposition, using full-arc of a 300 W Xenon light source and methanol as sacrificial agent. TOFs are calculated by the equation below:

TOF = (moles of desired product formed)/(moles of active centers * reaction time)Catalyst loading amounts for CN-Ni(abt)₂ and CN-Pt are 0.1 µmoles and 0.23 µmoles respectively.

Figure S4. CN_{urea} -Ni(abt)₂ with $\lambda > 320$ nm

Figure S5. Photocatalytic hydrogen production by CN_{urea} -Ni(abt)₂ and CN_{urea} loaded with NiO in H₂O with 10% TEOA (pH = 11) and visible irradiation ($\lambda > 420$ nm).

Figure S6. H₂ evolution of Ni(bdt)₂ hybrid materials (10% TEOA in H₂O, $\lambda > 420$ nm, pH = 11). Considering the estimated potentials of conduction bands, it is clear that CN_{urea} and CN_{DCDA} could be reduced to transfer electrons to both catalysts (Ni(abt)₂ and Ni(bdt)₂). For Ni(abt)₂, there is a significantly greater driving force for electron transfer from CN_{urea} and CN_{DCDA}. When the driving force is so sufficient, the degree of polymerization determines hydrogen-evolution rates from water. Higher polymerization degree in CN_{urea} resulted to better migration of charger carriers to active sites. Therefore, H₂ evolution rate for CN_{urea}-Ni(abt)₂ is significantly higher than that of CN_{DCDA}-Ni(abt)₂. In the case of Ni(bdt)₂, driving force is so moderate that the polymerization degree could not make a big difference. Hence the rates for CN_{urea}-Ni(abt)₂ and CN_{DCDA}-Ni(abt)₂ are similar.

Figure S7. A) Normalized kinetics at a probe wavelength of 700 nm with half time $(t_{1/2})$ of decays in TEOA containing solvents. B) Raw traces at the same probe wavelength.

Figure S8. Normalized kinetics of investigated samples probed at A) 600 nm and B) 800 nm.

Figure S9. Fit parameter for an assumed power-law decay ($A \propto t^{-\alpha}$) of the estimated co-catalyst kinetics from CN_{urea} and CN_{urea}-Ni(abt)₂ in both solvent conditions, probed at 700 nm.

Identification code	exp_1401					
Empirical formula	C ₁₂ H ₈ Cl ₂ N ₂ NiS ₂					
Formula weight	373.93					
Temperature / K	150					
Crystal system	monoclinic					
Space group	C2/c					
<i>a</i> / Å	29.8655(12)					
<i>b</i> / Å	3.81961(14)					
<i>c</i> / Å	11.3728(3)					
α / °	90					
β/°	96.147(3)					
γ/°	90					
Volume / Å ³	1289.88(8)					
Z	4					
$\rho_{calc} / g \ cm^{-3}$	1.926					
μ / mm^{-1}	8.872					
F(000)	752.0					
Crystal size / mm ³	$0.101 \times 0.059 \times 0.015$					
Radiation	Cu K α (λ = 1.54184 Å)					
2θ range for data collection / °	11.922 to 146.092					
Index ranges	$-32 \le h \le 36, -4 \le k \le 4, -13 \le l \le 13$					
Reflections collected	3847					
Independent reflections	1267 [$R_{\text{int}} = 0.0209, R_{\text{sigma}} = 0.0181$]					
Data/restraints/parameters	1267/0/104					
Goodness-of-fit on F^2	1.132					
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0340, wR_2 = 0.0924$					
Final <i>R</i> indexes [all data]	$R_1 = 0.0354, wR_2 = 0.0935$					
Largest diff. peak/hole / e Å ⁻³	0.40/-0.47					

Table S1. Crystal data and structure refinement for $Ni(abtCl)_2$

Carbon Nitride Precursor	Catalyst	Solvent	Light source	Running time / h	H ₂ rate / μmol h ⁻¹	TON	TOF / h ⁻¹	QY	Ref DOI
Cyanamide	NiP	H ₂ O	$\lambda > 300 \text{ nm}$	3	2.2	170	109	0.37% (365 nm)	10.1002/anie.201406811
			$\lambda > 420 \text{ nm}$	4	0.4	60	15	0.04% (460 nm)	
Urea	Cobaloxime-	CH ₃ CN-	$\lambda > 400 \text{ nm}$	9	20	281	40		10.1039/c4ra01413h
	pyrene	H ₂ O 1/9	300 W Xe						
Dicyandiamide	Ni TEOA complex	H ₂ O	$\lambda > 400 \text{ nm}$	60	7	281	10	1.5% (400 nm)	10.1002/cssc.201200490
			500 W Xe						
Melamine then			$\lambda > 400 \text{ nm}$	24	0.8	200	12		
KSCN	NiP	H ₂ O	100 mW cm ⁻²					15% (360 nm)	10.1021/jacs.6b04325
			AM 1.5	24	1.5	425	31		
Melamine then									
KSCN then	NiP	H ₂ O	AM 1.5	4	6	360	116		10.1021/acscatal.8b01969
graphene oxide									
Melamine	Cobaloxime	H ₂ O	350 - 740 nm	8	2.6	4	0.5	0.62 (365 nm)	10.1039/c3cp53350f
			300 W Xe						
			$\lambda > 420 \text{ nm}$	192	12	1360	92	~2.3% (365 nm)	
Urea	Ni(abt) ₂	H ₂ O	300 W Xe	172	1.2	1500		$\sim 1.5\% (400 \text{ nm})$	This work
			$\lambda > 320 \text{ nm}$	24	5.7	422	54.3	0.7% (420 nm)	
			300 W Xe					0.770 (420 mm)	
Semicarbazide	Ni(abt) ₂	HaO	$\lambda > 475 \text{ nm}$	24	0.2	22	1.2		This work
hydrochloride	11(400)2	1120	300 W Xe	<u></u>	0.2	22	1.2		THIS WORK

Table S2. Comparison of carbon nitride – molecular catalyst systems for H_2 evolution.

Table S3. Comparison of H_2 evolution rate for different carbon nitride – molecular catalysts in this work

Catalyst	H ₂ rate / μmol h ⁻¹
CN _{DCDA} -Ni(abt) ₂	0.14
FAT-Ni(abt) ₂	0.28
ONLH-Ni(abt) ₂	0.34
CN _{urea} -Ni(abt) ₂	0.92
CN _{urea} -Pt	1.55
CN _{DCDA} -Ni(bdt) ₂	0.16
FAT-Ni(bdt) ₂	0.002
ONLH-Ni(bdt) ₂	0.005
CN _{urea} -Ni(bdt) ₂	0.17

Reaction condition: 10 mg catalyst in a solution of H₂O with 10% TEOA (50 mL) irradiated with a 300 W Xenon light source (Newport 66485-300XF-R1) equipped with a $\lambda > 420$ nm filters for 24 h.